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Abstract
Computing the approximation quality is a crucial step in every iter-

ation of Sandwiching algorithms (also called Benson-type algorithms)
used for the approximation of convex Pareto fronts, sets or functions.
Two quality indicators often used in these algorithms are polyhedral
gauge and epsilon indicator. In this article, we develop an algorithm
to compute the polyhedral gauge and epsilon indicator approximation
quality more efficiently. We derive criteria that assess whether the
distance between a vertex of the outer approximation and the inner
approximation needs to be recalculated. We interpret these criteria
geometrically and compare them to a criterion developed by Dörfler
et al. for a different quality indicator using convex optimization the-
ory. For the bi-criteria case, we show that only two linear programs
need to be solved in each iteration. We show that for more than two
objectives, no constant bound on the number of linear programs to be
checked can be derived. Numerical examples illustrate that incorpo-
rating the developed criteria into the Sandwiching algorithm leads to
a reduction in the approximation time of up to 94 % and that the ap-
proximation time increases more slowly with the number of iterations
and the number of objective space dimensions.

1 Introduction

In multicriteria optimization problems, several objectives are to be optimized
simultaneously. A common task is to compute the nondominated set, also
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Figure 1: Number of vertices of the outer Sandwiching approximation in
dependence of the number of iterations for spheres of different dimension.

called Pareto front. Since the nondominated set of convex multicriteria op-
timization problems generally has an uncountable number of nondominated
solutions, approximation algorithms are usually used. One common tech-
nique is to approximate a convex bounded Pareto front using an inner and
outer polyhedral approximation. Algorithms of this type are often called
(Simplicial) Sandwiching algorithms (e.g.[4], [15], [21], [24]) or Benson-type
algorithms (e.g. [1], [9], [11], [19]). In these algorithms, an inner and an
outer polyhedral approximation are constructed using nondominated points
and their gradients. By computing additional nondominated points, the in-
ner and outer approximations are improved to describe the Pareto front more
accurately.

The same algorithmic ideas are also applied to the approximation of con-
vex functions (e.g. [22]) and convex sets (e.g. [13], [14]). Recently, the idea
of Sandwiching algorithms has been applied to the approximation of multiple
convex Pareto fronts, e.g. for multiobjective mixed-integer convex optimiza-
tion in [5] (bi-objective problems) and [17] (general number of objectives).

A crucial step in each iteration of these algorithms is the decision where
to place a new point. Often, some kind of measure is used that computes the
distance between the inner and the outer approximation as an upper bound
on the approximation quality of the inner and outer approximation respec-
tively. A new nondominated point is then computed so that it decreases the
distance between the inner and outer approximation where it is the largest.

However, the number of locations where this can occur increases quickly
with the number of iterations, especially for high numbers of objective func-
tions (see Figure 1). E.g., an outer approximation of a 7d sphere using
200 points has more than 36000 vertices. Therefore, computing the approx-
imation quality is usually the most time-consuming element of the whole
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approximation algorithm if solving the scalarization problems is not too dif-
ficult.

Different strategies have been introduced in the literature to tackle or cir-
cumvent this problem. Some algorithms do not compute the approximation
quality in every iteration but instead choose a vertex of the outer approxi-
mation randomly that then serves as a starting point for the computation of
a new Pareto point (e.g. [1], [11], [15], [19]). Other algorithms compute an
estimate of the approximation quality, e.g. [24] and [4].

In other algorithms, the approximation quality is computed exactly. While
[6] and [21] compute the distance between the inner and outer approxima-
tion for every vertex of the outer approximation, [9] avoids performing the
distance computation in many cases. This result is based on the observation
that in many cases, the distance between a vertex of the outer approxima-
tion and the inner approximation does not change from one iteration to the
other. In [9], a variant of the Sandwiching algorithm is studied that uses the
Hausdorff distance (defined using the Euclidean norm) between the inner
and outer approximation as the quality measure. A criterion is introduced
that checks for a vertex of the outer approximation whether its Euclidean
distance to the inner approximation is the same as in the last iteration.

Many measures which are commonly used to assess the quality of Sand-
wiching approximations are based on the Hausdorff metric with different
metrics used to compute the distance between elements of the respective
sets. Examples are the epsilon indicator, used e.g. in [4] and [21] and the
polyhedral gauge, used e.g. in [15] and [24]. They have the advantage that
the computation of their distance between a vertex of the outer and the inner
approximation can be modelled as a linear optimization problem. Addition-
ally, the epsilon indicator value can be interpreted directly on the objective
functions.

In this article, we will derive criteria which determine for a vertex of
the outer approximation whether the epsilon indicator or polyhedral gauge
distance to the inner approximation has to be recalculated after a new non-
dominated point has been added to the Sandwiching approximation. We
exploit the property that our quality indicators can be modelled as linear
optimization problems and obtain the criteria using the concept of reduced
costs from linear optimization theory. We interpret these criteria geometri-
cally and compare them to the criterion developed in [9] for the Euclidean
norm in the context of a different Sandwiching variant in Section 5. In Sec-
tion 7, we will show that computing the epsilon indicator and polyhedral
gauge approximation quality of a Sandwiching approximation of a bi-criteria
optimization problem can be reduced to solving two small linear programs
per Sandwiching iteration. We demonstrate that for problems with more
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than two criteria, in general no constant bound can be derived. We illustrate
the resulting speed-up of the Sandwiching algorithm using some numerical
examples in Section 8.

2 Preliminaries

2.1 Bounded convex multiobjective optimization

A convex multiobjective optimization problem is defined as

min f(x) = (f1(x), . . . , fd(x)) (2.1)

subject to x ∈ X ,

(Definition 2.1.3 of [20]) where f(x) denotes the vector of d convex objective
functions fi : Rk → R, and the decision vectors x ∈ Rk are elements of the
convex feasible set X . We assume that the problem is solved with respect to
a pointed, convex, polyhedral ordering cone C fulfilling 0 ∈ C and C ⊃ Rd

≥.
A feasible solution x̂ ∈ X is called efficient if there is no other x ∈ X such

that f(x) ≤ f(x̂). If x̂ is efficient, f(x̂) is called nondominated [10]. As in [20],
we also denote nondominated points as Pareto optimal and the nondominated
set as Pareto front. A feasible solution x̂ ∈ X is called weakly efficient if there
is no x ∈ X such that f(x) < f(x̂), i.e. fi(x) < fi(x̂) ∀i = 1, . . . , d. If x̂ is
weakly efficient, f(x̂) is called weakly nondominated [10].

The weighted sum scalarization of problem is given by ((3.3) of [10])

min
x∈X

d∑
i=1

λifi(x) (2.2)

with values λ = (λ1, . . . , λd) ∈ Rd
≥. Well-known results include that for a

convex optimization problem, every solution of the weighted sum problem is
weakly nondominated and that every element of the nondominated set can
be computed by solving weighted sum scalarization problems for λ ∈ C∗\{0}
where C∗ denotes the dual cone (e.g. [10]).

A vector k ∈ Rd\{0} is called a direction of the cone C if {c+ αk ∈ Rd :
c ∈ C, α > 0} ⊂ C. The set of extreme directions of a convex cone is a set
of directions such that all directions of the cone lie in their convex hull. If
the solution of the weighted sum scalarization problem (2.2) for all extreme
directions of the dual cone C∗ of C is bounded, the solution of the convex
multiobjective optimization problem is bounded.
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2.2 Some concepts and results from linear optimiza-
tion

Let a linear optimization problem (LP) be defined as

min cTx s.t. Ax = b, x ≥ 0 (2.3)

with c ∈ Rn, A ∈ Rm×n, b ∈ Rm, m ≤ n and A fulfils rank(A) = m.

Definition 2.1 (p. 17 of [12]). Consider the linear program (2.3) with basic
feasible solution x = (xB, xN). We use the following notation: xB(1), . . . , xB(m)

denotes the basic variables and xN(1), . . . , xN(n−m) the non-basic variables, c
is partitioned into cB = (cB(1), . . . , cB(m)) and cN = (cN(1), . . . , cN(n−m)). The
matrix AB consists of those columns of A corresponding to basic variables.
The vector Aj is the j-th column of A.
The reduced costs of a non-basic variable xN(j) are then defined as

cN(j) − cBA−1B AN(j).

Lemma 2.2. Consider the linear program (2.3). A non-degenerate basic
feasible solution x with basis B is an optimal solution of the linear program
if and only if all reduced costs are non-negative

cN(j) − cBA−1B AN(j) ≥ 0 ∀j = 1, . . . , n−m.

Proof. Follows directly from Theorem 2.2.1 of [12] and Theorem 4.1 of [3].

3 Algorithmic Idea and Quality Indicators of

Sandwiching Algorithms

3.1 The Algorithmic Idea of Sandwiching Algorithms

Sandwiching algorithms as we will state them here are used to approximate
the nondominated sets of bounded convex multiobjective optimization prob-
lems. They are not directly applicable to unbounded problems since for these
problems, a polyhedral approximation of the Pareto front may not exist [25].
Recently, the Sandwiching algorithm idea has been extended to the approx-
imation of unbounded Pareto fronts in [8] and [26].

The idea of the Sandwiching algorithm idea as described e.g. in [4], [16]
or [24] is as follows. After an initial approximation, e.g. consisting of the
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extreme compromise solutions, has been computed, an inner and an outer
approximation are constructed in the following way.

Let {z1, . . . , zn} be the computed nondominated points. The inner ap-
proximation is then defined as the convex hull of the Pareto points, extended
by the domination cone.

In := conv{z1, . . . , zn}+ Rd
≥.

The outer approximation is defined as the intersection of the half-spaces
containing the Pareto front that support the Pareto points. Let H(wi, bi) :=
{z : (wi)T z = bi} be the supporting hyperplane of the Pareto front in zi.
Then the half-space HS(wi, bi) := {z : (wi)T z ≤ bi} contains the Pareto
front due to convexity. The outer approximation is defined as

On := ∩{HS(wi, bi), i = 1, . . . , n}.

Then, the approximation quality is determined, e.g. by computing the
maximal epsilon indicator or polyhedral gauge distance between the inner
and outer approximation. The facet of the inner approximation where the
largest distance was measured is used as the starting point for computing a
new nondominated point zn+1: the facet’s normal is used as the weighted sum
parameter in the next scalarization problem so that the tangential hyperplane
of the resulting weakly nondominated point is parallel to this facet of the
former inner approximation.

Then, the inner approximation is updated by In+1 = conv{zn+1, In}, the
outer approximation is updated by On+1 := HS(wn+1, bn+1) ∩ On. If the
approximation quality of the updated inner and outer approximation is not
sufficient yet, a new scalarization problem is defined to compute the next
nondominated point.

3.2 Common Quality Measures: Epsilon Indicator and
Polyhedral Gauge

Many measures which are commonly used to assess the approximation quality
of Sandwiching algorithms are based on the Hausdorff metric with different
metrics used to compute the distance between elements of the respective sets.
One of these criteria commonly used in Sandwiching algorithms (e.g. [4], [21])
but also other Pareto approximation algorithms or studies in multiobjective
optimization, e.g. in [7], [18] or [27] is the epsilon indicator or ε-indicator.

The epsilon indicator δε(I, O) of a Sandwiching approximation I, O is the
smallest number ε ≥ 0 such that for every z ∈ O there exists a point in the
inner approximation z′ ∈ I such that z′ ≤ z + ε · e where e = (1, . . . , 1) ∈ Rd
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(Definitions 1 and 2 of [7]). To determine the epsilon indicator between
an inner and outer Sandwiching approximation, it suffices to determine the
epsilon indicator between vertices of the outer approximation and the in-
ner approximation (Proposition 4.1 of [4]). The inner approximation of the
Pareto front can be expressed as P T ξ + QTµ with

∑
ξ = 1 and ξ, µ ≥ 0

where the matrix P contains the nondominated points as columns and the
matrix Q consists of the extreme rays of the domination cone C as columns.
To calculate the ε-indicator, the extreme point s of the outer approximation
is shifted in direction e until it reaches the inner approximation.

A linear program calculating the epsilon indicator distance from one ex-
treme point s to the inner approximation is given by (Section 2.2.2 of [16])

min
λ,µ,η

(0, 0, 1) · (λ, µ, η)T (εLP (s, In))

s.t.

(
P T QT −e
eT 0 0

)λµ
η

 =

(
s
1

)
λ, µ, η ≥ 0.

Another metric that has been used to measure the approximation quality
of the Sandwiching approximation, for example in [15] and [24], is based on
the polyhedral gauge. W.l.o.g., we translate the bounded Pareto front such
that the nadir point lies in the origin. For In, we define the reflected inner
approximation as the reflection set of In (see Definition 2 of [23])

InR := R(In) := ∪
z∈In

{
w ∈ Rd : |wi| = |zi| ∀i = 1, . . . , d

}
.

For a vertex s of the outer approximation, the polyhedral gauge

γInR(s) := min {λ ≥ 0 : z ∈ λInR}

(Definition 2.1.1 of [15]) describes the factor by which InR has to be scaled
to reach s. Then γInR is a norm (Lemma 6 of [23]). Since all Pareto points
and s lie in the same orthant Rd

≤, we can omit reflecting In and work with
it directly.

To obtain a linear program, the inverse of the polyhedral gauge is com-
puted by scaling s by a factor α until it reaches the inner approximation.
As in εLP (s, In), the matrix P contains the nondominated points as columns
and the matrix Q consists of the extreme rays of the domination cone C as
columns. The formulation as a linear program is given in Equation 2.4 of
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[24]:

min
λ,µ,α

(0, 0,−1) · (λ, µ, α)T (γ(s, In))

s.t.

(
P T QT −s
eT 0 0

)λµ
α

 =

(
0
1

)
λ, µ, α ≥ 0.

Thus, the polyhedral gauge can be calculated by solving the linear pro-
gram (γ(s, In)) for every extreme point of the outer approximation s, ob-
taining the polyhedral gauge γ∗ = 1/α∗ and determining the maximal value.
As a quality criterion we use the polyhedral gauge subtracted by one so that
the quality value is zero for exact approximation.

4 Optimality Criteria for Epsilon Indicator

and Polyhedral Gauge

Let the epsilon indicator or polyhedral gauge distance between a vertex s
of the outer approximation and the inner approximation in iteration n of
the Sandwiching algorithm be δ. If s is still a vertex of the updated outer
approximation after adding a new Pareto point, under which conditions is
its distance to the inner approximation still δ?

4.1 Checking whether the epsilon indicator has to be
recalculated

In the following we assume that for the extreme point s, the solution of
(εLP (s, In)) is non-degenerate. The degenerate case is treated in Section 4.3.

Lemma 4.1. Let us consider iteration n + 1 of the Sandwiching algorithm.
Let s be a vertex of both On and On+1, let (λ∗, µ∗, η∗) be a non-degenerate
solution of (εLP (s, In)) with basis B∗. The matrix AB∗ is defined by those
columns of A corresponding to basic variables. Let z̄ be the Pareto point that
has been added to the Sandwiching approximation in iteration n. Then the
following statements are equivalent:

(i) (λ∗, µ∗, η∗) solves (εLP (s, In+1)),

(ii) rTd+1 ·
(
z̄
1

)
≤ 0 where rd+1 solves ATB∗ · rd+1 = ed+1.
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Proof. For a non-degenerate solution (λ∗, µ∗, η∗) of (εLP (s, In)), all reduced
costs with respect to (λ∗, µ∗, η∗) and B∗ are non-negative (Lemma 2.2). Thus,
it holds for N∗ := {1, . . . , n}\B∗ and AN∗(j) the N∗(j)-th column of A,

cN∗(j) − cB∗A−1B∗AN∗(j) ≥ 0 ∀j = 1, . . . , n− (d+ 1). (4.1)

At the end of iteration n, the new Pareto point z̄ is added to the Sandwich
approximation. The linear program εLP (s, In) is therefore updated to

min
λ,λnew,µ,η

(0, 0, 1) · (λ, λnew, µ, η)T (εLP (s, In+1))

s.t.

(
P T z̄ QT −e
eT 1 0 0

)(
λ λnew µ η

)T
=

(
s
1

)
which only differs from (εLP (s, In)) in one added column of the constraint
matrix and one added variable λnew.

We investigate under which condition (λ∗, µ∗, η∗) also solves (εLP (s, In+1)).
If for the feasible solution (λ∗, µ∗, η∗) of (εLP (s, In+1)) the reduced costs for
all non-basic variables N := {1, . . . , n}\B∗ = N∗ ∪ λnew are non-negative,

cN(j) − cB∗A−1B∗A(j) ≥ 0 ∀j = 1, . . . , n− (d+ 2),

it is an optimal solution (Lemma 2.2). Since for the non-degenerate solution
(λ∗, µ∗, η∗) the reduced costs for all variables in N∗ are non-negative (Equa-
tion (4.1)), (λ∗, µ∗, η∗) solves (εLP (s, In+1)) if and only if (Lemma (2.2))

cλnew − cB∗A−1B∗Aλnew ≥ 0. (4.2)

With cλnew = 0, cB∗ = (0, . . . , 0, 1) and Aλnew = (z̄, 1)T , we reduce (4.2) to

(0, . . . , 0, 1) · A−1B∗ ·
(
z̄
1

)
≤ 0.

The multiplication (0, . . . , 0, 1) · A−1B∗ means that we actually only need
the last row of A−1B∗ . Denote the rows of A−1B∗ as r1, . . . , rd+1 and let Id+1 ∈
R(d+1)×(d+1) be the identity matrix. The inverse matrix is defined as

A−1B∗ · AB∗ =
(
rT1 , rT2 , . . . , rTd+1

)T · AB∗ = Id+1.

We can thus calculate the last row of the inverse using a system of linear
equations of size d + 1 (where (AB∗)j denotes the j-th column of AB∗ and
ed+1 ∈ Rd+1 the d+ 1-th unit vector)

rTn+1 · (AB∗)1 = 0

rTn+1 · (AB∗)2 = 0
...

rTn+1 · (AB∗)d+1 = 1

⇐⇒ ATB∗ · rd+1 = ed+1.
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Solving one system of linear equations instead of inverting a matrix of
the same size usually requires less computational effort.

4.2 Checking whether the polyhedral gauge has to be
recalculated

Analogous to the criterion for the epsilon indicator developed in Lemma 4.1,
we can derive a similar criterion for the polyhedral gauge.

Lemma 4.2. Let us consider iteration n + 1 of the Sandwiching algorithm.
Let s be a vertex of both On and On+1, let (λ∗, µ∗, α∗) be a non-degenerate
solution of (γ(s, In)) with basis B∗. The matrix AB∗ is defined by those
columns of A corresponding to basic variables. Let z̄ be the Pareto point that
has been added to the Sandwiching approximation in iteration n. Then the
following statements are equivalent:

(i) (λ∗, µ∗, α∗) solves (γ(s, In+1)),

(ii) −rTd+1 ·
(
z̄
1

)
≤ 0 where rd+1 solves ATB∗ · rd+1 = ed+1.

Proof. Using the same proof idea as in Lemma 4.1, we can show that (λ∗, µ∗, α∗)
solves (γ(s, In+1)) if and only if (Lemma (2.2))

cλnew − cB∗A−1B∗Aλnew ≥ 0. (4.3)

With cλnew = 0, cB∗ = (0, . . . , 0,−1) and Aλnew = (z̄, 1)T , we reduce (4.3) to

(0, . . . , 0,−1) · A−1B∗ ·
(
z̄
1

)
≤ 0.

The multiplication (0, . . . , 0,−1) ·A−1B∗ in the optimality condition means
that we actually only need (the negative of) the last row of A−1B∗ . Just like
in the proof of Lemma 4.1, we can obtain the last row of the inverse rd+1 by
solving the system of linear equations ATB∗ · rd+1 = ed+1.

4.3 Degenerate solutions

The polyhedral gauge and the epsilon indicator are computed similarly. A
vertex of the outer approximation is projected to the inner approximation.
For the polyhedral gauge, this projection happens by scaling it, in the case
of the epsilon indicator the extreme point is shifted. The amount by which
the extreme point has been scaled or shifted is then the measured distance.
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Definition 4.3. The face in which the projected extreme point touches the
inner approximation is called the face associated with s by the epsilon indi-
cator or the polyhedral gauge.

The criterion introduced in Lemma 4.1 can only be evaluated if the so-
lution of the linear program is non-degenerate. If the solution of the epsilon
indicator or polyhedral gauge linear programs is degenerate, the projected
extreme point lies on a lower-dimensional face of the inner approximation.
In the bi-criteria case, this situation can not occur. In the tri-criteria case,
this means that the projected extreme point touches an edge of one of the
triangles forming the inner approximation, see Figure 2. After obtaining a
degenerate solution, one strategy of computing a non-degenerate solution is
to perturb s.

z1

z2

z3

z4

s

s′

Figure 2: An approximation of a 3d Pareto front is given by points
z1, z2, z3, z4. If the extreme point s is projected to the inner approxima-
tion in s′ on the face z2, z3, the LP solution is degenerate. If it was projected
onto the facet z1, z2, z3 or z2, z3, z4, the LP solution would be non-degenerate.

Remark 4.4. In some rare cases, the basis matrix can be singular. In most
cases, the matrix becomes regular by adding a small constant to the zero
components of the extreme point. Otherwise, a least squares solution of the
under-determined system of linear equations can be computed.

5 Interpretation of the Criteria

5.1 Geometric Interpretation

In Lemma 4.1 and Lemma 4.2 we developed criteria that assess whether
the epsilon indicator or the polyhedral gauge need to be recalculated for an
extreme point s after a new point has been added to the approximation.
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They can both be written as

± rTd+1 ·
(
z̄
1

)
≤ 0 (5.1)

where rd+1 solves ATB∗ · rd+1 = ed+1

and AB∗ ∈ R(d+1)×(d+1) is of the form

AB∗ =

(
p1 · · · pi q1 · · · qj −x
1 · · · 1 0 · · · 0 0

)
where p1, . . . , pi are Pareto points, q1, . . . , qj extreme rays of the domination
cone with i + j = d. The criteria differ in the sign: positive for the epsilon
indicator, negative for the polyhedral gauge, and in the definition of x with
x := e = (1, . . . , 1) for the epsilon indicator, x := s with the extreme point s
for the polyhedral gauge.

We reformulate the criterion (5.1) so that it can easily be interpreted
geometrically. To do this, we split the vector rd+1 into the vector rA :=
(r1d+1, . . . , r

d
d+1) and the scalar rB := rd+1

d+1 which are calculated using the
system of linear equations within (5.1) given by(

p1 . . . pi q1 . . . qj −x
1 . . . 1 0 . . . 0 0

)T
·
(
rA
rB

)
=
(
0 . . . 0 1

)T
. (5.2)

Using this notation, we can reformulate Equation (5.1) to

±rd+1 ·
(
z̄
1

)
≤ 0⇐⇒ ± rA

|rA|
· z̄ ± rB

|rA|
≤ 0.

This equation looks like the Hesse normal form of a half-space. Then the
criterion can be read as: the quality of extreme point s has to be recalculated
if the new Pareto point z̄ lies in the half-space{

± rA
|rA|
· x± rB

|rA|
≤ 0, x ∈ Rd

}
. (5.3)

In the following, we will interpret rA and rB with respect to the face associ-
ated with the extreme point s.

Lemma 5.1. The vector rA is perpendicular to the facet associated with the
extreme point s by the epsilon indicator or polyhedral gauge.

Proof. When we subtract the k-th rows, k = 2, . . . , i from the first row of
the system of linear equations (5.2), we obtain pk · rA + rB − (p1 · rA +
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rB) = (pk − p1) · rA = 0, so rA is orthogonal to the (potentially lower-
dimensional) facet spanned by the Pareto points p1 . . . , pi. Rows j . . . , d of
the system of equations are of the form ql · rA = 0, l = 1, . . . , j, so rA is
perpendicular to the extreme cone rays forming the facet together with some
Pareto points.

Lemma 5.2. The Euclidean distance between the facet associated with s by
the epsilon indicator or polyhedral gauge and the origin is rB

|rA|
.

Proof. A facet touched by the projected extreme point is defined by at least
one Pareto point, w.l.o.g. p1. From Lemma 5.1 we know that rA is a normal
to the facet. The first row of (5.2) is p1 · rA + rB = 0. Thus, we can express
the hyperplane defined by the facet as{

x ∈ Rd : rA · (x− p1) = 0
}

=

{
x ∈ Rd :

rA
|rA|
· x+

rB
|rA|

= 0

}
.

This is just the hyperplane defining the half-space in Equation (5.3). Since
the Hesse normal form is defined by a unit normal and the distance of the
hyperplane to the origin, rB

|rA|
is the value of this distance.

Lemma 5.3. The two developed criteria determining whether the quality
has to be recalculated for an extreme point s, one for the polyhedral gauge
(Lemma 4.2) and one for the epsilon indicator (Lemma 4.1), are the same.

Proof. The criteria for the polyhedral gauge and the epsilon indicator (5.1)
differ in the sign and the value of the vector x in one column of the matrix
AB∗ . We note that the Lemmata 5.1 and 5.2 are independent of the value of
x, so both half-spaces are defined by the same hyperplane.

It remains to show whether the normals point in the same direction. For
an inner approximation given by Pareto points Z, the normals of facets of
conv(Z)+C can contain either only non-negative or non-positive components
because our algorithm avoids dominated facets, see [16]. We write a ≥ 0 if
ai ≥ 0 ∀i. The last equation in the system of linear equations (5.2) is
−x · rA = 1.

For the epsilon indicator, we have x = e > 0. To fulfil −x · rA = 1, rA
has to have at least one negative component, which means rA ≤ 0. Thus,
in our minimization problem rA is the outer normal of a facet of the inner
approximation. For the polyhedral gauge, we have x = s. Since s dominates
the Pareto front and the nadir point lies in the origin, s ≤ 0. To fulfil
−x · rA = 1, we need rA ≥ 0, therefore rA is an inner normal of a facet of the
inner approximation. Together with the different signs in Equation (5.3), we
can see that the optimality criterion (5.1) forms the same half-space for both
the epsilon indicator and the polyhedral gauge.
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Figure 3: Geometric interpretation of the criterion Lemma 4.1 and 4.2 and
Corollary 5.4: the distance of s to the inner approximation does not have to
be recalculated if z̄ lies outside of the shown half-space.

Corollary 5.4. The epsilon indicator or polyhedral gauge quality of the ex-
treme point s has to be recalculated if and only if the last computed nondom-
inated point z̄ lies inside the half-space defined by the facet associated with s
and its outer normal. This situation is depicted in Figure 3.

Proof. The statement follows directly from Lemmata 5.1, 5.2 and 5.3.

Remark 5.5. Although the criteria of epsilon indicator and polyhedral gauge
can be interpreted as the same half-space, the result of the criterion evaluation
may still be different since the basis matrix may differ.

5.2 Comparison to the Criterion Developed by Dörfler
et al. in [9]

In the article [9], a variant of the Sandwiching algorithm is introduced and
analysed. As a concept of distance between the inner and outer approxima-
tion, the Hausdorff distance (defined using the Euclidean norm) is used. For
the associated quadratic optimization problem, a criterion is derived using
convex optimization theory which checks whether the Hausdorff distance to
the inner approximation has to be recalculated for a vertex of the outer ap-
proximation. We state this criterion and compare it to the criteria developed
for the epsilon indicator and polyhedral gauge in Lemmata 4.1 and 4.2.

The Euclidean distance between an extreme point s and the inner ap-
proximation can be computed by solving

min ||p− s||2 s.t. p ∈ In. (QP (s, In))
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Figure 4: Geometric interpretation of Corollary 4.4 of [9]

The Hausdorff distance between the inner and outer Sandwiching approxi-
mation is given by δH(On, In) = ||p∗ − s∗|| (Corollary 4.2 of [9]) where s∗ is
the vertex of the outer approximation with the largest Euclidean distance to
the inner approximation.

Lemma 5.6 (Corollary 4.4 of [9]). Let us consider iteration n + 1 of the
Sandwiching algorithm. Let s be a vertex of both On and On+1, let p∗ be a
solution to (QP (s, In)) and z̄ such that In+1 = cl (conv(In ∪ {z̄})). Then the
following statements are equivalent:

(i) p∗ is a solution to QP (s, In+1),

(ii) (p∗ − s)T (z̄ − p∗) ≥ 0.

Geometrically, the criterion given in Lemma 5.6 again forms a half-space,
depicted in Figure 4: the distance of s to the inner approximation does not
have to be recalculated if z̄ lies outside of the shown half-space.

Corollary 5.7. The criterion developed by Dörfler et al. in [9] for the Eu-
clidean metric, developed from convex optimization techniques, is equivalent
to the criteria that we developed for the epsilon indicator (Lemma 4.1) and
the polyhedral gauge (Lemma 4.2) using techniques from linear optimization.

This suggests that for other approximation quality indicators that could
be used in Sandwiching, the same criterion may also determine whether the
quality has to be recalculated.

6 Computing the Approximation Quality Ef-

ficiently in Sandwiching Algorithms

Previously, the Sandwiching algorithm required solving a linear program for
each vertex of the outer approximation in each iteration of the algorithm to
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compute the epsilon indicator or polyhedral gauge quality. Using the results
developed in this article, we can reduce the number of linear programs solved
to compute the approximation quality, as implemented in Algorithm 1.

Algorithm 1 Finding the solution of LP(s, In+1), often avoiding solving the
actual linear program

Require: Extreme point s, approximation (In+1, On+1),
quality LP solutions from iteration n, target quality ε

1: if s was not an extreme point of On then
2: Solve LP(s, In+1) and return its solution

3: Obtain the solution (λ, µ, η) of LP(s, In) from memory
4: if η ≤ ε then return (λ, µ, η)

5: if (λ, µ, η) is degenerate then
6: Perturb s to s̃ and return the solution of LP(s̃, In+1)
7: else
8: if Criterion 4.1 (epsilon indicator) or 4.2 (polyhedral gauge) are ful-

filled then
9: return (λ, µ, η)

10: else
11: Solve LP(s, In+1) and return its solution

If information about neighbourhoods of the extreme points is available,
a variant could be implemented that requires fewer evaluations of the cri-
teria. We observe that due to the convexity of the Pareto front, the set of
extreme points in the half-space must be connected. Therefore, starting from
the newly created extreme points, we could evaluate the criterion for their
neighbours. If the quality of an extreme point has to be recalculated, the
criterion is also checked for its neighbours until there are no more neighbours
left whose quality would have to be recalculated.

7 How Many Quality Calculations are Actu-

ally Necessary?

After demonstrating that using the criteria developed in this article it is
possible to avoid solving many quality LPs, the question arises how many
linear programs actually need to be solved.
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Bi-criteria problems

Lemma 7.1. In bi-criteria Sandwiching approximations, no extreme point
changes its quality value after a Pareto point has been added to the approxi-
mation.

Proof. Let a facet of the inner approximation be given by points p1 and p2,
forming a triangle with the intersection s of their tangents. Let z̄ be added
to the approximation using a weight which is not the normal n of the facet
p1, p2. The quality of s only has to be recomputed if z̄ lies in the half-
space n · y + d > 0, y ∈ R2 with d the distance between the facet and the
origin (Lemmata 4.1, 4.2, 5.6). Therefore, z̄ would need to lie in the triangle
p1, p2, s. But due to the convexity of the Pareto front, z̄ would then need to
have a tangent that is w.l.o.g. steeper than that of p1 and flatter than that
of p2, which contradicts z̄ not being created using facet p1, p2.

Lemma 7.2. Let the Pareto front of a bounded convex bi-objective optimiza-
tion problem be approximated using the Sandwiching algorithm, let the two
extreme compromises already be computed. Then in every iteration, the qual-
ity has to be recalculated for two extreme points.

Proof. After a Pareto point z̄ has been added, its tangent is added to the
outer approximation. Since the extreme compromises have already been
computed, the tangent in z̄ will cut the tangents of two other Pareto points
resulting in two additional extreme points. The extreme point that has been
used to determine the new Pareto point is cut off. In Lemma 7.1 we showed
that no existing extreme point will change its quality when a Pareto point is
added to the approximation. Thus, only the quality of the two new extreme
points has to be determined.

Since the two necessary quality calculations are just those defined by
the two new outer extreme points created when updating the outer approx-
imation using the tangent of the new Pareto point z̄, it is not necessary to
evaluate the criteria of Lemmata 4.1, 4.2 or Corollary 4.4 of [9] at all. Imple-
menting this method would lead to another speed-up for bi-criteria problems
compared to the results illustrated in Section 8.

Arbitrary number of dimensions

We investigate for higher-dimensional problems whether a neighbourhood
of facets can be defined so that only the qualities of those outer extreme
points associated with the facets in this neighbourhood need to be checked
for recomputation of the approximation quality.

17



This problem can alternatively be interpreted by facets of convex hulls
using Corollary 5.4 together with Theorem 2.1 of [2]: After a Pareto point z̄
has been added to the approximation given by Pareto points P , the approx-
imation quality (epsilon indicator, polyhedral gauge or Euclidean metric)
with respect to the extreme point s has to be recalculated if and only if the
facet associated with s is not a facet of conv(z̄∪P ), i.e. if the facet associated
with s is not a facet of the updated inner approximation polytope any more.

It is easy to verify that for tri-criteria problems, the facet f that z̄ is
associated with as well as those facets sharing an edge with f may be removed
when updating the convex hull. The following example demonstrates that it
is also possible that facets that only share a vertex with f may be removed.

Let us consider a Pareto front that contains the following five Pareto
points P1 = (−6, 0, 0), P2 = (−2, 0,−5), P3 = (−3,−3,−2), P4 = (−1.25,−4.5,−3),
P5 = (0,−3,−5), the nadir point lies in the origin. The unit normal of the
Pareto front in p is p/‖p‖2. The facets of the inner approximation are given
by the triangles t1 with vertices P1P2P3, t2 with vertices P2P3P4 and t3 with
vertices P2P4P5. Facet t2 shares an edge with t1 while facet t3 only shares a
vertex with t1. The point S = (−6,−0.63,−1.11) lies between the inner and
the outer approximation. One could define a multiobjective optimization
problem such that S is the next Pareto point computed by the Sandwiching
algorithm. We use the polyhedral gauge as a quality indicator. Then, S is
associated with facet t1. The point S lies inside the half-spaces defined by
all three facets t1, t2, t3 and their outer normals. This means that when S
is added to the inner approximation, the facets t1, t2 and t3 will be removed
and the qualities of all outer extreme points associated with one of these
facets may change. This example is illustrated in Figure 5.

In general, the number of facets of a convex hull that have at least one
vertex in common with a facet is unbounded. Therefore, it is not possible
to specify a maximal number of facets so that only those outer extreme
points associated with these facets need to be checked for changing quality
LP values.

8 Numerical Examples

We illustrate the saved number of linear programs and the improved total
computation time using the approximation of d-dimensional spheres. We
formulate the multiobjective optimization problem

min f(x) = x s.t. xTx ≤ 1
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(a) The inner approximation is formed
by three facets. The new Pareto point S
lies between the inner and outer approx-
imation.

(b) The lines from S to all points
lies outside of the inner approximation,
i.e. all three facets will vanish when
the convex hull of the Pareto points
P1, . . . , P5, S is computed.

Figure 5: Example of a Pareto front approximation using five points
P1, . . . , P5 in three-dimensional objective space.

with f : Rd → Rd, x ∈ Rd. The Pareto front is given by the part of a
d-dimensional unit sphere centred around the origin that intersects Rd

≤.
The following tests were performed on a laptop with 16 GB of RAM and

an Intel Core i7-8665U processor with a clock rate of 1.9 GHz and 4 cores.
The Sandwiching algorithm has been implemented in C++. We will use the
epsilon indicator as the quality indicator.

We first approximate spherical Pareto fronts with 2, 3 and 4 objective
dimensions by 400 Pareto points and apply Algorithm 1 to compute the ap-
proximation quality efficiently. We observe in Figure 6a that the percentage
of saved LPs increases with the number of iterations and approaches 100 %.
This illustrates that only the quality calculations of a small environment of
outer extreme points near the new Pareto point are affected in every iteration.

Figure 6b documents the number of linear programs that remain to be
solved in every iteration. In the bi-criteria case, exactly two linear programs
are solved in every iteration which illustrates Lemma 7.2. For the three-
dimensional sphere, between 4 and 8 linear programs are solved in every
iteration. In the four-dimensional case, this number fluctuates between 8
and 31. While the behaviour gets more irregular for an increasing number
of objective functions, the data suggests that the number of solved linear
programs does not increase with the number of iterations.

The resulting decrease in approximation time is shown in Figure 7a, ex-
emplary for a four-dimensional sphere. We can observe that the Sandwiching
approximation time increases slower with the number of iterations if Algo-
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Figure 6: The effect on the number of computed quality calculation LPs by
incorporating Lemma 4.1 into the Sandwiching algorithm when approximat-
ing spheres of different dimensions.

rithm 1 is applied to compute the approximation quality. E.g., the compu-
tation time of an approximation of a 4d sphere by 400 points only takes 27 s
after incorporating the criterion versus 488 s when solving every quality LP.

Next, we approximate spheres with 2 to 7 objectives by 200 points, once
solving a quality LP for every vertex of the outer approximation in every it-
eration and once using Algorithm 1. The percentage of saved LP runs shown
in Figure 8b decreases from 98 % for the 2d sphere to 90 % for the 7d sphere.
This can partly be explained by an increase in degenerate approximation
quality LP solutions in higher dimensions. While we do not encounter de-
generacy in the bi-criteria case and for 3,4 and 5 criteria less than 1 % of
the LP solutions are degenerate, for 7 criteria there are 6 % degenerate LP
solutions.

The approximation times are documented in Figure 7b. We observe that
the approximation times increase much slower with the number of objective
space dimensions if Algorithm 1 is applied to compute the approximation
quality. The saved time percentage lies between 85 % and 94 % (see Fig-
ure 8a).

9 Conclusions

We developed an algorithm to compute the epsilon indicator and polyhe-
dral gauge quality of an inner and outer polyhedral approximation more
efficiently. It assesses whether the distance between a vertex of the outer
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Figure 7: Sandwiching approximation times with and without Algorithm 1.

approximation and the inner approximation needs to be recalculated after a
point has been added to the approximation.

By interpreting the criteria geometrically as a half-space, we could show
that the criteria for the polyhedral gauge and epsilon indicator are equivalent.
Moreover, they are also equivalent to a criterion developed by Dörfler et al.
for the Euclidean norm using convex optimization theory. Therefore, the
additional structure of a linear optimization problem given by the polyhedral
gauge and epsilon indicator does not improve the result. Additionally, having
obtained equivalent criteria using two different techniques for three different
quality indicators, suggests that the same criterion can also be applied to
other quality indicators that are used in Sandwiching algorithms.

For the bi-criteria case we showed that only 2 LPs need to be solved
per iteration to compute the approximation quality. For more objectives,
we demonstrated that no constant bound on the number of linear programs
to be checked can be proved. However, examples suggest that the number
of LPs remaining to be solved in every iteration does not increase with the
number of points.

Incorporating the improved computation of the approximation algorithm
into the Sandwiching algorithm greatly decreases the number of linear pro-
grams to be solved to compute the approximation quality. In numerical
examples we see a decrease in approximation time of up to 94 %. Addi-
tionally, the approximation time increases more slowly with the number of
iterations and the number of objective space dimensions.
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