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Abstract

An algorithm for unconstrained non-convex optimization is described, which does not
evaluate the objective function and in which minimization is carried out, at each iteration,
within a randomly selected subspace. It is shown that this random approximation technique
does not affect the method’s convergence nor its evaluation complexity for the search of an ϵ-
approximate first-order critical point, which is O(ϵ−(p+1)/p), where p is the order of derivatives
used. A variant of the algorithm using approximate Hessian matrices is also analysed and
shown to require at most O(ϵ−2) evaluations. Preliminary numerical tests show that the
random-subspace technique can significantly improve performance when used with p = 2
in the correct context, making it very competitive when compared to standard first-order
algorithms.

Keywords: nonlinear optimization, stochastic adaptive regularisation methods, sketching, evaluation

complexity, objective-function-free optimization (OFFO).

1 Introduction

Recent years have seen the emergence of random concepts in iterative algorithms for nonconvex
optimization (see [13] and reference therein and [5, 1, 2, 3, 27]). In particular, several authors
[30, 17, 28, 15, 6, 7]1 have suggested algorithms in which the search for a better iterate is carried
out in random subspaces of the space of variables, instead of, as is more traditional and often
more costly, in the complete space. In these proposals, the Johnson-Lindenstrauss embedding
Lemma (see [14] for a simple exposition) is used to ensure that the relevant information can be
found very efficiently in the selected subspace with high probability, and this leads to an elegant
analysis yielding optimal complexity bounds for “random-subspace” variants of the standard trust-
region and adaptive-regularisation methods for unconstrained minimization. In parallel with this
interesting development, alternative non-standard optimization methods have also been introduced
where the objective function of the problem is never computed (these algorithms use derivatives’
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2Université de Toulouse, INP, IRIT, Toulouse, France. Work partially supported by 3IA Artificial and Natu-
ral Intelligence Toulouse Institute (ANITI), French “Investing for the Future - PIA3” program under the Grant
agreement ANR-19-PI3A-0004. Email: serge.gratton@enseeiht.fr.

3Namur Center for Complex Systems (naXys), University of Namur, 61, rue de Bruxelles, B-5000 Namur,
Belgium. Email: philippe.toint@unamur.be.

1[7] was posted on arXiv when the revision of the present paper was being finalized. It elaborates on the results
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values only). The motivation for such methods originates in applications with noisy objective
functions. Indeed, because differences of objective function’s values are not used to accept or reject
iterates, the methods’ behaviour is much less sensitive to noise than that of the more standard
algorithms using function values [23] This new class of “objective-function-free optimization”
(OFFO) methods includes popular first-order algorithms as ADAM or ADAGRAD, and has been
investigated, for instance, in [16, 25, 29, 19, 33].

The purpose of this paper is to discuss an algorithm which combines these two ideas for
the first time while maintaining the desirable properties of both. More specifically, we describe
an OFFO adaptive regularisation method using first- or higher-order models defined in random
subspaces, and show that this algorithm still enjoys the optimal global rate of convergence known
for comparable adaptive-regularisation methods. Independently of the practical interest for such
a method, which, we argue below, can be substantial in the right context, our analysis is a new
step in the “information thinning” question, which is to isolate what information is necessary for
a minimization method to achieve optimal complexity. Indeed, while [20] proves that function
values are unnecessary, the present paper further shows that this is also the case for “full space”
information2 under suitable probabilistic assumptions.

Our approach has a further advantage compared to existing proposals, like the random-
subspace trust-region and random-subspace regularisation methods of [28] and [6]. Because no
evaluation of the objective function is involved, the algorithm generates a much simpler random
process (there is now only one random event per iteration), in turn considerably simplifying the
proofs as the number of iteration types whose number must be estimated (in [28, Chapter 4]) is now
reduced to only two. While our theory covers the general case where derivatives of higher order
than one are estimated, our practical focus will be on the case where first and second derivatives
are used.

The paper is organised as follows. The new algorithm is proposed in Section 2, while its evalua-
tion complexity is analysed under general embedding conditions in Section 3. A brief discussion of
a possible way to select the random subspaces are presented in Section 4. The numerical behaviour
of the second-order variant is illustrated in Section 5. Some conclusions are finally presented in
Section 6. A discussion of a further variant using quadratically regularised inexact quadratic
models is proposed and analysed in appendix.

2 An OFFO adaptive regularisation algorithm using ran-
dom subspaces

The problem of interest in what follows is the standard nonconvex unconstrained minimization of
a (sufficiently) smooth objective function, that is

min
x∈IRn

f(x), (1)

where f : IRn → IR. As indicated in the introduction, our aim is to design an adaptive regular-
isation algorithm in which the objective function value is never computed , and in which the step
is obtained by approximately minimizing a suitable model of the objective function in a random
subspace. To ensure that this approach is sensible, we make the following assumptions.

AS.1 f is p times continuously differentiable in IRn.
AS.2 There exists a constant flow such that f(x) ≥ flow for all x ∈ IRn.
AS.3 The pth derivative of f is globally Lipschitz continuous, that is, there exists a non-negative
constant Lp such that

∥∇p
xf(x)−∇p

xf(y)∥ ≤ Lp∥x− y∥ for all x, y ∈ IRn,

2One might argue that it has long been known that information along the directions given by the gradient and
the step suffices, but this requires the step to be known and thus amounts to an a posteriori observation instead of
an a priori algorithmically exploitable strategy.



Bellavia, Gratton, Morini, Toint: A sketched OFFO algorithm with adaptive regularisation 3

where ∥.∥ denotes the Euclidean norm for vectors in IRn and the corresponding subordinate norm
for tensors.
AS.4 The gradient of f is bounded, that is there exists a constant κg ≥ 0 such that, for all x ∈ IRn,

∥∇1
xf(x)∥ ≤ κg.

AS.5 If p > 1, there exists a constant κhigh ≥ 0 such that

min
∥d∥≤1

∇i
xf(x)[d]

i ≥ −κhigh for all x ∈ IRn and i ∈ {2, . . . , p},

where ∇i
xf(x) is the ith derivative tensor of f computed at x, and where T [d]i denotes the i-

dimensional tensor T applied on i copies of the vector d. (For notational convenience, we set
κhigh = 0 if p = 1.)

We refer the reader to [11, Appendix 6] for details on derivative tensors. Observe that, given AS.1,
AS.3 is automatically satisfied if the iterates generated by the algorithms remain in a bounded
domain. This is in particular the case if a objective function’s level set identified in Lemma 3.7 is
bounded because, as we comment on after this lemma, it contains all generated iterates. Observe
also that AS.5 is irrelevant in the case where p = 1. Should one be interested in higher-order
methods, AS.5 is weaker than assuming uniform boundedness of the derivative tensors of degree
two and above (there is no upper bound on the value of ∇i

xf(x)[d]
i), or, equivalently, Lipschitz

continuity of derivatives of degree one to p− 1.

2.1 The SKOFFARp algorithm

As suggested above, adaptive regularisation methods are iterative schemes which compute a step
from an iterate xk to the next by approximately minimizing a p-th degree regularised model mk(s)
of f(xk + s) of the form

mk(s)
def
= Tf,p(xk, s) +

σk

(p+ 1)!
∥s∥p+1, (2)

where Tf,p(x, s) is the pth order Taylor expansion of functional f at x truncated at order p, that
is,

Tf,p(x, s)
def
= f(x) +

p∑
i=1

1

i!
∇i

xf(x)[s]
i. (3)

To obtain the model (2), the p-th order Taylor series (3) is “regularised” by adding the term
σk

(p+1)!∥s∥
p+1 (where σk is the iteration-dependent regularisation parameter), thereby ensuring that

mk(s) is bounded below and that a step sk (approximately) minimizing this model is well-defined.
Following [28], we propose to compute a random subspace step at iteration k as follows. Given

an iteration-independent distribution S of ℓ × n random matrices (with ℓ < n), let Sk be drawn
from this distribution and consider minimizing the sketched regularised model

m̂k(ŝ)
def
= T̂f,p(xk, ŝ) +

σk

(p+ 1)!
∥ST

k ŝ∥p+1, (4)

as a function of ŝ ∈ IRℓ, where the sketched Taylor model T̂f,p(x, ŝ) is given by

T̂f,p(x, ŝ)
def
= f(x) +

p∑
i=1

1

i!
∇i

xf(x)[S
T
k ŝ]

i.

Letting ŝk an approximate minimizer of m̂k(ŝ), the full dimensional step is then defined by sk =

ST
k ŝk. We note that T̂f,p(xk, ŝk) = Tf,p(xk, sk) and

m̂k(ŝk) = mk(sk). (5)
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Algorithm 2.1: Sketching OFFO adaptive regularisation of degree p (SKOFFARp)

Step 0: Initialization: An initial point x0 ∈ IRn, a regularisation parameter ν0 > 0 and
a requested final gradient accuracy ϵ ∈ (0, 1] are given, as well as the parameters

θ > 1, µ−1 ≥ 0 and 0 < ϑ < 1.

Set k = 0.

Step 1: Step calculation: If k = 0, set σ0 = ν0. Otherwise, select

σk ∈
[
ϑνk,max[νk, µk]

]
, (6)

where

µk = max

[
µk−1,

∥Sk−1gk∥ − ∥∇1
ŝT̂f,p(xk−1, ŝk−1)∥

κS,k−1.∥sk−1∥p

]
, (7)

with some κS,k−1 such that ∥Sk−1∥ ≤ κS,k−1. Draw a random matrix Sk ∈ IRℓ×n from
S and compute a step sk = ST

k ŝk such that ŝk sufficiently reduces the model m̂k defined
in (4) in the sense that

m̂k(ŝk)− m̂k(0) < 0 (8)

and
∥∇1

ŝT̂f,p(xk, ŝk)∥ ≤ θ
σk

p!
∥ST

k ŝk∥p−1∥SkS
T
k ŝk∥. (9)

Step 2: Updates. Set
xk+1 = xk + sk

and
νk+1 = νk + νk∥sk∥p+1. (10)

Increment k by one and go to Step 1.
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Some comments on this algorithm are necessary.

1. It is crucial to observe that, while the definition of the model in (4) involves the function

value f(xk) (in T̂f,p(xk, ŝ)), this function value is never needed in the algorithm (it cancels
out in (8)) and therefore need not to be evaluated. The algorithm thus belong to the
OFFO class. Of course, the minimization of the model may require the evaluation of the
sketched derivatives {∇j

ŝf(xk)[Sk·]j}pj=1, at least along some directions3. This makes the
use of derivatives of degree higher than two potentially useable in practice, especially if the
objective function is partially separable [24, 12].

2. Since
∇1

ŝ∥ST
k ŝ∥p+1 = (p+ 1)∥ST

k ŝ∥p−1 SkS
T
k ŝ,

one verifies that conditions (8) and (9) do hold at an exact minimizer of m̂k (the latter with
θ = 1). A step satisfying these conditions is therefore guaranteed to exist. Note that (9) is
a condition on the norm of the gradient of the Taylor series for f , at variance with [11, 28]
where the condition is on the gradient of the regularised model (2).

3. At variance with standard trust-region and adaptive-regularisation methods, the algorithm
does not involve any (typically noise sensitive) test to accept or reject the trial iterate xk+sk,
and every trial point is thus “accepted” as the new iterate. In the vocabulary used for trust-
region and adaptive regularisation methods, every iteration is therefore “successful”.

4. The value of µk in the definition (6) of σk is chosen to help the regularisation parameter σk

to grow fast enough, given the knowledge at iteration k. We will show in Lemma 3.5 that µk

is bounded above by max[µ−1, Lp] irrespective of the choice of κS,k−1. As a consequence, the
specific values of κS,k−1 in (7) play no role in our complexity analysis, albeit they obviously
affect the practical performance of the method. Finally, we stress that the knowledge of the
constants Lp and κg, given in AS.3 and AS.4 respectively, is not required in the algorithm.

The SKOFFARp algorithm can be seen as a stochastic process because the selection of Sk is
random and yields random realizations4 of the iterates xk and of the steps sk. The objective of
our forthcoming complexity analysis for this algorithm is to derive a probabilistic bound on the
process hitting time

N1(ϵ)
def
= min{k ∈ IN | ∥gk∥ ≤ ϵ}, (11)

where we denote gk
def
= ∇1

xf(xk) for all k. N1(ϵ) is the number of iterations that a particular
realization of the algorithm requires to obtain an ϵ-approximate first-order critical point.

3 Evaluation complexity for the SKOFFARp algorithm

Before discussing our analysis of evaluation complexity, we first restate some classical lemmas for
ARp algorithms, starting with Lipschitz error bounds.

Lemma 3.1 Suppose that AS.1 and AS.3 hold. Then

f(xk+1)− T̂f,p(xk, ŝk) = f(xk+1)− Tf,p(xk, sk) ≤
Lp

(p+ 1)!
∥sk∥p+1, (12)

and

∥gk+1 −∇1
sTf,p(xk, sk)∥ ≤ Lp

p!
∥sk∥p. (13)

3In the course of a Krylov subproblem solver for p = 2, say.
4Formally, the iterates and steps are random variables on some implicitly defined probability space, and xk and

sk are their realizations.
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Proof. This is a standard result (see [10, Lemma 2.1] for instance). 2

We next state a simple lower bound on the Taylor series’ decrease.

Lemma 3.2

∆Tf,p(xk, sk)
def
= Tf,p(xk, 0)− Tf,p(xk, sk) >

σk

(p+ 1)!
∥sk∥p+1. (14)

Proof. The bound directly results from m̂k(ŝk) = mk(sk), (8) and (2). 2

This and AS.2 allow us to establish a lower bound on the decrease in the objective function
(although it is never computed).

Lemma 3.3 Suppose that AS.1 and AS.3 hold and that σk ≥ 2Lp. Then

f(xk)− f(xk+1) >
σk

2(p+ 1)!
∥sk∥p+1. (15)

Proof. From (12) and (14), we obtain that

f(xk)− f(xk+1) >
σk − Lp

(p+ 1)!
∥sk∥p+1

and (15) immediately follows from our assumption on σk. 2

We now recall an upper bound on ∥sk∥ generalizing those proposed in [8, 22] to the case where p
is arbitrary.

Lemma 3.4 Suppose that AS.1 and AS.5 hold. At each iteration k, we have that

∥sk∥ ≤ 2η + 2

(
(p+ 1)!∥gk∥

σk

) 1
p

, (16)

where

η =

p∑
i=2

[
κhigh(p+ 1)!

i!ϑν0

] 1
p−i+1

. (17)

Proof. See [20, Lemma 3.6]. Note that this result does not involve Sk as it is valid for any
step which reduces mk and, using (5) and (8), mk(sk) = m̂k(ŝk) < m̂k(0) = mk(0). 2

Our next step is to show that µk is bounded.

Lemma 3.5 Suppose that AS.1 and AS.3 hold. For all k ≥ 0,

µk ≤ max[µ−1, Lp]. (18)
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Proof. We have that∇1
ŝT̂f,p(xk−1, ŝk−1) = ∇1

ŝTf,p(xk−1, S
T
k−1sk−1) = Sk−1∇1

sTf,p(xk−1, sk−1),
so that, using the triangular inequality, (13) and (9),

∥Sk−1gk∥ ≤ ∥Sk−1(gk −∇1
xTf,p(xk−1, sk−1))∥+ ∥Sk−1∇1

xTf,p(xk−1, sk−1)∥

≤ ∥Sk−1∥Lp∥sk−1∥p + ∥∇1
ŝT̂f,p(xk−1, ŝk−1)∥,

and thus

Lp ≥
∥Sk−1gk∥ − ∥∇1

ŝT̂f,p(xk−1, ŝk−1)∥
∥Sk−1∥∥sk−1∥p

. (19)

The inequality (18) then follows from (7) and ∥Sk−1∥ ≤ κS,k−1. 2

The proof of this lemma shows that a tighter lower bound on Lp (see (19)) is also available at
the often significant cost of evaluating ∥Sk−1∥, thus motivating the introduction of the (hopefully)
cheaper κS,k−1.

Since our objective is to minimize f , obtaining a decrease as stated by Lemma 3.3 is important.
The condition σk ≥ 2Lp in this lemma and (6) together suggest that the condition

νk ≥ 2Lp

ϑ
(20)

is important for our subsequent analysis. Remembering that νk is increasing with k, we therefore
define

k1
def
= inf

{
k ≥ 1 | νk ≥ 2Lp

ϑ

}
(21)

the index of the first iterate (in a given realization) such that significant objective function decrease
is guaranteed by Lemma 3.3. Note that k1 may be infinite, which is why we define the random
event

K1
def
= {k1 as defined by (21) is finite}. (22)

We now pursue our analysis under the condition that K1 occurs. The next series of lemmas
provides bounds, conditional on K1, on f(xk1

) and νk1
, which in turn allows establishing an upper

bound on the regularisation parameter, only depending on the problem and the fixed algorithmic
parameters.

Lemma 3.6 Suppose that AS.1, AS.3, AS.4 and AS.5 hold and consider a realization of the
SKOFFARp algorithm where K1 occurs. Then

νk1
≤ νmax

def
=

2Lp

ϑ

1 +(2η + 2

(
(p+ 1)!κg

ϑν0

) 1
p

)p+1
 , (23)

where η is defined in (17) and κg in AS.4.

Proof. Since K1 is assumed to occur, k1 is well-defined and finite. Successively using
Lemma 3.4 and the update rule for νk (10), we derive that

νk1

(10)
= νk1−1 + νk1−1∥sk1−1∥p+1

(16)

≤ νk1−1 + νk1−1

(
2

(
(p+ 1)!

∥gk1−1∥
σk1−1

) 1
p

+ 2η

)p+1

and the desired result follows by using AS.4, the definition of k1 in (21) and the inequalities
σk1−1 ≥ ϑνk1−1 ≥ ϑν0. 2
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Lemma 3.6 allows us to establish an upper bound on f(xk1
) as a function of νmax.

Lemma 3.7 Suppose that AS.1, AS.3, AS.4 and AS.5 hold and consider a realization of the
SKOFFARp algorithm where K1 occurs. Then

f(xk1
) ≤ fmax

def
= f(x0) +

1

(p+ 1)!

(
Lp

σ0
νmax + ϑσ0

)
. (24)

Proof. Lemma 3.8 in [20] shows that, for any k ≥ 0

f(xk) ≤ f(x0) +
1

(p+ 1)!

(
Lpνk
σ0

+ ϑσ0)

)
.

The desired bound then follows from Lemma 3.6. 2

Observe that this result ensures that all iterates generated by the algorithm belong to the level set
{x ∈ IRn | f(x) ≤ f(xk1)}. The two bounds stated in Lemmas 3.7 and 3.6 are also useful in that
they now imply an upper bound on the regularisation parameter, an important step in standard
theory for regularisation methods.

Lemma 3.8 Suppose that AS.1, AS.2, AS.3, AS.4 and AS.5 hold and consider a realization
of the SKOFFARp algorithm. Then

σk ≤ σmax

def
= max

[
2(p+ 1)!

ϑ

[
f(x0)− flow + 1

(p+ 1)!

(
Lp
σ0

νmax + ϑσ0

)]
+ νmax, µ−1,

2Lp

ϑ
, ν0

]
.

(25)

Proof. We proceed as in Lemma [20, Lemma 3.9] and give the proof for sake of clarity.
Suppose first that K1 occurs. From the definition of k1 in (21), we deduce that σj ≥ 2Lp.
From Lemma 3.3, we then have that

f(xj)− f(xj+1) ≥
σj

2(p+ 1)!
∥sj∥p+1 ≥ ϑ

νj
2(p+ 1)!

∥sj∥p+1.

Summing the previous inequality from j = k1 to k − 1 and using the νj update rule (10) and
AS.2, we deduce that

f(xk1)− flow ≥ f(xk1)− f(xk) ≥
ϑ

2(p+ 1)!
(νk − νk1).

Rearranging the previous inequality and using Lemma 3.6 then gives that

νk ≤ 2(p+ 1)!

ϑ
(f(xk1)− flow) + νmax. (26)

Combining now Lemma 3.7 (to bound f(xk1)), (6) and (18) yields that

σk ≤ σmax
def
= max

[
2(p+ 1)!

ϑ

[
f(x0)− flow +

1

(p+ 1)!

(
Lp

σ0
νmax + ϑσ0

)]
+ νmax, µ−1, Lp, ν0

]
.

If K1 does not occur, νk ≤ 2Lp/ϑ for all k. Thus we obtain, using (6) and (18), that σk ≤
max[

2Lp

θ , µ−1] for all k, and (25) also holds. 2
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The theory of adaptive-regularisation methods crucially depends on the relation between the
steplength ∥sk∥ and the norm of the gradient at the next iteration ∥gk+1∥ (see Lemmas 3.3.3 and
4.1.3 in [11], for instance), which is itself bounded below by ϵ before convergence. Here we choose
to consider this dependence as a random event, depending on the choice of Sk. This is formalized
in the following definition.

Definition 3.9 Given some ϵ ∈ (0, 1) independent of k, iteration k ∈ {0, . . . , N1(ϵ) − 2} is said
to be ω-true for some ω ∈ (0, 1) independent of k whenever

∥sk∥p ≥ ωϵ. (27)

We discuss in Section 4 conditions which may enforce this property, but immediately note that it
automatically holds if Sk is of rank n [20, Lemma 3.4]. We also define

T (ω)
k

def
= {j ∈ {0, . . . , k − 1} | iteration j is ω-true}, (28)

the index set T (ω)
k of all ω-true iterations in the first k.

Given these definitions, we now need to establish under which condition the event K1 occurs
with high probability. Such a condition is obtained in two stages, the first follows arguments by
[19, Lemma 7] and [20, Lemma 3.5] and investigates, in our probabilistic setting, the effect of
accumulating ω-true iterations.

Lemma 3.10 Suppose that AS.1 and AS.3 hold and consider a particular realization of the
SKOFFARp algorithm. Let k0 < N1(ϵ) be an iteration index (in this realization) such that k∗
ω-true iterations have been performed among those of index 0 to k0 − 1, where

k∗
def
=

⌈
2Lpϵ

− p+1
p

ϑν0 ω
p+1
p

⌉
. (29)

Then k1 exists, k1 ≤ k0 and, for all k ≥ k1,

σk ≥ 2Lp. (30)

Proof. First observe that (30) is a direct consequence of (6) if νk ≥ 2Lp/ϑ. Suppose now
that, for some k ∈ {k0, . . . , N1(ϵ)− 1}, νk < 2Lp/ϑ. Since {νk} is a non-decreasing sequence,
we deduce that this inequality holds for j ∈ {0, . . . , k}. Successively using the form of the νk
update rule (10), (27), (6) and the fact that k < N1(ϵ), we obtain that

νk
(10)
>

k−1∑
j=0

νj∥sj∥p+1
(28)
>

∑
j∈T (ω)

k

νj∥sj∥p+1
(27)

≥
∑

j∈T (ω)
k

νj(ωϵ)
p+1
p

(6)

≥
∑

j∈T (ω)
k

ν0 (ωϵ)
p+1
p

(28)

≥ k∗ ν0(ωϵ)
p+1
p .

Substituting the definition of k∗ in the last inequality, we obtain that

2Lp

ϑ
< νk <

2Lp

ϑ
,

which is impossible. Hence no index k ∈ {k0, . . . , N1(ϵ) − 1} exists such that νk < 2Lp/ϑ.
Thus, k1 ≤ k0 exists by definition of k1 in (21). By the same definition, we finally deduce that
νk ≥ 2Lp/ϑ for all k ≥ k1, in turn implying (30) because of (6). 2
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Observe that (29) depends on the ratio Lp/ν0 which is the fraction by which ν0 underestimates the
Lipschitz constant. This lemma thus implies that the probability of K1 is at least the probability
that k∗ ω-true iterations are performed, which we now investigate under the following assumption.

AS.6 There exists an ω ∈ (0, 1) and a π
(1)
S > 0 such that for Sk drawn randomly,

IP
[
iteration k is ω-true | xk = x̄k, σk = σ̄k

]
≥ π

(1)
S ,

for any x̄k ∈ IRn, any σ̄k ∈ [ϑν0, σmax] and any k ∈ {0, . . . , N1(ϵ) − 2}, where IP[X] denotes the
probability of the event X. Moreover, the occurrence of k-th iteration being ω-true is conditionally
independent of the occurrence of iterations 0, . . . , k − 1 being ω-true given xk = x̄k and σk = σ̄k.

This assumption differs from Assumption 1 in [28, page 71] in that it now it makes the proba-
bility of an ω-true iteration conditional not only on xk but also on σk, which we feel is reasonable
given the isotropic nature of the regularisation term in (2). Note that a suitable value for ω may
depend on the bounds on σk (as we will see below in Lemmas 4.1, 4.2 and A.4). Assumption AS.6
can be ensured by suitably using Johnson-Lindenstrauss embeddings [14] and results are available
in [28] for p ∈ {1, 2}. We will analyse such cases in Section 4.

Before using AS.6 and π
(1)
S directly, we first recall a known probabilistic result.

Lemma 3.11 For all nonnegative i, let Ai be an event which can be true or false and
is conditionally independent of A0,A1, . . .Ai−1. For any x̄i ∈ IRn and σ̄i ∈ [ϑν0, σmax],

suppose that IP
[
Ai is true | xi = x̄i, σi = σ̄i

]
≥ π, with π ∈ (0, 1). For k ≥ 0, let

Wk = {i ∈ {0, . . . , k − 1} | Ai is true}. Then, for any given δ1 ∈ (0, 1),

IP
[
|Wk| > (1− δ1)πk

]
≥ 1− e−

δ21
2 πk. (31)

Proof. See [28, Lemma 4.3.1] where, as mentioned above, we now consider the “state” of the
algorithm at iteration i to comprise both xi and σi. 2

We are now in position to use this result to obtain a lower bound on the probability that k∗ ω-true
iterations are performed, and that k1 is well-defined.

Lemma 3.12 Suppose that AS.1, AS.3 and AS.6 hold and let δ1 ∈ (0, 1) be given. Let

k⋄
def
=

⌈
k∗

(1− δ1)π
(1)
S

⌉
, (32)

where k∗ is given by (29). Then

IP
[
K1 | N1(ϵ) > k⋄

]
≥ 1− e−

δ21
2 π

(1)
S k⋄ def

= π
(1)
1 . (33)

Proof. Identifying Ai = {iteration i is ω-true}, Lemma 3.11 with π = π
(1)
S and k0 = k⋄ gives

that the probability that at least k∗ ω-true iterations have been performed during iterations 0

to k⋄ − 1 is at least π
(1)
1 . The desired conclusion then follows from Lemma 3.10. 2

We finally propose a variant of the well-known “telescoping sum” argument adapted to our prob-
abilistic setting to derive the desired evaluation complexity bound.
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Theorem 3.13 Suppose that AS.1, AS.2, AS.3, AS.4, AS.5 and AS.6 hold, that δ1 ∈ (0, 1)
is given and that the SKOFFARp algorithm is applied to problem (1). Define

κSKOFFARp

def
=

4 [Lp + (p+ 1)!(fmax − flow)]

ϑν0ω
p+1
p (1− δ1)π

(1)
S

(34)

where fmax is defined in (24). Then

IP
[
N1(ϵ) ≤ κSKOFFARp ϵ

− p+1
p + 4

]
≥
(
1− e−

δ21
2 π

(1)
S k⋄

)2

(35)

where k⋄ is defined by (32).

Proof. First note that (29) and (32) imply that

k⋄ ≤ 1

(1− δ1)π
(1)
S

(
2Lp

ϑν0ω
p+1
p

)
ϵ−

p+1
p + 1. (36)

Thus, given (34),

IP
[
N1(ϵ) ≤ κSKOFFARp ϵ

− p+1
p + 4 | N1(ϵ) ≤ 2k⋄ + 2

]
= 1. (37)

Suppose now that N1(ϵ) > k⋄ +2 > k⋄ and that K1 occurs. Consider an iteration j > k⋄ ≥ k1
(note that k1 is well-defined) such that j + 1 < N1(ϵ) and suppose furthermore that iteration

j is ω-true, a situation which occurs with probability at least π
(1)
S because of AS.6. From

the fact that K1 occurs, N1(ϵ) > k⋄ and the definition of k1 in (21), we have that σj ≥ 2Lp

and we may apply Lemma 3.3, yielding (15) for iteration j. Since this iteration is also ω-
true, (15) and inequality (27) also hold for iteration j. Moreover, the fact K1 occurs ensures
(because of Lemma 3.8, (6), the non-decreasing nature of νk and the identity σ0 = ν0) that
σj ∈ [ϑσ0, σmax]. Finally, ∥gj+1∥ ≥ ϵ because j + 1 < N1(ϵ). Combining these observations,
we obtain that

f(xj)− f(xj+1) ≥
σj∥sj∥p+1

2(p+ 1)!
≥ σjω

p+1
p ∥gj+1∥

p+1
p

2(p+ 1)!
≥ ϑν0ω

p+1
p ϵ

p+1
p

2(p+ 1)!
(38)

with probability (conditional to K1 andN1(ϵ) > k⋄+2) at least π
(1)
S . Applying now Lemma 3.11

to iterations of index k⋄ + 1 to j with

Ai−k⋄ = { (38) holds at iteration i− k⋄ }, π = π
(1)
S and k = j − k⋄,

we deduce that, for all j ∈ {k⋄ + 1, . . . , N1(ϵ)− 2},

IP
[
|Vj | ≥ (j − k⋄)(1− δ1)π

(1)
S | K1 and N1(ϵ) > k⋄

]
≥ 1− e−

δ21
2 π

(1)
S (j−k⋄)

where Vj
def
= {i ∈ {k⋄ + 1, . . . , j} | (38) holds at iteration i}. In particular, we have that

IP
[
|Vj | ≥ (j − k⋄)(1− δ1)π

(1)
S | K1 and N1(ϵ) > 2k⋄ + 2

]
≥ π

(1)
1 , (39)

with π
(1)
1 defined in (33), for all j ∈ {2k⋄ + 1, . . . , N1(ϵ)− 2}. We also know from Lemma 3.3

and the definition of k1 in (21) that the sequence {f(xj)} is non-increasing for j ≥ k1, and
thus that

f(xk1
)−f(xj+1) =

j∑
i=k1

[f(xi)−f(xi+1)] ≥
j∑

i=k⋄+1

[f(xi)−f(xi+1)] ≥ |Vj |min
i∈Vj

[f(xi)−f(xi+1)].
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Combining this inequality with (38) and (39) then yields that

IP
[
f(xk1

)− f(xj+1) ≥ (j − k⋄)(1− δ1)π
(1)
S κ−1

2 ϵ
p+1
p | K1 and N1(ϵ) > 2k⋄ + 2

]
≥ π

(1)
1

where

κ2 =
2(p+ 1)!

ϑν0ω
p+1
p

, (40)

and thus, because of AS.3, that

IP
[
f(xk1)− flow ≥ κ−1

2 (1− δ1)π
(1)
S (j − k⋄) ϵ

p+1
p | K1 and N1(ϵ) > 2k⋄ + 2

]
≥ π

(1)
1 .

Furthermore, (24) in Lemma 3.7 then implies that

IP

[
j − k⋄ ≤ κ2

(1− δ1)π
(1)
S

(fmax − flow) ϵ
− p+1

p | K1 and N1(ϵ) > 2k⋄ + 2

]
≥ π

(1)
1 ,

Since j is arbitrary between 2k⋄ + 1 and N1(ϵ)− 2, we obtain that

IP

[
N1(ϵ) ≤

κ2

(1− δ1)π
(1)
S

(fmax − flow) ϵ
− p+1

p + k⋄ + 2 | K1 and N1(ϵ) > 2k⋄ + 2

]
≥ π

(1)
1 ,

which, given the definitions of κ2 in (40), of κSKOFFARp in (34) and inequality (36), yields that

IP
[
N1(ϵ) ≤ κSKOFFARp ϵ

− p+1
p + 4 | K1 and N1(ϵ) > 2k⋄ + 2

]
≥ π

(1)
1 .

Therefore, from (37), the fact that

IP
[
K1 | N1(ϵ) > 2k⋄ + 2

]
≥ IP

[
K1 | N1(ϵ) > k⋄

]
and Lemma 3.12, we finally obtain that

IP
[
N1(ϵ) ≤ κSKOFFARp ϵ

− p+1
p + 4

]
= IP

[
N1(ϵ) ≤ κSKOFFARp ϵ

− p+1
p + 4 | K1 and N1(ϵ) > 2k⋄ + 2

]
× IP

[
K1 | N1(ϵ) > 2k⋄ + 2

]
× IP

[
N1(ϵ) > 2k⋄ + 2

]
+ 1 × IP

[
N1(ϵ) ≤ 2k⋄ + 2

]
≥ IP

[
N1(ϵ) ≤ κSKOFFARp ϵ

− p+1
p + 4 | K1 and N1(ϵ) > 2k⋄ + 2

]
× IP

[
K1 | N1(ϵ) > k⋄

]
≥ (π

(1)
1 )2.

Substituting the values of π
(1)
1 given by (33) in this inequality then yields (35). 2

We now comment on this result.

1. As in the methods of [28] and [6], it is not necessary to evaluate the full-space derivatives
{∇j

xf(xk)}pj=1 because only their sketched versions {∇j
xf(xk)[Sk·]j}pj=1 are used. As a con-

sequence, the cost of evaluating the derivatives (not to mention that of computing the step)
is potentially reduced typically by a significant factor ℓ/n. We discuss below whether this
advantage may be offset by the choice of ω in AS.6.

2. Because it is proved in [20, Theorem 3.12] that the O(ϵ−(p+1)/p) order bound for finding
ϵ-approximate critical points is sharp for the OFFARp algorithm, the same is also true for
Theorem 3.13 above, because SKOFFARp subsumes5 OFFARp if Sk = I for all k.

5The different conditions on the regularisation parameter σk only result in differences in the constants.
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3. Considered as a worst-case evaluation complexity bound for p = 2, the order bound O(ϵ−3/2)
is known to be optimal for a large class of methods using first- and second-derivatives [9],
justifying the title of this paper.

4. Note that (29) and (32) not only imply (36), but also that k⋄ is at least a (significant) fraction
of ϵ−(p+1)/p, which, for meaningul values of ϵ, is a reasonably large number. Moreover,
(kϵ − k⋄) is expected to be at least of the same order. Thus the factor(

1− e−
δ21
2 π

(1)
S k⋄

)
in the right-hand side of (35) is expected to be very close to 1.

5. The parameter δ1, which we are still free to choose in (0,1) occurs in (34) and in the expo-
nentials of (35). A quick calculation indicates that choosing δ1 close to 1 can improves the
bound on the right-hand side of (35) (although marginally because of our previous comment)
while its possibly detrimental effect on (34) occurs because of the factor 1/(1 − δ1) which
must be kept bounded. Given the magnitude of the other factors in these formulae, values
such as δ1 = 1

2 or δ1 = 1
10 could be considered acceptable.

6. As can be expected, the conditions for a random embedding given by (43) and AS.6 have a

significant impact on the result, which significantly degrades if ω and/or π
(1)
S tends to zero.

7. As we have mentioned above, the objective function is not evaluated by the SKOFFARp algo-
rithm and the trial point xk + sk is always accepted as the next iterate. Thus no distinction
is necessary in the stochastic analysis between “successful” iterations (where the step is ac-
cepted because the objective function has decreased enough) and “unsuccessful” ones. This
distinction had however to be taken into account in the analysis of [28] for more standard
trust-region and adaptive-regularisation methods using functions values, leading to several
different types of iterations whose numbers have to be bounded.

4 Selecting random subspaces

We now turn to ways in which ω-true iterations can be shown to happen with suitable probability

π
(1)
S , thereby satisfying AS.6. A natural approach is to rely on Johnson-Lindenstrauss embeddings

and results are available in the literature for p ∈ {1, 2}. Restricting ourselves to such values
of p and using [28, Definition 5.3.1] (see also [32], for instance), we say that, for some given
“preservation parameter” αS ∈ (0, 1) and for some positive scalar Smax independent of k, iteration
k is (αS , Smax)-embedded whenever

∥Sk∥ ≤ Smax, (41)

and for
Mk

def
= [gk, Hk] ∈ IRn×n+1, (42)

we have that
∥SkMkz∥ ≥ αS∥Mkz∥ for all z ∈ IRn+1, (43)

where Hk = ∇2
sf(xk) if p = 2 and Hk = 0n×n if p = 1. This condition is said to define a one-sided

random embedding of the second-order Taylor’s series.
Given such a one-sided random embedding, we now adapt an argument of [22] and verify that

(27) holds at (αS , Smax)-embedded iterations.
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Lemma 4.1 Suppose that p ∈ {1, 2}, p! ≤ Lp, that AS.1, AS.2, AS.3, AS.4 and AS.5 hold
and that iteration k ≥ 0 of the SKOFFARp algorithm is (αS , Smax)-embedded (in the sense of
(43)). Then

∥sk∥p ≥ p!αS

αSLp + θSmaxσmax
∥gk+1∥. (44)

Thus iteration k ∈ {0, . . . , N1(ϵ)−2} is ω-true (in the sense of (27)) with ω = p!αS

αSLp+θSmaxσmax
.

Proof. First note that applying the chain rule gives that

∇1
ŝT̂f,p(xk, ŝk) = Sk∇1

sTf,p(xk, sk) = Sk(gk +Hksk) = SkMk(1, s
T
k )

T

and, since the iteration k is (αS , Smax)-embedded, (43) gives that

∥∇1
ŝT̂f,p(xk, ŝk)∥ ≥ αS∥Mk(1, s

T
k )

T ∥ = αS∥∇1
sTf,p(xk, sk)∥.

Condition (9), the definition sk = ST
k ŝk and (41) then yield that

∥∇1
sTf,p(xk, sk)∥ ≤

∥∇1
ŝT̂f,p(xk, ŝk)∥

αS
≤

θ σk

p! Smax∥ST
k ŝk∥p

αS
≤ θSmaxσk

p!αS
∥sk∥p. (45)

Successively using the triangle inequality, condition (45) and (13) (for p ∈ {1, 2}), we deduce
that

∥gk+1∥ ≤ ∥gk+1 −∇1
sTf,p(xk, sk)∥+ ∥∇1

sTf,p(xk, sk)∥ ≤ 1

p!
Lp∥sk∥p +

θSmaxσk

p!αS
∥sk∥p.

The inequality (44) follows by rearranging the terms and using the bound (25) in Lemma 3.8.
That iteration k is ω-true for k ∈ {0, . . . , N1(ϵ)− 2} follows from the fact that, by definition,
∥gk+1∥ ≥ ϵ for these values of k. 2

Although this lemma essentially recovers the result of [28, Lemma 5.3.2], its proof is considerably
simpler. Note that (44) is significantly stronger than (27), suggesting that (43) might itself be
stronger than necessary. Also observe that we could replace condition (9) by the more permissive

∥∇1
ŝT̂f,p(xk, ŝk)∥ ≤ θ

σk

p!
∥Sk∥ ∥ST

k ŝk∥p

or
∥∇1

ŝT̂f,p(xk, ŝk)∥ ≤ θ
σk

p!
κS,k ∥ST

k ŝk∥p

without altering the above theory, but at the price of computing ∥Sk∥ or estimating a uniform
bound on κS,k (such as Smax).

It is also possible to apply Shao’s approach to “sparse Hessians” (for p = 2) as follows. For
some constants (αS , γS) such that αS ∈ (0, 1) and γS ∈ [0, 2αS) and Smax > 0, we now (re)define
iteration k to be (αS , γS , Smax)-embedded whenever

∥Sk∥ ≤ Smax, ∥Skgk∥ ≥ αS∥gk∥ and ∥SkHk∥ ≤
√

γS∥gk+1∥. (46)

We then obtain the following result based on [28, Lemma 5.4.1].

Lemma 4.2 Suppose that AS.1 and AS.3 hold and that, for a particular realization, iteration
k ≥ 0 of the SKOFFAR2 algorithm is (αS , γS , Smax)-embedded (in the sense of (46)). Then
(27) holds and iteration k is ω-true.
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Proof. Let a = ∥SkHk∥. Then (9) gives that

αS∥gk∥ ≤ ∥Skgk∥ ≤ ∥Sk(gk +Hksk)∥+ ∥SkHksk∥ ≤ 1
2θSmaxσk∥sk∥2 + a∥sk∥,

and therefore, using the triangle inequality, (13) and the fact that iteration k is (αS , γS , Smax)-
embedded,

αS∥gk+1∥ ≤ αS∥gk+1 − gk∥+ αS∥gk∥ ≤ 1
2αSL2∥sk∥2 + 1

2θSmaxσk∥sk∥2 + a∥sk∥.

Defining b = αSL2 + θSmaxσk, we obtain that

∥sk∥2 +
(
2a

b

)
∥sk∥ −

2αS∥gk+1∥
b

≥ 0,

yielding that (
∥sk∥+

a

b

)2
≥ 2αS∥gk+1∥

b
+
(a
b

)2
and thus that

∥s∥ ≥
√

2αS∥gk+1∥
b

+
(a
b

)2
− a

b
.

Assuming, without loss of generality, that b = αSL2 + θSmaxσk ≥ 1, we deduce that

∥s∥ ≥ 1

b

[√
2αS∥gk+1∥+ a2 − a

]
Since the function

√
c+ t2 − t (for c > 0) is decreasing as a function of t ≥ 0 and since

a = ∥SkHk∥ ≤
√

γS∥gk+1∥ because iteration k is (αS , γS)-true, we deduce that

∥s∥ ≥ 1
b

[√
2αS∥gk+1∥+ γS∥gk+1∥ −

√
γS∥gk+1∥

]
≥

√
2αS −√

γS
αSL2 + θSmaxσk

√
∥gk+1∥

≥
√
2αS −√

γS
αSL2 + θSmax

σmax

√
∥gk+1∥,

where we again used Lemma 3.8 to obtain the last inequality. 2

Thus, an (αS , γS , Smax)-embedded iteration (in the sense of (46)) is ω-true (in the sense of (27))
for ω = (

√
2αS −√

γS)/(αSL2 + θSmaxσmax). Also notice that, should we replace (46) by

∥Sk∥ ≤ Smax, ∥Skgk∥ ≥ αS∥gk∥ and ∥SkHk∥ ≤ √
γSϵ for k < N1(ϵ)− 1, (47)

then the definition of an (αS , γS , Smax)-embedded iteration is closer to that of [28], obviously
ensuring (46) with a right-hand side of its third part now independent of Sk.

The reader may now recall that AS.6 states that (27), (43), (46) or (47) (or the first part of

(46) or (47)) should hold at iteration k with positive probability π
(1)
S . In [28, Lemma 5.3.1] or [32,

Theorem 2.3] (see also [30, Lemma 3.1]) it is argued that by choosing S to be the distribution of
ℓ× n scaled Gaussian matrices, (43) holds with probability

π
(1)
S = 1− e

− ℓ(1−αS)

Cℓ
+rank(Mk), (48)

where Cℓ > 1
4 is an absolute constant.

Unfortunately, the expression (48) requires that

rank(Mk) <
ℓ(1− αS)

Cℓ
, (49)
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thereby limiting the applicability of the result for p > 1 when considering general problems with
full-rank Hessians. But this can be acceptable for a class of problems with low-rank Hessian,
as we illustrate in Section 5. Satisfying the third part of (47) with positive probability is also
possible when Hk is very sparse, which also imposes a significant restriction. Other choices for
the distribution exist, such as hashing, scaled hashing, sampling matrices, or “fast Lindenstrauss
transforms” (see [28, Chapter 2] or [32, page 16]). Although possibly more economical in terms of
algebraic operations, they appear to suffer from the same geometric precondition: their number
of rows ℓ should be of the order of the Hessian’s rank, which is problematic for the general case
where the Hessian is full rank. However, note that rank(Mk) = 1 when p = 1, essentially avoiding
this problem, making the first-order variant of the algorithm applicable to a much larger class of
problems.

Should one be ready to trade the optimal complexity for getting rid of the low-rank requirement,
an algorithm using quadratically regularised quadratic models with inexact Hessians can also
be defined and analysed (see Appendix). Under suitably modified assumptions, the evaluation
complexity of this algorithm can be shown to be of order O(ϵ−2), matching the theoretical results
of [6] for a random subspace version of the adaptive-regularisation algorithm using function values.
Unfortunately, our numerical experience matches the cautious conclusions of this reference, which
is why we do not investigate it further.

Finally, note that the constant (34) involves S
p+1
p

max due to its dependence on ω
p+1
p . In the case

of scaled Gaussian matrices, we know that

Smax ≤ β
def
= 1.5 +

√
n/ℓ (50)

with high probability for the values considered of δ1 (see [28, Lemma 4.4.4] for instance), resulting

in a dependence of the constant (34) on (n/ℓ)
p+1
2p . For p = 1, this offsets, complexity-wise, the

benefit of cheaper gradient evaluations by a factor of ℓ/n, but the complexity bound is rarely tight
and savings in gradient evaluations are sometimes possible in practice. For p = 2, the advantage
of cheaper gradients (assuming (49)) increases compared to p = 1 because the denominator of (34)
now depends on (n/ℓ)3/4. We show in Section 5 that this theoretical advantage translates into
significantly better numerical behaviour. Moreover, the cost of computing the step sk is reduced
by the decrease in dimension of the linear system. The advantage of cheaper gradients grows when
p grows (and the method is applicable).

5 Numerical illustration

We now numerically illustrate the behaviour of SKOFFAR2, the second-order version of SKOFFARp.
We report results obtained using Matlab R2024a for 14 problems from the CUTEst test problems
[18] as provided in Matlab by OPM [21]. All problems except arglina and tridia are nonconvex.
The original dimension of the problem, say n̂, was enlarged using the affine transformation x = Ax̂,
x̂ ∈ Rn̂, x ∈ Rn, n ≥ n̂, A ∈ Rn×n̂ being an orthonormal matrix generated by the (Matlab
supplied) discrete cosine transform, therefore yielding problems with Hessians of rank at most n̂
and ensuring (49) when n grows.

We ran a Matlab implementation of a modified version of the SKOFFARp where we defined S to
be the distribution of ℓ × n scaled Gaussian matrices. The first modification is identical to that
described in [20] for the OFFARp algorithm, in that (6) is replaced by

σk = max[ϑνk, ξkµk]

where ξk ∈ (0, 1) is an adaptive scaling parameter (see [20] for details) and where µk is defined
by (7) with µ−1 = 103. The second change avoids the (potentially very) costly computation of
∥Sk∥ by using κS,k = β as given by (50). This change was made after running the more expensive
code using κS,k = ∥Sk∥ as suggested by (19) on a few problems and observing that the results
obtained with the theoretically weaker κS,k = β did not degrade the code efficiency, if at all. The
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regularised quadratic was minimized approximately (θ = 1.01(1 +
√
n/ℓ) using a Lanczos-based

solver for such functions (see [11, Section 10.2]). We also chose ϑ = 10−3 and terminated the
optimization as soon as the threshold ∥gk∥ ≤ 10−3 was reached. All computations were performed
on a Dell Precision laptop with 16 cores at 2.6 GHz and 62.5 GB of memory, running Matlab
2024a with Ubuntu 20.04.6 LTS.

For each run, we computed the number of gradient evaluations weighted to reflect the reduced
evaluation cost in the subspace of dimension ℓ. We counted the cost of evaluating a Hessian as
the product of the dimension times the cost of evaluating one gradient (as happens for finite-
difference approximations), the weighted cost of an iteration (now involving the computation of
one gradient and one Hessian) then becoming w2(τ, n) = (τ + nτ2)/(1 + n), where τ = ℓ/n. Thus
this w2 weighting reflects the cost of running the second-order SKOFFAR2 with sketching parameter
τ compared to running it in full-dimension. To take this into account, the maximum number of
iterations was set to 105 divided by this factor. Table 1 reports the average w2-weighted iteration
costs for SKOFFAR2 to reach convergence for n = 1000 n̂ and for decreasing values of the ratio τ
from 1 (irrealistic) to 10−3, averaged over 10 independent runs.

SKOFFAR2

Problem n τ = 1 10−1 5 · 10−2 2.5 · 10−2 10−2 5.10−3 10−3

arglina 10000 19.6000 0.8358 0.3394 0.1399 0.0443 0.0188 0.0027

arwhead 10000 6.7000 0.1191 0.0363 0.0125 0.0033 0.0013 0.0002

broyden3d 10000 7.0000 0.1441 0.0393 0.0161 0.0054 0.0020 0.0004

chandheu 10000 6.0000 0.1231 0.0436 0.0160 0.0062 0.0032 0.0006

dixmaana 12000 13.0000 0.4253 0.2429 0.1290 0.0510 0.0244 0.0041

eg2 10000 5.3000 0.1611 0.0614 0.0233 0.0068 0.0028 0.0004

engval2 3000 18.4000 0.4082 0.2493 0.1323 0.0558 0.0275 0.0055

helix 10000 30.8000 1.7726 0.8606 0.4182 0.1892 0.1234 0.0241

kowosb 10000 2715.9000 152.9072 64.4489 27.2542 8.8252 3.8179 0.6299

nzf1 13000 104.9000 7.3581 3.2245 1.4262 0.4701 0.2006 0.0297

rosenbr 10000 98 .7000 7.4097 3.7827 1.6012 0.5338 0.2675 0.0474

sensors 10000 18.0000 0.8398 0.3399 0.1393 0.0443 0.0192 0.0029

tridia 10000 14.7000 0.5565 0.2367 0.0961 0.0272 0.0112 0.0029

watson 10000 44.0000 3.9886 1.9084 0.8106 0.2847 0.1342 0.0146

Table 1: Using the SKOFFAR2 algorithm: average w2-weighted number of iterations for varying
ratio τ = ℓ/n.

The results in Table 1 show that the use of random subspaces can bring substantial benefits,
as long as (49) holds. In this context, SKOFFAR2 is reliable and efficient on nearly all problems
(except for kowosb) and tested values of τ . Performance globally increases with decreasing values
of τ ; it appears to be best for the smallest value τ = 10−3. Limited to the set of problems
considered, these results show that sketching pays off handsomely in terms of gradient evaluations
when used with low-rank Hessians and second-order models. This, admittedly, ignores the cost of
linear algebra, which increases because products with Sk have to be computed but also decreases
because the calculation of the step in the subspace is significantly cheaper than in the full space.

The reader might wonder at this point how (sketched) second-order methods might compare
to standard first-order algorithms, where the Hessian is not evaluated. We attempt to clarify
this question by comparing, in Table 2, our results for SKOFFAR2 with those obtained by the
well-known objective-function-free ADAGRAD-Norm algorithm [16, 31] and the norm-wise variant
of ADAM6 [25]. To make the comparison fair, we have re-weighted the iteration counts in order
to make them relative to a single gradient evaluation (as is case for one iteration of ADAGRAD

and ADAM) by using w1(τ, n) = τ + nτ2. In this table, the string “>100000” indicates that the
maximum number of iterations was reached.

6Using the momentum discounting factor β = 0.9999. It failed to converge on most problems with smaller
values.
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SKOFFAR2

Problem n ADAM-N ADAG-N 10−1 5 · 10−2 2.5 · 10−2 10−2 5.10−3 10−3

arglina 10000 125 126 8358 3394 1399 443 118 27

arwhead 10000 45 45 1191 363 125 33 13 2

broyden3d 10000 40 40 1441 393 160 54 20 4

chandheu 10000 51 51 1231 435 160 62 32 6

dixmaana 12000 697 710 5104 2915 1549 612 293 47

eg2 10000 106 104 1611 614 233 68 28 4

engval2 3000 > 100000 19266 1225 748 397 168 83 16

helix 10000 26142 53907 17727 8607 4183 1892 1234 241

kowosb 10000 295 296 611781 257860 109043 35309 15275 2520

nzf1 13000 8335 10323 95662 41921 18540 6112 2608 387

rosenbr 10000 26748 56173 74104 37830 16013 5338 2675 474

sensors 10000 189 167 8393 3399 1393 443 192 29

tridia 10000 50 50 5566 2367 962 272 112 29

watson 10000 > 100000 15132 39889 19085 8107 2848 1342 146

Table 2: Using the SKOFFAR2 algorithm: average w1-weighted number of iterations for varying
ratio τ = ℓ/n.
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Figure 1: The behaviour of f(x) when ADAM-N, ADAG-N and SKOFFAR2 are run on rosenbr,
as a function of w1-weighted iteration numbers, where SKOFFAR2 uses τ = 10−1, 5 · 10−2, 2.5 ·
10−2, 10−2, 5.10−3 and 10−3 (from right to left)

These re-weighted results indicate that sketched second-order methods may be competitive with
existing first-order algorithms when using a small τ for problems with low-rank Hessians. We
also note the difference of performance between ADAGRAD and ADAM: while the latter may be
more efficient when it works, it is less reliable than the former (as predicted by the theory). To
provide further intuition, we also show, in Figure 1, how the value of the objective function evolves
(although it is never computed in the course of the algorithm) for one instance of applying ADAM,
ADAGRAD and SKOFFAR2 to the rosenbr problem, the latter with various choices of τ < 1. Beyond
the clearly faster convergence for smaller τ , one also notices the concave nature of the curves,
which contrasts with the convex curves one would often expect when using first-order methods.
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(The nearly vertical part of the curves between 104 and 101 corresponds to the first phase of
minimization where all algorithms reach for the bottom of the steep, curving valley that is typical
of rosenbr.) Because of this concavity, one also sees that requesting higher accuracy in SKOFFAR2

is unlikely to require many more iterations.

6 Conclusions and perspectives

We have introduced an adaptive-regularisation algorithm for nonconvex unconstrained optimiza-
tion that uses random subspaces and never computes the objective function’s value, and have
shown that its evaluation complexity is, in order, identical to that of the “optimal” adaptive
full-space regularisation methods using function values. The analysis covers finding approximate
first-order critical points, but it is possible to extend the algorithm to ensure second-order crit-
icality (along the lines of the MOFFAR algorithm in [20]), albeit at the price of a very strong
assumption on the recovery of the Hessian’s minimum eigenvalue in random subspaces, a noto-
riously thorny problem (see [4, Section 4.2.3], for instance). Our analysis also allows the use of
models of arbitrary degree, but this generality may be of limited practical use since using de-
gree higher than two appears to be mostly applicable to problems with low-rank, very sparse or
partially separable derivatives.

Our theoretical and numerical results show that the approach is theoretically sound and that it
can be significantly advantageous when its second-order variant is used on problems with low-rank
Hessians.

Data availability
The test problems used in this study are available at https://github.com/gratton7/OPM.
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A Quadratic regularisation for approximate second-order
models

We discuss here a context in which the low-rank assumption is unnecessary and, motivated by
[6], consider using quadratic regularisation in conjunction with approximate quadratic models in
which the Hessian ∇2

xf(x) is approximated by a positive-semidefinite symmetric matrix Bk. At
xk, the regularised model mk,B(s) of f(xk + s) then takes the form

mk,B(s)
def
= Tk,B(xk, s) +

σk

2
∥s∥2, (51)

with

Tk,B(xk, s)
def
= f(xk) +∇f(xk)

T s+
1

2
sTBks. (52)

To make the use of this model well-defined, we complete AS.2, AS.4 (for p = 1) and AS.6 and
make the following assumptions.
AS.7 f is continuously differentiable in IRn.
AS.8 The gradient of f is globally Lipschitz continuous, that is, there exist a non-negative constant
L1 such that

∥∇1
xf(x)−∇1

xf(y)∥ ≤ L1∥x− y∥ for all x, y ∈ IRn.

AS.9 The matrix Bk is symmetric, positive-semidefinite and bounded for all k ≥ 0, so that there
exist a positive scalar κB such that

∥Bk∥ ≤ κB for k ≥ 0. (53)

Notice that AS.97 prevents the quadratic model (51) to be unbounded below. In particular,
the use of the Gauss-Newton Hessian approximation for nonlinear least-squares problem is covered
by AS.9, as well as the use of several quasi-Newton updating formulae.

Proceeding as in SKOFFARp, we let Sk be drawn from an iteration-independent distribution S
of ℓ × n random matrices (with ℓ < n), let s = ST

k ŝ be the full dimensional step and consider
minimizing the sketched regularised model

m̂k,B(ŝ)
def
= T̂k,B(xk, ŝ) +

1

2
σk∥ST

k ŝ∥2, (54)

where

T̂k,B(xk, ŝ)
def
= f(xk) + gTk S

T
k ŝ+

1

2
ŝTSkBkS

T
k ŝ.

We note that, similarly to (5), m̂k,B(ŝ) = mk,B(s). The resulting SKOFFAR2B algorithm is stated
on the following page.

The evaluation complexity analysis for the SKOFFAR2B algorithm is very closely related to that
of SKOFFARp, and we now discuss how the results of Section 3 can be adapted to the new context.

1. Restricting our use of the Lipschitz condition to the gradient (p = 1), Lemma 3.1 now states
that

f(xk+1)− T̂k,B(xk, ŝk) = f(xk+1)− Tf,p(xk, sk) ≤
κLB

2
∥sk∥2, (57)

and
∥gk+1 −∇1

sTk,B(xk, sk)∥ ≤ κLB∥sk∥,

where κLB
def
= L1 + κB .

7Alternatively, we could replace the condition that Bk is positive-semidefinite by the weaker condition that
Bk + σkI is positive-semidefinite.
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Algorithm A.1: OFFO adaptive regularisation with approximate second-order
models (SKOFFAR2B)

Step 0: Initialization: An initial point x0 ∈ IRn, a regularisation parameter ν0 > 0 and
a requested final gradient accuracy ϵ ∈ (0, 1] are given, as well as the parameters
θ > 1, µ−1 ≥ 0 and 0 < ϑ < 1. Set k = 0.

Step 1: Step calculation: If k = 0, set σ0 = ν0. Otherwise, select a matrix Bk satisfying
AS.9 and

σk ∈
[
ϑνk,max[νk, µk]

]
,

where

µk = max

[
µk−1,

∥Sk−1gk∥ − ∥∇1
sT̂k,B(xk, sk)∥

κS,k−1.∥sk−1∥

]
with some κS,k−1 such that ∥Sk−1∥ ≤ κS,k−1. Draw a random matrix Sk ∈ IRℓ×n from
S and compute a step sk = ST

k ŝk such that ŝk sufficiently reduces the random model
m̂k,B defined in (54) in the sense that

m̂k,B(ŝk)− m̂k,B(0) < 0 (55)

and
∥∇1

ŝT̂k,B(xk, ŝk)∥ ≤ θσk∥SkS
T
k ŝk∥. (56)

Step 2: Updates. Set xk+1 = xk + sk and νk+1 = νk + νk∥sk∥2. Increment k by one and
go to Step 1.

2. Using now the decrease (55) of the model with quadratic regularisation, the decrease condi-
tion of Lemma 3.2 becomes

Tk,B(xk, 0)− Tk,B(xk, sk) >
σk

2
∥sk∥2. (58)

3. As in Lemma 3.3, we now exploit (57) to obtain that, if σk ≥ 2κLB , then

f(xk)− f(xk+1) >
σk

4
∥sk∥2. (59)

4. Lemma 3.4 is no longer valid because its assumes that the regularisation order is one above
that of the highest derivative used, while both these orders are now equal to two. But a
simple bound on the steplength can still be derived easily.

Lemma A.1 Suppose that AS.7 and AS.9 hold. At each iteration k, we have that

∥sk∥ ≤ 2∥gk∥
ϑν0

. (60)

Proof. Using (55) and m̂k,B(ŝk) = mk,B(sk) it follows that

1

2
σk∥sk∥2 ≤ −gTk sk − 1

2
sTkBksk ≤ ∥gk∥∥sk∥

and the thesis follows from the fact that σk ≥ ϑν0. 2
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5. The proof of Lemma 3.5 is easily adapted to the case where p = 1, yielding that, for all
k ≥ 0,

µk ≤ max[µ−1, κLB ].

6. The bounds (20) and (21) may now be re-writtten as νk ≥ 2κLB/ϑ and

k1
def
= min

{
k ≥ 1 | νk ≥ 2κLB

ϑ

}
,

respectively.

7. Using (60), Lemma 3.6 then becomes

νk1 ≤ νmax
def
=

2κLB

ϑ

[
1 +

(
κg

ϑν0

)2
]
.

8. The revised version of inequality (24) in Lemma 3.7 is now given by

f(xk1) ≤ fmax
def
= f(x0) +

1

2

(
κLB

σ0
νmax + ϑσ0

)
, (61)

and the bound (25) in Lemma 3.8 is now valid with

σmax
def
= max

[
4

ϑ

[
f(x0)− flow +

1

2

(
κLB

σ0
νmax + ϑσ0

)]
+ νmax, µ−1, L1 + κB ,

2κLB

ϑ
, ν0

]
.

(62)

9. It is of course necessary to revise our definition of a true iteration.

Definition A.2 Iteration k ∈ {0, . . . , N1(ϵ)− 1} is ω-true whenever,

∥sk∥ ≥ ωϵ. (63)

We say that, for some given “preservation parameter” αS ∈ (0, 1) and a constant Smax > 0,
iteration k is (αS , Smax)-embedded whenever,

∥Skgk∥ ≥ αS∥gk∥ and ∥Sk∥ ≤ Smax. (64)

10. Lemma 3.10 remains valid with

k∗
def
=

⌈
2κLBϵ

−2

ϑν0 ω2

⌉
and σk ≥ 2κLB , for all k ≥ k1 (65)

while Lemmas 3.11 and 3.12 are unchanged.

11. Since, for algorithm SKOFFAR2B, ∥gk∥ > ϵ for all k ≤ N1(ϵ) − 1 (instead of ∥gk+1∥ > ϵ for
k ≤ N1(ϵ) − 2 for SKOFFARp), we may continue to use the proof of Lemma 3.13 and obtain
the following evaluation complexity result for the SKOFFAR2B algorithm.
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Theorem A.3 Suppose that AS.2, AS.4, AS.6, AS.7, AS.8 and AS.9 hold, that δ1 ∈ (0, 1)
is given and that the SKOFFAR2B algorithm is applied to problem (1). Define

κSKOFFAR2B

def
=

4 [L1 + κB + 2(fmax − flow)]

ϑν0ω2(1− δ1)π
(1)
S

(66)

where fmax is defined in (61). Then

IP
[
N1(ϵ) ≤ κSKOFFAR2B ϵ

−2 + 4
]
≥
(
1− e−

δ21
2 π

(1)
S k⋄

)2

where k⋄ =

⌈
k∗

(1−δ1)π
(1)
S

⌉
with k∗ given by (65).

Of course, using quite loose Hessian approximations in (51) has the consequence that the
complexity order is now O(ϵ−2), which is identical to that of other methods (such as deter-
ministic and stochastic trust-region or regularisation) using the same type of approximations
and objective function values.

12. We finally consider how Lemma 4.1 can be adapted for the use of Gaussian scaled matrices
within the SKOFFAR2B algorithm.

Lemma A.4 Suppose that AS.4, AS.7, AS.8 and AS.9 hold and that iteration k ≥ 0 of the
SKOFFAR2B algorithm is (αS , Smax)-embedded (in the sense of (64)). Then

∥sk∥ ≥ αS

Smax(κB + θσk)
∥gk∥.

Thus iteration k ∈ {0, . . . , N1(ϵ)−1} is ω-true (in the sense of (63)) with ω = αS

Smax(κB+θσmax)
.

Proof. Since
Skgk = ∇1

sT̂k,B(xk, ŝk)− SkBkS
T
k ŝk,

we obtain from (56) and the definition of (αS , Smax)-embedded iteration that

αS∥gk∥ ≤ ∥Skgk∥ ≤ Smax(κB + θσk)∥sk∥

Using the bound (62) yields the desired result. 2

We see that the constant (66) now involves S2
max. In the case of scaled Gaussian matrices,

(50) then gives a dependence of the constant (66) in n/ℓ, as is the case for the (non-OFFO)
trust-region method of [6].

We conclude this discussion by noting that, should the Gauss-Newton method for nonlinear
least-squares be considered, AS.3 (for p = 1) and AS.4 can be replaced by assuming the
Lipschitz continuity of the problem’s Jacobian and the boundedness of the Jacobian and
residual (see [26, page 295] for a proof that this is sufficient to ensure Lipschitz continuity
and boundedness of the objective function’s gradient).
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