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Abstract For a system to stay operational, maintenance of its components
is required and to maximize the operational readiness of a system, preven-
tive maintenance planning is essential. There are two stakeholders—a system
operator and a maintenance workshop—and a contract regulating their joint
activities. Each contract leads to a bi-objective optimization problem. Compo-
nents that require maintenance are taken out from operating systems and sent
to the maintenance workshop, which should perform all maintenance activities
on time in order to satisfy the contract. Upon being maintained, the compo-
nents are sent back and available to be used in the operating systems. The
ability of the workshop to fulfill the contract is highly dependent on its capac-
ity. Our modeling of this system–of–systems includes problem structuring of
the planning of preventive maintenance for the operating systems, the main-
tenance workshop scheduling as well as the stocks of damaged and repaired
components.

The mixed-integer linear optimization (MILP) model we present is partly
based on an optimization model of a preventive maintenance scheduling prob-
lem with interval costs over a finite and discretized time horizon, which we
generalize and extend with a non-preemptive flow of components through the
workshop and the stocks of (damaged and repaired) components. Our results
measure the effect of the workshop capacity on the level of component avail-
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ability as well as on the utilization rate. We also analyze the maximum possible
reduction of the costs of two stakeholders for increased levels of the workshop
capacity. The resulting modeling can be utilized as a decision aiding tool, and
help improve the decision making processes for the stakeholders.

Keywords System Maintenance · Workshop Scheduling · Mixed-Integer Lin-
ear Optimization Model · Optimization of Contracting Forms · Simultaneous
Scheduling · Bi-Objective Optimization · Decision making support

1 Introduction

The demand for integrated collaboration in supply chains and production has
been increasing in the dynamic business world. Companies strive to optimize
their operations and remain competitive, and one way to achieve that is to
foster integrated cooperation. By doing so, organizations streamline their sup-
ply chains, enhance production efficiency and effectively respond to changing
market demands.

Maintenance is performed in order for a system to remain in/get restored to
its operational state (Swanson, 2001). Maintaining a system typically means
repairing, replacing, overhauling, inspecting, servicing, adjusting, or testing
the system and/or its components, so that there are no interruptions of the
system’s planned operations. The outcome of an effective maintenance plan-
ning is a reduced risk of failure (Papakostas et al., 2010) and an optimal use
of the system’s life (and of lives of its components). Preventive maintenance
(PM) is planned and performed after a specified period of time, or when a
specified system has been used for a certain period of time, in order to reduce
the probability of failure of the system. Corrective maintenance (CM), on the
other hand, is performed after a failure has occurred as a corrective measure to
restore the system into an operational state. CM typically comes with a higher
cost, since it is often associated with unplanned disruptions in the operations.
While we consider PM scheduling, CM is implicitly accounted for by an addi-
tional cost that is increasing with the time between PM occasions, and reflects
the increasing risk of having to perform CM. See Yu and Strömberg (2021) for
a model that uses failure time distributions to model such additional costs.

We consider a setting with two stakeholders, one being the system oper-
ator and the other being the maintenance workshop. The system operator is
performing the operations (considering, e.g., train traffic, the system opera-
tor would be operating the trains according to a given timetable), while the
maintenance workshop is performing the repairs of components. The repaired
components are sent back to the system operator, thus creating a circular flow.
The two stakeholders can work independently or they can share their infor-
mation and cooperate towards a common goal. We consider the latter case, in
which the stakeholders are integrated. Each stakeholder has one (or several)
objective(s) they wish to optimize. The collaboration between the two stake-
holders is typically governed by a contract. In this work, we model and study
an ’availability of repaired components’ contract type (see Sec. 3).
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In (Zhang et al., 2023), a model for scheduling maintenance of military
aircraft fleets under limited resources has been proposed. It has been done
by using a heuristic approach that optimizes maintenance intervals and pri-
oritizes tasks based on safety and mission criticality. Verhoeff and Verhagen
(2023) propose a MILP model that solves the flight and maintenance planning
problem using component substitution scheduling while being aligned with
overall aircraft flight and maintenance planning. Mohammad Hadian et al.
(2023) propose a simulation-based optimization approach to integrate mainte-
nance planning and safety stock determination in deteriorating manufacturing
systems; the approach involves the use of simulation to model the systems’
deterioration processes, when optimizing the maintenance policy and safety
stock level jointly to minimize cost and maximize system availability. Another
example of integrating maintenance scheduling and planning for large-scale as-
set fleets, with the aim of optimizing maintenance activities while minimizing
downtime and costs, is presented in (Schulze Spüntrup et al., 2018). Exam-
ples of integrated scheduling and planning for a multi-year planning horizon
for heterogeneous fleets while incorporating uncertainty are presented in (van
der Weide et al., 2022; Deng and Santos, 2022). In our previous work (see
Obradović (2021); Obradović et al. (2022)), we investigated the effect of dif-
ferent contracting forms on the efficiency of maintenance activities and the flow
of components through the system–of–systems, as well as the availability of the
systems over time. First, we presented a model with individual components’
flow (Obradović, 2021) and then we presented a model with an aggregated
flow of components of the same component type (Obradović et al., 2022). We
now introduce the modeling of jobs1 combined with a non-preemptive model
for scheduling the repair of components in the maintenance workshop. More-
over, we present a new formulation of an ’availability of repaired components’
contract between the stakeholders. We formulate a multi-criteria optimization
model representing: (i) the scheduling of the PM occasions for the compo-
nents of the system(s), and (ii) the scheduling of the repair activities in the
maintenance workshop.

The main contribution of this work is a mathematical model of the integra-
tion and simultaneous scheduling of replacement and non-preemptive repair of
components used in multiple systems using job scheduling. Moreover, a math-
ematical model of an availability contracting form between the stakeholders
and its analysis via a bi-objective optimization problem is presented, which
may be utilized to aid and improve decision making processes.

The remainder of the article is as follows. In Section 2, we describe the
multi-system PMSPIC2 (MS-PMSPIC), the structure of the maintenance work-
shop, the stock dynamics modeling, and their integration with the operational
demand on the systems. We define the optimization objectives correspond-
ing to the two stakeholders; one to the system maintenance and one to the

1 Every action taken in the maintenance workshop is considered as a job
2 Part of the model presented in this article, corresponding to the scheduling of PM

activities, is based on the preventive maintenance scheduling problem with interval costs
(PMSPIC) model presented in (Gustavsson et al., 2014).
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maintenance workshop. In Section 3, we present the multi-objective modeling.
Results are presented in Section 4, and in Section 5 we present conclusions
and ideas for future research.

2 Mathematical model

A number of systems are operating to meet a common production demand.
Each system is assigned to a (predefined) operating schedule, resulting in time-
windows at which the systems’ components may undergo maintenance. As
systems operate their components degrade and, eventually, they require main-
tenance (e.g., service, replacement, or repair). During a maintenance occasion,
(one or several) components are taken out of the system, sent to the mainte-
nance workshop where they are repaired, and returned back to the stock of
repaired components, where they are available to be used again (in any of the
systems). The components sent for repair are, if possible, instantly replaced
by currently available components on the stock of repaired components (i.e.,
if the stock is not empty). Thus, there exists a circulating flow of (individ-
ual) components, that are used and degraded, replaced, repaired, and then
made available for a system to use them again. The illustration of the system–
of–systems is presented in Figure 1, and it is modeled with the aim to keep
the operating systems operational, if possible, such that the capacity of the
maintenance workshop is not exceeded. A difference compared to our previous
work (Obradović, 2021) is that, due to the fact that modeling flow of individ-
ual components lead to a computational intractability of the model for larger
instance sizes, we do not track individual components. We enhance the model
presented in Obradović et al. (2022) such that so-called jobs are introduced
in the maintenance workshop. After a component is demounted from a sys-
tem and once it is about to be processed in the maintenance workshop, it is
assigned a new ’job id’.

To enable a so-called time-indexed modeling (see, e.g., van den Akker et al.
(2000)) the time is discretized. The number of times a components will undergo
repair is correlated with the length of the planning period.

We start by formally defining in Section 2.1 the MS-PMSPIC—which mod-
els the replacement scheduling for the components of the systems considered—
along with a mixed-binary linear optimization (MBLP) formulation. Further,
in Section 2.2, we present a model for the maintenance workshop schedul-
ing using mixed-integer linear optimization (MILP). The two systems (i.e.,
scheduling problems) are further integrated, in Section 2.3, through the dy-
namics of the stocks of (damaged and repaired) components. We conclude this
section with a summary of the complete MILP model.
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Fig. 1: Illustration of the problem for an application with a system of aircraft.

2.1 The Multi-System Preventive Maintenance Scheduling Problem with
Interval Costs

The multi-system preventive maintenance scheduling problem with interval
costs (MS-PMSPIC) is defined in (Obradović et al., 2022); cf. (Gustavsson
et al., 2014). As the problem definition is unchanged, we present the definition
and a brief summary of the model (for detailed modeling and description of
the MS-PMSPIC, see Obradović et al. (2022), section 2.1).

Definition 1 (MS-PMSPIC) Consider K systems k ∈ K := {1, . . . ,K}
with component types i ∈ I := {1, . . . , I} and Ji := {1, . . . , Ji} denoting the
set of individual components of type i, and a set T := {1, . . . , T} of time steps
at which maintenance of the systems can be performed, where T represents
the planning horizon. A PM schedule consists of a set of replacement times
in T for each system k and component type i. A maintenance occasion for
system k at time t generates the maintenance occasion cost dkt . If PM of
a component of type i in system k is scheduled at the times s ∈ T ∪ {0}
and t ∈ {s + 1, . . . , T + 1}, but not in the (possibly empty) time interval
{s+ 1, . . . , t− 1}, then the maintenance interval, denoted (s, t), generates the
interval cost cist. For each component type i ∈ I no maintenance interval
should be longer than t̄i. Find a PM schedule that satisfies the MS-PMSPIC
feasibility problem.
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We next present the (binary linear) feasibility model for the MS-PMSPIC,
which together with an assigned objective function (defined in Sec. 3) com-
prises a binary linear optimization problem. With the decision variables being
defined as

xik
st =

1, if a component of type i in system k receives
PM at times s and t, but not in-between,

0, otherwise,

i ∈ I, k ∈ K,
0 ≤ s < t ≤ T + 1,

zkt =

{
1, if maintenance of system k occurs at time t,

0, otherwise,
k ∈ K, t ∈ T ,

the feasible set of the MS-PMSPIC is defined by

T+1∑
r=1

xik
0r = 1, i ∈ I, k ∈ K, (1a)

t−1∑
s=0

xik
st =

T+1∑
r=t+1

xik
tr , i ∈ I, t ∈ T , k ∈ K, (1b)

t−1∑
s=0

xik
st ≤ zkt , i ∈ I, t ∈ T , k ∈ K, (1c)

xik
st = 0, t̄i ≤ s+ t̄i < t ≤ T + 1, i ∈ I, k ∈ K. (1d)

The description of the constraints is given Obradović et al. (2022), Sec. 2.1.
When planning for a PM activity, the operational schedules for the systems

provide time windows during which maintenance may be scheduled (i.e., PM
may not be planned nor performed while a system is operating). This was
modeled with a parameter zkt , defined for each t ∈ T and all k ∈ K, which
specifies whether PM is allowed to be scheduled for system k at time t or not.
This parameter constitutes an input to the MS-PMSPIC model (see Obrad-
ović et al. (2022), Sec. 2.1.), and it provides upper bounds on the variables
representing maintenance occasions. This is modeled as:

zkt ≤ zkt , t ∈ T , k ∈ K. (2)

2.2 Maintenance workshop scheduling

Components that require maintenance are sent to the maintenance workshop.
The workshop consists of a number of (identical) repair lines/machines which
are used for repair. A repair line has a capacity (per time step) of one unit.
The repair of any component requires one repair line per time step throughout
a predefined and consecutive (i.e., preemption3 is not allowed) number of time
steps. At the time when a component of type i ∈ I is taken out of a system it

3 Preemption means activity splitting. If preemption is not allowed, an activity may not
be interrupted and continued at a later point in time.
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is assigned a job from the ordered set Ni := {1, . . . , Ni}. Once a component
arrives at the workshop it is instantaneously available to be repaired, but it
may have to wait if there is not enough spare capacity in the workshop at
the given time step(s). Upon being repaired, a component is returned to the
stock of repaired components (i.e., to the system operator). A maintenance
workshop schedule specifies times at which components that arrive to the
workshop should start maintenance, and on which repair line.

This problem is identified as a non-preemptive identical parallel machines
scheduling problem (IPMSP); see (Brucker and Knust, 2012, Ch. 1.2.2). Ma-
chine scheduling problems (MSP) are special cases of the resource-constrained
project scheduling problem (RCPSP) (Brucker and Knust, 2012, Ch. 1.1),
which is one of the basic complex scheduling problems. Typically, the pur-
pose of this type of problem is to schedule activities (preemptively or non-
preemptively) over a planning period, while the resource capacities are re-
spected and an objective function (or a few) is optimized.

Definition 2 (IPMSP) Consider a set L := {1, . . . , L} of identical compo-
nent repair machines and the (individual) components j ∈ Ji of types i ∈ I
that arrive at the workshop. Repair times pi > 0 are defined for each compo-
nent type i ∈ I. Each individual component is assigned a job id n ∈ Ni once it
is to be processed in the maintenance workshop. At most L ≥ 1 machines can
operate simultaneously. A solution to this problem is a feasible maintenance
workshop schedule.

The preemptive IPMSP with a (weighted) sum objective is polynomially
solvable (Lawler et al., 1993, Ch. 8.0), whereas its version with a minimax, i.e.,
makespan, objective is NP-hard (Brucker and Knust, 2012, Ch. 2.1). According
to Soper and Strusevich (2022), finding an optimal non-preemptive schedule
on parallel machines with a makespan objective is NP-hard even for the case of
two identical machines. Our workshop scheduling problem is a non-preemptive
IPMSP with an objective (see Section 3) that is neither a (weighted) sum
nor a makespan; hence we cannot with certainty conclude its computational
complexity.

To model our non-preemptive IPMSP as a MILP, we define for each n ∈ Ni,
i ∈ I, l ∈ L, and t ∈ T , the variables

uinl
t =

1, if a component of type i starts maintenance at time t as job n in
machine l,

0, otherwise,

and, for each t ∈ T , the number ℓt ∈ Z+ of active parallel machines at time t,
and model the constraints∑

i∈I

∑
n∈Ni

t∑
s=t−pi+1

uinl
s ≤ 1, t ∈ T , l ∈ L, (3a)

∑
l∈L

∑
t∈T

uinl
t ≤ 1, n ∈ Ni, i ∈ I, (3b)
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∑
l∈L

∑
i∈I

∑
n∈Ni

t∑
s=t−pi+1

uinl
s = ℓt, t ∈ T . (3c)

The constraints (3a) state that each machine l ∈ L can process at most one job
at each time step t ∈ T , and that any job n ∈ Ni that starts processing in a
machine l at a certain time step t, will occupy the machine until it is finished,
at pi time steps later, i.e., the scheduling is non-preemptive. The constraints
(3b) make sure that each job n ∈ Ni is assigned to component type i at most
once over all repair lines l ∈ L and all time steps t ∈ T . To enable decision
support for capacity investments in the maintenance workshop, we vary the
capacity in the workshop (L). The constraints (3c) define the loading ℓt (i.e.,
the number of repair lines occupied) of the maintenance workshop at time step
t. The constraints (3a) and (3c) together imply that the workshop loading ℓt
cannot exceed the maximal number, L, of repair lines in the workshop. Note
that there may be (many) equally good and symmetric solutions with respect
to jobs. For that reason, we may activate the symmetry breaking provided by
the solver4.

IPMSP and the MS-PMSPIC are connected via the stocks of components.
Thus, we further introduce the modeling of the stock of (damaged and re-
paired) components.

2.3 Stock dynamics

Upon taking a component out of a system, the component is instantly (i.e.,
there is no waiting time) sent to the stock of damaged components. Until the
scheduled repair, the components remains on the stock. In between the stock
of damaged components and the maintenance workshop, there is a transport
time δia ≥ 0. Once the component is repaired, it is sent to the stock of repaired
components with a transport time δib ≥ 0. Until the component is to be placed
into a(ny) system again, it remains on the stock. The transport times are
assumed to be integer.

Let us introduce the variables required for modeling the stock dynamics,
for all i ∈ I:

ait (b
i
t) : the number of individuals of component type i on the stock of

damaged (repaired) components at time t ∈ T ∪ {0};
αink
t : 1 if an individual of component type i is taken out of a system

k ∈ K at time t ∈ T and allocated to job n ∈ Ni; 0 otherwise;

βi
t : the number of individuals of component of type i placed in any of

the systems k ∈ K at time t ∈ T .

4 The Gurobi solver eliminates symmetries in the model, whence we do not need to include
such constraints in the model.
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The stock of damaged components is then defined, for all i ∈ I, using following
constraints:∑

n∈Ni

αink
t =

t−1∑
s=0

xik
st , k ∈ K, t ∈ T , (4a)

∑
t∈T

∑
k∈K

αink
t ≤ 1, n ∈ Ni, (4b)

ait − ait−1 =
∑
n∈Ni

(∑
k∈K

αink
t −

∑
l∈L

uinl
t+δia

)
, t ∈ {1− δia, . . . , T + 1},

(4c)

ait ≥ 0, t ∈ {1− δia, . . . , T + 1}, (4d)

The constraints (4a) connect the variables xik
st from model (1) of the MS-

PMSPIC with the stock od damaged components: when a component of type
i is taken out of a system k ∈ K at time t, the value of αink

t becomes 1
and the component is allocated to (exactly one) job n; otherwise αink

t = 0
holds. The constraints (4b) make sure that a job n is allocated to at most one
component i throughout the whole planning period T and over all systems
k ∈ K. The constraints (4c) define the level of components of type i on the
stock of damaged components at time t; the number of components of type
i ∈ I at time t depends on the number of the components (of the same type) in
the previous time step t−1, whether components are taken out of any system k
and placed on the stock at time step t, and whether they start maintenance at
time step t+δia. The constraints (4d) ensure that the stock level for component
type i is non-negative at every time step t.

Due to the initialization (see constraints (6)), ai0 and αi
t, t ∈ {1−δia, . . . , 0}

are fixed and represent input data to our model.
The stock of repaired components is modeled, for all i ∈ I, as

βi
t =

∑
k∈K

T+1∑
r=t+1

xik
tr , t ∈ T , (5a)

bit = bit−1 − βi
t +

∑
n∈Ni

∑
l∈L

uinl
t−δib−pi , t ∈ T ∪ {T + 1}, (5b)

bit ≥ bi, t ∈ T . (5c)

The constraints (5a) connect the stock of repaired components with model (1)
of the MS-PMSPIC. When a component of type i is placed into a system k at
time t, βi

t takes value 1 (if there is m ≥ 0 components that are simultaneously
placed into m systems at time step t, then βi

t takes value m). The stock level
for component type i ∈ I at time t is defined in (5b); it depends on the level
in the previous time step t − 1, the number of components taken out of the
stock of repaired components and placed in one of the systems k at time t,
and the number of components arriving at the stock of repaired components
at time t. The constraints (5c) ensure that the level of repaired components
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of type i may never go below the lower limit bi ≥ 0 on the stock of repaired
components.

Due to the initialization (see constraints (6)), bi0, β
i
0, and ui

t, t ∈ {1− δib −
pi, . . . , 0} are fixed and represent input data to our model.

2.4 Boundary conditions

To model the boundaries (i.e., the beginning and the end of the planning
period), we introduce the following constraints:

Ji =
∑
k∈K

∑
r∈T

xik
0r + āi0 + b̄i0 +

0∑
r=−δib−pi+1

∑
l∈L

∑
n∈Ni

ūinl
r , i ∈ I, (6)

bit ≥ bi0 − µi, i ∈ I, t ∈ {T + 2− s̄, . . . , T + 1}, (7)

We assign fixed values (randomized, or according to the systems’ states at
the respective time points) to the variables ai−δia

:= āi−δia
and bi0 := b̄i0 ≥

bi ≥ 0, such that the equalities (6) are satisfied, where the set T is defined
as
{
mini∈I{1− pi − δib}, . . . ,maxi∈I{pi, δia}

}
. The resulting initial values (at

t = 0) of the variables uinl
r , αink

t , and ait, for relevant indices are used to
initialize the model at t = 0. In order to stabilize the level of the repaired
components at T +1 (i.e., the end of the planning period), the constraints (7)
are defined, where s̄ ≥ 1 is the number of time steps at the end of the planning
period during which the tolerance level5 µi ≥ 0 is applied to component type
i ∈ I.

Alternatively, one may impose a high penalty on the stock level at the end
(or, for the last s time steps) of the planning period. This approach will show
a similar effect as the constraints (7), but being less constraining.

2.5 The complete model of the system–of–systems

To summarize, the set of feasible solutions to the complete maintenance schedul-
ing problem is modeled by (1)–(7). In addition, variables xik

st , z
k
t , u

inl
t , and αin

t

are required to be binary while ait, b
i
t, β

i
t , and ℓt are to be non-negative and

integer, for all relevant indices.

3 Definition of contracts and optimization objectives

The feasibility problem is defined in Section 2 and we next include the op-
timization objective functions. We define the costs for the two stakeholders
and an ’availability of components’ contract between the stakeholders. The
problem is identified as a bi-objective optimization problem.

5 If µi is set to zero, the requirement on the stock will probably increase over a few
planning periods.



Optimal preventive maintenance scheduling and workshop planning 11

3.1 A bi-objective optimization problem

Costs. The two stakeholders face different costs. Namely, the system operator
has to pay for the PM activities and the maintenance workshop has to pay
penalties whenever not fulfilling the availability contract requirements, i.e., it
faces costs for going below a predefined lower limit on the stock of available
components; see Table 1.

Cost Notation Stakeholder

Preventive maintenance CPM(x, z) System operator

Availability penalty CAV(y) Maintenance workshop

Table 1: Costs faced by the two stakeholders

The preventive maintenance cost is defined as in Obradović et al. (2022),
Sec. 3.2:

CPM(x, z) :=
∑
k∈K

∑
t∈T

dtz
k
t +

∑
k∈K

∑
i∈I

T+1∑
t=1

t−1∑
s=0

cistx
ik
st , (8)

and it represents the total sum of the set-up and interval costs.
The availability penalty cost is defined as

CAV(y) :=
∑
i∈I

cAVi
∑
t∈T

yit, (9)

where there is a non-negative cost cAVi for every unit yit of number of com-
ponents at time step t that go below a certain limit bi ≥ 0 on the stock of
available components.

Bi-objective optimization problem. Whether the operational schedule is dis-
turbed (and to which extent) or not, is partly affected by the availability
of components on the stock of repaired components. In the event of an un-
expected failure, the damaged component can be replaced with no/minimal
interruptions in the planned operations, as long as there is a component of the
same type available. Also, in order to enable the planning of an efficient PM
schedule, it is essential that there is (almost) always enough spare parts on
the stock.

For the availability contract type, we model the bi-objective optimization
problem as to

minimize
x,y,z,u,a,α,b,β,ℓ

[
CPM(x, z), CAV(y)

]
, (10a)

subject to (1)–(7), (10b)
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yit ≥ bi − bit, i ∈ I, t ∈ T , (10c)

yit, b
i
t ≥ 0, i ∈ I, t ∈ T , (10d)

where the inequalities (10c)–(10d) define yit as the measure of how much the
stock level bit for component type i at time t falls below the lower limit bi

on the stock of available components. The objective (10a) is to minimize the
maintenance cost (8) subject to the stock level not going below bi, and the
penalty (9) for the stock level going below bi.

3.2 Complexity analysis

We next analyze the computational complexity of the model (10). By defining
special cases of the single-objective minimization problems (1)–(7), (8) and
(1)–(7), (9), (10c), (10d) both problems are reduced to the PMSPIC, which
is an NP-hard problem. Thereby, the bi-objective problem (10), after (any)
scalarization (Ehrgott, 2005, Sec. 8.3), is reduced to an NP-hard problem.

Theorem 1 (Complexity) The complete model of the system–of–systems
(1)–(7), with either of the objective functions (8) or (9), binary requirements
on the variables xik

st , z
k
t , u

inl
t , and αin

t , and non-negativity and integer require-
ments on the variables yit, ait, bit, βi

t, and ℓt, for all relevant values of the
indices, is NP-hard.

Proof Consider the constraints (1)–(7), with the relevant binary, non-negativity,
and integer requirements on the variables. Assume that the capacity of the
maintenance workshop equals the total number of jobs, i.e., that L =

∑
i∈I Ni

holds. Moreover, assume that for each component type i ∈ I, the number of

individual components fulfills Ji ≥ K
⌈

T+1
1+δia+pi+δib

⌉
(where 1 in the denom-

inator represents the shortest time a component spends in a system k and
δia + pi + δib is the shortest possible turn–around time for component type i),
that b̄i0 = Ji−K, and that bi = 0. Then, each repair job can always be instantly
performed in the workshop and there will always be a (repaired) component
in stock for replacement.

The problem (1)–(7), with the objective to minimize (8), is hence reduced
to the minimization of (8) subject to (1), which separates into one instance
of the PMSPIC for each of the systems k ∈ K. As stated in Definition 1 and
the reasoning thereafter, the PMSPIC is NP-hard; see also (Gustavsson et al.,
2014). Therefore, there exists an instance of the problem of minimizing (8)
which is NP-hard.

Now, consider the problem (1)–(7), (10c), (10d) with the objective to min-
imize (9). Since bi = 0, the problem separates over minimizing (9) subject

to yit ≥ 0 for all relevant i and t, and minimizing a zero objective subject
to (1)–(7) and bit ≥ 0 for all relevant i and t. Minimization of (9) subject to
yit ≥ 0 for all relevant i and t results in yit = 0, for all relevant i and t (for
all non-negative cost coefficients) and there are no constraints involving y (or
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any of other) variables. For the former problem, setting all y variables to zero
will be an optimal solution, such that the optimal value of (9) will equal zero
(that is, CAV(y∗) = 0 for any optimal solution (x∗, z∗, u∗, . . . , y∗) since y∗ = 0
is optimal whenever bi = 0). The latter problem is reduced to the problem of
minimizing (8) subject to (1)–(7), with the costs cist = 0 and dt = 0, for all
relevant indices. Hence, there exists an instance of the problem of minimizing
(9) which is NP-hard.

We conclude that the bi-objective problem (10) is NP-hard. ⊓⊔

Based on this theorem, we conclude that the bi-objective MILP (10) is a
computationally demanding problem.

4 Application: Implementation, tests, and results

The industrial application we present comes from a collaboration with the
Swedish aerospace and defence company Saab AB. For the purpose of assess-
ing contracting forms between the stakeholders and aiding the decision making
processes, the instance sizes are considered to be reasonable from a practical
application point of view and the data sets used are based on knowledge me-
diated from the industrial partner. All data that is used is normalized.

The implementation is made using Julia (2012) and JuMP (Dunning et al.,
2017), and the computations are performed by Gurobi (2020) on a laptop
computer with a 2.4 GHz Intel Core i5 processor and 8 GB of RAM memory.
The computer used has one processor with four cores, supporting in total
maximum of eight threads.

4.1 The main test instances and multi-objective settings

We consider K = 10 systems, each of which has I = 5 component types and
Ji = 25 (individual) components of each type i ∈ I. The operational and
maintenance related differences of the component types are reflected by their
respective repair times in the maintenance workshop. The same holds for the
randomly chosen (within the same order of magnitude) due dates. Moreover,
different component types are also assigned differently structured interval costs
which are increasing with the time between two (consecutive) maintenance
occasions. This cost structure reflects an increasing risk of unexpected failures,
whence CM. The planning horizon is T = 40 time steps and the workshop
capacity is limited to either L = 25 or L = 30 parallel machines. The maximal
number of jobs6 used for component type i during a planning period T is Ni :=

Ji

⌈
T

pi+δib+δia+ti

⌉
, where ti (:= 1) equals the minimum number of time steps

each individual component can spend in any of the systems. The processing
times take values pi ∈ {3, 4, 5}, i ∈ I and the transport times between the

6 The number of variables in the model is (approximately) proportional to the maximal
number of all jobs, i.e., N :=

∑
i∈I Ni; hence the problem size grows with number of jobs.
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stocks and the maintenance workshop are δia = 2 and δib = 1 for i ∈ I. Lower
limits on the stock of repaired components are bi = bi = 1 for i ∈ I. The
maintenance costs are dt = 5, for all t ∈ T and cist is varied: the smallest value
(for the maintenance interval length of 1) is 5 for all i ∈ I while the cost for
the largest allowed maintenance interval length varies for different component
types i ∈ I and is in the range of 20 : 50. Availability penalty costs take
values cAV

i ∈ {5, . . . , 10}. The stabilizing tolerance levels in (7) are chosen as
µi := {2, 5} and the number of time steps during which they are applied is
s̄ := 1. The input to the model (i.e., the timetable for the systems’ operations)
is obtained as a result of the model in (Gavranis and Kozanidis, 2015) applied
to the set K of systems over the planning period T .

4.2 Computational tests and results

4.2.1 The case without a contract between the stakeholders

We first consider the case without a contract between the stakeholders, that
is, the model considered is constituted by the formulas (1)–(8), and where the
preventive maintenance cost (8) is minimized. The instance sizes and solution
times are presented in Table 2. We observe how the computing times grow
with increasing instance sizes (in all cases except when there is added capacity
in the workshop, i.e., an increased value of L, and the other parameters are
unchanged). In this section, we analyze in more detail two of the instances
that differ in the workshop capacity, which is varied between L = 25 in the
first instance and L = 30 in the second.

Instance size # rows # variables # binary variables gap solution presolve
I Ji K T L original after presolve [%] time [s] time [s]

3 20 8 40 20 51 763 213 857 213 144 98 804 0.00 4.31 1.60

3 25 8 40 20 58 103 256 977 256 264 127 332 0.82 19.00 1.62

5 25 10 40 25 117 989 533 109 531 950 261 785 0.61 245.00 4.36

5 25 10 40 30 126 937 598 107 596 950 298 051 1.61 110.84 3.91

5 25 10 60 30 210 925 1 248 073 1 246 400 756 087 6.02 331.00 12.52

5 35 10 60 30 282 630 1 703 483 1 701 800 1 022 664 1.39 1679.00 18.09

5 35 5 100 30 370 818 3 680 363 3 677 650 2 798 247 5.91 4056.85 60.92

Table 2: Instance sizes and computing times. The lower limit on the stock of
available components is bi = 1, i ∈ I, for all instances considered.

Figure 2 shows the levels of the stocks of components over the planning
period for the two instances considered. In the beginning of the planning period
the stocks of repaired components possess fairly high levels and, due to the
stabilization constraints (7), similar (up to the tolerance µi) stock levels are
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maintained at the end of the planning horizon. By employing the stabilizing
constraints, the good state of the stocks of repaired components at the end of
each planning period is maintained. As can be expected, the observed levels
of the stocks of repaired components are higher when the workshop capacity
is higher, i.e., for L = 30.

(a) L = 25 (b) L = 30

Fig. 2: Resulting stock levels over time when maintenance costs are minimized

Figure 3 shows the loading of the maintenance workshop over the planning
period for the two instances considered. Due to higher levels on the stock of the
repaired components in the beginning of the planning period (see Figure 2),
the demand for repairing the components is lower for the first few time steps.
The same effect can be observed in the maintenance workshop schedules (see
Figure 4). We can see that the capacity in the maintenance workshop (i.e.,
number of repair lines) is less constraining in the case of L = 30 than for
L = 25. However, in the case of L = 25, the workshop loading is almost at
the full capacity during most time steps. A constantly high loading in the
workshop would leads to an increased risk of the whole system–of–systems
being inoperational (a lack of capacity of component repairs will eventually
lead to an inability to do replacements of components in the systems).

Figure 4 shows the maintenance workshop schedules7 for the two instances.
As discussed above, the workshop schedules more jobs per repair line in the
case of L = 25 as compared to the case of L = 30 repair lines, due to smaller
number of repair lines available at each time step. As a result, there is less pos-
sibility for scheduling repairs in the workshop (represented by white space in
the maintenance workshop schedule) when L = 25 as compared to an increased
workshop capacity, when L = 30.

Figure 5 shows the average proportion of the component life span that is
unutilized (i.e., a measure of how long before the end of the component’s life
span a component undergoes a maintenance activity) over the whole planning
period. The unutilized life can be viewed as wasted life, which implies a loss

7 In Figure 4 each job is assigned a color, but jobs are unique and do not repeat, even
though colors do.
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(a) L = 25 (b) L = 30

Fig. 3: Maintenance workshop loading over time when maintenance costs are
minimized

(a) L = 25 (b) L = 30

Fig. 4: Maintenance workshop schedule when maintenance costs are minimized

of invested resources. With a higher capacity in the workshop (L = 30) we ob-
serve that there is more unutilized component life. This is justified by the fact
that the workshop possesses a higher capacity for components’ repair, which
means that components can (and will) be repaired more often, on average.
The average utilization when L = 25 is 73 %; it decreases to 71 % for L = 30.
Hence, there is a trade-off between decreasing the risk of component failure
and increasing its utilization.

4.2.2 The case of an availability of components contract between the
stakeholders

We next consider an availability contract between the stakeholders, that is,
the bi-objective mathematical model studied is constituted by the constraints
and objectives in (1)–(10).

As we have a bi-objective optimization problem (10), we are interested in
finding Pareto optimal solutions; see e.g., (Ehrgott, 2005, Ch. 2.1). A solution
is called Pareto optimal if none of the objective functions can be improved in



Optimal preventive maintenance scheduling and workshop planning 17

Fig. 5: Average unutilized (i.e., wasted) component life when maintenance
costs are minimized for L = 25 and L = 30 repair lines

value without degrading at least one of the other objectives’ values. In order to
find (the set of all) Pareto optimal solutions, we utilize the ϵ-constraint method
(Mavrotas, 2009), which (in the bi-objective case) iteratively optimizes one
objective function and constrains the other. In this application, we minimize
the maintenance cost objective and include an ϵ-constraint on the availability
penalty objective, with equidistant values of ϵ.

(a) Computed points on the Pareto fronts
for the workshop capacity L ∈ {25, 30} and
areas of uncertainty of the optimal objective
values for L = 30

(b) Uncertainty interval of the availability
penalty reduction, for an increased work-
shop capacity; a zoom-in

Fig. 6: Illustration of the possible reduction of the availability penalty for
an increased maintenance workshop capacity from L = 25 to L = 30 repair
lines. The Pareto front represents the availability penalty objective (9) vs.
the maintenance cost objective (8). Parameter values: (I, Ji,K, T, bi, bi) =
(5, 15, 10, 40, 5, 5); L ∈ {25, 30}; ϵ = 500 in the ϵ-constraint method.

Figure 6(a) shows the points found on the Pareto front in the bi-objective
problem, with the objectives (8) and (9), for L ∈ {25, 30}. An area of uncer-
tainty is defined (by an open rectangular set) for each point on the Pareto
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front corresponding to L = 30; it represents the area between two computed
points on the Pareto front and which may contain additional Pareto points.
For L = 25 (L = 30), the availability penalty (defined in (9) as the sum
over the planning period of penalties for going below a certain level) is in the
interval [1073, 8917] ([925, 8362]) while the total maintenance cost is in the
interval [5109, 6031] ([4984, 5893]). In order to reduce the availability penalty
(i.e., keeping the stock of available components above or reducing the distance
to bi, i ∈ I), one could perform less PM activities on the system operator’s
side, which would yield higher maintenance costs. On the other hand, perform-
ing PM regularly (i.e., before the component’s life span, at which the risk for
failure increases) increases the demand for repaired components, which leads
to an increased difficulty to maintain high levels on the stock of repaired com-
ponents (i.e., the availability penalties likely increases). We set bi

t
= 5, i ∈ I,

and, according to (10), penalize for going below bi
t
on the stock of available

components.8

As we have two stakeholders whose objective functions are both minimized,
we can analyze improvements in values of those two objectives when the ca-
pacity of the maintenance workshop is increased. Figure 6(b) illustrates the
uncertainty intervals (red arrows) for the reduction of the availability penalty
when the number of repair lines in the maintenance workshop is increased
from L = 25 to L = 30. A reduction of the availability penalties corresponds
to an increased capability to maintain the desired level on the stock of repaired
components. For each red point on the Pareto front (corresponding to L = 25)
there is an uncertainty interval for the reduction of the availability penalty for
the same (fixed) maintenance cost level. Increasing the number of repair lines
to L = 30 leads to the availability penalty being in the corresponding interval.

Table 3 lists the possible reductions in maintenance cost and availability
penalty when the maintenance workshop capacity is increased from L = 25
to L = 30 repair lines. The numbers are illustrated in Figure 6(a), where the
weakly Pareto optimal points9 are removed. For each point on the Pareto front
for L = 25, we define a maximal possible reduction of maintenance cost and
an availability reduction interval, when increasing the number of repair lines
to L = 30. The availability reduction interval is defined by the smallest and
largest possible reductions of the availability penalty when L is increased. Note
that the largest possible reduction in the availability penalty increases as the
maintenance cost decreases.

We will now take a closer look at the two extreme solutions on the Pareto
front for L = 30: the left-most point (minimizing the availability penalty)
having a maintenance cost of 5227 and an availability penalty of 962, and
the right-most point (minimizing the maintenance cost) with the maintenance
cost of 4821 and the availability penalty of 11359. Figure 7 shows the levels

8 When the contract in place is the availability contract (10), the constraints (5c) are
removed, while penalties for the stock going below a certain level are included.

9 A Pareto point is weakly Pareto optimal if it does not improve all objective functions
in the multi-objective optimization setting.
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Maintenance Maximum possible reduction Availability Availability penalty
cost of maintenance cost penalty reduction interval

(L = 25) (L = 25 ⇒ L = 30) (L = 25) (L = 25 ⇒ L = 30)

6 031 454 1 073 [ 148 , 148 ]
5 673 218 1 573 [ 148 , 648 ]
5 523 170 2 073 [ 148 , 648 ]
5 441 158 2 573 [ 148 , 648 ]
5 381 138 3 073 [ 148 , 1 148 ]
5 344 153 3 573 [ 148 , 1 148 ]
5 289 143 4 073 [ 148 , 1 648 ]
5 244 128 4 514 [ 89 , 1 589 ]
5 189 118 5 550 [ 185 , 1 125 ]
5 177 146 6 573 [ 172 , 2 648 ]
5 144 135 7 067 [ 74 , 2 664 ]
5 109 125 8 917 [ 555 , 3 992 ]

Table 3: Maximum possible reduction of maintenance cost and reduction of
availability penalty intervals for each Pareto point corresponding to L = 25
when the workshop capacity is increased to L = 30.

(a) Left-most point on the Pareto front
(minimal availability penalty)

(b) Right-most point on the Pareto front
(minimal maintenance cost)

Fig. 7: Resulting stock levels over time for L = 30.

on the stocks of damaged and repaired components over the planning horizon
when the workshop capacity is L = 30. Prioritizing the minimization of avail-
ability penalties (i.e., the left-most point on the Pareto front) leads to overall
higher levels on the stock of available components. In return, the maintenance
intervals grow longer and the maintenance costs increase.

Figure 8 shows a significant difference in the utilization of components lives
for the two extreme Pareto optimal points. In the left-most point (minimiz-
ing the availability penalty) the average utilization is about 79%, while in the
right-most point (minimizing the maintenance cost) it is around 73%. This is
explained by the fact that when prioritizing the minimization of the mainte-
nance cost (i.e., the right part of the Pareto front), components are replaced
before the end of their life is reached, thus reducing the average component
utilization. On the other hand, prioritizing the minimization of the availability
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Fig. 8: Average unutilized (i.e., wasted) component life over the planning hori-
zon for the left-most (minimal availability penalty) and right-most (minimal
maintenance cost) Pareto point for L = 30.

penalty (i.e., the left part of the Pareto front) leads to longer intervals between
two maintenance occasions and, thereby, higher utilization rates.

5 Conclusions and Future Research

We present a mixed-integer optimization (MILP) model for PM scheduling
and non-preemptive maintenance planning. The model is, in a bi-objective
setting, further utilized to optimize the availability contract. Our results mea-
sure the interplay between the workshop capacity and the level of component
availability, as well as the corresponding cost trade-off between the stakehold-
ers. We also analyze how the average component utilization rate depends on
the workshop capacity as well as on the different optimization objectives.

This model allows an investigation of the availability contract. Further,
the model can be utilized as a planning tool when the maintenance workshop
and the system operator are integrated; both with an availability contract and
without one. As a result of this work, we can find the threshold levels for
having spare capacity in the workshop, we can asses the stock level dynamics,
as well as the risk levels of potential corrective maintenance costs based on
the utilization rate. Moreover, this modeling can be used as a decision support
tool for the stakeholders.

We define and analyze one form of an availability contract between the
stakeholders. Currently, one way to reduce the risk for unexpected failures
(i.e., the need for CM) is to not allow too large maintenance intervals. Hence,
another interesting research question would be to incorporate the corrective
maintenance operations and costs in our modelling. As we use a fairly simple
model for the maintenance workshop, another improvement of this work would
be to use more complex model of the maintenance workshop (e.g., a flow-shop
model), which would make the whole model more representative for a real
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scenario of the system–of–systems. Another future goal is to develop a tailored
and more efficient solution method, to enable the solution of larger instances.
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