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Abstract The maximum independent set (MIS) seeks to find a subset of ver-
tices with the maximum size such that no pair of its vertices are adjacent.
This paper develops a recursive fixing procedure that generalizes the existing
polytime algorithm to solve the maximum independent set problem on chordal
graphs, which admit simplicial orderings. We prove that the generalized fix-
ing procedure is safe; i.e., it does not remove all optimal solutions of the MIS
problem from the solution space. Our computational results show that the
proposed recursive fixing algorithm, along with the basic mixed integer pro-
gramming (MIP) of the MIS, outperforms the pure MIP formulation of the
problem. Our codes, data, and results are available on GitHub.

1 Introduction

Given a graph G = (V,E) with vertex set V of size n and edge set E of size
m, the maximum independent set (MIS) problem aims to find a largest subset
of vertices in which no pair are adjacent. An independent set is also called a
stable set, packing set, co-clique or anticlique. We note that any independent
set in graph G corresponds to a clique in its complement (i.e., Ḡ). Let α(G)
and ω(Ḡ) denote the size of a maximum independent set in G and the size of
the maximum clique in Ḡ, respectively. Then, we have α(G) = ω(Ḡ).

The MIS problem is NP-hard [7] which means there is no polytime algo-
rithm for solving the problem yet. There are classes of graphs for which the
maximum independent set problem is solvable in polytime. Mannino et al. [12]
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propose a polytime algorithm for solving the maximum weighted independent
set (MWIS) problem for a superclass of interval graphs. The MWIS problem
can also be solved in polytime for claw-free graphs [19,13,14,5,16]. It is also
polytime solvable on P5-free graphs [11] and perfect graphs [8].

Frank [6] provides a polytime algorithm for solving the problem on chordal
graphs. Furthermore, Bondy and Murty [1] provide a polytime algorithm (see
Excercise 9.7.5) for solving the problem on chordal graphs based on a simplicial
ordering. A vertex is simplicial if its neighbors form a clique in graph G. A
simplicial ordering is an enumeration v1, v2, . . . , vn of vertices if vertex vi is
a simplicial vertex of the induced graph G[{vi, vi+1, . . . , vn}] for every i ∈
{1, . . . , n} [1]. The following corollary of Bondy and Murty [1] explains why
the MIS is easy on chordal graphs.

Corollary 1 (Corollary 9.22 of Bondy and Murty [1]) A graph is chordal
if and only if it has a simplicial ordering.

For example, Figure 1 shows a chordal graph and its corresponding sim-
plicial ordering. In this graph, we first add vertex 4 to the MIS and remove
4 and its neighbors (i.e., vertices 2 and 3) from the ordering. Then, we add
vertex 1 (the only remaining vertex) to the MIS and we have set {1, 4} as the
MIS.
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Fig. 1: A chordal graph (at the top) with a simplicial ordering of 4, 1, 2, 3
(at the bottom). At the bottom, (i) vertex 4 is a simplicial vertex in induced
subgraph G[{4, 1, 2, 3}], (ii) vertex 1 is a simplicial vertex in induced subgraph
G[{1, 2, 3}], (iii) vertex 2 is a simplicial vertex in induced subgraph G[{2, 3}],
and (iv) vertex 3 is a simplicial vertex in induced subgraph G[{3}].

There are polytime algorithms for solving and preprocessing the MIS and
the maximum clique problems on special graphs. Buchanan et al. [2] propose
an algorithm for solving the maximum clique problem that is parameterized
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by the degeneracy of the graph. Their algorithm solves the maximum clique
problem in O(nm) for graphs with a degeneracy (i.e., a measure of graph
sparsity) of at most 4 logm2 +O(1). In their algorithm, they employ the algo-
rithm of Robson [17] that solves the maximum independent set in O(2n/4).
Walteros and Buchanan [20] provide an algorithm that runs in O(m1.5) for
real-life graphs. They employ the relationship between the minimum vertex
cover and the maximum clique problem to use multiple preprocessing algo-
rithms, e.g., Buss kernelization [3], Nemhauser-Trotter kernelization [15], and
crown reduction [10].

In this paper, we generalize the simplicial fixing idea on any general class
of graphs. We apply the simplicial fixing idea until there is no more simplicial
vertices in the graph. We finally solve the MIS on the remained graph (the
core) via the following classical mixed integer programming (MIP) model in
which for every vertex v ∈ V , binary decision variable xv is one if vertex v
belongs to an independent set.

max
∑
v∈V

xv (1a)

xu + xv ≤ 1 ∀e = {u, v} ∈ E (1b)

x ∈ {0, 1}n. (1c)

Our computational results show the superiority of the recursive fixing proce-
dure over the pure MIP approach for a set of benchmark instances.

2 A Recursive Fixing Procedure

This section presents a polytime procedure to fix the binary decision variable
of the MIP formulation (1) to one or zero. For every vertex subset Q ⊆ V , let
NG(Q) and NG[Q] be the open and closed neighborhood of Q, respectively.
Formally, we define NG(Q) := {w ∈ V \Q : w is adjacent to some vertex q ∈
Q} and NG[Q] := Q ∪ NG(Q). For every vertex set Q ⊆ V , we also employ
G[Q] and

(
Q
2

)
to show the subgraph induced by Q and all pairs of vertices in

the set Q, respectively. At each iteration of the proposed procedure, we first
find the simplicial vertices. Given graph G = (V,E) at any iteration of our
proposed procedure, Algorithm 1 finds the simplicial vertices of G in O(nm)
as we have at most n and m iterations in lines 4 and 5, respectively.

Let S be the set of simplicial vertices returned by Algorithm 1. Then,
Algorithm 2 returns a maximum independent set of G[S] in O(m) as the
complexity of finding connected components is O(m).

The following proposition of Salemi and Buchanan [18] summarizes the
complexity of finding a maximum independent set of simplicial vertices elab-
orated by Algorithms 1 and 2.

Proposition 1 (Proposition 4 of Salemi and Buchanan [18]) Algo-
rithms 1 and 2 find a maximum independent set of simplicial nodes in O(nm).
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Algorithm 1 Simplicial (G)

1: edges({a, b})← False for every vertex pair {a, b} ∈
(V
2

)
2: edges({a, b})← True for every edge {a, b} ∈ E
3: simplicial(v)← True for every vertex v ∈ V
4: for all v ∈ V do
5: for all {a, b} ∈

(NG(v)
2

)
do

6: if edges({a, b}) = True then
7: simplicial(v)← False
8: break
9: return simplicial

Algorithm 2 indepSimplicial (G,S)

1: I← ∅
2: let cc(G[S]) be the set of all connected components of G[S]
3: for all c ∈ cc(G[S]) do
4: let v be a vertex of the component c
5: I← I ∪ {v}
6: return I

For every vertex v ∈ D, we set xv to one and xu to zero for every vertex u
in the neighbor set of v. To our knowledge, no previous work considered simpli-
cial fixing for the MIS problem on general graphs. Nemhauser and Trotter [15]
propose an LP-based fixing rule for the problem. They prove that variables
with binary values in an optimal continuous relaxation of formulation (1) get
the same value in an optimal solution of the MIS formulation (1). Similarly,
Hammer et al. [9] prove that if a binary variable of formulation (1) takes zero
or one in all optimal solutions of the continuous relaxation of the formulation,
then it takes the same value in all optimal binary solutions of formulation (1).
Furthermore, Butenko and Trukhanov [4] employ the polytime solvable crit-
ical independent set problem as a preprocess for solving the MIS problem.
Regarding the simplicial fixing approach, Salemi and Buchanan [18] propose
a simplicial fixing for the distance-based critical node problem.

We define F1 and F0 as the set of vertices for which their corresponding
decision variables in the MIP formulation (1) are set to one and zero, respec-
tively. Algorithm 3 explains the recursive simplicial fixing idea.

In Algorithm 3, line 1 creates a temporary copy of the input graph. Line 2
initializes the set of vertices for which the decision variables x will be fixed to
zero (F0) and one (F1). Line 3 defines the remove dictionary and sets every
vertex not to be removed. Line 5 calls Algorithm 1 to compute the simplicial
vertices of G′. Line 6 calls Algorithm 2 to find an independent set of the
simplicial vertices in graph G′. Line 7 updates F1 and F0 using the independent
set I obtained in line 6. Lines 8-10 update the temporary graph G′ for the next
iteration by removing some vertices. Line 11 ensures the recursive algorithm
continues to run until G′ has no more simplicial vertices.

The following proposition shows that the proposed algorithm runs in poly-
time.
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Algorithm 3 Recursive simplicial fixing (G)

1: G′ = (V ′, E′)← G = (V,E)
2: F0 ← ∅ and F1 ← ∅
3: remove(v)← False for every vertex v ∈ V
4: do
5: S ← Simplicial(G′) (see Algorithm 1)
6: I ← indepSimplicial(G′, S) (see Algorithm 2)
7: F1 ← F1 ∪ I and F0 ← F0 ∪NG′ (I)
8: remove(v)← True for every vertex v ∈ NG′ [I]
9: R := {v ∈ V (G′) : remove(v) = False}
10: G′ ← G′[R]
11: while I ̸= ∅
12: return F0 and F1

Proposition 2 Algorithm 3 runs in time O(mn2).

Proof Lines 5 and 6, which find simplicial vertices and a maximum indepen-
dent set of them, run in O(mn) on graph G by Proposition 1. Furthermore,
the “while” loop will be repeated for at most n iterations. So, the total run
time is O(mn2).

We also note that the complexity of the algorithm is O(mn) if we run it
only once on the input graph G. In Section 3, we run experiments for both
single-time simplicial and recursive simplicial fixings. We also need to prove
that the simplicial variable fixing is safe (i.e., the fixing procedure does not
remove all optimal solutions) for any graph.

Theorem 1 Let D be an independent set for simplicials of graph G. Then,
there is an optimal solution x̃ with x̃v = 1 for every vertex v ∈ D.

Proof By the contradiction. Suppose there is a vertex u ∈ D with x∗
u = 0 for

any optimal solution x∗. We are to show that in every optimal solution x∗,
there is exactly one neighbor u′ ∈ NG(u) with x∗

u′ = 1. Suppose not. Consider
an optimal solution x̄ with x̄u = 0 and x̄u′ = 0 for every u′ ∈ NG(u). Then,
there is a solution x̂ with x̂u := 1 and x̂v := x̄v for every vertex v ∈ V \ {u}.
However, this contradicts the optimality of x̄. So, there is exactly one1 neighbor
u′ ∈ NG(u) with x∗

u′ = 1 for any optimal solution x∗.
Now consider an optimal solution x̄ with x̄u = 0 and x̄u′ = 1 for exactly

one u′ ∈ NG(u). Then, there is a feasible solution x̃ with x̃u = 1 and x̃u′ = 0
for every u′ ∈ NG(u). However, this solution has the same objective value as
x̄. This is a contradiction.

We conclude this section with an illustration of Algorithm 3 on the karate
graph. Figure 2 shows that two iterations of Algorithm 3 reduce the number
of vertices and number of edges of the instance from 34 to four and 78 to four,
respectively. Thus, it suffices to solve the MIP model (1) on a subgraph of the
instance with only four vertices (corresponds to four decision variables) and
four edges (corresponds to four constraints).

1 We note that at most one neighbor of u can be selected in an independent set as
G[NG(u)] forms a clique in G.
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Fig. 2: Two iterations of the recursive simplicial fixing Algorithm 3 applied
on the karate instance: red vertices denote a maximum independent set of
simplicials that are fixed to one in the MIP model (1); yellow vertices show
their corresponding neighbors that are fixed to zero in the MIP model (1); and
blue vertices are the rest. The MIP model (1) need to solve only a subgraph
of the instance with four vertices and edges at the end of the second iteration.

3 Computational Experiments

This section reports our computational results on five sets of experiments:

(i) MIP model (1),
(ii) MIP model (1) preprocessed by a single round of Algorithm 3,
(iii) MIP model (1) preprocessed by recursive rounds of Algorithm 3,
(iv) MIP model (1) preprocessed by the LP-based fixing procedure of Nemhauser

and Trotte [15], and
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(v) MIP model (1) preprocessed by the LP-based fixing procedure of Nemhauser
and Trotte [15] and then recursive rounds of Algorithm 3.

We run our computational experiments on a set of existing social network
instances. All of our codes are written in Python 3.8.12, and the MIP for-
mulation (1) is solved by Gurobi 10.0.0. We also set a time limit of three
hours (10,800 seconds) for the Gurobi MIP solver. Furthermore, we ran our
computational experiments on a Red Hat Enterprise Linux Workstation x64
version 7.6 with an Intel(R) Core(TM) i7-9800X CPU (3.8Ghz, 19.25MB,
165W) using 1 core with 32GB RAM. Our codes, data, and detailed re-
sults are available at: https://github.com/samuel-kroger/A-simplicial-fixing-
for-the-maximum-stable-set-problem.

Table 1 shows our computational results for a subset of benchmark in-
stances solved to optimality within the MIP time limit of three hours. Among
solved instances, we observe that the recursive simplicial fixing procedure fixes
at least 94% of variables for all instances except for the facebook instance.
Furthermore, the recursive approach results in the least total time among all
solved instances except for the facebook instance. Another interesting ob-
servation is that CA-CondMat is solved to optimality by only the recursive
simplicial fixing procedure.

Motivated by the fact that our fixing procedure solves the CA-CondMat in-
stance to optimality, Figure 3 provides a minimal instance that is also solved
to optimality in the preprocess. Similar to CA-CondMat, this instance is also
neither chordal, claw-free, P5-free, nor perfect2. This motivates a future re-
search direction to find new solvable classes of graphs for the MIS problem.
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Fig. 3: (Top): Two iterations of our algorithm fix the pink and yellow vertices to
one and zero, respectively. (Bottom): The induced subgraph of colored vertices
is not chordal (left), has a claw (middle), and has a path P5 (right).

2 It is not perfect because the clique number of the graph, which is 2, does not equal the
chromatic number of the graph, which is 3.

https://github.com/samuel-kroger/A-simplicial-fixing-for-the-maximum-stable-set-problem
https://github.com/samuel-kroger/A-simplicial-fixing-for-the-maximum-stable-set-problem
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Table 2 summarizes our computational results for a subset of benchmark
instances that are not solved to optimality within the MIP time limit of three
hours. Although none of these instances are solved within the time limit, we
observe that the recursive simplicial fixing procedure reduced the optimality
gap of socfb-Syracuse56 by at least three percent.

We conclude this section with a comparison of our recursive approach with
(i) the LP-based fixing procedure of Nemhauser and Trotte [15] (LP) and
(ii) the LP-based fixing followed by our recursive approach (LP+recursive).
In Table 1, our computational experiments show that the “LP+recursive”
approach returns the most number of fixings for all instances. Furthermore,
Table 1 shows the superiority of our recursive approach over the LP-based
fixing procedure, except for the Wiki-Vote instance. In Table 2, we observe the
superiority of the “LP+recursive” approach again. Furthermore, our recursive
approach works at least as well as the LP-based fixing approach, except for
the flickrEdges instance. However, the recursive approach returns a better
optimality gap for the flickrEdges instance after three hours.

Table 1: Computational results for benchmark instances that are solved within
three hours. Columns “iters. (#)”, “fixed (%)”, “fix. time” and “time” denote
the number of preprocess iterations, the percentage of variables fixed to zero
and one, the fixing time (in seconds), and the total time respectively.

Instance n m preprocess iters. (#) fixed (%) fix. time (s) time (s)

none 0 0.00 0.00 37.45
one step 1 7.38 0.04 33.05

facebook 4,039 88,234 recursive 6 25.33 0.07 35.36
LP 1 6.07 0.00 38.58

LP + recursive 7 25.33 0.04 35.49

none 0 0.00 0.00 1.41
one step 1 35.10 0.03 1.17

Wiki-Vote 7,117 100,763 recursive 18 99.94 0.07 0.07
LP 1 100.00 0.00 0.03

LP + recursive 2 100.00 0.00 0.03

none 0 0.00 0.00 1.06
one step 1 36.12 0.14 1.07

CA-CondMat 23,133 93,439 recursive 5 100.00 0.15 0.15
LP 1 38.22 0.00 0.70

LP + recursive 5 100.00 0.09 0.11

none 0 0.00 0.00 3.05
one step 1 42.31 0.22 2.93

Brightkite 58,228 214,078 recursive 13 99.78 0.35 0.36
LP 1 96.03 0.00 0.17

LP + recursive 10 99.89 0.02 0.12

none 0 0.00 0.00 19.17
one step 1 33.55 0.71 14.16

Gowalla 196,591 950,327 recursive 27 99.31 1.53 1.83
LP 1 85.60 0.00 1.88

LP + recursive 26 99.38 0.24 0.98

none 0 0.00 0.00 11.76
one step 1 40.12 1.91 11.66

ca-citeseer 227,320 814,134 recursive 5 99.99 1.87 1.87
LP 1 49.10 0.00 6.02

LP + recursive 5 100.00 1.06 1.28

none 0 0.00 0.00 16.76
one step 1 43.63 2.38 16.21

com-dblp 317,080 1,049,866 recursive 6 99.99 2.40 2.41
LP 1 58.86 0.00 5.94

LP + recursive 7 99.99 0.96 1.38

none 0 0.00 0.00 101.18
one step 1 35.84 6.58 77.12

web-Google 875,713 4,322,051 recursive 24 94.54 11.75 15.71
LP 1 75.43 0.00 18.72

LP + recursive 17 98.25 2.65 5.30

none 0 0.00 0.00 49.73
one step 1 57.00 5.58 47.77

com-youtube 1,134,890 2,987,624 recursive 9 99.94 7.73 7.79
LP 1 99.19 0.00 2.17

LP + recursive 6 99.99 0.13 2.17
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Table 2: Computational results for benchmark instances that are not solved
within three hours. Columns “iters. (#)”, “fixed (%)”, “fix. time”, and “gap
(%)” denote the number of preprocess iterations, percentage of variables fixed
to zero and one, the fixing time (in seconds), and the optimality gap percentage
after three hours, respectively.

Instance n m preprocess iters. (#) fixed (%) fix. time (s) gap (%)

none 0 0.00 0.00 9.72
one step 1 3.30 0.03 8.06

Syracuse56 13,653 543,982 recursive 5 9.32 0.17 6.54
LP 1 3.90 0.00 9.35

LP + recursive 5 9.32 0.13 8.21

none 0 0.00 0.00 5.59
one step 1 3.80 0.03 5.53

Northeastern 13,882 381,934 recursive 4 10.51 0.12 5.44
LP 1 5.18 0.00 5.53

LP + recursive 5 10.51 0.10 5.44

none 0 0.00 0.00 14.93
one step 1 0.00 0.13 14.93

smallworld 100,002 499,999 recursive 2 0.00 0.26 14.93
LP 1 0.00 0.00 14.93

LP + recursive 2 0.00 0.13 14.93

none 0 0.00 0.00 0.26
one step 1 0.54 0.51 0.26

flickrEdges 105,938 2,316,948 recursive 7 6.61 2.17 0.23
LP 1 32.50 0.00 0.25

LP + recursive 56 57.87 5.78 0.24

4 Conclusion and Future Work

This paper proposes a recursive simplicial fixing procedure as a preprocess-
ing algorithm for solving the maximum independent set problem. We prove
that our proposed fixing procedure is safe and does not remove all optimal
solutions from the feasible solution space. Our computational results show the
effectiveness of the fixing procedure on a set of social network instances. We
see the following future directions for this work: (i) understanding the un-
derlying structure of the problem instances which yield good performance for
the recursive fixing procedure, (ii) finding a broader class of graphs for which
the MIS is polytime solvable, and (iii) developing similar fixing algorithms for
other combinatorial optimization problems.
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