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Continuous exact relaxation and alternating proximal gradient1

algorithm for partial sparse and partial group sparse optimization2

problems3

Qingqing Wu, Dingtao Peng, Xian Zhang4

5

Abstract In this paper, we consider a partial sparse and partial group sparse optimization6

problem, where the loss function is a continuously differentiable function (possibly noncon-7

vex), and the penalty term consists of two parts associated with sparsity and group sparsity.8

The first part is the ℓ0 norm of x, the second part is the ℓ2,0 norm of y, i.e, 𝜆1‖x‖0+𝜆2‖y‖2,0,9

where (x,y) ∈ R𝑛+𝑚 is the decision variable. We give a continuous relaxation model of the10

above original problem, where the two parts of the penalty term are relaxed by Capped-11

ℓ1 of x and group Capped-ℓ1 of y respectively. Firstly, we define two kinds of stationary12

points of the relaxation model. Based on the lower bound property of d-stationary points13

of the relaxation model, we establish the equivalence of solutions of the original problem14

and the relaxation model, which provides a theoretical basis for solving the original problem15

via solving the relaxation problem. Secondly, we propose an alternating proximal gradient16

(APG) algorithm to solve the relaxation model, and prove that the whole sequence of the17

APG algorithm converges to a critical point under some mild conditions. Finally, numerical18

experiments on simulated data and multichannel image as well as comparison with some19

state-of-art algorithms are presented to illustrate the effectiveness and robustness of the20

proposed algorithm for partial sparse and partial group sparse optimization problem.21

Keywords Partial sparse and partial group sparse optimization problem; continuous ex-22

act relaxation; stationary point; alternating proximal gradient algorithm; whole sequence23

convergence24
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1 Introduction26

In the past decade, sparse optimization problems have attracted great attention in vari-27

able selection, image restoration, gene expression, and so on [5,10,14,20,21,22,39,45]. The28

basic framework of sparse optimization problem is to seek a sparse solution of an underde-29
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termined linear system. The general sparse optimization problem is as follows:30

min
x∈R𝑛

𝐹 (x) = 𝑓(x) + 𝜆‖x‖0,

where 𝑓 : R𝑛 → R+ is a loss function, 𝜆 > 0, ‖x‖0 :=
𝑛∑︀

𝑖=1,𝑥𝑖 ̸=0

|𝑥𝑖|0. A vector x ∈ R𝑛 is said31

to be sparse if ‖x‖0 ≪ 𝑛, and the sparsity of vector x ∈ R𝑛 is usually provided by its ℓ032

norm.33

Due to the fact that traditional sparse optimization problems only consider the sparsity34

of a single item and do not have sufficient ability to handle complex structures such as group35

sparse structures, Yuan and Lin [39] first use group sparse structures as prior information.36

Group sparse structure refers to dividing variables into multiple groups, and then considering37

whether each group as a whole is zero. Let x = (x⊤
(1), · · · ,x

⊤
(𝐽))

⊤ with 𝐽 disjoint groups, where38

x(𝑖) = (𝑥(𝑖)1, · · · , 𝑥(𝑖)𝑛𝑖
)⊤ ∈ R𝑛𝑖 , 𝑛𝑖 > 0 and

∑︀𝐽
𝑖=1 𝑛𝑖 = 𝑛. Then the optimization problem39

with group sparse structure can be formulated as the following group sparse optimization40

[24,30,31]:41

min
x∈R𝑛

𝐹 (x) = 𝑓(x) + 𝜆‖x‖2,0,

where ‖x‖2,0 := ♯{𝑖 | ‖x(𝑖)‖ ̸= 0, 𝑖 = 1, · · · , 𝐽} is called ℓ2,0 norm that counts the number of42

nonzero groups of x, in which ‖x(𝑖)‖ denotes the ℓ2 norm of the subvector x(𝑖). Note that43

‖ · ‖2,0 is nonconvex, nonsmooth, and even discontinuous, which causes the above problem44

to be NP-hard. Many researchers consider the relaxation problem of this problem, such as45

group LASSO model [35], Bayes group LASSO models [9,33], group SCAD model [23,31,46

38], group MCP model [31,40] and other models [30,32,42,44,46].47

When the data consist of two parts such that the first part has a sparse structure and48

the second part has a certain group sparse structure, it naturally makes sense for us to49

investigate the following partial sparse and partial group sparse optimization problem:50

min
x∈R𝑛,y∈R𝑚

𝐹 (x,y) = 𝑓(x,y) + 𝜆1‖x‖0 + 𝜆2‖y‖2,0, (1.1)

where 𝑓(x,y) is a loss function which we suppose it to be continuously differentiable but not51

necessarily convex in this paper. In (1.1), 𝜆1, 𝜆2 > 0, ‖x‖0 =
𝑛∑︀

𝑖=0,𝑥𝑖 ̸=0

|𝑥𝑖|0 is called ℓ0 norm52

of x, y = (y⊤
(1), · · · ,y

⊤
(𝐽))

⊤ ∈ R𝑚 with 𝐽 disjoint groups, and ‖y‖2,0 = ♯{𝑗 | ‖y(𝑗)‖ ̸= 0, 𝑗 =53

1, · · · , 𝐽} is called ℓ2,0 norm of y. Specially, if x and y are same, problem (1.1) degrades to54

the following sparse plus group sparse optimization problem [26]:55

min
x∈R𝑛

𝐹 (x) = 𝑓(x) + 𝜆1‖x‖0 + 𝜆2‖x‖2,0.

Since both ‖ · ‖ and ‖ · ‖2,0 are nonconvex, nonsmooth and discontinuous, problem (1.1)56

in general is NP-hard. One popular way is to relax ℓ0 (ℓ2,0) norm to ℓ1 (ℓ2,1) norm which57

are convex [35,44], but the solution obtained by the relaxation problem is biased and does58

not satisfy oracle property [16,17]. Therefore, some researchers propose using several classes59

of folding concave continuous relaxations which are still nonconvex but have some good60

properties. These nonconvex relaxations includes ℓ𝑝 (0 < 𝑝 < 1) norm, smoothly clipped61

absolute deviation (SCAD) penalty [17], minimax concave penalty (MCP) [40], Capped-ℓ162

penalty [28,41] and their corresponding group structure forms, such as ℓ𝑝,𝑞, group SCAD63



APG algorithm for partial sparse and partial group sparse optimization problems 3

and group MCP. The nonconvex relaxations have been widely studied in many works, for64

example [3,4,11,30,36,37,42]. It has been proved that the solutions obtained by these kinds65

of nonconvex optimization have some desired properties: unbiasedness, sparsity, continuity66

and oracle property. Specially, reference [25] has shown that Capped-ℓ1 relaxation is the67

tightest difference-of-convex (DC) relaxation for ℓ0 norm.68

In this paper, we consider using Capped-ℓ1 and group Capped-ℓ1 to relax ℓ0 norm and69

ℓ2,0 norm in problem (1.1) respectively, that is, we consider the following problem70

min
x∈R𝑛,y∈R𝑚

𝐹 (x,y) := 𝑓(x,y) + 𝜆1𝛷1(x) + 𝜆2𝛷2(y), (1.2)

where71

𝛷1(x) :=
𝑛∑︁

𝑖=1

𝜙1(|𝑥𝑖|), 𝛷2(y) :=
𝐽∑︁

𝑗=1

𝜙2(‖y(𝑗)‖),

which are Capped-ℓ1 regularization and group Capped-ℓ1 regularization respectively, and72

𝜙𝜐(𝑡) := min

{︂
1,

𝑡

𝛼𝜐

}︂
=

𝑡

𝛼𝜐
− max

{︂
0,

𝑡

𝛼𝜐
− 1

}︂
=

{︃
𝑡
𝛼𝜐
, if 0 ≤ 𝑡 < 𝛼𝜐,

1, if 𝑡 ≥ 𝛼𝜐,

with 𝛼𝜐 > 0, 𝜐 = 1, 2. The penalty function 𝜙𝜐 : R+ → R+ can be written in the form of DC73

form as 𝜙𝜐(𝑡) := 𝑔𝜐(𝑡)− ℎ𝜐(𝑡) with 𝑔𝜐(𝑡) = 𝑡
𝛼𝜐

, ℎ𝜐(𝑡) = max{0, 𝑡
𝛼𝜐

− 1}. Therefore, problem74

(1.2) can be rewritten as follows:75

min
x∈R𝑛,y∈R𝑚

𝐹 (x,y) =𝑓(x,y) + 𝜆1

𝑛∑︁
𝑖=1

(𝑔1(|𝑥𝑖|) − ℎ1(|𝑥𝑖|))

+ 𝜆2

𝐽∑︁
𝑗=1

(︀
𝑔2(‖y(𝑗)‖) − ℎ2(‖y(𝑗)‖)

)︀
.

(1.3)

In recent years, many scholars have studied the relaxation models of sparse or group76

sparse optimization problems. For the sparse optimization problem with the linear least77

square loss and ℓ𝑝 regularization, the reference [12] established the lower bound property78

of nonzero entires of local solutions. When the loss function is convex and the constraint79

set is a box, the reference [3] studied the relationship between the original ℓ0 regularization80

problem and the Capped-ℓ1 relaxation problem. Under certain conditions, the equivalence81

of global solutions and the inclusion relationship of local solutions between the two prob-82

lems are proved. The authors also proposed a smoothing proximal gradient algorithm for83

solving the relaxation problem. The reference [31] considered a class of group sparse opti-84

mization problems with nonconvex folding concave continuous relaxations, and researched85

the first-order and second-order directional stationary points of the problem. The reference86

[30] considered three kinds of group sparse optimization models with linear inequality con-87

straints and discussed the relationship between stationary points, local solutions and global88

solutions. The reference [42] considered a class of group sparse optimization models with a89

general constraint set, and discussed the relationship of local solutions and global solutions90

between original problem and relaxation problem.91

In this paper, inspired by the above works, we study the stationary points of problem92

(1.2), the equivalence of solutions between problems (1.1) and (1.2), and provide an efficient93

algorithm for solving problem (1.2).94
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This paper is organized as follows. In Section 2, we give some preliminaries that will be95

used in this paper. In Section 3, we define two classes of stationary points for the relaxation96

model and discuss their characterization, relationship and some properties. In Section 4, we97

establish the equivalence of solutions between the original problem (1.1) and the relaxation98

model (1.2). In Section 5, we propose an APG algorithm for problem (1.2) and establish the99

convergence result of the whole sequence. In Section 6, we test the proposed APG algorithm100

through rich numerical experiments on recovering the simulated partial sparse and partial101

group sparse signals and some real images. In Section 7, we make a brief conclusion of this102

paper.103

2 Notations and preliminaries104

In this section, we provide some basic notations, and introduce the preliminaries of105

several kinds of stationary points and subdifferentials.106

Notations: For any 𝑛 ∈ N+, [𝑛] := {1, · · · , 𝑛}. For any x ∈ R𝑛, y ∈ R𝑚, ∇𝑓(x,y) =107 (︀
∇⊤

x 𝑓(x,y),∇⊤
y 𝑓(x,y)

)︀⊤
, where ∇y𝑓(x,y) =

(︀
[∇⊤

y 𝑓(x,y)](1), · · · , [∇⊤
y 𝑓(x,y)](𝐽)

)︀⊤
, and108

[∇y𝑓(x,y)](𝑗) =
(︀
[∇y𝑓(x,y)](𝑗)1, · · · , [∇y𝑓(x,y)](𝑗)𝑚𝑗

)︀⊤
. For convenience, we define the109

following index sets110

𝐼1(x) := {𝑖 : |𝑥𝑖| = 0,∀𝑖 ∈ [𝑛]},
𝐼2(x) := {𝑖 : 0 < |𝑥𝑖| < 𝛼1,∀𝑖 ∈ [𝑛]},
𝐼3(x) := {𝑖 : |𝑥𝑖| = 𝛼1,∀𝑖 ∈ [𝑛]},
𝐼4(x) := {𝑖 : |𝑥𝑖| > 𝛼1,∀𝑖 ∈ [𝑛]},
𝐽1(y) := {𝑗 : ‖y(𝑗)‖ = 0,∀𝑗 ∈ [𝐽 ]},
𝐽2(y) := {𝑗 : 0 < ‖y(𝑗)‖ < 𝛼2,∀𝑗 ∈ [𝐽 ]},
𝐽3(y) := {𝑗 : ‖y(𝑗)‖ = 𝛼2,∀𝑗 ∈ [𝐽 ]},
𝐽4(y) := {𝑗 : ‖y(𝑗)‖ > 𝛼2,∀𝑗 ∈ [𝐽 ]}.

Let 𝐼(x) := 𝐼2(x) ∪ 𝐼3(x) ∪ 𝐼4(x), and 𝐽(y) := 𝐽2(y) ∪ 𝐽3(y) ∪ 𝐽4(y). Denote

ℓ(𝑥𝑖) := |𝑥𝑖|, 𝜌𝑗(y(𝑗)) := ‖y(𝑗)‖,

then problem (1.3) can be rewritten as follows111

min
x∈R𝑛,y∈R𝑚

𝐹 (x,y) =𝑓(x,y) + 𝜆1

𝑛∑︁
𝑖=1

(𝑔1 ∘ ℓ(𝑥𝑖) − ℎ1 ∘ ℓ(𝑥𝑖))

+ 𝜆2

𝐽∑︁
𝑗=1

(𝑔2 ∘ 𝜌𝑗(y(𝑗)) − ℎ2 ∘ 𝜌𝑗(y(𝑗))),

(2.1)

where ”∘” denotes the composition of two functions.112

Next, we introduce several important concepts to characterize optimal conditions of113

problem (1.2).114

Definition 2.1 [13,31] Let ℎ : R𝑛+𝑚 → R∪{∞}, for any (x,y) ∈ R𝑛+𝑚, the directional115

derivative of ℎ at (x̂, ŷ) ∈ R𝑛+𝑚 is defined as116

ℎ′((x̂, ŷ); (x− x̂,y − ŷ)) := lim
𝑡↓0

ℎ((x̂, ŷ) + 𝑡(x− x̂,y − ŷ)) − ℎ(x̂, ŷ)

𝑡
.
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If ℎ is differentiable at (x̂, ŷ), then ℎ′((x̂, ŷ); (x− x̂,y − ŷ)) = ⟨∇ℎ(x̂, ŷ), (x− x̂,y − ŷ)⟩.117

By the definition, for any (x,y), (x̂, ŷ) ∈ R𝑛+𝑚, we can get118

ℓ′(�̂�𝑖;𝑥𝑖 − �̂�𝑖) =

{︃
|𝑥𝑖|, if 𝑖 ∈ 𝐼1(x̂),

sgn(�̂�𝑖)(𝑥𝑖 − �̂�𝑖), otherwise,
(2.2)

and119

𝜌′𝑗(ŷ(𝑗);y(𝑗) − ŷ(𝑗)) =

⎧⎨⎩‖y(𝑗)‖, if 𝑗 ∈ 𝐽1(ŷ),
ŷ⊤
(𝑗)(y(𝑗)−ŷ(𝑗))

‖ŷ(𝑗)‖
, otherwise,

(2.3)

where120

sgn(𝑡) =

⎧⎪⎪⎨⎪⎪⎩
1, if 𝑡 > 0,

[−1, 1], if 𝑡 = 0,

−1, if 𝑡 < 0.

Definition 2.2 [13] Let ℎ : R𝑛+𝑚 → R ∪ {∞} be locally Lipschitz at (x̂, ŷ),for any121

(x,y) ∈ R𝑛+𝑚 near (x̂, ŷ), the generalized directional derivative of ℎ at (x̂, ŷ) is defined as122

ℎ∘((x̂, ŷ); (x− x̂,y − ŷ)) := lim sup
(x,y)→(x̂,ŷ)

𝑡↓0

ℎ((x,y) + 𝑡(x− x̂,y − ŷ)) − ℎ(x,y)

𝑡
.

As we all know, the existence of the generalized directional derivative does not imply123

the existence of the directional derivative. But if the directional derivative exists, then124

ℎ′((x̂, ŷ); (x− x̂,y − ŷ)) ≤ ℎ∘((x̂, ŷ); (x− x̂,y − ŷ)), ∀(x,y) ∈ R𝑛+𝑚. (2.4)

Next, we introduce several types of definitions of subdifferential.125

Definition 2.3 [34] Let ℎ : R𝑛+𝑚 → R∪{∞} be a proper convex function, the subdiffer-126

ential 𝜕ℎ(x̂, ŷ) of ℎ at (x̂, ŷ) ∈ domℎ is the set of 𝜉 ∈ 𝜕ℎ(x̂, ŷ), called subgradients of ℎ at127

(x̂, ŷ), such that128

ℎ(x,y) ≥ ℎ(x̂, ŷ) + ⟨𝜉, (x− x̂,y − ŷ)⟩ ,∀(x,y) ∈ R𝑛+𝑚.

If (x̂, ŷ) ̸∈ domℎ, then 𝜕ℎ(x̂, ŷ) = ∅.129

Definition 2.4 [13] Let ℎ : R𝑛+𝑚 → R∪{∞} be a locally Lipschitz function. The Clarke130

subdifferential of ℎ at (x̂, ŷ) ∈ domℎ, written 𝜕𝐶ℎ(x̂, ŷ), is defined as131

𝑐𝑜𝑛{𝜉 ∈ R𝑛+𝑚| ⟨𝜉, (x− x̂,y − ŷ)⟩ ≤ ℎ∘((x̂, ŷ); (x− x̂,y − ŷ)),∀ (x,y) ∈ R𝑛+𝑚},

where ”con” represents the convex hull of a set.132

The above definition implies that [13, Corollary 2.9.1]133

ℎ∘((x̂, ŷ); (x− x̂,y − ŷ)) = max
𝜉∈𝜕𝐶ℎ(x̂,ŷ)

⟨𝜉, (x− x̂,y − ŷ)⟩ .

It is known that [13, Proposition 2.3.6] if ℎ is convex, then ℎ∘((x̂, ŷ); (x− x̂,y − ŷ)) =134

ℎ′((x̂, ŷ); (x − x̂,y − ŷ)) and 𝜕𝐶ℎ(x,y) = 𝜕ℎ(x,y); if ℎ is continuously differentiable, then135

𝜕𝐶ℎ(x,y) = {∇ℎ(x,y)}.136

Since the penalty terms in (1.2) are known as Capped-ℓ1 functions, we can gain that137

the objective function 𝐹 is nonconvex and lower semicontinuous. We now give the definition138

of limiting subdifferential.139
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Definition 2.5 [34] Let ℎ : R𝑛+𝑚 → R∪{∞} be a proper lower semicontinuous function.140

(i) The Fréchet subdifferential of ℎ at (x̂, ŷ) ∈ domℎ, written ̂︀𝜕ℎ(x̂, ŷ), is defined as141

{𝜉 ∈ R𝑛+𝑚|ℎ(x,y) ≥ ℎ(x̂, ŷ) + ⟨𝜉, (x− x̂,y − ŷ)⟩ + 𝑜(‖(x− x̂,y − ŷ)‖),∀ (x,y) ∈ R𝑛+𝑚},

If (x̂, ŷ) ̸∈ domℎ := {(x,y) ∈ R𝑛+𝑚 | ℎ(x,y) <∞}, then ̂︀𝜕ℎ(x̂, ŷ) = ∅.142

(ii)The limiting subdifferential of ℎ at (x̂, ŷ) ∈ domℎ, written 𝜕ℎ(x̂, ŷ), is defined as143

{𝜉 ∈ R𝑛+𝑚|∃(x𝑘,y𝑘) → (x̂, ŷ), ℎ(x𝑘,y𝑘) → ℎ(x̂, ŷ), 𝜉𝑘 ∈ ̂︀𝜕ℎ(x𝑘,y𝑘) such that 𝜉𝑘 → 𝜉},

If (x̂, ŷ) /∈ domℎ, then 𝜕ℎ(x̂, ŷ) = ∅.144

From [34], it is known that if ℎ is locally Lipschitz, then 𝜕𝐶ℎ(x̂, ŷ) = cl(con(𝜕ℎ(x̂, ŷ)))145

which is the closed convex hull of 𝜕ℎ(x̂, ŷ). If ℎ is a convex function, then the Fréchet146

subdifferential, limit subdifferential and Clarke subdifferential of ℎ at (x,y) are all consistent147

with the classical subdifferential of convex function.148

3 Directional stationary points and critical points of problem (1.2)149

The optimality conditions of optimization problems are often characterized by stationary150

points. In this section, we give the characterization of the d(irectional)-stationary points and151

the critical points of problem (1.2), and analyze their properties. Then we investigate the152

relationship between the two types of stationary points.153

Based on the DC expression (1.3) of problem (1.2), we give the definition of critical154

point of problem (1.2).155

Definition 3.1 [29,34] [critical point] (x̂, ŷ) ∈ R𝑛+𝑚 is called a critical point of problem156

(1.2), if157

0 ∈ ∇𝑓(x̂, ŷ) + 𝜆1𝜕

(︃
𝑛∑︁

𝑖=1

(𝑔1 ∘ ℓ)(�̂�𝑖)

)︃
− 𝜆1𝜕

(︃
𝑛∑︁

𝑖=1

(ℎ1 ∘ ℓ)(�̂�𝑖)

)︃

+𝜆2𝜕

⎛⎝ 𝐽∑︁
𝑗=1

(𝑔2 ∘ 𝜌𝑗)(ŷ(𝑗))

⎞⎠− 𝜆2𝜕

⎛⎝ 𝐽∑︁
𝑗=1

(ℎ2 ∘ 𝜌𝑗)(ŷ(𝑗))

⎞⎠ .

The set of critical points of problem (1.2) is denoted by crit𝐹 .158

Based on this definition, [34, Proposition 10.5] and [42, Theorem 3.4], we give the char-159

acterization of critical point of problem (1.2) as follows.160

Theorem 3.2 Let (x̂, ŷ) ∈ R𝑛+𝑚 be a critical point of problem (1.2), then161

0 ∈ ∇𝑓(x̂, ŷ) + 𝜆1

{︁
𝜕(𝑔1 ∘ ℓ)(�̂�1) × · · · × 𝜕(𝑔1 ∘ ℓ)(�̂�𝑛) − 𝜕(ℎ1 ∘ ℓ)(�̂�1) × · · · × 𝜕(ℎ1 ∘ ℓ)(�̂�𝑛)

}︁
+ 𝜆2

{︁
𝜕(𝑔2 ∘ 𝜌1)(ŷ(1)) × · · · × 𝜕(𝑔2 ∘ 𝜌𝐽)(ŷ(𝐽)) − 𝜕(ℎ2 ∘ 𝜌1)(ŷ(1)) × · · · × 𝜕(ℎ2 ∘ 𝜌𝐽)(ŷ(𝐽))

}︁
,
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where162

𝜕(𝑔1 ∘ ℓ)(�̂�𝑖) =

{︃
[− 1

𝛼1
, 1
𝛼1

], if 𝑖 ∈ 𝐼1(x̂),

{ 1
𝛼1

sgn(�̂�𝑖)}, otherwise,

𝜕(ℎ1 ∘ ℓ)(�̂�𝑖) =

⎧⎪⎪⎨⎪⎪⎩
0, if 𝑖 ∈ 𝐼1(x̂) ∪ 𝐼2(x̂),

𝑐𝑜𝑛{0, 1
𝛼2

sgn(�̂�𝑖)}, if 𝑖 ∈ 𝐼3(x̂),
1
𝛼2

sgn(�̂�𝑖), if 𝑖 ∈ 𝐼4(x̂),

𝜕(𝑔2 ∘ 𝜌𝑗)(ŷ(𝑗)) =

{︃
1
𝛼2
𝐵𝑚𝑗 , if 𝑗 ∈ 𝐽1(ŷ),

{ ŷ(𝑗)

𝛼2‖ŷ(𝑗)‖
}, otherwise,

𝜕(ℎ2 ∘ 𝜌𝑗)(ŷ(𝑗)) =

⎧⎪⎪⎨⎪⎪⎩
0, if 𝑗 ∈ 𝐽1(ŷ) ∪ 𝐽2(ŷ),

𝑐𝑜𝑛{0, ŷ(𝑗)

𝛼2‖ŷ(𝑗)‖
}, if 𝑗 ∈ 𝐽3(ŷ),

{ ŷ(𝑗)

𝛼2‖ŷ(𝑗)‖
}, if 𝑗 ∈ 𝐽4(ŷ),

in which ”con” denotes the convex hull of a set and 𝐵𝑚𝑗 denotes the closed unit ball in R𝑚𝑗 .163

Proof According to [34, Proposition 10.5], we get164

𝜕

(︃
𝑛∑︁

𝑖=1

(𝑔1 ∘ ℓ)(�̂�𝑖)

)︃
=
{︁
𝜕(𝑔1 ∘ ℓ)(�̂�1) × · · · × 𝜕(𝑔1 ∘ ℓ)(�̂�𝑛)

}︁
𝜕

(︃
𝑛∑︁

𝑖=1

(ℎ1 ∘ ℓ)(�̂�𝑖)

)︃
=
{︁
𝜕(ℎ1 ∘ ℓ)(�̂�1) × · · · × 𝜕(ℎ1 ∘ ℓ)(�̂�𝑛)

}︁

𝜕

⎛⎝ 𝐽∑︁
𝑗=1

(𝑔2 ∘ 𝜌𝑗)(ŷ(𝑗))

⎞⎠ =
{︁
𝜕(𝑔2 ∘ 𝜌1)(ŷ(1)) × · · · × 𝜕(𝑔2 ∘ 𝜌𝐽)(ŷ(𝐽))

}︁

𝜕

⎛⎝ 𝐽∑︁
𝑗=1

(ℎ2 ∘ 𝜌𝑗)(ŷ(𝑗))

⎞⎠ =
{︁
𝜕(ℎ2 ∘ 𝜌1)(ŷ(1)) × · · · × 𝜕(ℎ2 ∘ 𝜌𝐽)(ŷ(𝐽))

}︁
.

By the definition of critical point and the direct calculation, we get that165

𝜕(𝑔1 ∘ ℓ)(�̂�𝑖) =

{︃
[− 1

𝛼1
, 1
𝛼1

], if 𝑖 ∈ 𝐼1(x̂),

{ 1
𝛼1

sgn(�̂�𝑖)}, otherwise,

𝜕(ℎ1 ∘ ℓ)(�̂�𝑖) =

⎧⎪⎪⎨⎪⎪⎩
0, if 𝑖 ∈ 𝐼1(x̂) ∪ 𝐼2(x̂),

𝑐𝑜𝑛{0, 1
𝛼2

sgn(�̂�𝑖)}, if 𝑖 ∈ 𝐼3(x̂),

{ 1
𝛼2

sgn(�̂�𝑖)}, if 𝑖 ∈ 𝐼4(x̂).

Similar to [42, Theorem 3.4], we can get166

𝜕(𝑔2 ∘ 𝜌𝑗)(ŷ(𝑗)) =

{︃
1
𝛼2
𝐵𝑚𝑗 , if 𝑗 ∈ 𝐽1(ŷ),

{ ŷ(𝑗)

𝛼2‖ŷ(𝑗)‖
}, otherwise,

𝜕(ℎ2 ∘ 𝜌𝑗)(ŷ(𝑗)) =

⎧⎪⎪⎨⎪⎪⎩
0, if 𝑗 ∈ 𝐽1(ŷ) ∪ 𝐽2(ŷ),

𝑐𝑜𝑛{0, ŷ(𝑗)

𝛼2‖ŷ(𝑗)‖
}, if 𝑗 ∈ 𝐽3(ŷ),

{ ŷ(𝑗)

𝛼2‖ŷ(𝑗)‖
}, if 𝑗 ∈ 𝐽4(ŷ).

The proof is thus finished. �167
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Now we give the definition of d-stationary point of problem (1.2).168

Definition 3.3 [42] [d-stationary point] (x̂, ŷ) ∈ R𝑛+𝑚 is called a d-stationary point of169

problem (1.2), if170

𝐹 ′((x̂, ŷ); (x− x̂,y − ŷ)) ≥ 0, ∀(x,y) ∈ R𝑛+𝑚.

The following theorem gives the characterization of d-stationary point of problem (1.2).171

Theorem 3.4 Let (x̂, ŷ) ∈ R𝑛+𝑚 be a d-stationary point of problem (1.2), then172

⟨∇𝑓(x̂, ŷ), (x− x̂,y − ŷ)⟩ + 𝜆1

(︃
𝑛∑︁

𝑖=1

(𝑔1 ∘ ℓ)′(�̂�𝑖;𝑥𝑖 − �̂�𝑖)

)︃
− 𝜆1

(︃
𝑛∑︁

𝑖=1

(ℎ1 ∘ ℓ)′(�̂�𝑖;𝑥𝑖 − �̂�𝑖)

)︃

+ 𝜆2

⎛⎝ 𝐽∑︁
𝑗=1

(𝑔2 ∘ 𝜌𝑗)′(ŷ(𝑗);y(𝑗) − ŷ(𝑗))

⎞⎠− 𝜆2

⎛⎝ 𝐽∑︁
𝑗=1

(ℎ2 ∘ 𝜌𝑗)′(ŷ(𝑗);y(𝑗) − ŷ(𝑗))

⎞⎠ ≥ 0

for any (x,y) ∈ R𝑛+𝑚, where173

(𝑔1 ∘ ℓ)′(�̂�𝑖;𝑥𝑖 − �̂�𝑖) =

{︃
|𝑥𝑖|
𝛼1
, if 𝑖 ∈ 𝐼1(x̂),

sgn(�̂�𝑖)(𝑥𝑖−�̂�𝑖)
𝛼1

, otherwise,

(ℎ1 ∘ ℓ)′(�̂�𝑖;𝑥𝑖 − �̂�𝑖) =

⎧⎪⎪⎨⎪⎪⎩
0, if 𝑖 ∈ 𝐼1(x̂) ∪ 𝐼2(x̂),

max{0, sgn(�̂�𝑖)(𝑥𝑖−�̂�𝑖)
𝛼1

}, 𝑖𝑓 𝑖 ∈ 𝐼3(x̂),
sgn(�̂�𝑖)(𝑥𝑖−�̂�𝑖)

𝛼1
, if 𝑖 ∈ 𝐼4(x̂).

(𝑔2 ∘ 𝜌𝑗)′(ŷ(𝑗);y(𝑗) − ŷ(𝑗)) =

⎧⎨⎩
‖y(𝑗)‖
𝛼2

, if 𝑗 ∈ 𝐽1(ŷ),
ŷ⊤
(𝑗)(y(𝑗)−ŷ(𝑗))

𝛼2‖ŷ(𝑗)‖
, otherwise.

(ℎ2 ∘ 𝜌𝑗)′(ŷ(𝑗);y(𝑗) − ŷ(𝑗)) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, if 𝑗 ∈ 𝐽1(ŷ) ∪ 𝐽2(ŷ),

max{0, ŷ
⊤
(𝑗)(y(𝑗)−ŷ(𝑗))

𝛼2‖ŷ(𝑗)‖
}, 𝑖𝑓 𝑗 ∈ 𝐽3(ŷ),

ŷ⊤
(𝑗)(y(𝑗)−ŷ(𝑗))

𝛼2‖ŷ(𝑗)‖
, if 𝑗 ∈ 𝐽4(ŷ).

(3.1)

Proof From the definition of d-stationary point, the DC form (1.3) and the analysis similar174

to [42, Theorem 3.2], we can directly obtain the conclusion. �175

The following theorem provides the relationship between d-stationary point and critical176

point.177

Theorem 3.5 Let (x̂, ŷ) be a d-stationary point of problem (1.2), then (x̂, ŷ) is a critical178

point of problem (1.2).179

Proof Sine (x̂, ŷ) is a d-stationary point of problem (1.2), according to inequality (2.4), we180

have181

0 ≤ 𝐹 ′((x̂, ŷ); (x− x̂,y − ŷ))

≤ 𝐹 ∘((x̂, ŷ); (x− x̂,y − ŷ))

= max
𝜉∈𝜕𝐶𝐹 (x̂,ŷ)

⟨𝜉, (x− x̂,y − ŷ)⟩ .
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Therefore, according to the operational properties of Clarke differential [13, Propostion 2.3.3,182

Corollary 2.3.3.2], we obtain that183

0 ∈ 𝜕𝐶𝐹 (x̂, ŷ)

⊆ 𝜕𝐶𝑓(x̂, ŷ) + 𝜆1𝜕
𝐶

(︃
𝑛∑︁

𝑖=1

𝑔1(|�̂�𝑖|) − ℎ1(|�̂�𝑖|)

)︃
+ 𝜆2𝜕

𝐶

⎛⎝ 𝐽∑︁
𝑗=1

𝑔2(‖ŷ(𝑗)‖) − ℎ2(‖ŷ(𝑗)‖)

⎞⎠
⊆ 𝜕𝐶𝑓(x̂, ŷ) + 𝜆1𝜕

𝐶

(︃
𝑛∑︁

𝑖=1

𝑔1(|�̂�𝑖|)

)︃
− 𝜆1𝜕

𝐶

(︃
𝑛∑︁

𝑖=1

ℎ1(|�̂�𝑖|)

)︃

+ 𝜆2𝜕
𝐶

⎛⎝ 𝐽∑︁
𝑗=1

𝑔2(‖ŷ(𝑗)‖)

⎞⎠− 𝜆2𝜕
𝐶

⎛⎝ 𝐽∑︁
𝑗=1

ℎ2(‖ŷ(𝑗)‖)

⎞⎠ .

Since 𝑓 is continuously differentiable, 𝑔𝜈 and ℎ𝜈 (𝜈 = 1, 2) are all convex functions, according184

to [13, Propostion 2.3.6(b)], we get185

𝜕𝐶𝑓(x̂, ŷ) = 𝜕𝑓(x̂, ŷ) = {∇𝑓(x̂, ŷ)}

𝜕𝐶

(︃
𝑛∑︁

𝑖=1

𝑔1(|�̂�𝑖|)

)︃
= 𝜕

(︃
𝑛∑︁

𝑖=1

𝑔1(|�̂�𝑖|)

)︃

𝜕𝐶

(︃
𝑛∑︁

𝑖=1

ℎ1(|�̂�𝑖|)

)︃
= 𝜕

(︃
𝑛∑︁

𝑖=1

𝑔1(|�̂�𝑖|)

)︃

and186

𝜕𝐶

⎛⎝ 𝐽∑︁
𝑗=1

𝑔2(‖ŷ(𝑗)‖)

⎞⎠ = 𝜕

⎛⎝ 𝐽∑︁
𝑗=1

𝑔2(‖ŷ(𝑗)‖)

⎞⎠
𝜕𝐶

⎛⎝ 𝐽∑︁
𝑗=1

ℎ2(‖ŷ(𝑗)‖)

⎞⎠ = 𝜕

⎛⎝ 𝐽∑︁
𝑗=1

ℎ2(‖ŷ(𝑗)‖)

⎞⎠ ,

then187

0 ∈ ∇𝑓(x̂, ŷ) + 𝜆1𝜕

(︃
𝑛∑︁

𝑖=1

𝑔1(|�̂�𝑖|)

)︃
− 𝜆1𝜕

(︃
𝑛∑︁

𝑖=1

ℎ1(|�̂�𝑖|)

)︃

+ 𝜆2𝜕

⎛⎝ 𝐽∑︁
𝑗=1

𝑔2(‖ŷ(𝑗)‖)

⎞⎠− 𝜆2𝜕

⎛⎝ 𝐽∑︁
𝑗=1

ℎ2(‖ŷ(𝑗)‖)

⎞⎠ .

From Definition 3.1, the above inequality implies that (x̂, ŷ) is a critical point of problem188

(1.2). �189

Remark 3.6 From the proof of Lemma 3.5, we have that if 0 ∈ 𝜕𝐶𝐹 (x̂, ŷ), then (x̂, ŷ)190

is a critical point of problem (1.2).191

The following lemma characterize the property of gradient of 𝑓 at the d-stationary point192

of problem (1.2).193
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Lemma 3.7 Let (x̂, ŷ) be a d-stationary point of problem (1.2), the following statements194

hold:195

(i) |[∇x𝑓(x̂, ŷ)]𝑖| = 𝜆1

𝛼1
, ∀𝑖 ∈ 𝐼2(x̂); [∇x𝑓(x̂, ŷ)]𝑖 = 0, ∀𝑖 ∈ 𝐼4(x̂).196

(ii) ‖[∇y𝑓(x̂, ŷ)](𝑗)‖ = 𝜆2

𝛼2
, ∀𝑗 ∈ 𝐽2(ŷ); ‖[∇y𝑓(x̂, ŷ)](𝑗)‖ = 0, ∀𝑖 ∈ 𝐽4(ŷ).197

Proof (i). From Theorem 3.4, for any (x,y) ∈ R𝑛+𝑚, we have198

0 ≤ 𝐹 ′((x̂, ŷ); (x− x̂,y − ŷ))

= ⟨∇𝑓(x̂, ŷ), (x− x̂,y − ŷ)⟩ + 𝜆1

𝑛∑︁
𝑖=1

(𝑔1 ∘ ℓ)′(�̂�𝑖;𝑥𝑖 − �̂�𝑖) − 𝜆1

𝑛∑︁
𝑖=1

(ℎ1 ∘ ℓ)′(�̂�𝑖;𝑥𝑖 − �̂�𝑖)

+𝜆2

𝐽∑︁
𝑗=1

(𝑔2 ∘ 𝜌𝑗)′(ŷ(𝑗);y(𝑗) − ŷ(𝑗)) − 𝜆2

𝐽∑︁
𝑗=1

(ℎ2 ∘ 𝜌𝑗)′(ŷ(𝑗);y(𝑗) − ŷ(𝑗)). (3.2)

According to the arbitrariness of (x,y) ∈ R𝑛+𝑚, let y = ŷ, then199

0 ≤ 𝐹 ′((x̂, ŷ); (x− x̂,0))

=
𝑛∑︁

𝑖=1

[∇x𝑓(x̂, ŷ)]𝑖(𝑥𝑖 − �̂�𝑖) + 𝜆1

𝑛∑︁
𝑖=1

(𝑔1 ∘ ℓ)′(�̂�𝑖;𝑥𝑖 − �̂�𝑖) − 𝜆1

𝑛∑︁
𝑖=1

(ℎ1 ∘ ℓ)′(�̂�𝑖;𝑥𝑖 − �̂�𝑖).

From (3.1), we have200

0 ≤ 𝐹 ′((x̂, ŷ); (x− x̂,0))

=

𝑛∑︁
𝑖=1

[∇x𝑓(x̂, ŷ)]𝑖(𝑥𝑖 − �̂�𝑖) +
𝜆1
𝛼1

(︃ ∑︁
𝑖∈𝐼1(x̂)

|𝑥𝑖| +
∑︁

𝑖∈[𝑛]∖𝐼1(x̂)

sgn(�̂�𝑖)(𝑥𝑖 − �̂�𝑖)

−
∑︁

𝑖∈𝐼3(x̂)

max{0, sgn(�̂�𝑖)(𝑥𝑖 − �̂�𝑖)} −
∑︁

𝑖∈𝐼4(x̂)

sgn(�̂�𝑖)(𝑥𝑖 − �̂�𝑖)

)︃

=

𝑛∑︁
𝑖=1

[∇x𝑓(x̂, ŷ)]𝑖(𝑥𝑖 − �̂�𝑖) +
𝜆1
𝛼1

(︃ ∑︁
𝑖∈𝐼1(x̂)

|𝑥𝑖| +
∑︁

𝑖∈𝐼2(x̂)∪𝐼3(x̂)

sgn(�̂�𝑖)(𝑥𝑖 − �̂�𝑖)

−
∑︁

𝑖∈𝐼3(x̂)

max{0, sgn(�̂�𝑖)(𝑥𝑖 − �̂�𝑖)}

)︃
.

(3.3)

Let

�̃�1𝑖 =

{︃
�̂�𝑖, if 𝑖 ∈ [𝑛]∖𝐼2(x̂),

�̂�𝑖 −
(︀
[∇x𝑓(x̂, ŷ)]𝑖 + 𝜆1

𝛼1
sgn(�̂�𝑖)

)︀
, if 𝑖 ∈ 𝐼2(x̂),

then from (3.3), we obtain that201

0 ≤ 𝐹 ′((x̂, ŷ); (x̃1 − x̂,0))

=
∑︁

𝑖∈𝐼2(x̂)

(︀
[∇x𝑓(x̂, ŷ)]𝑖 +

𝜆1
𝛼1

sgn(�̂�𝑖)
)︀
(�̃�1𝑖 − �̂�𝑖),

= −
∑︁

𝑖∈𝐼2(x̂)

(︁
[∇x𝑓(x̂, ŷ)]𝑖 +

𝜆1
𝛼1

sgn(�̂�𝑖)
)︁2
. (3.4)

From inequality (3.4), we obtain202

[∇x𝑓(x̂, ŷ)]𝑖 +
𝜆1
𝛼1

sgn(�̂�𝑖) = 0, ∀𝑖 ∈ 𝐼2(x̂).
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Thus, |[∇x𝑓(x̂, ŷ)]𝑖| = 𝜆1

𝛼1
, ∀𝑖 ∈ 𝐼2(x̂).203

Let

�̃�2𝑖 =

{︃
�̂�𝑖, if 𝑖 ∈ [𝑛]∖𝐼4(x̂),

�̂�𝑖 − [∇x𝑓(x̂, ŷ)]𝑖, if 𝑖 ∈ 𝐼4(x̂),

then from (3.3), we obtain that204

0 ≤ 𝐹 ′((x̂, ŷ); (x̃2 − x̂,0))

=
∑︁

𝑖∈𝐼4(x̂)

(︀
[∇x𝑓(x̂, ŷ)]𝑖

)︀
(�̃�2𝑖 − �̂�𝑖) = −

∑︁
𝑖∈𝐼4(x̂)

(︀
[∇x𝑓(x̂, ŷ)]𝑖

)︀2
, (3.5)

From inequality (3.5), we obtain205

[∇x𝑓(x̂, ŷ)]𝑖 = 0, ∀𝑖 ∈ 𝐼4(x̂).

(ii). The proof is similar to that of (i). By the arbitrariness of (x,y) ∈ R𝑛+𝑚 in (3.2),206

take x = x̂, then207

0 ≤ 𝐹 ′((x̂, ŷ); (0,y − ŷ))

=
𝐽∑︁

𝑗=1

[∇y𝑓(x̂, ŷ)](𝑗)(y(𝑗) − ŷ(𝑗)) + 𝜆2

𝐽∑︁
𝑗=1

(𝑔2 ∘ 𝜌𝑗)′(ŷ(𝑗);y(𝑗) − ŷ(𝑗))

− 𝜆2

𝐽∑︁
𝑗=1

(ℎ2 ∘ 𝜌𝑗)′(ŷ(𝑗);y(𝑗) − ŷ(𝑗)).

From (3.1), we have208

0 ≤ 𝐹 ′((x̂, ŷ); (0,y − ŷ))

=

𝐽∑︁
𝑗=1

[∇y𝑓(x̂, ŷ)]⊤(𝑗)(y(𝑗) − ŷ(𝑗)) +
𝜆2
𝛼2

⎛⎝ ∑︁
𝑗∈𝐽1(x̂)

‖y(𝑗)‖ +
∑︁

𝑗∈[𝑚]∖𝐽1(ŷ)

ŷ⊤
(𝑗)(y(𝑗) − ŷ(𝑗))

‖ŷ(𝑗)‖

−
∑︁

𝑗∈𝐽3(ŷ)

max
{︁
0,

ŷ⊤
(𝑗)(y(𝑗) − ŷ(𝑗))

‖ŷ(𝑗)‖

}︁
−

∑︁
𝑗∈𝐽4(ŷ)

ŷ⊤
(𝑗)(y(𝑗) − ŷ(𝑗))

‖ŷ(𝑗)‖

⎞⎠ (3.6)

=
𝐽∑︁

𝑗=1

[∇y𝑓(x̂, ŷ)]⊤(𝑗)(y(𝑗) − ŷ(𝑗)) +
𝜆2
𝛼2

⎛⎝ ∑︁
𝑗∈𝐽1(x̂)

‖y(𝑗)‖ +
∑︁

𝑗∈𝐽2(ŷ)∪𝐽3(ŷ)

ŷ⊤
(𝑗)(y(𝑗) − ŷ(𝑗))

‖ŷ(𝑗)‖

−
∑︁

𝑗∈𝐽3(ŷ)

max
{︁
0,

ŷ⊤
(𝑗)(y(𝑗) − ŷ(𝑗))

‖ŷ(𝑗)‖

}︁⎞⎠ .

Let

ỹ1
(𝑗) =

⎧⎨⎩ŷ(𝑗), if 𝑗 ∈ [𝑚]∖𝐽2(ŷ),

ŷ(𝑗) −
(︁

[∇y𝑓(x̂, ŷ)](𝑗) + 𝜆2

𝛼2

ŷ(𝑗)

‖ŷ(𝑗)‖

)︁
, if 𝑗 ∈ 𝐽2(ŷ),

then from (3.6), we obtain that209

0 ≤ 𝐹 ′((x̂, ŷ); (0, ỹ1 − ŷ))

=
∑︁

𝑗∈𝐽2(ŷ)

(︁
[∇y𝑓(x̂, ŷ)](𝑗) +

𝜆2
𝛼2

ŷ(𝑗)

‖ŷ(𝑗)‖

)︁⊤
(ỹ1

(𝑗) − ŷ(𝑗))

= −
∑︁

𝑗∈𝐽2(ŷ)

⃦⃦⃦
[∇y𝑓(x̂, ŷ)](𝑗) +

𝜆2
𝛼2

ŷ(𝑗)

‖ŷ(𝑗)‖

⃦⃦⃦2
. (3.7)
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From inequality (3.7), we obtain210

[∇y𝑓(x̂, ŷ)](𝑗) +
𝜆2
𝛼2

ŷ(𝑗)

‖ŷ(𝑗)‖
= 0, i.e., [∇y𝑓(x̂, ŷ)](𝑗) = −𝜆2

𝛼2

ŷ(𝑗)

‖ŷ(𝑗)‖
, ∀𝑗 ∈ 𝐽2(ŷ).

Take ℓ2 norm on both sides of the above equality, then we get211

‖[∇y𝑓(x̂, ŷ)](𝑗)‖ =
𝜆2
𝛼2
, ∀𝑗 ∈ 𝐽2(ŷ).

Let

ỹ2
(𝑗) =

{︃
ŷ(𝑗), if 𝑗 ∈ [𝑚]∖𝐽4(ŷ),

ŷ(𝑗) − [∇y𝑓(x̂, ŷ)](𝑗), if 𝑗 ∈ 𝐽4(ŷ),

then from (3.6), we obtain that212

0 ≤ 𝐹 ′((x̂, ŷ); (0, ỹ2 − ŷ))

=
∑︁

𝑗∈𝐽4(ŷ)

(︁
[∇y𝑓(x̂, ŷ)](𝑗)

)︁⊤
(ỹ2

(𝑗) − ŷ(𝑗))

= −
∑︁

𝑗∈𝐽4(ŷ)

⃦⃦⃦
[∇y𝑓(x̂, ŷ)](𝑗)

⃦⃦⃦2
. (3.8)

From inequality (3.8), we obtain213

‖[∇y𝑓(x̂, ŷ)](𝑗)‖ = 0, ∀𝑗 ∈ 𝐽4(ŷ).

The proof is thus complete. �214

The following theorem gives the lower bound property of the d-stationary points of215

problem (1.2).216

Theorem 3.8 Let (x̂, ŷ) ∈ R𝑛+𝑚 be a d-stationary point of problem (1.2). Suppose217

‖[∇𝑓(x̂, ŷ)]𝐼2(x̂)∪𝐽2(ŷ)‖ < min
{︁

𝜆1

𝛼1
, 𝜆2

𝛼2

}︁
, then the following statements hold:218

(i) 𝐼2(x̂) = ∅, that is, if �̂�𝑖 ̸= 0, then |�̂�𝑖| ≥ 𝛼1;219

(ii) 𝐽2(ŷ) = ∅, that is, if ŷ(𝑗) ̸= 0, then ‖ŷ(𝑗)‖ ≥ 𝛼2.220

Proof (i) Assume, on the contrary, that 𝐼2(x̂) ̸= ∅. Let 𝑖0 ∈ 𝐼2(x̂), then from Lemma 3.7, we221

have222

𝜆1
𝛼1

= |[∇x𝑓(x̂, ŷ)]𝑖0 | ≤ ‖[∇𝑓(x̂, ŷ)]𝐼2(x̂)∪𝐽2(ŷ)‖ <
𝜆1
𝛼1
,

which is a contradiction, and implies that 𝐼2(x̂) = ∅.223

(ii) Assume, on the contrary, that 𝐽2(ŷ) ̸= ∅. Let 𝑗0 ∈ 𝐽2(ŷ), then from Lemma 3.7, we224

have225

𝜆2
𝛼2

= ‖[∇y𝑓(x̂, ŷ)](𝑗0)‖ ≤ ‖[∇𝑓(x̂, ŷ)]𝐼2(x̂)∪𝐽2(ŷ)‖ <
𝜆2
𝛼2
,

which is a contradiction, and implies that 𝐽2(ŷ) = ∅. �226

Remark 3.9 (1) If ‖∇𝑓(x̂, ŷ)‖ < min
{︁

𝜆1

𝛼1
, 𝜆2

𝛼2

}︁
, then ‖[∇𝑓(x̂, ŷ)]𝐼2(x̂)∪𝐽2(ŷ)‖ < min

{︁
𝜆1

𝛼1
, 𝜆2

𝛼2

}︁
.227

(2) If 𝑓 is locally Lipschitz at (x̂, ŷ) with modulus 𝐿 < min
{︁

𝜆1

𝛼1
, 𝜆2

𝛼2

}︁
, then ‖∇𝑓(x̂, ŷ)‖ <228

min
{︁

𝜆1

𝛼1
, 𝜆2

𝛼2

}︁
.229

(3) If 𝑓 : R𝑛+𝑚 → R is convex, then 𝑓 is locally Lipschitz on R𝑛+𝑚.230



APG algorithm for partial sparse and partial group sparse optimization problems 13

4 Equivalence of problem (1.1) and problem (1.2)231

In this section, we investigate the relationship between the original problem (1.1) and232

the relaxation problem (1.2) by considering the global solutions and local solutions of them.233

Theorem 4.1 Suppose ‖∇𝑓(x,y)‖ < min{𝜆1

𝛼1
, 𝜆2

𝛼2
} holds on R𝑛+𝑚, then the following234

statements hold.235

(i) The global optimal solution sets and optimal value of problem (1.1) are same as those236

of problem (1.2) respectively;237

(ii) If (x̂, ŷ) ∈ R𝑛+𝑚 is a local minimizer of problem (1.2), then (x̂, ŷ) is also a local238

minimizer of problem (1.1), and the objective function value of problems (1.1) and (1.2) at239

(x̂, ŷ) are same.240

Proof (i). (a) Let (x̂, ŷ) ∈ R𝑛+𝑚 be a global optimal solution of problem (1.2), then (x̂, ŷ)241

is also a d-stationary point of problem (1.2). From (1.2) and Theorem 3.8, we obtain242

𝜙1(|�̂�𝑖|) =

{︃
0, if 𝑖 ∈ 𝐼1(x̂) ∪ 𝐼2(x̂),

1, if 𝑖 ∈ 𝐼3(x̂) ∪ 𝐼4(x̂),
and 𝜙2(‖ŷ(𝑗)‖) =

{︃
0, 𝑖𝑓 𝑗 ∈ 𝐽1(ŷ) ∪ 𝐽2(ŷ),

1, if 𝑗 ∈ 𝐽3(ŷ) ∪ 𝐽4(ŷ),

then243

𝛷1(x̂) =
∑︁

𝑖∈𝐼3(x̂)∪𝐼4(x̂)

𝜙1(|�̂�𝑖|) = ‖x̂‖0, 𝛷2(ŷ) =
∑︁

𝑗∈𝐽3(ŷ)∪𝐽4(ŷ)

𝜙2(‖ŷ(𝑗)‖) = ‖ŷ‖2,0. (4.1)

For any (x,y) ∈ R𝑛+𝑚, since 𝜙𝜐(𝑡) = min
{︁

1, 𝑡
𝛼𝜐

}︁
≤ 1, (𝜐 = 1, 2), then244

𝛷1(x) =
∑︁

𝑖∈[𝑛]∖𝐼1(x)

𝜙1(|𝑥𝑖|) ≤
∑︁

𝑖∈[𝑛]∖𝐼1(x)

1 = ‖x‖0,

𝛷2(y) =
∑︁

𝑗∈[𝑚]∖𝐽1(ŷ)

𝜙2(‖ŷ(𝑗)‖) ≤
∑︁

𝑗∈[𝑚]∖𝐽1(ŷ)

1 = ‖y‖2,0.

Thus, we have245

𝑓(x̂, ŷ) + 𝜆1‖x̂‖0 + 𝜆2‖ŷ‖2,0 = 𝑓(x̂, ŷ) + 𝜆1𝛷1(x̂) + 𝜆2𝛷2(ŷ)

≤ 𝑓(x,y) + 𝜆1𝛷1(x) + 𝜆2𝛷2(y)

≤ 𝑓(x,y) + 𝜆1‖x‖0 + 𝜆2‖y‖2,0.

Therefore, (x̂, ŷ) is a global solution of problem (1.1), and (4.1) implies that optimal value246

of problems (1.1) and (1.2) at (x̂, ŷ) are same.247

(b) On the other hand, let (x̂, ŷ) ∈ R𝑛+𝑚 be a global minimizer of problem (1.1).248

Assume, on the contrary, that (x̂, ŷ) is not a global minimizer of problem (1.2), then249

𝛷1(x̂) ≤ ‖x̂‖0 and 𝛷2(ŷ) ≤ ‖ŷ‖2,0.

Let (x̄, ȳ) ∈ R𝑛+𝑚 be a global minimizer of problem (1.2), then250

𝑓(x̄, ȳ) + 𝜆1𝛷1(x̄) + 𝜆2𝛷2(ȳ) < 𝑓(x̂, ŷ) + 𝜆1𝛷1(x̂) + 𝜆2𝛷2(ŷ).

What’s more, from (i)(a), we know that251

𝛷1(x̄) = ‖x̄‖0 and 𝛷2(ȳ) = ‖ȳ‖2,0.
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Thus, we have252

𝑓(x̄, ȳ) + 𝜆1‖x̄‖0 + 𝜆2‖ȳ‖2,0 = 𝑓(x̄, ȳ) + 𝜆1𝛷1(x̄) + 𝜆2𝛷2(ȳ)

< 𝑓(x̂, ŷ) + 𝜆1𝛷1(x̂) + 𝜆2𝛷2(ŷ)

≤ 𝑓(x̂, ŷ) + 𝜆1‖x̂‖0 + 𝜆2‖ŷ‖2,0,

which contradicts that (x̂, ŷ) is a global minimizer of problem (1.1). Therefore, (x̂, ŷ) must253

be a global minimizer of problem (1.2).254

(ii). Let (x̂, ŷ) ∈ R𝑛+𝑚 be a local minimizer of problem (1.2), then there exists a255

neighborhood 𝑊 of (x̂, ŷ) such that256

𝑓(x̂, ŷ) + 𝜆1𝛷1(x̂) + 𝜆2𝛷2(ŷ) ≤ 𝑓(x,y) + 𝜆1𝛷1(x) + 𝜆2𝛷2(y), ∀(x,y) ∈𝑊,

It is easy to know that (x̂, ŷ) is also a d-stationary point of problem (1.2). From Theorem257

3.8 and (4.1), we have258

𝛷1(x̂) = ‖x̂‖0 and 𝛷2(ŷ) = ‖ŷ‖2,0. (4.2)

Hence, we have259

𝑓(x̂, ŷ) + 𝜆1‖x̂‖0 + 𝜆2‖ŷ‖2,0 = 𝑓(x̂, ŷ) + 𝜆1𝛷1(x̂) + 𝜆2𝛷2(ŷ)

≤ 𝑓(x,y) + 𝜆1𝛷1(x) + 𝜆2𝛷2(y)

≤ 𝑓(x,y) + 𝜆1‖x‖0 + 𝜆2‖y‖2,0, ∀(x,y) ∈𝑊.

Therefore, (x̂, ŷ) is a local minimizer of problem (1.1), and (4.2) implies that the objective260

function value of problems (1.1) and (1.2) at (x̂, ŷ) are equal. �261

Remark 4.2 (1) The result in Theorem (4.1) reveals that problems (1.1) and (1.2) have262

some equivalence, which provides a theoretical basis for solving problem (1.1) via solving263

problem (1.2).264

(2) From Remark 3.9, we know that the hypothesis of Theorem (4.1) is easy to satisfy.265

5 Alternating proximal gradient algorithm for problem (1.2)266

In this section, we propose an APG algorithm to solve problem (1.2), and discuss the267

convergence of the sequence generated by the APG algorithm.268

5.1 Scheme of APG algorithm269

Noting that the objective function 𝐹 in (1.2) has two parts of variables, the alternating270

minimization may be the suitable way to solve problem (1.2), which transforms problem271

(1.2) into two subproblems.272

Take the initial point (x0,y0) ∈ R𝑛+𝑚, and let the sequence {(x𝑘+1,y𝑘+1)}𝑘∈N be

generated through the following subproblems:⎧⎪⎪⎨⎪⎪⎩
x𝑘+1 ∈ arg min

x∈R𝑛
𝑓(x𝑘,y𝑘) + ⟨x− x𝑘,∇x𝑓(x𝑘,y𝑘)⟩ +

1

2𝑡1
‖x− x𝑘‖2 + 𝜆1𝛷1(x), (5.1a)

y𝑘+1 ∈ arg min
y∈R𝑚

𝑓(x𝑘+1,y𝑘) + ⟨y − y𝑘,∇y𝑓(x𝑘+1,y𝑘)⟩ +
1

2𝑡2
‖y − y𝑘‖2 + 𝜆2𝛷2(y).(5.1b)

273
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One can note that the two subproblems in (5.1) are both nonconvex and nonsmooth274

since 𝛷1(x) and 𝛷2(y) are both nonconvex and nonsmooth. Fortunately, in the following275

part, we can provide their closed form solutions, which is very important for the efficiency276

of the APG algorithm.277

The subproblem (5.1a) solves x with the fixed y𝑘. It can be explicitly reexpressed as278

the following form:279

x𝑘+1 ∈ arg min
x∈R𝑛

{︂
1

2𝑡1
‖x− (x𝑘 − 𝑡1∇x𝑓(x𝑘,y𝑘))‖2 + 𝜆1𝛷1(x)

}︂
. (5.2)

Denote v𝑘 := x𝑘 − 𝑡1∇x𝑓(x𝑘,y𝑘), then (5.2) can be rewritten as280

x𝑘+1 ∈ arg min
x∈R𝑛

{︂
1

2𝑡1
‖x− v𝑘‖2 + 𝜆1𝛷1(x)

}︂
. (5.3)

Note that 𝛷1(x) is separable in the component of x, then problem (5.3) is also separable.281

That is,282

x𝑘+1 ∈ Prox𝑡1𝜆1𝛷1
(v𝑘) = Prox𝑡1𝜆1𝜙1

(𝑣𝑘1 ) × · · · × Prox𝑡1𝜆1𝜙1
(𝑣𝑘𝑛), (5.4)

where the proximal operator Prox𝑡1𝜆1𝜙1
(·) is the optimal solution of the following problem283

Prox𝑡1𝜆1𝜙1
(𝑣) = arg min

𝑥∈R

{︂
1

2𝑡1
(𝑥− 𝑣)2 + 𝜆1𝜙1(𝑥)

}︂
, ∀𝑣 ∈ R. (5.5)

The solution of (5.5) is known to have the following closed form [3,19,30,43]284

Prox𝑡1𝜆1𝜙1
(𝑣) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0, |𝑣| ≤ 𝜆1𝑡1

𝛼1
,

sgn(𝑣)(|𝑣| − 𝜆1𝑡1
𝛼1

), 𝜆1𝑡1
𝛼1

< |𝑣| < 𝛼1 + 𝜆1𝑡1
2𝛼1

,

sgn(𝑣)(𝛼1 ± 𝜆1𝑡1
2𝛼1

), |𝑣| = 𝛼1 + 𝜆1𝑡1
2𝛼1

,

𝑣, |𝑣| > 𝛼1 + 𝜆1𝑡1
2𝛼1

.

=

{︃
sgn(𝑣)(|𝑣| − 𝜆1𝑡1

𝛼1
)+, |𝑣| ≤ 𝛼1 + 𝜆1𝑡1

2𝛼1
,

𝑣, |𝑣| ≥ 𝛼1 + 𝜆1𝑡1
2𝛼1

.
(5.6)

which means that Prox𝑡1𝜆1𝜙1
(𝑣) has two values when |𝑣| = 𝛼1 + 𝜆1𝑡1

2𝛼1
.285

The subproblem (5.1b) solves y with the fixed x𝑘+1. It can be explicitly reexpressed as286

y𝑘+1 ∈ arg min
y∈R𝑚

{︂
1

2𝑡2
‖y − (y𝑘 − 𝑡2∇y𝑓(x𝑘+1,y𝑘))‖2 + 𝜆2𝛷2(y)

}︂
. (5.7)

Denote u𝑘 := y𝑘 − 𝑡2∇y𝑓(x𝑘+1,y𝑘), then (5.7) can be simplified as287

y𝑘+1 ∈ arg min
y∈R𝑚

{︂
1

2𝑡2
‖y − u𝑘‖2 + 𝜆2𝛷2(y)

}︂
. (5.8)

Note that 𝛷2(y) is separable in the group of y, then problem (5.8) is also group separable.288

That is, the solution of (5.8) have the following closed form289

y𝑘+1 ∈ Prox𝑡2𝜆2𝛷2
(u𝑘) = [Prox𝑡2𝜆2𝛷2

(u𝑘)](1) × · · · × [Prox𝑡2𝜆2𝛷2
(u𝑘)](𝐽) (5.9)

with290

[Prox𝑡2𝜆2𝛷2
(u)](𝑗) =

{︃
(‖u(𝑗)‖ − 𝜆2𝑡2

𝛼2
)+

u(𝑗)

‖u(𝑗)‖
, ‖u(𝑗)‖ ≤ 𝛼2 + 𝜆2𝑡2

2𝛼2
,

u(𝑗), ‖u(𝑗)‖ ≥ 𝛼2 + 𝜆2𝑡2
2𝛼2

,
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for 𝑗 = 1, · · · , 𝐽 , which can be obtained by the similar way to (5.6) or [42].291

From (5.4) and (5.9), we give the scheme of the APG algorithm for solving problem292

(1.2) as below.293

Algorithm 1 APG algorithm

– Initialize: For given 𝛼1 > 0, 𝛼2 > 0, 𝜆1 > 0, 𝜆2 > 0, 𝑡1 > 0, 𝑡2 > 0, 𝑥𝑡𝑜𝑙 > 0, take

(x0,y0) ∈ R𝑛+𝑚, and set 𝑘 = 0.

– Step1. Compute⎧⎨⎩x𝑘+1 ∈ arg min
x∈R𝑛

𝑓(x𝑘,y𝑘) + ⟨x− x𝑘,∇x𝑓(x𝑘,y𝑘)⟩ + 1
2𝑡1

‖x− x𝑘‖2 + 𝜆1𝛷1(x),

y𝑘+1 ∈ arg min
y∈R𝑚

𝑓(x𝑘+1,y𝑘) + ⟨y − y𝑘,∇y𝑓(x𝑘+1,y𝑘)⟩ + 1
2𝑡2

‖y − y𝑘‖2 + 𝜆2𝛷2(y).

The calculation process is as follows:

I. Compute x𝑘+1 ∈ Prox𝑡1𝜆1𝛷1
(x𝑘 − 𝑡1∇x𝑓(x𝑘,y𝑘)) according to (5.4);

II. Let u𝑘 = y𝑘 − 𝑡2∇y𝑓(x𝑘+1,y𝑘), then divide u𝑘 into 𝐽 groups according to the

given group of y;

III. Compute y𝑘+1 ∈ Prox𝑡2𝜆2𝛷2
(u𝑘) according to (5.9).

– Step2. Let z𝑘+1 := (x𝑘+1,y𝑘+1), if ‖z𝑘+1−z𝑘‖
max{1,‖z𝑘+1‖} ≤ xtol, terminate.

Otherwise, let 𝑘 := 𝑘 + 1 then return to Step1.

– Output: (x𝑘,y𝑘)

5.2 Convergence analysis294

Before the convergence analysis of the APG algorithm, we give some basic assumptions.295

Assumption 5.1 (i) inf{𝐹 (x,y) = 𝑓(x,y) + 𝜆1𝛷1(x) + 𝜆2𝛷2(y)} > −∞.296

(ii) 𝑓(x,y) → ∞ as ‖(x,y)‖ → ∞.297

(iii) ∇x𝑓(·, ·) is Lipschitz continuous with modulus 𝐿1, that is298

‖∇x𝑓(x1,y1) −∇x𝑓(x2,y2)‖ ≤ 𝐿1(‖x1 − x2‖ + ‖y1 − y2‖), ∀(x1,y1), (x2,y2) ∈ R𝑛+𝑚.

Meanwhile, for any x, ∇y𝑓(x,y) is Lipschitz continuous about y with modulus 𝐿2.299

(v) The parameters satisfy300

0 < 𝑡1 <
1

𝐿1
, 0 < 𝑡2 <

1

𝐿2
.

It is easy to check that there are many loss functions satisfy Assumption 5.1, for example,301

ℓ2 loss and logistic loss.302

Next, we investigate the convergence of the proposed APG algorithm under Assumption303

5.1.304

Lemma 5.2 Let {(x𝑘,y𝑘)}𝑘∈N be the sequence generated by the APG algorithm. Suppose305

Assumption 5.1 holds, then306

𝜌
(︀
‖x𝑘+1 − x𝑘‖2 + ‖y𝑘+1 − y𝑘‖2

)︀
≤ 𝐹 (x𝑘,y𝑘) − 𝐹 (x𝑘+1,y𝑘+1), (5.10)

where 𝜌 = min
{︁

1
2𝑡1

− 𝐿1

2 ,
1
2𝑡2

− 𝐿2

2

}︁
> 0, which implies that the sequence {𝐹 (x𝑘,y𝑘)} is307

nonincreasing.308
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Proof From Step 1 in the APG algorithm, we know that309

𝜆1𝛷1(x𝑘) + 𝑓(x𝑘,y𝑘) ≥𝑓(x𝑘,y𝑘) +
⟨︀
∇x𝑓(x𝑘,y𝑘),x𝑘+1 − x𝑘

⟩︀
+

1

2𝑡1
‖x𝑘+1 − x𝑘‖2 + 𝜆1𝛷1(x𝑘+1),

(5.11)

and that310

𝜆2𝛷2(y𝑘) + 𝑓(x𝑘+1,y𝑘) ≥𝑓(x𝑘+1,y𝑘) +
⟨︀
∇y𝑓(x𝑘+1,y𝑘),y𝑘+1 − y𝑘

⟩︀
+

1

2𝑡2
‖y𝑘+1 − y𝑘‖2 + 𝜆2𝛷2(y𝑘+1).

(5.12)

Summing (5.11) and (5.12), we obtain that311

𝜆1𝛷1(x𝑘) + 𝜆2𝛷2(y𝑘) ≥ 𝜆1𝛷1(x𝑘+1) + 𝜆2𝛷2(y𝑘+1) (5.13)

+
⟨︀
∇x𝑓(x𝑘,y𝑘),x𝑘+1 − x𝑘

⟩︀
+

1

2𝑡1
‖x𝑘+1 − x𝑘‖2

+
⟨︀
∇y𝑓(x𝑘+1,y𝑘),y𝑘+1 − y𝑘

⟩︀
+

1

2𝑡2
‖y𝑘+1 − y𝑘‖2.

From the Lipschitz continuity of ∇x𝑓(x,y) and ∇y𝑓(x,y) (Assumption 5.1 (iii)), we can312

obtain313

𝑓(x𝑘,y𝑘) ≥ 𝑓(x𝑘+1,y𝑘) −
⟨︀
∇x𝑓(x𝑘,y𝑘),x𝑘+1 − x𝑘

⟩︀
− 𝐿1

2
‖x𝑘+1 − x𝑘‖2,

𝑓(x𝑘+1,y𝑘) ≥ 𝑓(x𝑘+1,y𝑘+1) −
⟨︀
∇y𝑓(x𝑘+1,y𝑘),y𝑘+1 − y𝑘

⟩︀
− 𝐿2

2
‖y𝑘+1 − y𝑘‖2.

The above two inequalities yield that314

𝑓(x𝑘,y𝑘) ≥ 𝑓(x𝑘+1,y𝑘+1) −
⟨︀
∇x𝑓(x𝑘,y𝑘),x𝑘+1 − x𝑘

⟩︀
− 𝐿1

2
‖x𝑘+1 − x𝑘‖2,

−
⟨︀
∇y𝑓(x𝑘+1,y𝑘),y𝑘+1 − y𝑘

⟩︀
− 𝐿2

2
‖y𝑘+1 − y𝑘‖2. (5.14)

Summing (5.13) and (5.14), we have315

𝐹 (x𝑘,y𝑘) ≥ 𝐹 (x𝑘+1,y𝑘+1) +

(︂
1

2𝑡1
− 𝐿1

2

)︂
‖x𝑘+1 − x𝑘‖2 +

(︂
1

2𝑡2
− 𝐿2

2

)︂
‖y𝑘+1 − y𝑘‖2.

By Assumption 5.1 (iii), we get 1
2𝑡1

− 𝐿1

2 > 0, 1
2𝑡2

− 𝐿2

2 > 0. Let 𝜌 = min
{︁

1
2𝑡1

− 𝐿1

2 ,
1
2𝑡2

− 𝐿2

2

}︁
,316

then we obtain317

𝜌
(︀
‖x𝑘+1 − x𝑘‖2 + ‖y𝑘+1 − y𝑘‖2

)︀
≤ 𝐹 (x𝑘,y𝑘) − 𝐹 (x𝑘+1,y𝑘+1).

This completes the proof. �318

Theorem 5.3 Suppose Assumption 5.1 holds. Let {z𝑘 := (x𝑘,y𝑘)} be generated by the319

APG Algorithm, then the following statements hold.320

(i) {z𝑘} is bounded and {𝐹 (z𝑘)} is convergent;321

(ii)
∑︀∞

𝑘=0 ‖z𝑘+1 − z𝑘‖2 <∞, lim
𝑘→∞

‖x𝑘+1 − x𝑘‖ = 0 and lim
𝑘→∞

‖y𝑘+1 − y𝑘‖ = 0.322
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Proof (i). From Lemma 5.2 and Assumption 5.1 (i), it follows that {𝐹 (x𝑘,y𝑘)} is nonincreas-323

ing and 𝐹 is bounded from below, and hence {𝐹 (x𝑘,y𝑘)} is convergent. From {(x𝑘,y𝑘)} ⊂324

{(x,y) : 𝐹 (x,y) ≤ 𝐹 (x0,y0)} which is bounded due to Assumption 5.1 (ii) and 𝛷1(x) ≥ 0325

as well as 𝛷2(y) ≥ 0, it follows that {x𝑘,y𝑘} is bounded.326

(ii). From (5.10) and (i), we have327

𝜌‖z𝑘+1 − z𝑘‖2 = 𝜌(‖(x𝑘+1 − x𝑘‖2 + ‖y𝑘+1 − y𝑘‖2) ≤ 𝐹 (x𝑘,y𝑘) − 𝐹 (x𝑘+1,y𝑘+1).

Summing both sides of the above inequality from 0 to 𝑁 , we get328

𝑁∑︁
𝑘=0

𝜌‖z𝑘+1 − z𝑘‖2 =
𝑁∑︁

𝑘=0

𝜌(‖(x𝑘+1 − x𝑘‖2 + ‖y𝑘+1 − y𝑘‖2)

≤
𝑁∑︁

𝑘=0

(𝐹 (x𝑘,y𝑘) − 𝐹 (x𝑘+1,y𝑘+1))

= 𝐹 (x0,y0) − 𝐹 (x𝑁+1,y𝑁+1),

Letting 𝑁 → ∞, we obtain329

∞∑︁
𝑘=0

𝜌‖z𝑘+1 − z𝑘‖2 =

∞∑︁
𝑘=0

𝜌(‖(x𝑘+1 − x𝑘‖2 + ‖y𝑘+1 − y𝑘‖2) ≤ 𝐹 (x0,y0) − 𝐹 (x*,y*) <∞,

Then330

lim
𝑘→∞

‖z𝑘+1 − z𝑘‖2 = lim
𝑘→∞

(‖x𝑘+1 − x𝑘‖2 + ‖y𝑘+1 − y𝑘‖2) = 0.

Thus, lim𝑘→∞ ‖x𝑘+1 − x𝑘‖ = 0 and lim𝑘→∞ ‖y𝑘+1 − y𝑘‖ = 0. �331

In order to prove a global convergence of the whole sequence {(x𝑘,y𝑘)}, we first prove332

the following results.333

Lemma 5.4 Suppose Assumption 5.1 holds, and {(x𝑘,y𝑘)}𝑘∈N is generated by the APG

algorithm with the initial point (x0,y0). Let

𝑞𝑘+1
x := ∇x𝑓(x𝑘+1,y𝑘+1) −∇x𝑓(x𝑘,y𝑘) − 1

𝑡1
(x𝑘+1 − x𝑘),

𝑞𝑘+1
y := ∇y𝑓(x𝑘+1,y𝑘+1) −∇y𝑓(x𝑘+1,y𝑘) − 1

𝑡2
(y𝑘+1 − y𝑘),

then334

𝑞𝑘+1
x ∈ 𝜕x𝐹 (x𝑘+1,y𝑘+1), 𝑞𝑘+1

y ∈ 𝜕y𝐹 (x𝑘+1,y𝑘+1)

and335

‖(𝑞𝑘+1
x , 𝑞𝑘+1

y )‖ ≤ 𝛼‖(x𝑘+1,y𝑘+1)‖,

where 𝛼2 = max
{︁

2
(︀
𝐿1 + 1

𝑡1

)︀2
, 2𝐿2

1 + (𝐿2 + 1
𝑡2

)2
}︁

.336
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Proof It follows from (5.2) that337

0 ∈ 1
𝑡1

(x𝑘+1 − x𝑘) + ∇x𝑓(x𝑘,y𝑘) + 𝜆1𝜕𝛷1(x𝑘+1), (5.15)

Adding ∇x𝑓(x𝑘+1,y𝑘+1) to both sides of (5.15) and rearranging terms, we obtain338

∇x𝑓(x𝑘+1,y𝑘+1) −∇x𝑓(x𝑘,y𝑘) − 1

𝑡1
(x𝑘+1 − x𝑘) ∈ ∇x𝑓(x𝑘+1,y𝑘+1) + 𝜆1𝜕𝛷1(x𝑘+1)

= 𝜕x𝐹 (x𝑘+1,y𝑘+1). (5.16)

Similarly, it follows from (5.7) that339

0 ∈ 1
𝑡2

(y𝑘+1 − y𝑘) + ∇y𝑓(x𝑘+1,y𝑘) + 𝜆2𝜕𝛷2(y𝑘+1). (5.17)

Adding ∇y𝑓(x𝑘+1,y𝑘+1) to both sides of (5.17) and rearranging terms, we obtain340

∇y𝑓(x𝑘+1,y𝑘+1) −∇y𝑓(x𝑘+1,y𝑘) − 1

𝑡2
(y𝑘+1 − y𝑘) ∈ ∇y𝑓(x𝑘+1,y𝑘+1) + 𝜆2𝜕𝛷2(y𝑘+1)

= 𝜕y𝐹 (x𝑘+1,y𝑘+1). (5.18)

Combining (5.16) and (5.18), we obtain341

𝑞𝑘+1
x ∈ 𝜕x𝐹 (x𝑘+1,y𝑘+1), 𝑞𝑘+1

y ∈ 𝜕y𝐹 (x𝑘+1,y𝑘+1), (5.19)

which then implies (𝑞𝑘+1
x , 𝑞𝑘+1

y ) ∈ 𝜕𝐹 (x𝑘+1,y𝑘+1).342

From (5.19) and Assumption 5.1 (iii), we have343

‖𝑞𝑘+1
x ‖ = ‖∇x𝑓(x𝑘+1,y𝑘+1) −∇x𝑓(x𝑘,y𝑘) − 1

𝑡1
(x𝑘+1 − x𝑘)‖

≤ ‖∇x𝑓(x𝑘+1,y𝑘+1) −∇x𝑓(x𝑘,y𝑘)‖ +
1

𝑡1
‖x𝑘+1 − x𝑘‖

≤
(︂
𝐿1 +

1

𝑡1

)︂
‖x𝑘+1 − x𝑘‖ + 𝐿1‖y𝑘+1 − y𝑘‖.

Similarly, we have344

‖𝑞𝑘+1
y ‖ = ‖∇y𝑓(x𝑘+1,y𝑘+1) −∇y𝑓(x𝑘+1,y𝑘) − 1

𝑡2
(y𝑘+1 − y𝑘)‖

≤ ‖∇y𝑓(x𝑘+1,y𝑘+1) −∇y𝑓(x𝑘+1,y𝑘)‖ +
1

𝑡2
‖y𝑘+1 − y𝑘‖

≤
(︂
𝐿2 +

1

𝑡2

)︂
‖y𝑘+1 − y𝑘‖.

then345

‖(𝑞𝑘+1
x , 𝑞𝑘+1

y )‖2 = ‖𝑞𝑘+1
x ‖2 + ‖𝑞𝑘+1

y ‖2

≤ 2

(︂
𝐿1 +

1

𝑡1

)︂2

‖x𝑘+1 − x𝑘‖2 +

(︂
2𝐿2

1 +
(︀
𝐿2 +

1

𝑡2

)︀2)︂ ‖y𝑘+1 − y𝑘‖2.

Let 𝛼2 = max{2
(︀
𝐿1 + 1

𝑡1

)︀2
, 2𝐿2

1 + (𝐿2 + 1
𝑡2

)2}, then we have346

‖(𝑞𝑘+1
x , 𝑞𝑘+1

y )‖2 ≤ 𝛼2(‖x𝑘+1 − x𝑘‖2 + ‖y𝑘+1 − y𝑘‖2).

As a consequence, we get347

‖(𝑞𝑘+1
x , 𝑞𝑘+1

y )‖ ≤ 𝛼‖(x𝑘+1 − x𝑘,y𝑘+1 − y𝑘)‖.

The proof is thus complete. �348
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To analyze the convergence of the generated sequence of the APG algorithm, we discuss349

some properties of the limit point sets of the sequence at first. For convenience, we denote350

z𝑘 = (x𝑘,y𝑘) and 𝐹 (z𝑘) = 𝐹 (x𝑘,y𝑘). The set of all limit points of {z𝑘} is denoted by 𝛤 (z0),351

i.e.,352

𝛤 (z0) =
{︀
z̄ = (x̄, ȳ) ∈ R𝑛+𝑚| ∃{𝑘𝑗} ∈ N, 𝑠.𝑡. z𝑘𝑗 → z̄, 𝑗 → ∞

}︀
.

Theorem 5.5 Suppose Assumption 5.1 holds. Let {z𝑘} be generated by the APG algo-353

rithm with the initial point z0 = (x0,y0), then the following statements hold.354

(i) 𝛤 (z0) is a nonempty and compact set, and the objective value of 𝐹 is finite and355

constant on 𝛤 (z0).356

(ii) 𝛤 (z0) ⊂ crit𝐹 .357

(iii) lim
𝑘→∞

dist(z𝑘, 𝛤 (z0)) = 0.358

Proof (i). From the boundedness of {z𝑘}, it follows that 𝛤 (z0) is nonempty. Note that 𝛤 (z0)359

can be represented as an intersection of compact sets, i.e.,360

𝛤 (z0) = ∩𝑠∈N∪𝑘≥𝑠{z𝑘}.

Since the intersection of bounded closed sets is still bounded and closed, 𝛤 (z0) is also a361

compact set. For any z̄ = (x̄, ȳ) ∈ 𝛤 (z0), ∃{𝑘𝑗} ⊂ N such that362

lim
𝑗→∞

z𝑘𝑗 = z̄.

By the continuity of 𝐹 , we have363

lim
𝑗→∞

𝐹 (z𝑘𝑗 ) = 𝐹 (z̄).

From Theorem 5.3 (i), we have 𝐹 (z𝑘) → 𝐹 *(𝑘 → ∞). Then, for arbitrary subsequence364

𝐹 (z𝑘𝑗 ), it holds365

lim
𝑗→∞

𝐹 (z𝑘𝑗 ) = 𝐹 (z̄) = 𝐹 *. (5.20)

That is, the value of 𝐹 on 𝛤 (z0)) is a constant.366

(ii) From Theorem 5.3 (ii), we have367

lim
𝑗→∞

‖x𝑘𝑗+1 − x𝑘𝑗‖ = 0, lim
𝑗→∞

‖y𝑘𝑗+1 − y𝑘𝑗‖ = 0,

then368

lim
𝑗→∞

x𝑘𝑗+1 = lim
𝑗→∞

x𝑘𝑗 = x̄, lim
𝑗→∞

y𝑘𝑗+1 = lim
𝑗→∞

y𝑘𝑗 = ȳ.

From Lemma 5.4, we have369

‖(𝑞
𝑘𝑗+1
x , 𝑞

𝑘𝑗+1
y )‖ ≤ 𝛼‖(x𝑘𝑗+1 − x𝑘𝑗 ,y𝑘𝑗+1 − y𝑘𝑗 )‖.

Let 𝑗 → ∞, then370

lim
𝑗→∞

‖(𝑞
𝑘𝑗+1
x , 𝑞

𝑘𝑗+1
y )‖ = 0, i.e., (𝑞

𝑘𝑗+1
x , 𝑞

𝑘𝑗+1
y ) → (0, 0), 𝑓𝑜𝑟 𝑗 → ∞.
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From Lemma 5.4, we know (𝑞
𝑘𝑗+1
x , 𝑞

𝑘𝑗+1
y ) ∈ 𝜕𝐹 (x𝑘𝑗+1,y𝑘𝑗+1) ⊂ 𝜕𝐶𝐹 (x𝑘𝑗+1,y𝑘𝑗+1). Further,371

by the closedness of the mapping 𝜕𝐶𝐹 (·) [13, Propostion 2.1.5(b)], we obtain372

(0, 0) ∈ 𝜕𝐶𝐹 (x̄, ȳ).

From Remark 3.6, this implies that z̄ = (x̄, ȳ) is a critical point of problem (1.2), and373

𝛤 (z0) ⊂ crit𝐹 .374

(iii) This conclusion follows from the definition of 𝛤 (z0). �375

In order to give the global convergence of the whole sequence {(x𝑘,y𝑘)}, we first intro-376

duce the Kurdyka- Lojasiewicz (K L) property of 𝐹 . The K L property was used to analyze377

smooth problems, then Bolte, Daniilidis and Lewis [6] used K L property to analyze nons-378

mooth problems. Since then, lots of researchers have done much research on this basis, for379

example, [1,2,7,27]. Now, it is well-known that the K L property have played the important380

roles in the convergence analysis of proximal algorithms. Let’s recall the K L property.381

Let 𝜂 ∈ (0,+∞], we denote by 𝛹𝜂 the class of all concave and continuous functions382

𝜓 : [0, 𝜂) → [0,∞) such that383

(i) 𝜓(0) = 0;384

(ii) 𝜓 is continuously differentiable on (0, 𝜂);385

(iii) 𝜓′(𝑠) > 0 for all 𝑠 ∈ (0, 𝜂).386

Definition 5.6 [2,7,27] [K L property] Let ℎ : R𝑛+𝑚 → R ∪ {∞} be a proper lower387

semicontinuous function.388

(i) ℎ is said to have the K L property at w̄ ∈ dom𝜕ℎ := {w ∈ R𝑛+𝑚|𝜕ℎ(w) ̸= ∅}, if there389

exist 𝜂 ∈ (0,+∞], a neighborhood 𝛺 of w̄ and a function 𝜓 ∈ 𝛹𝜂, such that for all390

w ∈ 𝛺 ∩ [ℎ(w̄) < ℎ(w) < ℎ(w̄) + 𝜂],

the following inequality holds391

𝜓′(ℎ(w) − ℎ(w̄))dist(0, 𝜕ℎ(w)) ≥ 1.

(ii) If ℎ satisfies the K L property at each point of dom𝜕ℎ, then ℎ is called a K L function.392

Lemma 5.7 [7,27] [Uniformized K L property] Let 𝛺 be a compact set and ℎ : R𝑛+𝑚 →393

R ∪ {∞} be a proper lower semicontinuous function. Assume that ℎ is constant on 𝛺 and394

satisfies the K L property at each point of 𝛺. Then there exist 𝜖 > 0, 𝜂 > 0 and 𝜓 ∈ 𝛹𝜂 such395

that for all w̄ in 𝛺 and all396

w ∈ {w ∈ R𝑛+𝑚 : dist(w, 𝛺) < 𝜖} ∩ [ℎ(w̄) < ℎ(w) < ℎ(w̄) + 𝜂],

one has,397

𝜓′(ℎ(w) − ℎ(w̄))dist(0, 𝜕ℎ(w)) ≥ 1.

The K L functions have a wide range including semi-algebraic, subanalytic and log-exp398

and so on [7]. It is easy to check that our objective function 𝐹 in (1.2) meets the K L property.399

Now we can give the global convergence of the whole sequence {(x𝑘,y𝑘)} under the400

condition of K L function.401

Theorem 5.8 Suppose Assumption 5.1 holds and 𝐹 is a K L function. Let {z𝑘 = (x𝑘,y𝑘)}402

be generated by the APG algrithom. Then the following statements hold.403

(i)
∑︀∞

𝑘=0 ‖z𝑘+1 − z𝑘‖ <∞;404

(ii) The sequence {z𝑘}𝑘∈𝑁 converges to a critical point z* = (x*,y*) of problem (1.2).405
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Proof (i). Firstly, we suppose that 𝐹 (z𝑘) ̸= 𝐹 (z̄) for all 𝑘 ∈ N; Otherwise, the algorithm will406

terminate.407

On the one hand, it follows from (5.20) that lim𝑘→∞ 𝐹 (z𝑘) = 𝐹 * = 𝐹 (z̄). Then, for any408

𝜂 > 0, there exists 𝑘0 > 0, such that for any 𝑘 > 𝑘0, it holds409

𝐹 (z̄) < 𝐹 (z𝑘) < 𝐹 (z̄) + 𝜂,

that is,410

z𝑘 ∈ [𝐹 (z̄) < 𝐹 (z) < 𝐹 (z̄) + 𝜂], ∀𝑘 > 𝑘0.

On the other hand, by Theorem 5.5 (iii), we have lim𝑘→∞ dist(z𝑘, 𝛤 (z0)) = 0. Therefore, for411

any 𝜖 > 0, there exists 𝑘1 > 0, such that for any 𝑘 > 𝑘1, it holds412

dist(z𝑘, 𝛤 (z0)) < 𝜖.

Let 𝑘2 = max{𝑘0, 𝑘1}, then for any 𝑘 > 𝑘2, we have413

z𝑘 ∈
{︀
z | dist(z, 𝛤 (z0)) < 𝜖

}︀
∩ [𝐹 (z̄) < 𝐹 (z) < 𝐹 (z̄) + 𝜂] , ∀𝑘 > 𝑘2.

Since the value of 𝐹 on 𝛤 (z0) is a constant, by the uniformized K L property (Lemma414

5.7), there exists 𝜓 ∈ 𝛹𝜂, such that415

𝜓′(𝐹 (z𝑘) − 𝐹 (z̄))dist(0, 𝜕𝐹 (z𝑘)) ≥ 1. (5.21)

By Lemma 5.4, we have (𝑞𝑘+1
x , 𝑞𝑘+1

y ) ∈ 𝜕𝐹 (z𝑘+1) and ‖(𝑞𝑘+1
x , 𝑞𝑘+1

y )‖ ≤ 𝛼‖(x𝑘+1−x𝑘,y𝑘+1−416

y𝑘)‖, then417

dist(0, 𝜕𝐹 (z𝑘)) ≤ ‖(𝑞𝑘+1
x , 𝑞𝑘+1

y )‖ ≤ 𝛼‖(x𝑘+1 − x𝑘,y𝑘+1 − y𝑘)‖ = 𝛼‖z𝑘+1 − z𝑘‖.

Substitute the above inequality into (5.21), then we obtain418

𝜓′(𝐹 (z𝑘) − 𝐹 (z̄)) ≥ 1

dist(0, 𝜕𝐹 (z𝑘))
≥ 1

𝛼‖z𝑘+1 − z𝑘‖
.

Since 𝜓 is a concave function, we have419

𝜓(𝐹 (z𝑘+1) − 𝐹 (z̄)) ≤ 𝜓(𝐹 (z𝑘) − 𝐹 (z̄)) + 𝜓′(𝐹 (z𝑘) − 𝐹 (z̄))(𝐹 (z𝑘+1) − 𝐹 (z𝑘)).

Due to the above two inequalituies and the sufficient descending property of function 𝐹 given420

by Lemma 5.2, we get421

𝜓(𝐹 (z𝑘) − 𝐹 (z̄)) − 𝜓(𝐹 (z𝑘+1) − 𝐹 (z̄))

≥ 𝜓′(𝐹 (z𝑘) − 𝐹 (z̄))(𝐹 (z𝑘) − 𝐹 (z𝑘+1))

≥ 𝜌‖z𝑘+1 − z𝑘‖2

𝛼‖z𝑘 − z𝑘−1‖
.

Denote by 𝐶 = 𝛼/𝜌 and M𝑘= 𝜓(𝐹 (z𝑘) − 𝐹 (z̄)), then M𝑘 is monotonically non-increasing422

with respect to 𝑘, and M̄ = lim𝑘→∞ M𝑘 makes sense. Therefore, the above inequality can be423

rewritten as424

M𝑘 − M𝑘+1≥
‖z𝑘+1 − z𝑘‖2

𝐶‖z𝑘 − z𝑘−1‖
.
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By the inequality 4𝑎𝑏 ≤ (𝑎+ 𝑏)2, then425

‖z𝑘+1 − z𝑘‖2 ≤ 𝐶‖z𝑘 − z𝑘−1‖(M𝑘 − M𝑘+1)

≤
(︂
‖z𝑘 − z𝑘−1‖ + 𝐶(M𝑘 − M𝑘+1)

2

)︂2

,

hence,426

2‖z𝑘+1 − z𝑘‖ ≤ ‖z𝑘 − z𝑘−1‖ + 𝐶(M𝑘 − M𝑘+1).

Summing the left and right sides of the above inequality respecting to 𝑘, we obtain427

2
𝐾∑︁

𝑘=𝑘2+1

‖z𝑘+1 − z𝑘‖ ≤ 𝐶(M𝑘2+1 − M𝐾+1) +
𝐾∑︁

𝑘=𝑘2+1

‖z𝑘 − z𝑘−1‖

= 𝐶(M𝑘2+1 − M𝐾+1) + ‖z𝑘2+1 − z𝑘2‖

−‖z𝐾+1 − z𝐾‖ +
𝐾∑︁

𝑘=𝑘2+1

‖z𝑘+1 − z𝑘‖,

then428

𝐾∑︁
𝑘=𝑘2+1

‖z𝑘+1 − z𝑘‖ ≤ 𝐶(M𝑘2+1 − M𝐾+1) + ‖z𝑘2+1 − z𝑘2‖ − ‖z𝐾+1 − z𝐾‖.

Letting 𝐾 → ∞, we obtain429

∞∑︁
𝑘=𝑘2+1

‖z𝑘+1 − z𝑘‖ ≤ 𝐶(M𝑘2+1 −M̄) + ‖z𝑘2+1 − z𝑘2‖ <∞.

Therefore,430

∞∑︁
𝑘=0

‖z𝑘+1 − z𝑘‖ =

𝑘2∑︁
𝑘=0

‖z𝑘+1 − z𝑘‖ +

∞∑︁
𝑘=𝑘2+1

‖z𝑘+1 − z𝑘‖ <∞.

(ii) For any 𝑝 > 𝑞 ≥ 𝑘2, we have431

‖z𝑝 − z𝑞‖ = ‖
∑︀𝑝−1

𝑘=𝑞(z𝑘+1 − z𝑘)‖ ≤
∑︀𝑝−1

𝑘=𝑞 ‖z𝑘+1 − z𝑘‖ <
∑︀∞

𝑘=𝑞 ‖z𝑘+1 − z𝑘‖.

Then ‖z𝑝−z𝑞‖ → 0 as 𝑞 → ∞, which indicates that {z𝑘} is a Cauchy sequence, and hence is432

a convergent sequence. It then follows from Theorem 5.5 that the limit point z* = (x*,y*)433

of {z𝑘} is a critical point of problem (1.2). The proof is thus complete. �434

6 Numerical experiments435

In this section, we conduct numerical experiments on the relaxation problem (1.2) to436

test the APG algorithm.437

All the numerical experiments are implemented in MATLAB R2018b and on a Lenovo438

PC (Intel(R) Core(TM) i5-9500, 3.00GHz, 8.00GB of RAM).439
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6.1 Simulated Data440

In this simulation experiment part, the APG algorithm is applied to solve the following441

model.442

Example 6.1 We consider the least square loss 𝑓(x,y) = 1
2‖𝐴x +𝐵y − c‖2, that is443

min
x∈R𝑛,y∈R𝑚

1

2
‖𝐴x +𝐵y − c‖2 + 𝜆1𝛷1(x) + 𝜆2𝛷2(y), (6.1)

where 𝐴 ∈ R𝑝×𝑛, 𝐵 ∈ R𝑝×𝑚,444

𝛷1(x) :=
𝑛∑︁

𝑖=1

𝜙1(|𝑥𝑖|), 𝛷2(y) :=
𝐽∑︁

𝑗=1

𝜙2(‖y(𝑗)‖)

and 𝜙𝑖 (𝑖 = 1, 2) is defined in (1.2).445

For this model, the data are generated as follows. We first use MATLAB codes randn(p,n)446

and randn(p,m) to randomly generate the i.i.d. Gaussian matrices 𝐴 ∈ R𝑝×𝑛 and 𝐵 ∈ R𝑝×𝑚.447

Then we generate a sparse solution xo ∈ R𝑛 and a group sparse solution yo ∈ R𝑚 as the448

real solution. Let 𝑘𝑘𝑥 be the number of non-zero entries of xo, then the sparsity level of xo449

is 𝑘𝑘𝑥/𝑛. Meanwhile, yo ∈ R𝑚 is randomly divided into 𝐽 groups. The 𝑘𝑘𝑦 non-zero groups450

are randomly selected from these 𝐽 groups, and the remaining 𝐽 − 𝑘𝑘𝑦 groups are all set to451

be zero vectors, so the group sparsity level of yo is 𝑘𝑘𝑦/𝐽 .452

For the given positive integers 𝑝, 𝑛,𝑚, 𝐽, 𝑘𝑘𝑥, 𝑘𝑘𝑦, the real solution zo = (xo,yo) are453

generated by the following codes:454

xo =zeros(n,1); Indx =randperm(n); xo(Indx(1:kkx)) =randn(kkx,1);455

avgsize =floor(m/J); idy =[ ]; gidy =[gidy; j*ones(avgsize,1)], j =1:J;456

qqy =randperm(J); suppy =sort(qqy(1:kky)); yo =zeros(m,1);457

idy =find(gidy ==suppy(k)), yo(idy) =randn(avgsize,1), k =1:kky;458

zo =[xo;yo];459

The observed data c ∈ R𝑝 is generated by460

c = A*xo + B*yo + 𝜎*randn(p,1),

where 𝜎 is the standard deviation of additive Gaussian noise.461

The parameters and initial values in the APG algorithm are given as follows: z0 =462

(x0,y0) = 0𝑛+𝑚, 𝑡1 = 0.7, 𝑡2 = 0.9. In each iteration of the APG algorithm, we sort463

Ex = {|𝑥𝑘𝑖 |}𝑖∈[𝑛] and Ey = {||[y𝑘](𝑗)||}𝑗∈[𝐽] in ascending order, we take crix = Ex𝑛−𝑘𝑘𝑥,464

criy = Ey(𝑚−𝑘𝑘𝑦), 𝛼1 = 1.2 * crix, 𝛼2 = 1.8 * criy, 𝜆1 = crix * 𝛼1/𝑡1, and 𝜆2 = criy * 𝛼2/𝑡2.465

Let z* = (x*,y*) ∈ R𝑛+𝑚 denote the solution produced by the APG algorithm.466

In this example, for each set of given numbers {𝑝, 𝑛,𝑚, 𝐽 = 𝑚/4, 𝑘𝑘𝑥, 𝑘𝑘𝑦, 𝜎}, we run467

100 instances and use three indicators to evaluate the experimental effect of the proposed468

APG algorithm: average relative error (Rel-err := ‖z*−zo‖
max{1,‖zo‖}), average CPU time and suc-469

cessful rate (Suc-rat) where Rel-err < 10−2 is regarded success. Set 𝑥𝑡𝑜𝑙 = 10−4. The ex-470

perimental results are shown in Table 1, where we consider two cases: noiseless 𝜎 = 0 and471

noised 𝜎 = 10−3.472

In Figure 1, the scatter plots of real and numerical solutions for 𝑝 = 2000, 𝑛 = 3000,473

𝑚 = 4000, 𝑘𝑘𝑥 = 50, 𝑘𝑘𝑦 = 20, 𝐽 = 1000 are displayed.474
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Table 1: Average numerical results of the APG algorithm

Problem 𝜎 = 0 𝜎 = 10−3

p n m kkx kky J Time Rel-err Suc-rat Time Rel-err Suc-rat

800 1200 1600 5 5 400 0.08 1.58e − 4 100% 0.22 1.69e − 3 100%

800 1200 1600 40 20 400 0.11 2.88e − 4 100% 0.25 1.59e − 3 100%

800 1200 1600 80 40 400 0.19 6.19e − 4 100% 0.55 1.65e − 3 100%

1000 1500 2000 5 5 500 0.12 1.36e − 4 100% 0.12 2.05e − 3 100%

1000 1500 2000 100 50 500 0.31 5.74e − 4 100% 0.53 1.73e − 3 100%

2000 3000 4000 5 5 1000 0.49 1.39e − 4 100% 0.43 2.25e − 3 100%

2000 3000 4000 50 20 1000 0.54 1.79e − 4 100% 1.41 1.55e − 3 100%

2000 3000 4000 200 100 1000 1.14 5.77e − 4 100% 1.19 1.63e − 3 100%

(a) 𝜎 = 0 (b) 𝜎 = 10−3

Figure 1. Visual numerical results

From Table 1 and Figure 1, we can see that the proposed APG algorithm can quickly475

obtain the true solution with high success rate.476

Next, we compare our APG algorithm with several state-of-art algorithms: PGM-GSO477

algorithm [22] for solving ℓ2-ℓ𝑝,𝑞 model: min ‖𝐴x−b‖22 +𝜆‖x‖𝑞𝑝,𝑞 (𝑝 ≥ 1, 0 ≤ 𝑞 ≤ 1), IRLS-th478

algrithm [18] for solving ℓ2,𝑞 model: min ‖𝐴x − b‖22 + 𝜆‖x‖𝑞2,𝑞 (0 < 𝑞 < 1), GCD algorithm479

[8] for solving group MCP model, and SPGl1 algrithm [15] for solving group lasso model:480

min ‖x‖2,1 𝑠.𝑡. ‖𝐴x − b‖2 ≤ 𝛿. One can refer to the references for their implementation481

details. In order for these algorithms to be used to solve problem (6.1), we group all partial482

sparse and partial group sparse data into groups as follows:483

gidxy=[]; Jx=floor(n/avgsize); gidxy=[gidxy;i*ones(avgsize,1)], i=1:(Jx+J);484

The above grouping way is applied to PGM-GSO, GCD, SPGl1 and IRLS-th. We run 100485

times for each instant and record the average CPU time and the average relative error, as486

shown in Table 2 and Table 3.487
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Table 2: Comparison of five algorithms for problem (6.1) with 𝜎 = 0

Problem APG PGM-GSO SPGl1 GCD IRLS-th

p n m kkx kky Time Rel-err Time Rel-err Time Rel-err Time Rel-err Time Rel-err

400 600 800 5 5 0.03 3.59e − 4 0.04 2.05e − 4 0.01 3.18e − 4 1.17 3.41e − 2 0.13 1.99e − 3

400 600 800 25 15 0.05 8.15e − 4 0.08 7.16e − 4 0.06 3.50e − 4 3.27 4.21e − 2 0.42 3.87e − 3

800 1200 1600 5 5 0.14 3.10e − 4 0.16 1.25e − 4 0.03 2.87e − 4 3.38 3.91e − 2 0.59 6.28e − 4

800 1200 1600 20 10 0.17 3.48e − 4 0.18 1.92e − 4 0.05 3.91e − 4 4.10 4.10e − 2 0.75 1.17e − 2

800 1200 1600 40 20 0.24 5.65e − 4 0.24 4.87e − 4 0.11 6.03e − 4 6.79 2.97e − 2 1.04 1.73e − 2

1000 1500 2000 5 5 0.25 2.54e − 4 0.27 1.35e − 4 0.06 2.90e − 4 4.06 1.53e − 2 1.01 4.06e − 4

1000 1500 2000 60 30 0.40 7.49e − 4 0.42 5.91e − 4 0.26 7.59e − 4 13.07 2.89e − 2 2.06 2.61e − 2

2000 3000 4000 5 5 0.82 3.00e − 4 1.32 1.09e − 4 0.18 1.58e − 4 12.96 1.85e − 2 4.94 5.58e − 4

2000 3000 4000 50 20 0.95 3.69e − 4 1.46 1.95e − 4 0.34 1.48e − 4 26.84 2.20e − 2 7.08 7.62e − 4

2000 3000 4000 100 50 1.34 5.35e − 4 1.81 4.67e − 4 0.83 3.00e − 4 43.37 1.68e − 2 9.76 2.79e − 3

4000 6000 8000 5 5 2.92 2.57e − 4 8.63 9.79e − 5 0.75 2.01e − 4 50.47 8.99e − 17 30.52 3.54e − 4

4000 6000 8000 60 30 3.42 3.17e − 4 8.89 1.40e − 4 1.40 1.02e − 4 93.57 6.65e − 3 43.74 3.02e − 3

4000 6000 8000 200 100 5.40 6.73e − 4 10.57 4.12e − 4 3.41 2.26e − 4 144.43 1.15e − 2 83.90 1.29e − 2

6000 9000 12000 5 5 6.61 2.43e − 4 93.44 8.95e − 5 1.47 5.10e − 5 166.46 1.12e − 16 283.06 2.94e − 4

6000 9000 12000 80 40 7.54 2.41e − 4 104.10 1.77e − 4 2.81 4.40e − 5 186.57 6.03e − 3 456.53 2.82e − 3

6000 9000 12000 300 150 10.90 5.20e − 4 99.21 4.35e − 4 6.17 1.70e − 4 312.56 7.78e − 3 544.52 1.21e − 2

Table 3: Comparison of five algorithms for problem (6.1) with 𝜎 = 0.01

Problem APG PGM-GSO SPGl1 GCD IRLS-th

p n m kkx kky Time Rel-err Time Rel-err Time Rel-err Time Rel-err Time Rel-err

400 600 800 5 5 0.06 3.69e − 2 0.05 2.02e − 2 0.03 4.17e − 2 1.06 1.99e − 2 0.26 6.53e − 2

400 600 800 25 15 0.07 3.72e − 2 0.08 2.40e − 2 0.02 1.00e − 1 1.83 3.03e − 2 0.37 4.55e − 2

800 1200 1600 5 5 1.57 3.27e − 2 0.18 1.87e − 2 0.04 2.95e − 2 2.03 1.95e − 2 0.85 6.25e − 2

800 1200 1600 20 10 1.62 3.66e − 2 0.20 2.03e − 2 0.04 3.74e − 2 3.50 2.43e − 2 1.14 4.93e − 2

800 1200 1600 40 20 0.28 3.43e − 2 0.30 1.18e − 2 0.05 3.21e − 2 2.94 1.19e − 2 2.08 6.89e − 2

1000 1500 2000 5 5 0.26 4.29e − 2 0.28 1.84e − 2 0.05 3.05e − 2 4.69 2.37e − 2 2.03 8.72e − 2

1000 1500 2000 60 30 2.99 3.92e − 2 0.50 2.45e − 2 0.12 6.09e − 2 12.79 2.83e − 2 2.75 4.18e − 2

2000 3000 4000 5 5 0.89 2.75e − 2 1.38 1.28e − 2 0.18 3.00e − 2 12.43 1.44e − 2 9.79 9.93e − 2

2000 3000 4000 50 20 10.06 3.14e − 2 1.57 2.06e − 2 0.23 3.78e − 2 26.96 2.51e − 2 11.14 5.13e − 2

2000 3000 4000 100 50 10.02 3.25e − 2 2.01 2.29e − 2 0.41 5.29e − 2 39.29 2.87e − 2 14.35 4.41e − 2

4000 6000 8000 5 5 2.94 3.45e − 2 8.23 1.61e − 2 0.62 2.83e − 2 43.36 1.64e − 2 49.48 1.11e − 1

4000 6000 8000 60 30 36.14 2.68e − 2 8.59 1.84e − 2 0.85 3.55e − 2 89.79 2.25e − 2 64.84 5.54e − 2

4000 6000 8000 200 100 35.95 2.17e − 2 9.89 2.17e − 2 1.49 5.08e − 2 124.66 2.75e − 2 86.07 5.25e − 2

6000 9000 12000 5 5 7.68 3.96e − 2 297.53 2.16e − 2 3.31 3.93e − 2 73.93 1.95e − 2 3810.94 1.66e − 1

6000 9000 12000 80 40 78.77 2.90e − 2 555.80 1.97e − 2 13.59 3.74e − 2 178.94 2.71e − 2 4951.63 6.65e − 2

6000 9000 12000 300 150 80.17 2.89e − 2 967.80 2.10e − 2 10.82 4.77e − 2 319.92 2.83e − 2 12533.64 4.79e − 2

From Tables 2 and 3, we can observe that in the absence of noise, the average relative488

errors of APG are similar to SPGl1 and PGM-GSO, but smaller than IRLS-th and GCD in489

most cases; Meanwhile, the average CPU time of APG is less than PGM-GSO, GCD and490
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IRLS-th but more than SPGl1. In the presence of noise, the average relative errors of APG491

are similar to the other four algorithms; Meanwhile, the average CPU time of APG is more492

than SPGl1, but less than SPGl1, GCD and IRLS-th; It is funny that, for the small scale493

instances, the average CPU time of APG is more than PGM-GSO but for the large scale494

instances, the average CPU time of APG is less than PGM-GSO. The results indicate that495

our APG algorithm is competitive with the four state-of-art algorithms in solving problem496

(6.1).497

6.2 Multichannel image reconstruction498

In this section, we consider recovering three-channel images from compressive and noisy499

measurement. In our experiments, the PSNR (peak signal to noise ratio) is defined by500

PSNR = 10 · log
V2

MSE
,

in which V and MSE= ‖z−zo‖2

𝑛+𝑚 (mean squared error) are the maximum absolute value and501

the mean squared error of the reconstruction respectively.502

The example is taken from [24,30,26,42]. The observed data c is generated by c =503

Ax + By + 𝜎 * randn(p,1), where A, B are random Gaussian matrices, 𝜎 is a positive504

scalar, x with sparse struture and y with group sparse structure are the target coefficients.505

For this experiment: 𝑛 = 48*48*1,𝑚 = 48*48*2, 𝑝 = 𝑚/2, 𝐽 = 𝑚/4, 𝑘𝑘𝑥 = 152, 𝑘𝑘𝑦 = 172.506

We still compare experimental results among APG, PGM-GSO, SPGl1, GCD and IRLS-th.507

The PSNR and CPU time are presented in Table 4, while the original image and the recovered508

images for 𝜎 = 0.1 are presented in Figure 2.509

Table 4: Numerical results for the three-channel image

𝜎

algorithm
APG PGM-GSO SPGl1 GCD IRLS-th

𝜎 = 0
CPU time(s) 1.67 3.97 7.70 33.83 17.06

PSNR 80.11 72.97 61.57 33.27 37.74

𝜎 = 1e − 3
CPU time(s) 3.11 3.72 1.10 33.56 20.90

PSNR 64.55 60.16 43.21 60.71 37.75

𝜎 = 1e − 2
CPU time(s) 5.67 4.38 0.45 29.72 26.77

PSNR 39.04 37.29 34.68 38.02 33.85

𝜎 = 1e − 1
CPU time(s) 6.61 5.03 0.38 14.44 77.55

PSNR 29.29 23.50 24.05 26.72 21.18
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Figure 2. Original image and recovered images by five algorithms for 𝜎 = 0.1

From Table 4 and Figure 2, we can see that APG performs better than PGM-GSO,510

SPGl1, GCD and IRLS-th in restoring the PSNR value of the image. Although APG is not511

superior to SPGl1 and PGM-GSO in CPU time, it takes less time than GCD and IRLS-th.512

The results indicate that our model and APG algorithm are also competitive with the four513

state-of-art algorithms in multichannel image reconstruction.514

7 Conclusion515

In this paper, we initially studied the partial sparse and partial group sparse optimiza-516

tion problem. Firstly, we give the Capped-ℓ1 relaxation and group Capped-ℓ1 relaxation517

problem of the original problem. Secondly, we introduced d-stationary point and critical518

point for the relaxation problem, and prove that any d-stationary point is a critical point.519

Under some mild assumptions, we gave the lower bound properties of d-stationary points of520

the relaxation problem, based on which, we proved the equivalence of the original problem521

and the relaxation problem. This result provides a theoretical basis for solving the original522

problem via solving the relaxation problem. Then, we proposed an APG algorithm for the523

relaxation problem, and proved that the whole sequence generated by the APG algorithm524

converges to a critical point of the relaxation problem. Finally, the rich numerical experi-525

ments show that the partial sparse and partial group sparse model and the APG algorithm526

have good performance and some practical value.527
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