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In the Subspace Clustering with Missing Data (SCMD) problem, we are given a collection of n partially

observed d-dimensional vectors. The data points are assumed to be concentrated near a union of low-

dimensional subspaces. The goal of SCMD is to cluster the vectors according to their subspace membership

and recover the underlying basis, which can then be used to infer their missing entries. State-of-the-art

algorithms for SCMD can fail on instances with a high proportion of missing data, full-rank data, or if the

underlying subspaces are similar to each other. We propose a novel integer programming approach for SCMD.

The approach is based on dynamically determining a set of candidate subspaces and optimally assigning

points to selected subspaces. The problem structure is identical to the classical facility-location problem, with

subspaces playing the role of facilities and data points that of customers. We propose a column-generation

approach for identifying candidate subspaces combined with a Benders decomposition approach for solving

the linear programming relaxation of the formulation. An empirical study demonstrates that the proposed

approach can achieve better clustering accuracy than state-of-the-art methods when the data is high-rank,

the percentage of missing data is high, or the subspaces are similar.
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1. Introduction

We consider a real-valued matrix X ∈ Rd×n in which each column X1,X2, . . . ,Xn is assumed to

lie near one of K unknown subspaces, Si with dimension ri < d, i = 1, . . . ,K. Given a set of Ω

of observed entries of the matrix X, subspace clustering with missing data (SCMD) is the task of

identifying clusters of the columns of XΩ belonging to the same subspace and inferring the subspace

associated with each cluster of columns.

If the clustering of columns is known, then the subspace associated with each cluster can be

estimated by applying methods for low-rank matrix completion (LRMC) on the columns in each

cluster (Candès and Recht 2009, Candes and Tao 2010, Cai et al. 2010, Balzano et al. 2010, Recht

2011, Pimentel-Alarcón et al. 2015, Nguyen et al. 2019). The SCMD problem has applications in

machine learning for image classification (Lecun et al. 1998, Zapata et al. 2007), motion segmen-
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tation (Tron and Vidal 2007, Rao et al. 2010), and recommendation systems (Ramlatchan et al.

2018).

In this work, we propose a novel mixed-integer linear programming (MILP) solution framework

for the SCMD problem that is based on dynamically determining a set of candidate subspaces and

optimally assigning columns (also called data points) to the closest selected subspace. We refer to

our method as MISS-DSG : Mixed Integer Subspace Selector with Dynamic Subspace Generation.

A key contribution of our approach is a method for identifying, in a rigorous manner, a suitable set

of candidate subspaces to include in the formulation. We cast this subspace generation problem as

a nonlinear, nonconvex optimization problem and propose a gradient-based approximate solution

approach. We also use Benders decomposition to solve the linear programming (LP) relaxation of

the MILP, which allows our framework to accommodate both a large number of candidate sub-

spaces and a large number of data points. The model has the advantage of integrating the subspace

generation and clustering in a single, unified optimization framework without requiring any hyper-

parameter tuning when the number of subspaces and subspaces dimensions are known. When the

number and/or dimensions of the subspaces are unknown, we propose add a regularization term to

the objective based on the effective dimension of the selected subspaces. Our computational study

demonstrates that the proposed method can achieve higher clustering accuracy than state-of-the-

art methods when the underlying matrix X is high-rank, the percentage of missing data is high,

or the subspaces are similar to each other.

Prior Work. Abdolali and Gillis (2021) provide a a review of subspace clustering methods in the

case that all entries of X are observed. Most of the methods for subspace clustering with missing

data have been adapted from the methods initially proposed for fully-observed data. The tightest

known conditions for union of subspaces identifiability with missing data have been established by

Pimentel-Alarcón and Nowak (2016), where the authors show that for ambient dimension d and

low dimensional subspaces of dimension r, observing O(rd) columns per subspace is both necessary

and sufficient for subspace identification.

The dominant approach in subspace clustering is based on a self-expressiveness property, orig-

inally proposed for fully-observed data by Elhamifar and Vidal (2009). Self-expressive methods

learn a sparse representation of the data by solving an optimization problem of the form:

C∗ = argmin∥X −XC∥2F +λρ(C) s.t. diag(C) = 0. (1)

Self-expressive methods have been studied extensively for different choices of ρ(·), e.g., ℓ1, ℓ2, and

nuclear norm (Elhamifar and Vidal 2009, Liu et al. 2010, Lu et al. 2012, Zhuang et al. 2012, Lu

et al. 2013, Elhamifar and Vidal 2013, Panagakis and Kotropoulos 2014, You et al. 2016, Wang
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et al. 2019). The value C∗
ij can be interpreted as a link or connection between data points i and j.

The segmentation is obtained by applying spectral clustering on a graph G with adjacency matrix

A= |C∗|+ |C∗|T , which uses k-means cluster of the eigenvectors of the Laplacian of G (Ng et al.

2001). Self-expressive methods for subspace clustering have been extended to the case of missing

data. Let Ωj denote the set of observed components of vector j ∈ [n] and IΩ ∈ {0,1}d×n be the

indicator matrix of observed entries such that [IΩ]ij = 1 if (i, j)∈Ω, and 0 otherwise. Let ◦ denote

the Hadamard product. Yang et al. (2015) proposed to zero-fill the missing entries in X to get

XZF and to solve (1) while restricting the loss to observed entries, i.e.,

XZF =

{
Xij, if (i, j)∈Ω, i.e., Xij is observed

0, if (i, j) /∈Ω, i.e., Xij is not observed
(2)

C∗ = argmin∥IΩ ◦ (XZF −XZFC)∥2F +λρ(C) s.t. diag(C) = 0. (3)

Tsakiris and Vidal (2018) and Charles et al. (2018) studied the theoretical conditions under

which the solution to (3) is subspace-preserving, i.e., each data point is only connected to points

lying in the same subspace.

Representative of a class of methods that alternate between subspace estimation and assignment,

Yang et al. (2015) proposed to apply a matrix completion algorithm to recover the missing entries

in X and then solve (1). This approach has been observed to fail when the data matrix is high-rank,

i.e.,
∑K

i=1 ri ≈ d. Lane et al. (2019) proposed to alternate between subspace clustering and group

wise low-rank matrix completion (gLRMC). Balzano et al. (2012) use GROUSE (Balzano et al.

2010) for subspace estimation and assign each point to the orthogonally closest subspace. They use

probabilistic farther insertion for initializing K subspaces. In all alternating methods, the subspace

estimation process is often faulty when an estimated cluster has points from different subspaces.

In an extensive empirical evaluation of existing SCMD algorithms, Lane et al. (2019) concluded

that the zero-filled elastic net subspace clustering method (You et al. 2016) when alternated with

low-rank matrix completion showed the overall best performance. This method is referred to as

Alt-PZF-EnSC+gLRMC.

Some methods pose the two problems of subspace estimation and assignment in a joint optimiza-

tion framework, often resulting in complex, nonconvex problems (Li and Vidal 2016, Elhamifar

2016, Fan and Chow 2017). Matrix factorization approaches have also been adopted to SCMD

(Pimentel et al. 2014, Pimentel-Alarcón et al. 2016). Empirical experiments in (Lane et al. 2019)

showed that these methods are outperformed by the alternating methods in terms of clustering

error.

The work most closely related to our approach are the MILP-based methods for subspace clus-

tering with fully-observed data. Lazic et al. (2009) were the first to propose an MILP-based method
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for subspace clustering called Facility Location for Subspace Segmentation (FLoSS). FLoSS gen-

erates the candidate subspaces at random and formulates the subspace clustering problem as an

MILP. The goal of the MILP is to minimize the orthogonal distances of data points to candidate

subspaces such that K subspaces are selected, and each vector is assigned to a selected subspace.

Lee and Cheong (2013) extended the FLoSS model to Minimal Basis FLoSS (MB-FLoSS), where

the subspace hypothesis generation strategy is based on finding the minimal basis subspace rep-

resentation for the data matrix and relies on Low Rank Representation (LRR)(Liu et al. 2010).

Hu et al. (2015) proposed the concept of constrained subspace model. They integrated the facility-

based model with manifold and spatial regularity constraints to develop a constrained subspace

modeling framework. The number of candidate subspaces is small (≤ 50) in their experiments. The

method becomes inefficient when the number of candidate subspaces is higher, and the approach

heavily relies on the efficiency of initial candidate subspaces generated for which they use over seg-

mentation in LRR (Liu et al. 2010). In particular, they generate more subspaces than the ground

truth (e.g, 2 ×K) with LRR, and then use MILP to select K of them. None of these existing

MILP-based approaches account for missing data or scale to instances with a large number of

candidate subspaces. Moreover, all of the approaches require that candidate subspaces are explic-

itly enumerated as an input to the model, and either rely on random sampling or other subspace

clustering algorithms for generating candidate subspaces. Hence, these methods are incapable of

correcting themselves based on the clustering quality. Our approach MISS-DSG can handle a large

set of candidate subspaces through the use of Benders decomposition and identifies new candidate

subspaces dynamically through the use of column generation. Casting SCMD as an MILP offers

several other advantages. The formulation can easily be extended to incorporate prior information

about the data, such as vectors lying in the same or different subspaces and bounds on number of

subspaces.

The paper begins with a description of the MILP formulation in Section 2. Section 3 discusses

our decomposition approach to solve the model, and Section 5 presents experimental results that

show the effectiveness of our framework.

2. MILP Formulations

We consider a real-valued matrix X ∈ Rd×n whose columns are concentrated near a union of K

subspaces with dimensions r1, r2, . . . , rK . For an integer T , we denote [T ] := {1,2, . . . , T}. We denote

data vector (column) j ∈ [n] as Xj. We assume that we observe a subset Ω⊆ [d]× [n] of the entries

of X, and given this data the goal of subspace clustering with missing data (SCMD) is to identify

the K subspaces together with assignment of data points to subspaces. This consequently leads to

a clustering of points and a method for estimating missing entries of X. In Section 2.1, we assume
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that subspaces dimension r1, . . . , rK are known. We relax this assumption in Section 2.2 and let the

model self-determine the subspaces dimensions with the help of a regularized objective. The matrix

X is referred to as low-rank when
∑K

k=1 rk≪min{d,n} and as high-rank when
∑K

k=1 rk ≈min{d,n}.

Our approach is based on iteratively building a (potentially very-large) collection of candidate

subspaces. MILP is employed to simultaneously select the best set of K candidate subspaces and

assign each column of X to its closest selected subspace. For each candidate subspace t ∈ [T ], we

let Ut ∈Rd×rt be a basis for its column subspace, where rt is the dimension of candidate subspace

t. We define the distance of vector j ∈ [n] to a candidate subspace t∈ [T ] as the sum of the squared

residuals on the observed entries:

∆jt := min
v∈Rr

{ ∑
i:(i,j)∈Ω

(Xij − (Utv)i)
2
}
. (4)

These quantities have a closed-form solution in terms of a simple projection operator (Balzano

et al. 2012). In particular, let UΩ,j denote the restriction of the subspace U to the rows observed

in column j, and define the projection operator PUΩ,j
:= UΩ,j(U

T
Ω,jUΩ,j)

−1UT
Ω,j. Then the squared

residual ∆jt can be obtained as

∆jt = ∥XΩ,j −P(Ut)Ω,j
(XΩ,j)∥22. (5)

For fully-observed data, this is a natural choice for cost function since its value is zero if vector

j is in subspace t. However, with missing data, the choice of cost function becomes less clear since

zero residual on observed entries for ∆jt does not necessarily imply that vector j lies perfectly on

subspace t. Balzano et al. (2012) showed that for a given fully observed vector Xj ∈Rd, if

∥Xj −PU0
(Xj)∥< ∥Xj −PUt(Xj)∥ ∀t∈ [T ]\{0}, (6)

then, with high probability, for the same data vector Xj but now partially observed on Ω (sampled

uniformly from [d] with replacement), if “enough” elements of the data point Xj are observed (see

Balzano et al. (2012) for details on quantification of “enough”), then

∥XΩ,j −P(U0)Ω,j
(XΩ,j)∥< ∥XΩ,j −P(Ut)Ω,j

(XΩ,j)∥ ∀t∈ [T ]\{0}. (7)

This implies that, with high probability, subspace assignment based on (6) is the same as the one

based on (7). We refer reader to Balzano et al. (2012) for more details. We also note that a different

cost model could also be incorporated into our framework.

Next, we describe a model based on selecting K subspaces from a given collection of [T ] sub-

spaces for both known and unknown subspaces dimensions in Section 2.1 and 2.2 respectively. In

Section 3.1, we discuss how to solve the proposed model for a fixed set of subspaces using Benders
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decomposition. This allows to solve the model efficiently for large n and T . In Section 3.2, we

discuss how to generate new candidate subspaces dynamically with a column generation approach.

We finally discuss our unified framework MISS-DSG in Section 3.3.

Let xjt ∈ {0,1},∀j ∈ [n], t ∈ [T ] be a binary assignment variable that takes value 1 if vector j is

assigned to subspace t, and zt ∈ {0,1},∀t∈ [T ] be a binary selection variable with zt = 1 if subspace

t is selected. The assignment of points to selected subspaces is similar to the facility location

problem, where the goal is to select which facilities to open and to assign each customer to an open

facility. In our SCMD formulation, subspaces play the role of facilities, and vectors play the role

of customers. Previously proposed MILP methods in the literature have this same facility-location

structure (Lazic et al. 2009, Lee and Cheong 2013, Hu et al. 2015). However, our model has some

key differences:

(a) We allow missing data while existing MILP approaches restrict to fully observed data.

(b) Our framework generates subspaces dynamically while existing approaches are heavily depen-

dent on initially generating candidate subsspaces.

(c) Our framework is capable of handling a larger number of candidate subspaces than existing

methods through the use of Benders decomposition.

For improved readability, in Section 2.1 we first discuss the formulation for the simpler case where

subspaces dimensions are assumed to be known and equal, i.e., r1 = r2 = · · ·= rk = r. We then relax

this assumption in Section 2.2.

2.1. Known subspaces dimension

Given T candidate subspaces each of dimension r, we formulate the SCMD problem as the MILP

(Lazic et al. 2009, Hu et al. 2015):

min
x∈{0,1}n×T ,z∈{0,1}T

∑
t∈[T ]

∑
j∈[n]

∆jtxjt (8a, MILP)∑
t∈[T ]

xjt = 1, ∀j ∈ [n] (8b)

xjt ≤ zt, ∀j ∈ [n], t∈ [T ] (8c)∑
t∈[T ]

zt =K. (8d)

The objective (8a) seeks the least cost assignment of vectors to subspaces. Constraints (8b) ensures

that each vector is assigned to exactly one subspace, and constraints (8c) enforce that a vector

can only be assigned to a selected subspace. Constraint (8d) requires that exactly K subspaces are

selected. The major difference in (8) compared to the models proposed in (Lazic et al. 2009, Hu

et al. 2015) is that the distance metric ∆jt in (8) is based on partial assignment cost (5), as we do

not assume data is fully observed.
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2.2. Unknown Subspaces Dimension

A common occurrence in SCMD problems is that the number of subspaces and their dimension are

unknown. The objective in model (8) may be in appropriate in this case, because it is likely to favor

subspaces of higher dimension, since these are inherently more flexible and hence will lead to lower

residuals. Thus, when the subspace dimensions are unknown, we propose to augment the objective

in (8) with a complexity measure of the candidate subspaces, the effective dimension (ED). Huang

et al. (2004) defined effective dimension for X on a union of subspace models S=∪K
k=1Sk as follows:

ED(X,S) :=
1

n

K∑
k=1

rk(d− rk)+
1

n

K∑
k=1

nkrk. (9)

The first term in the definition of ED in (9), rk(d− rk) is the complexity of Ut—the number of

real numbers needed to specify a k dimensional subspace Sk in Rd. The second term of (9), nkrk

is the number of real numbers needed to specify the rk coordinates of the nk sample points in the

subspace Sk.

To allow for the model to trade-off accuracy with complexity, we add the ED term with a weight

parameter λ in our objective as follows:

min
x∈{0,1}n×T ,z∈{0,1}T

∑
t∈[T ]

∑
j∈[n]

∆jtxjt +
λ

n

∑
t∈T

(
rt(d− rt)zt +

∑
j∈[n]

rtxjt

)
(10a)∑

t∈[T ]

xjt = 1, ∀j ∈ [n] (10b)

xjt ≤ zt, ∀j ∈ [n], t∈ [T ] (10c)∑
t∈[T ]

zt =K. (10d)

Formulation (10) can handle subspaces of multiple dimensions and choose the best union of sub-

spaces model by self-determining dimensions of subspaces. Constraint (10d) is included but can be

removed if K is unknown. An important consideration in model (10) is the choice of regularization

parameter λ which accounts for the trade-off between lower assignment cost and complexity of the

selected subspaces. A smaller value of λ would promote model (10) to select higher complexity

subspaces (basis with higher dimensions rt) while a larger value of λ would promote the model to

select lower complexity subspaces (basis with lower dimensions rt). We discuss this in more detail

in Section 5.5. Note that (8) is a special case of (10) with λ= 0.

3. Decomposition Algorithm

We next discuss how to solve formulation (10) for a given set of candidate subpsaces via Ben-

ders decomposition and how to dynamically generate a set of candidate subspaces to use in the

formulation.
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As is standard for solving a MILP, the first step in solving formulation (10) is to solve its LP

relaxation. The LP relaxation of (10) is the problem created by replacing the integrality conditions

zt, xjt ∈ {0,1} with simple bound constraints zt, xjt ∈ [0,1]. The optimal solution value of the

LP relaxation provides a lower bound on the optimal solution to (10). The number of candidate

subspaces T and the number of points n may be quite large, so solving the LP relaxation could

be a computational challenge. We discuss in Section 3.1 how Benders decomposition can address

this challenge for solving the LP relaxation of (10). In Section 3.2, we describe our approach for

dynamically generating additional candidate subspaces to include in the formulation, which is also

done for the LP relaxation. Finally, in Section 3.3 we describe how these components are integrated

into an overall approach for yielding feasible solutions to (10).

3.1. Benders Decomposition

Benders decomposition is a well-known technique to solve large LP problems that have special

structure (Benders 1962). It has been applied to large-scale facility locations by Fischetti et al.

(2017). Since our SCMD formulation (10) has the same structure, we can apply the same approach

for solving its LP relaxation. The first step in the decomposition approach is to write a reformulation

that eliminates the xjt variables and adds a continuous variable wj for each j ∈ [n] that represents

the assignment cost for vector j. The resulting reformulation of the LP relaxation of (10) is

min
w∈Rn,z∈[0,1]T

∑
j∈[n]

wj +
λ

n

∑
t∈T

rt(d− rt)zt (11a)

wj ≥Φj(z), ∀j ∈ [n] (11b)∑
t∈[T ]

zt =K, (11c)

where Φj(·) is defined as

Φj(ẑ) =min
x

{ ∑
t∈[T ]

(∆jt +
λ

n
rt)xt :

∑
t∈[T ]

xt = 1,0≤ xt ≤ ẑt,∀t∈ [T ]
}
. (12)

The function Φj(ẑ) computes the minimum (fractional) assignment cost for the vector j ∈ [n] for

a given (possibly fractional) vector of facility opening decisions ẑ ∈ [0,1]T . The function Φj(·) is

piecewise-linear and convex, and Benders decomposition works by dynamically building a lower-

bound approximation to Φj(·) via the addition of Benders cuts.

To simplify notation in the derivation of the Benders cuts, we define cjt =∆jt +
λ
n
rt for j ∈ [n]

and t ∈ [T ]. The optimization problem (12) used to evaluate Φj(ẑ) has a closed-form solution.

Moreover, its evaluation also gives sufficient information to derive the Benders cuts that define the

lower-bounding approximation. For each j ∈ [n], let {σj
1, . . . , σ

j
T} be a permutation of [T ] satisfying
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c
jσ

j
1
≤ c

jσ
j
2
≤ · · · ≤ c

jσ
j
T
, and let t∗j :=min{t :

∑t

s=1 ẑσj
s
≥ 1} be the critical index. In other words, the

critical index is the index of the costliest subspace to which any portion of vector j is assigned.

As described in Fischetti et al. (2017), the Benders cut that can be used to lower-approximate the

function Φj(·) is

wj +

t∗j−1∑
i=1

(c
jσ

j
t∗
j

− c
jσ

j
i
)z

σ
j
i
≥ c

jσ
j
t∗
j

. (13)

These inequalities are accumulated iteratively. Let pj denote the number of Benders cuts included

in the model at the current stage in the algorithm for each j ∈ [n]. Let t∗ji denote the critical index

for vector j ∈ [n] associated with Benders cut i∈ [pj], and let c∗ji = c
jσ

j
t∗
ji

denote the critical cost for

the jth vector in cut i∈ [pj]. The Benders master problem is then

min
w,z

∑
j∈[n]

wj +
λ

n

∑
t∈[T ]

rt(d− rt)zt (14a)

wj +

t∗ji−1∑
ℓ=1

(c∗ji− cjσi
ℓ
)z

σ
j
ℓ
≥ c∗ji, ∀j ∈ [n], i∈ [pj], (14b, αji)∑

t∈[T ]

zt =K, (14c, β)

0≤ zt ≤ 1, ∀t∈ [T ]. (14d, µt)

Here α,β and µ are dual variables corresponding to the respective constraints, and will play an

important role in the column generation process described in Section 3.2. For T >K, LP (14) is

feasible and bounded, and hence an optimal solution (ŵ, ẑ) exists. The subproblem (12) is solved

to evaluate Φj(ẑ) for each j ∈ [n], and to generate new Benders cuts (13). If Φj(ẑ) = ŵj, then the

generated inequality does not improve the approximation to Φj(·), and the cut is not added to

(14). The Benders procedure stops when no new cuts are added. At this point, the LP relaxation

of (10) is solved.

3.2. Column Generation

In our discussion to this point, we have assumed that we are given T candidate subspaces. Key

to our approach is a column generation method for dynamically identifying new subspaces that

have the potential to improve the solution to (10). Column generation is a classical method for

solving large-scale LP (Ford and Fulkerson 1958) that also has seen significant use in solving MILP

problems (Barnhart et al. 1998). We apply column generation to the LP relaxation of (10), or more

specifically, to the Benders reformulation of this LP relaxation (14).

The key idea behind column generation is to create an auxiliary problem, called the pricing

problem, whose solution identifies if there is an additional variable (candidate subspace), that, when

added to the LP (14), could improve its solution value. The formulation of the pricing problem
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follows from LP duality theory. If the reduced cost of a column (subspace variable) is negative, then,

by increasing the value of that variable from its nominal value of zero, the objective value of the LP

may decrease. Thus, we seek columns (subspaces) with negative reduced cost. If all columns have

non-negative reduced cost, the current solution of the LP with the set [T ] of candidate subspaces

is optimal and adding columns to [T ] would not decrease the LP relaxation value.

Consider an arbitrary subspace variable zt. Given the optimal dual variables (α̂, β̂) to the solution

of (14), the reduced cost of a variable zt is given by the formula

λ

n
rt(d− rt)−

∑
j∈[n]

∑
i∈[pj ]

α̂jimax{c∗ji− cjt,0}− β̂, (15)

where the term max{c∗ji− cjt,0} that is used to record the contribution of Benders cut i∈ [pj] for
data vector j ∈ [n] is used to reflect the fact that the coefficient c∗ji− cjt only appears for variable

zt in this cut when c∗ji > cjt.

We formulate the problem of finding a subspace that corresponds to a column having negative

reduced cost as a problem of finding a basis matrix U ∈Rd×r, where r is the candidate dimension

of the subspace. In order to derive the reduced cost for the variable associated with a subspace

defined by basis matrix U , we recall from (4) that for a subspace defined by basis matrix Ut,

cjt =∆jt +
λ

n
r=min

v∈Rr

{ ∑
i:(i,j)∈Ω

(Xij − (Utv)i)
2
}
+

λ

n
r=: hj(Ut). (16)

Thus, substituting the function hj(U) in for cjt in the reduced cost expression (15), the problem of

finding a column corresponding to a rank-r basis of minimum reduced cost can be formulated as:

min
U∈Rd×r

gr(U) :=
λ

n
r(d− r)−

∑
j∈[n]

∑
i∈[pj ]

α̂jimax{c∗ji−hj(U),0}− β̂. (17)

The objective in problem (17) is not convex, and hence we find locally minimal solutions to (17)

with a gradient-based method. To explore subspaces of varying dimensions, we solve (17) for r ∈
{1,2, . . . , rmax} where rmax is an upper bound on the subspace dimension, which we assume is given

as an input to the model.

Gradient-based method for solving (17). Consider a fixed r ∈ {1,2, . . . , rmax}. Observe that

if hj(U) ̸= c∗ji ∀j ∈ [n], i ∈ [pj], then the function gr(·) is differentiable at U . The partial derivative

of gr(·) with respect to matrix element Uab evaluated at current iterate Û is given by

∂gr(Û)

∂Uab

=−
∑
j∈[n]

∑
i∈[pj ]:

c∗ji−hj(Û)>0

2α̂ji

∑
ℓ∈Ωj

(Xℓj − û⊤
ℓ v̂j)v̂jb ∀a∈ [d], b∈ [r], (18)

where ûℓ represents row ℓ of Û and v̂j is the optimal solution to problem (16) that is solved

when evaluating hj(Û) for each j ∈ [n]. By adding the condition c∗ji−hj(Û)> 0 in the summation,



Soni et al.: Subspace Clustering with Integer Programming
Submitted 11

Algorithm 1: Locally solving pricing problem for fixed subspace dimension

Data: XΩ

Input: U0 ∈Rd×r, maxIt=500, ϵ= 0.001 ; /* initial subspace */

1 it = 0, Û =U0,U = {} ; /* iteration count */

2 while it<maxIt and ∥∇gr(Û)∥> ϵ
3 for j = 1,2, . . . , n do

4 v̂j = (Û⊤
Ω,jÛΩ,j)

−1ÛΩ,j(Xj)Ω

5 cj,it = ∥(Xj)Ω − ÛΩ,j v̂j∥22 + λ
n
r

6 end

7 Calculate ∇g(Û) using (18) ; /* Requires Û , v̂j ∀j ∈ [n] */

8 Calculate g̃ using (19)

9 γ←min(0.1, g̃−g(Û)

∥∇g(Û)∥2
F

) ; /* Polyak step size */

10 Û ← Û − γ∇g(Û) ; /* gradient step */

11 it← it+1 if gr(Û)< 0

12 U ←U ∪ Û

13 end
14 end

Output: Set of subspace bases U

we implicitly use a subgradient contribution of 0 at points of non-differentiability. We denote by

∇gr(Û) the d× r matrix of partial derivatives of gr(·) at Û .

We outline our gradient-based approach for locally solving pricing problem (17) for a fixed

subspace dimension r in Algorithm 1. Since this method is not guaranteed to find a global optimal

solution to the nonconvex problem (17), we run the method multiple times with different random

choices of U0 to identify different locally-optimal solutions. Our method for randomly initializing

U0 is motivated by the fact that when the matrix is fully observed, r+1 vectors per subspace are

necessary and sufficient for subspace clustering. Hence, we randomly sample N(> r + 1) vectors

from the M vectors in the current LP solution of (14) with the largest ŵj values, where M >N .

In our experiments we use M = 5rmax and N = 2r. This approach selects a subset of vectors with

high residuals in the current solution and initializes the gradient descent algorithm with a best-fit

subspace on that subset of vectors. Then, we use a fast low-rank matrix completion algorithm,

GROUSE (Balzano et al. 2010), to find the basis U0 for a best-fit subspace for the sampled vectors.

This U0 is provided as an input to the Algorithm 1 (line 1).

To calculate the gradient using equation (18), we first need to solve the optimization model in

(16), with Ut = Û , for each j ∈ [n]. The solution to this problem can be computed using the matrix

(Û⊤
Ω,jÛΩ,j)

−1ÛΩ,j as used in line 4 (Balzano et al. 2012).
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An important choice for the practical performance of gradient-based methods is the step size. We

use the Polyak step size (Polyak 1987). The Polyak step size formula requires the optimal value of

objective function, g∗. Since the optimal value g∗ is unknown, we approximate it with g̃ (in line 8)

as follows

g̃≈ λ

n
r(d− r)−

∑
j∈[n]

∑
i∈[pj ]:

c∗ji−hj(Û)>0

α̂jic
∗
ji. (19)

This choice assures that g̃ is a lower bound on g∗, since it replaces hj(U) in the objective of (17)

with 0. The Polyak step size is then calculated as γ← g̃−g(Û)

∥∇g∥22
. To prevent the step size from getting

too large when ∥∇(g)∥ becomes small, we set γ ← min(0.1, g̃−g(Û)

∥∇g∥22
) (line 9). These choices were

made based on preliminary empirical experiments. We discuss this in more detail in Section 4.3.

The gradient step is described in line 10. We terminate when the norm of the gradient becomes

sufficiently small (∥∇g(Û)∥ ≤ ϵ= 0.001 in our implementation) or we reach the maximum number

of allowed iterations (500 in our implementation). As described in line 12, we store the basis Û in

each iteration if it has negative reduced cost, since each defines a potential candidate subspace to

be added to the master problem (14).

3.3. MISS-DSG: Mixed Integer Subspace Selector with Dynamic Subspace
Generation

We now describe how the Benders decomposition and column generation processes are integrated

into an overall solution method, MISS-DSG, for the SCMD problem. Algorithm 2 describes the

details. We initialize the model (14) with b randomly generated subspaces for each possible subspace

dimension (line 1). In particular, to generate a subspace of dimension r, we sample a matrix from

a uniform distribution over [−1,1]d×r, and perform singular value decomposition (SVD) to get a

basis. We then solve the master LP relaxation (14) in line 10, and generate Benders cuts for each

j ∈ [n] (lines 11-15). Observe that if Φj(ẑ) = ŵj, then the generated inequality does not improve

the approximation to Φj(·), and the cut is not added to (14) (line 12). We repeat lines 11-15 until

no violated cuts are found.

We next proceed to generate new columns (lines 17-27) by solving the pricing problem (17) in

order to look for negative reduced cost columns. We solve the pricing problem for every candidate

dimension r ∈ {1,2, . . . , rmax} (line 17). For each dimension r, we do multi-start (line 18) and locally

solve the pricing problem (17) using Algorithm 1 and store all bases having negative reduced cost

in U (line 20). If any such basis are found, we add variables representing the possibility to select

them to the master LP (line 22). We proceed to the next dimension if any negative reduced cost

columns are found and we have exceeded the minimum number of multi-starts, ηmin (lines 23-25).

We perform a maximum of ηmax multi-starts for each dimension r. In our experiments, we use

ηmin = 5 and ηmax = 15.
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Algorithm 2: Mixed Integer Subspace Selector with Dynamic Subspace Generation

Data: XΩ

Input: max dimension rmax, min and max # of multi-starts: ηmin, ηmax, max # iterations

imax

Output: Partition of [n] into K clusters: Sk, k= 1, . . . ,K

1 Initialize MILP model (10) with [T ] as b random subspaces of dimension ri for each

i∈ [rmax] ;

2 Calculate cjt for j ∈ [n], t∈ [T ] ;

3 root node continue← True, generate cuts ← True, it ← 0;

4 while root node continue and it< imax

5 root node continue← False ; /* switched back on if new columns found */

6 it← it+1;

// generate Benders cuts

7 generate cuts← True;

8 while generate cuts
9 generate cuts← False ;

10 solve master LP relaxation (14) to obtain (ŵ, ẑ);

11 for j = 1,2, . . . , n do
12 if ŵj <Φj(ẑ)
13 Add Benders cuts of the form (13) to master (14);

14 generate cuts← True
15 end
16 end

// generate new columns

17 for r= 1, . . . , rmax do
18 for η= 1, . . . , ηmax do
19 Initialize U0 with a best-fit subspace for 2r randomly-sampled vectors from the

5rmax vectors with largest ŵj ;

20 U ←Solve pricing problem using Algorithm 1 to generate candidate subspaces ;

21 if U ≠ ∅
22 Extend [T ] to include a new zt variables for each subspace Ut ∈ U ;

23 if η > ηmin

24 root node continue← True;

25 break ; /* New columns found and minimum multi-starts done */
26 end
27 end

28 if root node continue
29 remove all Benders cuts from (14) ; /* invalid due to new zt vars */
30 end

31 x̂jt, ẑt← Solve MILP model (11) with zt ∈ {0,1}T , using a callback routine to search for

violated Benders cuts at integer feasible solutions. ;

32 return {St = {j ∈ [n] : x̂jt = 1},∀t∈ [T ] s.t. ẑt = 1} ;
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If new columns are found in the column generation process, we delete existing Benders cuts from

the master problem since they become invalid due to new zt variables (line 29), and return to the

process of generating Benders cuts. We repeat cut generation (lines 8-16) and column generation

(lines 17-27) as long as we find new columns having negative reduced cost or until we reach the

maximum iteration limit, imax which we set to be 15 in our experiments.

After we exit the root node loop we pass the updated MILP model with the new columns and

cuts included to a MILP solver (line 31) to be solved by a branch-and-cut method. We do not

generate new columns (zt variables) after this point – in other words, we generate columns only

at the root node, and not within the branch-and-cut phase of the solution of the MILP problem.

As a result, even if we solve the pricing problem (17) to global optimality, this method is not

guaranteed to find a globally optimal solution due the possibility of missing needed columns at

nodes in the branch-and-bound tree. We do, however, generate Benders cuts within the branch-

and-cut method for solving the MILP problem as this is necessary to assure that integer feasible

solutions encountered in the solution process have their costs correctly recorded before allowing

them to be accepted as an incumbent (best-known) solution. This is implemented by defining a

lazy constraint callback that is called by the solver any time it encounters an integer-feasible

solution (ŵ, ẑ). Within the lazy constraint callback, we check if ŵj < Φj(ẑ) for any j ∈ [n], and

add the corresponding Benders cut of the form (13) to the model if so. The solver then adds these

cuts to its formulation (and consequently excludes the solution that had incorrect cost value ŵj).

After the MILP solver completes its branch-and-cut process, we use the optimal solution returned

to determine the selected subspaces and mapping of each vector to a selected subspace (line 32).

In particular, we select subspaces t∈ [T ] such that ẑt = 1.

4. Effect of Algorithm Components

We next report results of computational studies designed to investigate the importance of various

components of MISS-DSG.

4.1. Experimental Setup

We use Gurobi 8.1 for solving the LP and MILP problems and Python as the programming lan-

guage. We set a time limit of 5000s for each MISS-DSG run. The computational study is conducted

on a cluster of 4 core machines with a RAM of 16GB with Xeon X5690 CPU running at 3.46GHz.

We report results on instances generated randomly in a fashion similar to (Lane et al. 2019).

Specifically, we construct K random subspaces with bases Uk ∈Rd×rk ,∀k ∈ [K] by sampling entries

from a standard Gaussian distribution. We then generate n different data vectors. Each data vec-

tor j ∈ [n] is sampled from one of the K subspaces, i.e., Xj = Ukvj for a uniform random k ∈ [K]

and vj ∈Rrk sampled from a standard Gaussian distribution. After generating data matrix X, we
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Table 1 Effect of |T| on LP relaxation time (s) for

d= 30,n= 200,K= 6, f = 0,rk = 3 ∀k∈ [K]

|T | Without Benders With Benders

100 0.5 0.1
500 3.2 0.3
1000 48.2 1.6
2000 729.8 2.8
4000 1380.3 3.1

Table 2 Effect of n on LP relaxation time (s) for

d= 30,K= 6, f = 0, |T|= 500,rk = 3 ∀k∈ [K]

n Without Benders With Benders

100 7.4 0.5
200 3.2 0.3
400 109.5 0.8
600 617.6 2.1
1200 1147.3 4.5

uniformly at random drop a percentage f of the entries in X leaving the remaining entries as the

observed components Ω.

4.2. Impact of Benders Decomposition

We first demonstrate that Benders decomposition gives a very significant speedup in the time

required to solve the LP in MISS-DSG . We compare the solution times for solving the LP relaxation

without Benders decomposition (i.e., directly solving LP relaxation of (10)) and with Benders

decomposition to solve the Benders formulation (14). For this experiment, we generate an identical

set of subspaces ([T ]) to use in the two formulations and solve the resulting LP relaxations, and

we use λ= 0. All results reported in this section are averaged over five different random instances

for each combination of parameters.

In Table 1, we present the results for varying number of candidate subspaces (|T |), while fixing

d= 30, n= 200,K = 6, f = 0, rk = 3 ∀k ∈ [K], and in Table 2, we present the results for varying n

with fixed d= 30,K = 6, f = 0, |T |= 500, rk = 3 ∀k ∈ [K]. From these two tables we observe that

directly solving the LP relaxation of (8) becomes very time-consuming as either the number of

candidate subspaces or the number of data points increases, whereas the time grows much more

modestly when using Benders decomposition. Thus, we find that the use of Benders decomposition

is essential for the computational viability of MISS-DSG .

4.3. Step-size Rule for Solving (17)

As discussed in Section 3.2, we propose to use the Polyak step size rule (Polyak 1987) when solving

the pricing problem (17). A major advantage of the Polyak rule is that it is does not require tuning

the initial step size, as is required when using a constant or diminishing step size rule. We illustrate

this on a test instance with λ = 0, d = 20, n = 200,K = 5, f = 35%, rk = 4 ∀k = 1, . . . ,4. Figure 1

displays the results, where we compare the evolution of the objective obtained using Algorithm 1

with the Polyak step size and with a decaying step size (α0/it, where it is the iteration number).

We plot the pricing problem objective value (15) on the y-axis and iteration number on x-axis.

For the decaying step size rule, we consider initial step size α0 ∈ {0.001,0.01,0.1,1}. We observe

that the Polyak step size leads to the fastest convergence. We found similar behavior on other test

instances.
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4.4. The Necessity of Multi-start

We next discuss the importance of doing multi-start when solving the pricing problem (17). We

consider the same instance as discussed in Section 4.3 and solve the pricing problem with dif-

ferent initialization points. As shown in Figure 2, we observe that three different choices lead

to three different local solutions. Hence, multi-starting can help find multiple different local

minima and therefore improve the chances of identifying subspaces with negative reduced cost.

Figure 1 Comparison of Polyak step size with

decay step size for same starting point

Figure 2 Algorithm 1 converges to different

local solutions for different starting points

5. Comparison with Existing Methods

We next compare the performance of MISS-DSG against various methods from the literature.

5.1. Synthetic Dataset

The difficulty of SCMD depends on several factors such as the arrangement of subspaces, the

separation between subspaces, the total dimensions of the subspaces, and the percentage of the

missing data. In this section, in addition to the random instances discussed in Section 4.1, we

also consider instances generated from disjoint1 semi-random subspace arrangements. Semi-random

instances allow us to control the separation between the subspaces which is measured by the affinity.

We generate intances having two and three disjoint subspaces with affinity between them being

controlled by an angle parameter θ ∈ [0, π
2
]. Small values of θ indicate low affinity between the

subspaces, and hence the clustering task is more challenging (Soltanolkotabi and Candés 2012).

Similar to (Abdolali and Gillis 2021), we generate the two disjoint subspaces as follows:

U1 =
( Ir
0r

)
,U2 =

(cos(θ)Ir
sin(θ)Ir

)
Here r1 = r2 = r, Ir denotes the identity matrix of size r × r, and 0r denotes the zero matrix of

size r × r. For an instance with n data points, we generate n
2
data points from each of the two

1 A collection of subspaces S1, . . . , Sc is said to be disjoint if dim(Si)+dim(Sj) = dim(Si∪Sj) and Si∩Sj = {0} ∀i ̸= j).
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subspaces. We first randomly create data points within each of the two 2r-dimensional subspaces

and then transform them to the d-dimensional space. Let X̂1 and X̂2 denote data points generated

from each subspace within 2r-dimensional space. X̂1 is created from U1 as X̂1 = U1 ×W where

W ∈ Rr×n
2 and each entry of W ∼ N (0,1). X̂2 is created similarly from U2. These data points

from dimension 2r are then transformed to ambient dimension d by multiplying with a randomly

generated orthonormal basis P ∈ Rd×2r as Xi = P × X̂i for i = 1,2. This orthonormal projection

preserves the affinity between two subspaces from the 2r-dimensional space to the d-dimensional

space.

We also create instances with three disjoint subspaces, and generate n/3 vectors from each of

the subspaces. The three initial subspaces are constructed as (Abdolali and Gillis 2021):

U1 =
( Ir
0r

)
,U2 =

(cos(θ)Ir
sin(θ)Ir

)
,U3 =

(− cos(θ)Ir
− sin(θ)Ir

)
The rest of the construction is identical to the two disjoint subspace case.

After generating data matrix X either randomly or via the disjoint subspaces approach, we

uniformly at random drop a percentage f of the entries of the matrix X yielding the set of observed

entries Ω.

5.2. Metrics

We compare performance of all the methods in terms of clustering error and completion error

defined as follows:

� Clustering Error: Let {G1,G2, . . . ,GK} be the ground truth clusters (which are known for

our synthetic instances) where Gk ⊆ [n] ∀k ∈ [K] and similarly let {P1, P2, . . . , PK′} be the

predicted clusters. We evaluate the predicted clusters by solving the following assignment

problem to find the best matching between predicted and true clusters:

ĉ := min
y∈{0,1}K×K′

∑
k∈[K]

∑
k′∈[K′]

|Pk′△Gk|ykk′ (20a)∑
k′∈[K′]

ykk′ = 1 ∀k ∈ [K] (20b)∑
k∈[K]

ykk′ ≤ 1 ∀k′ ∈ [K ′] (20c)

where binary variable ykk′ = 1 if and only if true cluster k ∈ [K] is matched with predicted

cluster k′ ∈ [K ′] and the objective coefficients |Pk′△Gk| measure the size of the symmetric

difference between predicted cluster Pk′ and true cluster Gk. Thus, the objective (20a) min-

imizes the number of disagreements in the matched clusters, constraints (20b) ensure that

each true cluster is mapped to exactly one predicted cluster, while constraints (20c) require

that each predicted cluster is mapped to at most one true cluster. Formulation (20) is valid



Soni et al.: Subspace Clustering with Integer Programming
18 Submitted

when K ′ ≥K – in case K ′ <K, the equations in (20b) are switched to ≤ and the inequalities

(20c) are switched to equations. After solving (20), we can calculate the clustering error as

100× ĉ/2n. Note that we divide by 2 since every vector is penalized twice when mismatched.

� Completion Error: Let Ωc denotes the set of missing indices and IΩc be the projection operator

restricted to Ωc. We define completion error to be the relative Frobenius distance between the

true and recovered unobserved entries: ∥IΩc ◦ (X̂ −XGT )∥F/∥IΩc ◦ (XGT )∥F . Here X̂ refers to

completed matrix and XGT refers to the ground truth matrix. Once we recover the clusters, we

perform low-rank matrix completion on the data corresponding to each cluster separately to

construct X̂. This step is done using GROUSE (Balzano et al. 2010) if the subspace dimensions

are assumed known and singular value thresholding (SVT) (Cai et al. 2010) if the dimensions

are unknown.

5.3. Comparison against other MIP approaches

We first benchmark MISS-DSG against the following MILP based facility-location methods pro-

posed in the literature. These methods were proposed for the fully-observed data case. We do

natural extensions to account for missing data as follows:

� FLoSS (Lazic et al. 2009): The candidate subspaces in FLoSS are initialized from the data by

randomly selecting r sets of linearly independent points, with 2≤ r < d. Data corresponding

to each set of r points defines a linear subspace of dimension (r−1). The corresponding basis

for fully-observed data is obtained by performing SVD on the sampled points to get the best

fit subspace U . We extend this approach to partially observed data by using the same cost

model as ours, i.e., the residual on observed entries (5). To handle missing data in the subspace

generation process, we perform LRMC using GROUSE on each set of sampled points to get the

best fit subspace. However, instead of sampling r vectors, we sample 2r vectors since LRMC

is likely to fail with only r vectors. We then solve model (8) with [T ] consisting of all the

subspaces generated with the above strategy. We refer to this algorithm as MIP-RANDOM.

We point out that authors in (Lazic et al. 2009) do not specify the number of candidate

subspaces (|T |) to construct. Since the candidate subspace generation process is random,

MIP-RANDOM also serves as a good benchmark for MISS-DSG to demonstrate the value

of our approach for dynamically generating subspaces. Thus, we consider a high number of

candidate subspaces, |T | = 5000, in MIP-RANDOM whereas we initialize MISS-DSG with

only 300 subspaces.

� MB-FLoSS (Lee and Cheong 2013): MB-FLoSS is similar to FloSS, with the difference being

the candidate subspaces generation strategy. Instead of doing random sampling, candidate

subspaces are generated by solving the following optimization problem:

C∗ = argmin
C

∥C∥2,1 + γ∥E∥1,2 s.t. X =XC +E. (21)
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Here C is the coefficient matrix of variables with ∥C∥2,1 :=
∑d

i=1

√∑n

j=1(Cij)2, and E is the

error matrix of variables with ∥E∥1,2 :=
∑n

j=1

√∑d

i=1(Eij)2. To extend this to the missing

data case, we zero-fill the missing entries when solving (21) to get C∗. Each column j of C∗

represents the coefficients of other data points required to represent the data vector j. With

an estimate of subspace dimension r at hand, data point j needs at most r other points for

representation. Thus, for each column, we use the data points associated with the r largest

coefficients in absolute value in that column to form a candidate subspace. For fully-observed

data, SVD is used on these data points to get a candidate subspace. With missing data,

we perform LRMC using GROUSE to get the best fit subspace which is then used as a

candidate subspace. The number of candidate subspaces generated by this method is therefore

the number of unique subspaces generated by considering each column of C∗.

� BB-LRR (Hu et al. 2015): BB-LRR generates candidate subspaces by over-segmentation in

low rank representation (Liu et al. 2010). They set the number of clusters larger than the

ground truth in the spectral clustering step, specifically they use K+3 instead of K. For the

assignment cost function, instead of using the the residual distance directly (∆jt as in (5)),

they use a normalized distance that depends on a dimension-dependent goodness of fit of

subspace. The authors also suggest a randomized local method for subspace generation but

we don’t benchmark against it for two reasons: a) this subspace generation process is very

similar to FLoSS discussed above, and b) LRR generated subspaces outperformed randomized

local models in (Hu et al. 2015). We extend this algorithm to missing-data case by zero-filling

the missing data during LRR step and doing LRMC with GROUSE for each cluster when

generating a candidate subspace.

Disjoint subspaces: We fix parameters d= 20, n= 200, and ri = 2 ∀ i= 1,2. We vary θ between

0.1(≈ 6◦) and 1.4(≈ 80◦). For each value of θ, we consider 10 random trials for each setting. We let

the missing data percentage f ∈ {20,40,60}%, and we report clustering and completion errors in

Figure 3. For our method, we consider both a random initialization (referred to as MISS-DSG) and

an initialization with LRR similar to Hu et al. (2015) (referred to as MISS-DSG-LRR). Existing

facility location methods give similar performance for all three missing data cases as shown in Figure

3a. We observe that the perfect recovery threshold in terms of clustering error for existing MIP-

based methods is θ= 0.5 for f = 20%, θ= 1.2 for f = 40%, and θ > 1.4 for f = 60%. Thus, existing

MIP-based methods fail when subspaces are in close affinity or there is a high amount of missing

data while MISS-DSG still gives low clustering errors in this regime. We observe a similar trend

in completion error as shown in Figure 3b. For f = 60%, we observe that for the existing methods

the completion errors increases with θ while one expects it to decrease. The candidate subspace
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Figure 3 Performance comparison for different MIP-based methods as a function of subspace angles for two

disjoint subspaces . Parameters are d= 20,n= 200,K= 2, and r1 = r2 = 2
(a) Clustering error

(b) Completion error

generation strategy in these methods use self-expressiveness and low rank matrix completion, both

of which fail with high levels of missing data. The LRMC step for calculating completion error

can often be faulty when an estimated cluster has points from multiple subspaces, translating to

arbitrary recovery of missing entries and hence high completion errors. We also point out that MISS-

DSG added between 800-4000 new candidate subspaces in these instances while MIP-RANDOM

was initialized with 5000 candidate subspaces. Thus, the superior performance of MISS-DSG over

MIP-RANDOM demonstrates the value of solving pricing problem (17) to generate new candidate

subspaces. We also highlight that BB-LRR and MISS-DSG-LRR are initialized with the same set

of initial subspaces. MISS-DSG-LRR outperforms BB-LRR by a significant margin, demonstrating

that even with non-random initial subspaces, our method of generating candidate subspaces by

solving pricing problem (17) leads to significant improvements.

Random subspaces: We now consider randomly generated subspaces to study the effect of missing

data and ratio of ambient dimension to total rank (d/
∑K

i=1 ri). We fix d= 20, n= 240,K = 6, ri =

r= 2 ∀i= 1, . . . ,K, and vary the percentage of missing data between 0 to 65% as shown in Figure

4a. The reported results are averaged over 10 random trials. We observe that MISS-DSG yields

low clustering error over a much wider range of missing data percentanges than the other MILP

methods. We report completion errors for these instances in Table 3. MISS-DSG recovers the

missing data with no completion error for f up to 50% while other MIP-based methods have
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Figure 4 Performance comparison for different MIP-based methods on randomly sampled subspaces
(a) Effect of missing data on clustering error (b) Effect of d/Kr on clustering error

Table 3 Average completion error (%) for random

instances in Figure 4a

f BB-LRR MIP-RANDOM MB-FLoSS MISS-DSG MISS-DSG-LRR

10 28.3 2.9 0.0 0.0 0.0
20 43.6 14.5 0.6 0.0 0.0
30 116.9 43.7 17.1 0.0 0.0
40 126.2 104.3 80.7 0.0 0.0
50 237.8 198.1 173.0 0.1 6.7
55 267.4 259.7 257.7 35.2 12.7
60 324.0 311.4 295.5 41.9 43.0
65 368.7 361.3 338.5 114.5 154.4

Table 4 Average completion error (%) for random

instances in Figure 4b

d/Kr BB-LRR MIP-RANDOM MB-FLoSS MISS-DSG MISS-DSG-LRR

1.1 428.3 437.8 399.9 102.1 142.5
1.2 382.6 400.4 368.7 150.6 67.5
1.4 351.1 364.5 355.4 41.3 43.0
1.7 324.0 311.4 295.5 43.0 41.9
2.0 286.4 297.7 296.1 42.4 64.7
2.5 223.4 226.4 225.8 33.1 31.6
3.3 140.5 187.3 165.4 2.8 1.6
3.8 124.8 146.5 131.0 2.7 1.8

high completion errors for f > 20%. We next study the effect of total rank of the data matrix on

clustering error. We generate a variety of instances with n/K ≈ 40, f = 60%, and vary d,K, r to get

d/(Kr)∈ [1,4]. A lower ratio implies that the matrix is high-rank, thus making the clustering task

more difficult. Due to a high amount of missing data, we observe high clustering errors in all the

existing MIP-based methods. As the matrix rank gets smaller relative to the ambient dimension,

the clustering task becomes easier and hence the clustering error improves as shown in Figure 4b.

MISS-DSG recovers perfect clustering when the ratio is > 2 and between 0− 10% for the ratio

∈ [1,2]. We observe that in the high-rank and high missing data regime, low clustering error does

not imply low completion errors. This is because low-rank matrix completion methods often fail

in high-rank high missing data regime, leading to high completion errors, as shown in Table 4 for

MISS-DSG for ratio ∈ [1,1.7].

5.4. Comparison against state-of-the-art

We now benchmark MISS-DSG against the following methods from the literature:

� EWZF-SSC: This is a natural extension of sparse subspace clustering to the case of missing

data (Yang et al. 2015). In particular, Yang et al. (2015) proposed solving (1) with ∥ · ∥1
regularization as follows:

C∗ = argminλ∥IΩ ◦ (XZF −XZFC)∥2F + ∥C∥1 s.t. diag(C) = 0 (22)
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Coefficient matrix C∗ is then processed by the spectral clustering algorithm in order to obtain

data segmentation as discussed in Section 1. This method was found superior to the other

methods proposed in (Yang et al. 2015) for SCMD.

� Alt-PZF-EnSC+gLRMC: In a review article on SCMD by Lane et al. (2019), alternating

between elastic-net subspace clustering (You et al. 2016) and group low-rank matrix comple-

tion (Li and Vidal 2016) was found to be the state-of-the-art method. PZF is similar to EWZF

and restricts error reduction on observed entries. The algorithm solves the following problem

to get a coefficient matrix C∗, which is then processed by the spectral clustering algorithm to

do data segmentation:

C∗ = argminλ∥IΩ ◦ (XZF −XZFC)∥2F + ζ∥C∥1 +(1− ζ)∥C∥2F s.t. diag(C) = 0, (23)

where 0 < ζ < 1. The clusters obtained by spectral clustering algorithm are then processed

group-wise by a low-rank matrix completion algorithm, e.g. SVT(Cai et al. 2010), to fill the

missing entries and get X̂. In next iterations, XZF in (23) is replaced by X̂, and algorithm

alternates between clustering and completion for the given number of iterations.

� k-GROUSE: Balzano et al. (2012) proposed an extension of the K-Subspaces algorithm

(Bradley and Mangasarian 2000, Tseng 2000) to the case of missing data. The proposed algo-

rithm is an alternating heuristic: starting with some initial subspaces, vectors are clustered by

subspace assignment based on the same metric as (5). Given a cluster of vectors, matrix com-

pletion with Grassmannian Rank-One Subspace Estimation, GROUSE (Balzano et al. 2010),

is performed to get a subspace estimate, and then vectors are reassigned, and the process

is repeated until convergence. The algorithm stops when the clusters remain unchanged in

successive iterations or the algorithm reaches the maximum allowed iterations

Since MISS-DSG and MISS-DSG-LRR gave similar performance, we report only MISS-DSG-LRR

in these experiments. The best parameter configurations are selected based on the average com-

pletion error on a hold out set. As noted by Lane et al. (2019), this approach translates more

easily into practice compared to an approach where the parameter with least classification error is

selected. Being an unsupervised learning task, no true cluster labels are available in practice, so the

latter approach could not be implemented. However, one can hold out some observed entries as a

validation set. In our experiments, we hold out 25% of the data in the validation set for parameter

selection. We report parameter choices for different algorithms in Table 5.

Two disjoint subspaces: We keep the same experimental setting for disjoint subspaces as in

Section 5.3. We report these results in Figure 5. As expected, EWZF-SSC fails when the percentage

of the missing data is high or subspaces are close to each other (small θ). MISS-DSG-LRR and k-

GROUSE give the lowest clustering errors. Both of these algorithms give similar performance with
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Table 5 Parameter Choices

Method Parameter

EWZF-SSC (Yang et al. 2015)
λ= α

maxi̸=j ∥(XZF )T
Ωj

(XZF )Ωj
)∥ij

α∈ {5,20,50,100,200,320}
k-GROUSE (Balzano et al. 2012) -

Alt-PZF-EnSC+gLRMC (Lane et al. 2019)
λ and α similar to EWZF-SSC
ζ ∈ {0.5,0.7,0.9}

Figure 5 Performance comparison against state-of-the-art as a function of subspace angles for two disjoint

subspaces. Parameters are d= 20,n= 200,K= 2, and r1 = r2 = 2
(a) Clustering error

(b) Completion error

MISS-DSG-LRR doing slightly better than k-GROUSE for f = 60%. A similar trend is observed

in completion errors as shown in Figure 5b.

Three disjoint subspaces: We fix parameters d= 20, n= 200, and rk = 2 ∀ k ∈ {1,2,3}. We vary

θ between 0.2 (≈ 12◦) and 1.2 (≈ 68◦). For each value of θ, we consider 10 random trials. We let

missing data percentage f ∈ {20,40,60}. All methods are provided the true number of subspaces K

and the true dimension of subspaces. We report these results in Figure 6. We see a significant drop

in performance when compared to two disjoint subspaces for all algorithms except MISS-DSG-LRR.

EWZF-SSC and Alt-PZF-EnSC+gLRMC give high clustering errors when any pair of subspaces

are close to each other (small θ) or the fraction of missing data is high, and are outperformed by

both k-GROUSE and MISS-DSG-LRR. Performance of k-GROUSE deteriorates in the low-affinity

and high missing data regimes. MISS-DSG-LRR is the only algorithm which gives perfect recovery



Soni et al.: Subspace Clustering with Integer Programming
24 Submitted

Figure 6 Performance comparison against state-of-the-art as a function of subspace angles for three disjoint

subspaces. Parameters are d= 20,n= 200,K= 3, and r1 = r2 = r3 = 2
(a) Clustering error

(b) Completion error

of clusters, in terms of low clustering errors as well as low completion errors, in the low-affinity

and high missing data regime.

Random subspaces: For random subspaces, we fix d= 20, n= 240,K = 6, ri = r= 2 ∀i= 1, . . . ,K,

and vary the percentage of missing data between 0 to 65% as shown in Figure 7a. We observe that

EWZF-SSC and Alt-PZF-EnSC+gLRMC exhibit significantly high clustering errors for f > 30%.

k-GROUSE follows a similar trend with high clustering error for f > 50%. In the high-missing data

regime (40-65%), MISS-DSG -LRR yields the smallest clustering error. Completion error follows

a similar trend with both EWZF-SSC and Alt-PZF-EnSC+gLRMC giving high completion error

for f > 30% as shown in Table 6. MISS-DSG-LRR gives lower completion error than k-GROUSE

for f > 50% while both give no completion error for f < 50%.

We next study the effect of total rank (Kr) relative to the ambient dimension d on clustering

error. We consider the same instances as we did in Section 5.3 for randomly sampled subspaces

and vary d/Kr ∈ [1,4] as shown in Figure 7b. Since self-expressive methods do not perform well

with high missing data (f = 60%), we find that both EWZF-SSC and Alt-PZF-EnSC+gLRMC

give high clustering errors in all cases. Performance of all algorithms improve as we move from

the high-rank to low-rank regime. In the high rank regime, (1<d/Kr < 2), only MISS-DSG-LRR

gives near perfect classification while k-GROUSE gives errors between 5-25%. Since we have high

missing data, we observe that when the matrix is nearly full-rank (d/Kr < 2), all methods give
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Figure 7 Performance comparison against state-of-the-art methods on a variety of synthetic instances
(a) Effect of missing data on clustering error (b) Effect of d/Kr on clustering error

Table 6 Average completion error (%) for random

instances in Figure 7a. Column ‘Alt-’ refers to method

Alt-PZF-EnSC+gLRMC.

f EWZF-SSC Alt- k-GROUSE MISS-DSG-LRR

10 0.1 0.1 0.0 0.0
20 0.2 0.0 0.0 0.0
30 11.4 12.0 0.0 0.0
40 41.1 34.1 0.0 0.0
50 109.1 73.5 0.1 0.1
55 169.9 124.6 38.0 12.7
60 210.0 175.6 71.0 43.0
65 231.5 226.7 188.4 154.4

Table 7 Average completion error (%) for random

instances in Figure 7b. Column ‘Alt-’ refers to method

Alt-PZF-EnSC+gLRMC.

d/Kr EWZF-SSC Alt- k-GROUSE MISS-DSG-LRR

1.1 275.6 235.5 225.6 142.5
1.2 253.1 234.8 238.2 67.5
1.4 238.1 200.6 143.4 43.0
1.7 210.0 175.6 71.0 41.9
2.0 174.1 137.8 46.2 64.7
2.5 143.0 117.7 45.1 31.6
3.3 106.4 90.9 1.4 1.6
3.8 60.1 52.2 0.0 1.8

high completion errors including MISS-DSG-LRR, even though it has small clustering errors as

shown in Table 7. This is due to the fact that low-rank matrix completion fails in such a setting.

5.5. Choice of penalty parameter in MISS-DSG

If we know the number of subspaces (K) and their underlying dimension ri ∀i = 1, . . . ,K, then

we can use λ = 0 in the objective of (10). If we do not have that information the choice of

penalty parameter becomes an important hyperparameter. We conduct experiments investigat-

ing the impact of λ on instances with d = 30, n = 300,K = 6, r = rk = 3 ∀k ∈ [K], and vary f ∈

{10,30,50}. We consider three different cases for MISS-DSG:

� K known, r unknown: We use rmax = 2 ∗ r= 6 in Algorithm 2. Thus our model considers sub-

spaces of dimension ∈ {1,2,3,4,5,6}. However, we assume that we know number of subspaces

(K), and thus we keep constraint (14c).

� K unknown, r known: MISS-DSG considers subspaces only of dimension 3. Since we don’t

know the number of subspaces (K), we remove constraint (14c) from our model, and let

MISS-DSG self-determine the number of subspaces.

� K unknown, r unknown: We again use rmax = 2 ∗ r= 6 in Algorithm 2, and hence MISS-DSG

considers subspaces of dimension ∈ {1,2,3,4,5,6}. Similar to the previous case, we don’t know
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K and hence constraint (14c) is removed from the model. Thus, MISS-DSG has freedom in

selecting number of subspaces as well as their dimensions.

We report the effect of λ on clustering error in Figure 8 for all three cases discussed above. We

observe that MISS-DSG gives low clustering errors for a wide range of λ values when either K or

r is known (Figures 8a, 8b). Extremely high values of λ lead to high clustering errors in all cases

since the model is forced to either select fewer subspaces or select subspaces of lower dimension

than the ground truth. For λ= 104, MISS-DSG selected subspaces of dimension 1. Similarly, for

extremely small values of λ, MISS-DSG selects higher complexity subspaces, i.e., subspaces of

dimension higher than ground truth if r is not known or higher number of subspaces than ground

truth if K is unknown.

Results for the case when we do not know either r or K are shown in Figure 8c. We observe that

MISS-DSG gives low clustering error only for a narrow range of λ. This behavior is expected since

the model has high degree of freedom. There are multiple union of subspace models which might

give low assignment cost on the observed entries (
∑

j∈[n]wj) but have a different complexity than

ground truth. Hence, choice of λ is critical in this case.

Figure 8 Effect of λ (x axis, log scale) on clustering error
(a) K known, r unknown (b) K unknown, r known (c) K unknown, r unknown

5.6. Hopkins155 Data Experiments

Motion segmentation has been a standard dataset in the literature for benchmarking performance

of SCMD algorithms. Motion segmentation refers to the task of identifying multiple spatiotemporal

regions corresponding to different rigid-body motions in a video sequence. We consider Hopkins155

motion segmentation dataset (Tron and Vidal 2007) which contains 155 video sequences with 2 or 3

moving objects. In each sequence, objects moving along different trajectories and all the trajectories

associated with a single rigid motion live in a 3-dimensional affine subspace (Elhamifar and Vidal

2009). Similar to Yang et al. (2015), we subsample trajectories with six frames (equally spread) to

simulate a high-rank data matrix. We handle affine subspaces in our framework by considering an

affine subspace of dimension r in Rd as a linear subspace of dimension r+1 in Rd+1. Hence, we set

rmax = 4 in our model. Since we do not have information on the exact dimension of the underlying
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subspaces, we let our model self-determine it. However, for a fair comparison with other models,

we do provide the number of subspaces as input to the model. We consider two variants of our

methods: MISS-DSG with random initialization, referred to as MISS-DSG in Table 8 and MISS-

DSG with initialization from Alt-PZF-EnSC+gLRMC , referred to as MISS-DSG-A in Table 8.

For MISS-DSG-A, we let λ= 0.1 in our algorithm. For state-of-the-art methods, we choose the best

hyperparameter as discussed in Section 5.4. We report average clustering error over 155 sequences

for each method for different missing data percentage in Table 8. We observe that EWZF-SSC and

k-GROUSE give similar performance with errors between 15-25% as missing data percentage is

increased from 10% to 50%. MISS-DSG gives error between 18-20% for all values of missing data

and is outperformed by Alt-PZF-EnSC+gLRMC in all cases. However, we observed that initializing

MISS-DSG with Alt-PZF-EnSC+gLRMC generated clusters offered a great advantage. With this

initialization, MISS-DSG-A was able to improve upon Alt-PZF-EnSC+gLRMC and gave errors

between 5-13.9%.

Table 8 Clustering error (%) by different methods on Hopkins 155 dataset with # frames=6 and varying levels

of missing data (f).

f EWZF-SSC k-GROUSE Alt-PZF-EnSC+gLRMC MISS-DSG-A MISS-DSG

10 17.4 15.7 11.7 5.3 19.4
20 19.7 19.2 11.1 5.8 18.4
30 20.1 20.2 10.9 6.5 20.2
40 20.2 21.5 12.6 9.7 19.1
50 23.4 25.1 15.4 13.9 21.7

5.7. Computation Times

We finally discuss the computational performance of MISS-DSG. We first point out that most

existing methods are faster than MISS-DSG – the advantage of MISS-DSG is its ability to suc-

cessfully cluster in cases where the other methods fail. Hence, we only discuss computation times

of existing methods briefly. We first discuss the computation times of existing MIP methods. MB-

FLoSS and BB-LRR are significantly faster than MISS-DSG and MIP-RANDOM. Both BB-LRR

and MB-FLoSS generate a small number of candidate subspaces using LRR and thus, solving the

resulting MIP model is typically fast (< 2 minutes for synthetic instances considered in this paper).

In fact, for these methods, the majority of the time is spent in generating clusters using LRR.

For MIP-RANDOM, we sample 5000 subspaces by performing LRMC on each sampled cluster of

vectors. This step took between 4-25 minutes on average for the synthetic instances considered in

this work. The subspace generation time varies based on the amount of missing data since LRMC

also becomes expensive for instances with high percentage of missing data. Due to a large num-

ber of candidate subspaces, solving the MIP model is also computationally more expensive than
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BB-LRR and MB-FLOSS, and took between 2-10 minutes. EWZF-SSC was found to be computa-

tionally efficient on the considered synthetic instances, taking at most 2 minutes. k-GROUSE took

a maximum of 12 minutes. Alt-PZF-EnSC+gLRMC is more time-consuming with computational

time varying between 3− 120 minutes. This includes the parameter training time considered in

Table 5. For Alt-PZF-EnSC+gLRMC, we had a total of 18 choices for parameters tuning. For

a single parameter choice, Alt-PZF-EnSC+gLRMC gives similar computational efficiency as k-

GROUSE. MISS-DSG required between 3− 75 minutes for the synthetic instances. We found that

instances with a high-rank matrix required more computation time. Solving disjoint instances with

MISS-DSG was significantly faster than the random instances, taking a maximum of 5 minutes.

We refer readers interested in more details of the computation times for MISS-DSG to the

electronic companion to this paper.

6. Conclusions and future directions

We proposed a novel MILP framework MISS-DSG for the Subspace Clustering with Missing Data

problem and showed it is capable of successfully clustering data in some regimes where all existing

methods fail. MISS-DSG offers several other potential advantages for SCMD. It gives the user

flexibility to use a different function for cost of assignment between vector and subspace. If we

know a good set of potential low dimensional subspaces, our framework can take advantage of

this by including these subspaces in the formulation. MISS-DSG is also capable of self-determining

the number of subspaces and their dimensions, and can also easily be extended to include side

constraints, e.g., ensuring that a given set of points does (or does not) lie in the same cluster. MISS-

DSG is computationally more expensive than the other clustering algorithms, and we leave speed

improvements such as approximate gradient calculations in pricing and parallel implementation as

future work.
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