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Abstract

Bike Sharing Systems (BSSs) offer a sustainable and efficient urban transportation solu-
tion, bringing flexible and eco-friendly alternatives to city logistics. During their operation,
BSSs may suffer from unbalanced bike distribution among stations, requiring rebalancing
operations throughout the system. The inherent uncertain demand at the stations further
complicates these rebalancing operations, even when performed during downtime. This pa-
per addresses this challenge by introducing the Robust Bike Sharing Rebalancing Problem
(RBRP), which relies on robust optimization techniques to improve rebalancing operations in
BSSs. Very few studies have considered uncertainty in this context, despite it being a com-
mon characteristic with a significant impact on the performance of the system. We present
two new formulations and a tailored branch-and-cut algorithm for the RBRP. The first for-
mulation is compact and based on the linearization of recursive equations, while the second
is based on robust rounded capacity inequalities and feasibility cuts. Computational results
based on benchmark instances indicate the effectiveness of our approaches and highlight the
benefits of using robust solutions to support decision-making in BSSs.

Keywords: Bike Sharing Systems, Vehicle Routing, Combinatorial Optimization, Robust
Optimization

1. Introduction

Bike Sharing Systems (BSSs) are an excellent solution to improve urban mobility, offering
a mode of transportation that is both economical and environmentally friendly. Implementing
BSSs in large urban centers has the potential to alleviate heavy traffic and reduce pollution,
yielding direct and indirect benefits to the surrounding population. Over the last two decades,
these systems have spread worldwide and are becoming increasingly popular (Si et al. 2019).
According to data from the Meddin Bike Sharing World Map (Meddin 2023), in August 2023,
there were roughly 1940 BSSs in operation around the world. To maintain competitiveness
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and enhance customer service, some systems have integrated advanced technologies, including
geolocation, internet of things, wireless payment and electric bikes.

In most BSSs, stations are spread all over the city, enabling users to rent and return
bikes. Throughout the day, certain stations may experience fluctuations in bike availability,
leading to surpluses or shortages, and occasionally, stations may become full or empty. As
a consequence, rebalancing operations must be regularly performed to restore the desired
inventory levels at each station. The Bike Sharing Rebalancing Problem (BRP) addresses
the optimization of these rebalancing operations (Bruck and Subramanian 2023). In this
problem, a fleet of capacitated vehicles is used to perform a series of pickups and deliveries
to bring the system to a balanced state while minimizing routing costs. Each station must
be visited exactly once, and the depot has the flexibility to supply or receive any quantity of
bikes to and from the system (Dell’Amico et al. 2014, 2016). Notably, the BRP is a variant
of the Vehicle Routing Problem (VRP), specifically belonging to the class of Pickup and
Delivery Problems (PDPs), and therefore is NP-hard.

While the literature on deterministic problems for rebalancing operations in BSSs is vast,
surveys carried out by Laporte, Meunier, and Calvo (2018) and Si et al. (2019) reveal a
limited number of research articles addressing this class of problems under uncertainty, despite
its practical relevance. Indeed, uncertainty is an intrinsic factor in most real-world BSSs,
primarily due to demand fluctuations. If not appropriately accounted for, this uncertainty
can lead to ineffective or even infeasible rebalancing operations. However, Dell’Amico et al.
(2018) are the only authors addressing demand uncertainty in the BRP thus far. They
resort to Stochastic Programming (SP) and assume that the demand at each station follows
a probability distribution represented by a finite set of scenarios.

In this paper, we introduce the Robust Bike sharing Rebalancing Problem (RBRP), an
extension of the BRP that considers demand uncertainty via Robust Optimization (RO)
(Ben-Tal, Ghaoui, and Nemirovski 2009, Bertsimas and Sim 2004). RO approaches do not
require the use of probability distributions and allow us to model parameter variation using
uncertainty sets that take into account the decision-maker’s aversion to risk. The solutions
provided by RO approaches are protected against variations within the uncertainty set, mit-
igating the risk of becoming infeasible or overly expensive during their execution. Hence, by
relying on robust routes in rebalancing operations, we are likely to improve the effectiveness
of BSSs.

To model and solve the RBRP, we propose two Mixed Integer Linear Programming
(MILP) formulations and a specialized Branch-and-Cut (B&C) algorithm. Computational
experiments performed on benchmark instances derived from real-world data show the ad-
vantages of applying RO in the context of bike rebalancing operations. Furthermore, we
provide theoretical results regarding the proposed solution methods and highlight that the
use of RO to address the BRP under uncertainty is a challenging and non-trivial task. Our
main contributions can be summarized as follows:

• We formally introduce the RBRP under demand uncertainty. To the best of our knowl-
edge, this is the first paper to introduce an RO approach for the BRP;
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• We present a theoretical analysis regarding the worst-case demand realizations for the
RBRP, which is a key component of our modeling strategy;

• We develop a compact formulation for the RBRP relying on decision variables that
represent the worst-case loads after visiting each station. This formulation is obtained
through the linearization of recursive equations, a technique successfully used to derive
robust counterparts of vehicle routing problems (Munari et al. 2019). We are not aware
of any other study using this linearization technique to incorporate uncertainties into
PDPs, which is thus another relevant contribution of this article;

• We present a second formulation, based on robust rounded capacity inequalities and
feasibility cuts. Based on this formulation, we develop a specialized B&C algorithm
that further incorporates other types of valid inequalities;

• We discuss the potential benefits of relying on robust solutions to support decision-
making in rebalancing operations. Through Monte Carlo simulations, we show that sig-
nificant reductions in the risk of routes becoming infeasible in practice can be achieved
without substantially increasing operational costs.

The remainder of this paper is organized as follows. In Section 2, we present the relevant
literature related to the RBRP. In Section 3, we formally define the RBRP and describe how
demand uncertainties are modeled. In Section 4, we propose two MILP formulations for the
RBRP, while in Section 5 we describe the tailored B&C algorithm developed for this problem.
In Section 6, we present the results of computational experiments using generated benchmark
instances based on real-world BSSs’ data. Finally, Section 7 presents the conclusions and
future work directions.

2. Related literature

In this section, we provide an overview of the literature related to the RBRP. For more
comprehensive surveys on shared mobility systems and bike sharing, we refer the reader to
Laporte, Meunier, and Calvo (2018), Si et al. (2019) and Shui and Szeto (2020). In addition,
Bruck and Subramanian (2023) presents an outline of the basic variants of the BRP and
their fundamental characteristics. An extensive review of PDPs can be found in Battarra,
Cordeau, and Iori (2014).

According to the classification scheme proposed by Berbeglia et al. (2007), rebalancing
problems in BSSs fall within the category of many-to-many PDPs, as any station can serve as
either the origin or destination for bikes within the system. The most elementary problem re-
lated to the BRP is known as the One-commodity Pickup-and-Delivery Traveling Salesman
Problem (1-PDTSP), which is a generalization of the Traveling Salesman Problem (TSP)
(Hernández-Pérez and Salazar-González 2004b). In this variant, a single capacitated vehicle
is in charge of rebalancing the inventory of each customer to a predefined value by performing
a series of pickups and deliveries along a single route of minimal cost. The vehicle is based
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on a depot, which cannot provide nor receive goods from customers, only serving as a start-
ing and ending point for the vehicle. Furthermore, each customer must be visited exactly
once, even if their demand equals zero. The BRP is a generalization of the 1-PDTSP that
considers multiple vehicles and for this reason, it is also known in the literature as the One-
commodity Pickup-and-Delivery Vehicle Routing Problem (1-PDVRP) (Dell’Amico et al.
2014, 2016). Note that, as pointed out by Bruck and Subramanian (2020), the 1-PDVRP
was first introduced by Dror, Fortin, and Roucairol (1998) and later studied by Gunes, van
Hoeve, and Tayur (2010). In the latter study, the authors kept the same name and slightly
changed the problem definition by including a maximum time constraint for each route. For
other variants related to the BRP, we refer interested readers to Chemla, Meunier, and Calvo
(2013), Salazar-González and Santos-Hernández (2015), Erdoğan, Laporte, and Calvo (2014),
Erdoğan, Battarra, and Calvo (2015), Casazza et al. (2018), Bruck et al. (2019), Casazza,
Ceselli, and Calvo (2021), Hernández-Pérez and Salazar-González (2022).

Rebalancing operations may be performed either during working hours or when the system
is closed. Following the classification introduced by Pillac et al. (2013), the latter is typi-
cally modeled as a static deterministic problem (see, e.g., Cruz et al. 2017, Hernández-Pérez
and Salazar-González 2018, Hernández-Pérez, Salazar-González, and Santos-Hernández 2018,
Bulhões et al. 2018), assuming that the number of bikes to be collected or delivered is known
and does not change after the route planning process. The former is mostly modeled as a
dynamic deterministic problem, assuming that data is gradually revealed and routes may
be redefined according to the realized values (see, e.g., Contardo, Morency, and Rousseau
2012, Regue and Recker 2014, Zhang et al. 2017). Most of the literature primarily focuses
on static problems, given their wider applicability and computational tractability. As noted
by Laporte, Meunier, and Calvo (2018) and Shui and Szeto (2020), performing rebalancing
operations during the night is often more efficient due to several factors, including reduced
traffic.

It is worth mentioning that independently of being performed during working hours or not,
the number of bikes to be collected or delivered in each station may be nondeterministic. For
example, routes may be defined in a tactical decision level based on demand estimates, as an
information system that computes routes may not be available to find the best route for each
specific day. In this case, even after the system is closed, drivers follow the same predefined
routes every day. These routes may be preferable in practice, as they commonly bring several
benefits to drivers regarding consistency and safety, and simplify the system’s management.
Therefore, it is relevant to consider possible demand deviations through different days, in a
way to design routes that are likely to be feasible when executed. Notably, we may compute
different routes for days with different demand patterns. Moreover, even when an information
system is used to help compute routes for each specific day, the available data may still not
be accurate, as the sensors and other technologies used in these stations may be defective,
affected by errors, or misused.

The nondeterminism in the number of bikes in each station when the system is open is
more evident, as users are picking up or returning bikes during the execution of the routes.
Even if we assume that an information system is available to compute the best routes for
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that day/shift and that the acquired data is completely accurate (which are both strong
assumptions in practice), the number of bikes in each station is likely to change after the
vehicle starts its route. Hence, considering these changes when designing the routes can be
useful also in the operational decision level, to accommodate the changes that are natural
in the system, while in operation. Approaches based on stochastic programming or robust
optimization have been widely used in the VRP literature to address these types of situations,
and are typically preferred because of their computational tractability (Gendreau, Jabali, and
Rei 2014, Oyola, Arntzen, and Woodruff 2018, 2017). Nevertheless, very few authors have
considered these approaches in the context of the BRP.

The lack of research in BRP variants under uncertainty has been pointed out by several
authors over the last years (Laporte, Meunier, and Calvo 2018, Si et al. 2019, Shui and Szeto
2020, Bruck and Subramanian 2023). As mentioned above, BSSs often face uncertainty due
to demand fluctuations, which makes it a relevant feature in the planning of rebalancing op-
erations. To our knowledge, there is only one study addressing the BRP under uncertainty,
and it is based on SP approaches. Namely, Dell’Amico et al. (2018) introduces the BRP
with stochastic demands (BRPSD), in which the demand at each station follows a proba-
bility distribution that is represented by a finite set of scenarios. The problem is modeled
as a two-stage SP problem, with a recourse function that penalizes the partially fulfilled
demands in the scenarios. The authors propose new models, heuristics and several exact
approaches including L-shaped and branch-and-cut methods. Computational experiments
using real-world and randomly generated instances indicate that the solutions obtained with
the proposed approaches reduce the chances of unmet demands in rebalancing operations.

Cavagnini et al. (2018) address a related problem using two-stage SP approaches as well,
but concerning only the assignment of bikes to stations under demand uncertainty (i.e., no
routing decisions). The authors use recourse actions consisting of rebalancing plans that result
in different penalties added to the objective function, including congestion, starvation, fleet
size and other performance measures. They propose a formulation and heuristic approaches to
reduce the computational times of solving this formulation without compromising the quality
of the solution. Maggioni et al. (2019) address a similar problem and propose two-stage and
multistage SP models to determine the optimal number of bikes at each station.

All the aforementioned studies rely on the SP paradigm and, hence, assume that the
uncertain demand can be effectively represented using probability distributions (??). Ad-
ditionally, they represent these distributions using a limited number of scenarios that are
randomly sampled from these distributions. Even though these scenarios may be created
using real-world data, Yuan et al. (2019) observe that historical data from BSSs are often
inaccurate or insufficient for proper demand forecasting. These observations indicate that
other approaches may be more appropriate for handling demand uncertainty in BSSs.

Different from SP, RO approaches do not require the use of probability distributions
to model uncertainty (Ben-Tal, Ghaoui, and Nemirovski 2009). The purpose is to gener-
ate solutions that remain feasible for any realization of the uncertain parameter belonging
to an uncertainty set. There are different strategies to model this set, and the so-called
cardinality-constrained set proposed by Bertsimas and Sim (2004) has become very popular
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over the last decades. This set has the advantage of adjusting the desired level of robust-
ness in the generated solutions according to the decision-maker’s aversion to risk, preventing
over-conservative solutions caused by unlikely realizations. Additionally, it is defined as a
polyhedral set, thus the computational difficulty related to RO approaches based on this set
does not increase substantially compared to their deterministic counterparts. Finally, this
set has been successfully used in the literature to model other VRP variants (Agra et al.
2013, Gounaris, Wiesemann, and Floudas 2013, Munari et al. 2019, Lu and Gzara 2019, De
La Vega, Munari, and Morabito 2020). These reasons motivate the use of RO to tackle the
BRP under uncertainty.

RO has been used to address uncertainty in other important operations of BSSs. Lu
(2016) uses RO to model the allocation of bikes to stations under demand uncertainty. The
author proposes models based on time-space networks to determine the optimal flow of bikes.
Fu et al. (2022) address demand uncertainty in integrated location and allocation decisions.
They propose a robust two-stage optimization approach in which the first stage considers the
positioning of bicycle stations and service areas, while the second stage solves a static vehicle
allocation problem. None of these studies consider routing decisions, and thus, the problems
addressed by them differ in essence from the BRP.

The presented literature reveals a lack of models and solution approaches for the BRP
under uncertainty, especially considering RO. This is noteworthy because the importance of
relying on robust solutions has often and successfully been demonstrated in the VRP literature
(Campos, Munari, and Coelho 2022, Subramanyam 2023). It is clear that investigating
solution approaches for robust variants of the BRP is an important and promising research
avenue.

3. The Robust Bike Sharing Rebalancing Problem (RBRP)

The RBRP consists of defining a minimum-cost set of routes that ensure the rebalancing of
the bike inventory at each station, through pickup and delivery operations, using the vehicle
fleet available at a single depot. We assume a homogeneous fleet of m vehicles of capacity Q.
Each station must be visited exactly once, for either a pickup or a delivery operation. Each
route must start and end at the depot and respect vehicle capacity for any possible realization
of the uncertain demand. By definition, the depot is assumed to have an unlimited storage
capacity and inventory level, thus being able to provide or receive any number of bikes as long
as vehicle capacity is respected. This is a reasonable assumption as the depot is expected to
have a larger storage capacity than the combined availability of bikes at stations.

The RBRP can be represented by a directed graph G = (V,A), where V = I ∪ {0} is
the set of vertices, I = {1, ..., n} is the set of stations and 0 represents the depot. The arc
set A = {(i, j) : i, j ∈ V, i ̸= j} represents the connections between vertices in V. We define
the subset A(I) ⊂ A containing only arcs that connect two stations. Each arc (i, j) ∈ A
is associated with an asymmetric travel cost cij and each station i ∈ I has an uncertain
demand d̃i, which represents its excess or shortage of bikes. We model demands as random
variables whose specific values (realizations) become known only after a vehicle arrives at
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each station. If the realization of d̃i is positive, there is an excess of bikes at station i with
respect to its desired inventory level, and thus, this station is a pickup vertex. Conversely,
if this realization is negative, there is a shortage of bikes at station i, making it a delivery
vertex. Stations with demand realizations equal to zero are balanced. These stations must
still be visited, as their actual demand is unknown at the planning stage.

Following the RO paradigm, we consider that each uncertain demand d̃i is characterized
by a nominal value di ∈ R and a maximum deviation d̂i ∈ R+, such that its realization
belongs to the range [di − d̂i, di + d̂i], for each i ∈ I. We then conveniently represent
d̃i = di + d̂iξi,∀i ∈ I, in which ξi is a random variable defined in the range [−1, 1]. To
avoid overconservatism, we model the demand uncertainty using the cardinality-constrained
uncertainty set (Bertsimas and Sim 2004). As already mentioned, these sets have been
successfully used in the literature to model VRP variants under uncertainty (Agra et al.
2013, Gounaris, Wiesemann, and Floudas 2013, Munari et al. 2019, De La Vega, Munari,
and Morabito 2020, Campos, Munari, and Coelho 2022). For a given budget of uncertainty
Γ > 0, chosen by the decision maker according to their risk aversion, we define the cardinality-
constrained set for demand uncertainty as follows:

U(Γ) = {d̃ ∈ R|I| | d̃i = di + d̂iξi, i ∈ I;
∑
i∈I
|ξi| ≤ Γ; ξi ∈ [−1, 1], i ∈ I}. (1)

We assume hereafter that Γ ∈ Z+. Thus, the budget of uncertainty can be interpreted as
the maximum number of stations in which the demand realizations attain their worst case.
A solution is said to be robust-feasible if its routes satisfy the vehicle capacity Q for every
demand realization in U(Γ).

Different techniques can be used to incorporate the uncertainty set U(Γ) into a MILP
model (Bertsimas and Sim 2004, Zeng and Zhao 2013, Bertsimas, Dunning, and Lubin 2016,
Büsing, Gersing, and Koster 2023). Due to its generality and practicality, the dualization
technique proposed by Bertsimas and Sim (2004) remains the most popular for formulating
robust counterparts for deterministic MILPs by using cardinality-constrained sets. However,
in VRP-like problems, this technique can significantly increase the number of variables and
constraints in the robust counterpart, often resulting in elevated computation times (Agra
et al. 2013, Gounaris, Wiesemann, and Floudas 2013, Munari et al. 2019). As an alternative,
we may resort to a technique based on the linearization of recursive equations that model
the worst-case behavior of the uncertain parameters. This technique was shown to be more
intuitive and efficient for VRP variants (Yu, Cheng, and Zhu 2022, Campos, Munari, and
Coelho 2022, Munari et al. 2019). Therefore, the same technique is adopted in this study for
modeling the RBRP, but with the required non-trivial adaptations described as follows.

Munari et al. (2019) described the linearization technique for the VRP with time windows
(VRPTW), a variant that considers either pickup or delivery operations, but not both. The
application of this technique to the RBRP is not straightforward though, due to certain
specificities of this problem, described as follows:

• Since there are pickup and delivery operations in the RBRP, the worst-case load in a
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vehicle is no longer monotonic along its route as it is in the VRPTW;

• We have to consider both positive and negative deviations of the nominal demand
value in the computation of the worst-case load, while in the VRPTW only positive
deviations are relevant. Additionally, note that a station with positive nominal demand
(pickup vertex) may become one with a negative demand realization (delivery vertex)
depending on its deviation value. Hence, the same station may become either a pickup
or delivery vertex depending on its demand realization;

• Another specificity of the RBRP is that a vehicle may depart from the depot with a
positive load, while in the VRPTW all vehicles depart empty (or full if we take the
delivery perspective). Hence, in the RBRP, we need to explicitly define the initial load
of each vehicle during the route planning, as it affects the feasibility of the routes. Each
route in the solution has to be feasible for this initial value for all demand realizations
belonging to the uncertainty set.

All the mentioned characteristics bring additional challenges to writing recursive equations
for calculating the worst-case load in the RBRP using dynamic programming. Fortunately,
a relevant observation allows us to simplify this calculation: it suffices to consider only all
positive or all negative demand deviations when calculating a vehicle’s worst-case load. In
fact, if demand deviations are not all positive in a given route, it is always possible to obtain
a maximum vehicle load that is greater than or equal to the current by forcing all deviations
to be positive. A similar reasoning applies to the minimum vehicle load.

Proposition 1. Consider the uncertainty set U(Γ) for Γ ∈ Z+. Given a route r, the
minimum and maximum vehicle load in this route for any realization in U(Γ) can be calculated
considering only the realizations d̄ ∈ U(Γ) such that d̄i = di + d̂iξi with:

(i) ξi = −1, ∀i ∈ I (minimum vehicle load); and

(ii) ξi = +1, ∀i ∈ I (maximum vehicle load).

Proof. By contradiction. Let θ− denote the minimum vehicle load in this route, considering
any realization in U(Γ). Consider a realization d1 ∈ U(Γ) such that d1

i = di + d̂iξi with
ξk = +1 for at least one k in route r. Let θ1 be the minimum vehicle load in route r for this
realization and consider this load is observed after k is served in the route. Assume that for
this realization we have θ1 = θ−. Now, let d2 ∈ U(Γ) be the same realization as d1 except for
having ξk = −1. Hence, d2

k < d1
k. We denote as θ2 the minimum vehicle load for d2. Since

all the other components of d2 are the same as in d1, we must have θ2 < θ1 = θ−, which is
a contradiction, as we have assumed θ− is the minimum vehicle load in r for any realization
in U(Γ). The proof of the maximum vehicle load follows similarly.

Consider a budget of uncertainty Γ > 0 and a route r = (r0, r1, . . . , rh), with h > 1,
in which both r0 and rh represent the depot. Then, let θ+

rjγ , for j = 0, . . . , h and γ ∈
{0, 1, . . . , Γ}, specify the worst-case load of a vehicle after serving vertex rj considering that
the demand realizations of any γ stations in the route up to station rj attain their worst-case
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values with all-positive deviations. Similarly, we define θ−
rjγ for all-negative deviations. Let

us also denote by θd the initial load of a vehicle leaving the depot to perform route r.
One important observation is that even though the worst-case demand realization is

achieved by considering deviations to be either all positive or all negative, we cannot as-
sume that these cases are independent of one another. The following example illustrates
how the independent computation of demand variations in the all-negative and all-positive
cases may lead to a miscalculation of the required initial vehicle load. Consider the route
r = (0, 1, 2, 3, 4, 0) depicted in Figure 1, in which demand values and deviations in the format
[−d̂i, +d̂i] are shown above each station. The vehicle capacity is Q = 10. The figure presents
the load along each arc under three different scenarios: the deterministic case and, for Γ = 1,
the cases with all-positive and all-negative deviations.

Figure 1: Example of a route in which considering worst-case demand values with all-positive deviations and
all-negative deviations independently leads to a miscalculation of the initial vehicle load

0 1 2 3 4 0

+3
[−2, +2]

+3
[−1, +1]

−3
[−1, +1]

−5
[−1, +1]

deterministic 2 5 8 5 0

all-positive 2 7 10 7 2

all-negative 4 5 8 5 0

all-positive (θd = 4) 4 9 121212 9 4

In the deterministic case, if the vehicle starts the route empty, its cumulative load at
each arc in the route can be represented as (0, 3, 6, 3,−2). This means that the vehicle must
depart from the depot with at least θd = 2 bikes to fulfill the demand of each station. As
shown in Figure 1, the resulting flow of bikes along the route for the deterministic case
is then (2, 5, 8, 5, 0). Next, assuming Γ = 1, the worst-case vehicle load considering only
positive deviations happens when station 1 attains its worst-case realization at d̄1 = 3 + 2.
If the vehicle departs from the depot with 2 bikes, the flow of bikes considering only positive
deviations is (2, 7, 10, 7, 2).

Now, by considering only negative deviations, the worst-case is once again achieved when
the demand of station 1 attains its worst-case realization, i.e., d̄1 = 3 − 2. In this case,
assuming that the vehicle leaves the depot with only 2 bikes, the cumulative load at each arc
is given by the sequence (2, 3, 6, 3,−2). This indicates that the vehicle must leave the depot
with at least θd = 4 bikes to fulfill the demand of each station, with a resulting cumulative
vehicle load denoted by (4, 5, 8, 5, 0), as depicted in Figure 1. Considering that, apparently,
in both worst cases the vehicle capacity is not violated for their specific choices of initial
load, this route could be mistakenly deemed feasible. However, for this solution to be robust-
feasible, the actual initial load of the vehicle must be θd = 4, which would render the solution
infeasible when considering all-positive variations, as the vehicle capacity would be violated
on arc (2, 3). This is highlighted at the bottom of Figure 1. Therefore, in the RBRP, we
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need to specifically define the initial load of each vehicle route, and then guarantee that all
these routes remain feasible for their respective initial loads, considering all realizations of
the demand. The computation of the worst-case load in each route must be performed using
the same initial load for both all negative and all positive deviations.

In what follows, we show how to compute worst-case vehicle loads by simultaneously
considering all negative and all positive deviations. In addition, we also show the correct
calculation of the required initial load values. First, we calculate θ−

rjγ assuming that the
vehicle departs empty from the depot, using the following recursive equation:

θ−
rjγ =


0, if j = 0,

θ−
rj−1γ + drj , if γ = 0,

min{θ−
rj−1γ + drj , θ−

rj−1(γ−1) + drj − d̂rj}, otherwise.

(2)

The first line in this equation corresponds to the load of a vehicle after departing from the
depot. The second line represents the case in which none of the demands attains their worst-
case up to vertex rj , thus the vehicle collects (if drj > 0) or delivers (if drj < 0) the nominal
demand of rj only. Finally, the last line calculates the worst-case load after rj , considering
two different cases in which the vehicle collects or delivers either the nominal demand or the
nominal demand minus the deviation value.

After calculating θ−
rjγ , we define θd = max{0,−min{θ−

rjγ : j = 0, . . . , h; γ = 0, 1, . . . , Γ}},
which represents the required initial load of a vehicle departing from the depot, to ensure
that there are enough bikes to meet all demands in route r, accounting for any demand
realization. If the minimization term in the calculation of θd results in a negative value, then
it represents the worst-case shortage of bikes in the vehicle at a given station, for a given
demand realization. Recall that a route r is robust-feasible only if 0 ≤ θ−

rjγ + θd ≤ Q, for all
j = 0, . . . , h, and γ ∈ {0, 1, . . . , Γ}. This is a necessary but not sufficient condition, as we still
need to check the feasibility regarding θ+

rjγ . Hence, if none of these inequalities is violated,
we calculate the worst-case load values regarding all-positive deviations using the following
recursive equation:

θ+
rjγ =


θd, if j = 0,

θ+
rj−1γ + drj , if γ = 0,

max{θ+
rj−1γ + drj , θ+

rj−1(γ−1) + drj + d̂rj}, otherwise.

(3)

Note that the initial vehicle load θd is used in the first line of this equation. This ensures
that the same value is considered in both computations of the worst-case load. Finally, route
r is robust-feasible only if the calculated values satisfy 0 ≤ θ+

rjγ ≤ Q, for all j = 0, . . . , h, and
γ ∈ {0, 1, . . . , Γ}.

Recursive equations (2) and (3) can be implemented as dynamic programming algorithms
to verify the robust-feasibility of a given route. We rely on these algorithms in the proposed
B&C. Additionally, we linearize these equations to produce sets of constraints that guarantee
the robustness of solutions in a compact formulation for the RBRP, as presented in the
following section.
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4. MIP Formulations

We introduce two new formulations for the RBRP under demand uncertainty. The first
one is a compact model in which robust feasibility is guaranteed via a polynomial number
of constraints that originate from the linearization of the recursive equations introduced in
Section 3. The second formulation is non-compact, as it relies on an extensive number of
constraints to ensure robust feasibility.

4.1. Compact Formulation

Our compact formulation results from linearizing and incorporating the recursive equa-
tions (2) and (3) into an existing deterministic BRP formulation. We define the decision
variables of this formulation as follows.

xij ∈ {0, 1} assumes the value of 1 if, and only if, vertex j is visited immediately after vertex
i in the same route, ∀(i, j) ∈ A;

uj ∈ R+ number of vertices visited in a route up to vertex j, ∀j ∈ V;

θ+
jγ ∈ R+ worst-case vehicle load in a route after serving station j, when the demand

realizations of any γ stations attain their worst-case value by positive deviations
only, ∀j ∈ I and γ ∈ {0, 1, . . . , Γ};

θ−
jγ ∈ R+ worst-case vehicle load in a route after serving station j, when the demand

realizations of any γ stations attain their worst-case value by negative deviations
only, ∀j ∈ I and γ ∈ {0, 1, . . . , Γ}

θd
j ∈ R+ initial vehicle load in the route that has vertex j as the first visited station,

∀j ∈ I.

Variables xij are common in the VRP literature and represent the flow of vehicles across
the arcs of graph G. Auxiliary variables ui are used to define the well-known Miller-Tucker-
Zemlin (MTZ) subtour elimination constraints (Miller, Tucker, and Zemlin 1960). Variables
θ+

iγ , θ−
iγ and θd

j have the same meaning as in Section 3. Note that the definition of θd
j includes

an index to specify the first visited station in the route. This is necessary to identify different
routes.

Using the defined parameters and decision variables, we cast our compact formulation for
the RBRP under demand uncertainty as follows.

min
∑

(i,j)∈A
cijxij (4)

s.t.
∑

(i,j)∈A
xij = 1, ∀j ∈ I, (5)

∑
(i,j)∈A

xij = 1, ∀i ∈ I, (6)
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∑
(0,j)∈A

x0j ≥ 1, (7)

∑
(0,j)∈A

x0j −
∑

(j,0)∈A
xj0 = 0, ∀j ∈ I, (8)

uj ≥ ui + 1− n(1− xij), ∀(i, j) ∈ A : j > 0, (9)

θ−
jγ ≤ θ−

iγ + djxij + Q(1− xij), ∀(i, j) ∈ A(I), γ ∈ {0, . . . , Γ}, (10)

θ−
jγ ≤ θ−

iγ−1 + (dj − d̂j)xij + Q(1− xij), ∀(i, j) ∈ A(I), γ ∈ {1, . . . , Γ}, (11)

θ−
j0 ≤ θd

j + djx0j + Q(1− x0j), ∀j ∈ I, (12)

θ−
jγ ≤ θd

j + (dj − d̂j)x0j + Q(1− x0j), ∀j ∈ I, γ ∈ {1, . . . , Γ}, (13)

θ+
jγ ≥ θ+

iγ + djxij −Q(1− xij), ∀(i, j) ∈ A(I), γ ∈ {0, . . . , Γ}, (14)

θ+
jγ ≥ θ+

iγ−1 + (dj + d̂j)xij −Q(1− xij), ∀(i, j) ∈ A(I), γ ∈ {1, . . . , Γ}, (15)

θ+
j0 ≥ θd

j + djx0j −Q(1− x0j), ∀j ∈ I, (16)

θ+
jγ ≥ θd

j + (dj + d̂j)x0j −Q(1− x0j), ∀j ∈ I, γ ∈ {1, . . . , Γ}, (17)

θ+
jγ , θ−

jγ ∈ [0, Q], ∀j ∈ I, γ ∈ {0, . . . , Γ}, (18)

θd
j ∈ [0, Q], ∀j ∈ I, (19)

uj ∈ [0, n], ∀j ∈ V, (20)

xij ∈ {0, 1}, ∀(i, j) ∈ A. (21)

The objective function (4) consists of minimizing the total routing cost. Constraints (5) and
(6) are vertex degree constraints. Constraint (7) enforces that at least one vehicle leaves the
depot, while constraints (8) ensure that the number of vehicles departing from the depot is
the same as the number of vehicles returning to the depot. Constraints (9) are the MTZ
constraints that prevent subtours. Although other types of subtour elimination constraints
can be employed, the MTZ constraints allow us to define a compact formulation. Moreover, it
is worth mentioning that the remaining MTZ-like constraints cannot prevent subtours given
that the vehicle load is non-monotonic in the RBRP.

Constraints (10)–(17) are linearizations of the recursive equations (2) and (3) that en-
sure the robustness of solutions. Constraints (10) correspond to the deterministic cases in
equation (2), i.e. when demands take their nominal value. Constraints (11) refer to the case
considering the worst-case deviations. Constraints (12) and (13) enforce the initial vehicle
load for nominal and worst-case values of the demand. Hence, these constraints work together
to ensure that if stations i and j are visited consecutively, the vehicle load after serving j is
given by the minimum of the following values: (i) the vehicle load just after serving i plus
the nominal demand of j, assuming that the demand realizations of any γ stations up to j

already reached their worst-case negative variations; (ii) the vehicle load right after serving i

plus the worst-case demand realization at j, considering that the demand in any γ−1 stations
reached their worst-case values up to station i; (iii) the vehicle load right after departing the
depot plus the nominal demand of j; and (iv) the vehicle load right after departing the depot
plus the worst-case demand of j. Constraints (14)–(17) act similarly for positive worst-case
deviations. Finally, constraints (18)–(21) impose the domain of the decision variables.
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From an application standpoint, formulation (4)–(21) has the advantage of being compact
and relatively easy to understand and implement using off-the-shelf optimization software.
This may be beneficial for practitioners who can take advantage of this model’s compactness
to solve real-world problems of reasonable size. Every feasible solution of this formulation
corresponds to a set of robust-feasible routes, which means that they remain feasible for any
demand realization within the uncertainty set U(Γ). Note that the deterministic counterpart
related to this model is easily obtained by discarding index γ from variables θ+

iγ and θ−
iγ , and

dropping constraints (11) and (15).

4.2. Cut-based Formulation

Our second formulation is non-compact and relies on extensive cutting planes to ensure
robust feasibility and improved LP relaxation bounds. This formulation is the basis of the
B&C algorithm presented in Section 5 and, differently from formulation (4)–(21), it can be
used to tackle medium- to large-sized instances.

Consider the decision variable xij exactly as defined in the previous subsection. Addition-
ally, let R be the set of all infeasible routes, and A(R) be the set of arcs in route R ∈ R. We
also define x(S̄, S) =

∑
i∈S̄

∑
j∈S xij . Using this notation, we state the cut-based formulation

for the RBRP under demand uncertainty as follows:

min
∑

(i,j)∈A
cijxij (22)

s.t. Constraints (5)− (8) and (21),

x(S̄, S) ≥ max

1,

⌈∣∣∣∣∣ 1
Q

(∑
i∈S

di + max
J⊆S
|J|≤Γ

∑
i∈J

d̂i

)∣∣∣∣∣
⌉

,

⌈∣∣∣∣∣ 1
Q

(∑
i∈S

di −max
J⊆S
|J|≤Γ

∑
i∈J

d̂i

)∣∣∣∣∣
⌉ ,

∀ S ⊆ I, S̄ = V \ S, (23)∑
(i,j)∈A(R)

xij ≤ |A(R)| − 1, ∀ R ∈ R. (24)

As in the compact formulation, the objective function (22) aims at minimizing the total
routing cost. Constraints (23) are robust rounded capacity inequalities that prevent subtours
and ensure that vehicle capacity is not exceeded at any point in the routes. These constraints
are not sufficient to ensure robust-feasibility though. As explained in Section 4.1, it is possible
that the initial load of the vehicle when assuming only negative variations is larger than
when considering only positive ones. In these cases, the actual load of the vehicle is defined
by the former and may render the solution infeasible for positive variations. Consequently,
constraints (24) are feasibility cuts required to eliminate certain solutions that are not robust-
feasible and do not violate constraints (23).

5. Branch-and-Cut Algorithm

We describe a B&C algorithm based on the combinatorial relaxation of formulation (22)–
(24) regarding constraints (23) and (24). In the B&C, these constraints are separated for
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each incumbent candidate integer solution as well as for non-integer optimal solutions of the
LP relaxations. Additionally, we generate valid inequalities to strengthen the LP relaxations
and improve the overall performance of the algorithm.

5.1. Valid Inequalities
We consider three sets of valid inequalities originally proposed by Dell’Amico et al. (2014)

for the deterministic case. The first two sets are clique inequalities involving three vertices.
Given a pair of stations i, j ∈ I, let S(i, j) = {k ∈ I \ {i, j} : |di + dj + dk| > Q} be the set of
stations such that the combined nominal demand of i, j and any station k ∈ S(i, j) is greater
than Q. This means that these vertices cannot be visited consecutively. The resulting clique
inequalities are as follows:

xij +
∑

h∈S(i,j)
xjh ≤ 1, ∀ i, j ∈ I, (25)

∑
h∈S(i,j)

xhi + xij ≤ 1 ∀ i, j ∈ I. (26)

The third set of valid inequalities is a generalization of the classical tournament con-
straints for the TSP (Ascheuer, Fischetti, and Grötschel 2000). This set replaces constraints
(24) given that they are stronger than the usual no-good cuts. For each infeasible route
r = (r0, r1, . . . , rh) in R, where r0 and rh represent the depot, let k ∈ {2, . . . , h} be the small-
est index such that the subpath (r0, r1, . . . , rk) is infeasible. Then, we define the following
inequality for this route:

x0r1 +
k−1∑
i=1

k∑
j=i+1

xrirj ≤ k − 1. (27)

5.2. Separation Procedures
In this section, we present the separation procedures implemented to separate cuts and

valid inequalities for both candidate incumbent (integer) and fractional solutions in the B&C
algorithm. It is worth mentioning that, when using the clique inequalities (25) and (26), we
enumerate all these constraints and add them directly to the model in a preprocessing step
before the main algorithm. The same is done for constraints (23) in the deterministic case
and for all sets S containing two stations.

5.2.1. Separation for Candidate Incumbent Solutions.
The separation procedure for constraints (23) considering candidate incumbent solutions

starts by checking for subtours in each route of this solution. For each subtour that is found,
it generates a cut using constraints (23) and selects the most violated term on the right-hand
side of this cut. During this inspection, we store all the routes that compose the solution and,
in case no subtours are found, we call Algorithm 1 for each route R, which verifies whether
this route is robust-feasible.

According to Proposition 1, the worst-case load in the vehicle can be calculated considering
that the demand deviations of the customers in the corresponding route are either all positive
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Algorithm 1: Separation of capacity constraints for incumbent solutions
1 function SeparationCapacityIncumbent(R)
2 Θ−, Θ+, Θ−

min, Θ+
max ← 0

3 L← ∅
4 first_infeasible ← −1
5 added_cuts ← false

6 for k ← 2 to |R| − 1 do // R1 and R|R| are the depot
7 i← Rk

8 Θ− ← Θ− + di

9 Θ+ ← Θ+ + di

10 if Γ > 0 then
11 Θ− ← Θ− − d̂i

12 Θ+ ← Θ+ + d̂i

13 L← L ∪ {i}

14 else if d̂i > min
j∈L
{d̂j} then

15 j ← arg min
j∈L
{d̂j}

16 Θ− ← Θ− + d̂j − d̂i

17 Θ+ ← Θ+ − d̂j + d̂i

18 L← {L \ {j}} ∪ {i}

19 Θ−
min ← min(Θ−

min, Θ−)
20 Θ+

max ← max(Θ+
max, Θ+)

21

22 if Θ+
max −Θ−

min > Q and first_infeasible = −1 then
23 first_infeasible ← i

24

25 if |Θ−
min| > Q or Θ+

max > Q then
26 addCapacityCut(S = {R2, . . . , Ri}, L) // R1 is the depot
27 added_cuts ← true

28

29 if not added_cuts and first_infeasible > 0 then
30 addTournamentCut(S = {R1, . . . , Ri})
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or all negative. Based on this observation, Algorithm 1 starts by initializing variables Θ+

and Θ−, which specify the current load of the vehicle when assuming that deviations are all
positive or all negative, respectively. Variables Θ+

max ≥ 0 and Θ−
min ≤ 0 are used to store,

respectively, the maximum non-negative value of Θ+ and the minimum non-positive value of
Θ− along route R. While route R is traversed, set L is used to keep track of which stations
are currently assumed to have their demand realizations attaining the worst-case. The setup
of the algorithm is completed by defining auxiliary variables added_cuts and first_infeasible,
which help to detect whether constraints (23) are not sufficient to cut an infeasible solution.

The main loop of Algorithm 1 checks the worst-case load at each node visited by route
R. For each station i ∈ R, the vehicle load is updated according to the nominal demand di

(lines 8 and 9) and it is decided whether or not to include station i into the set L, which
contains stations attaining their worst case in terms of demand deviation (lines 10− 18). At
each visit, we may update the minimum and maximum load of the vehicle when assuming the
worst-case deviations in L (lines 19 and 20). Naturally, Θ−

min and Θ+
max specify, respectively,

the lowest and highest load values in a possibly robust-feasible solution. If Θ−
min is negative,

the vehicle needs additional bikes to perform the delivery demands in the route, and these
bikes should be provided by the depot. Thus, |Θ−

min| determines the initial load of the vehicle
when departing from the depot to perform route R. Therefore, if at visit k on the route,
Θ+

max − Θ−
min > Q, then the partial path up to this visit is infeasible. Note that, in this

scenario, we only record position k and do not immediately add a cut (lines 22 and 23). In
fact, we only add the tournament constraints (27) when strictly necessary to ensure feasibility
(lines 29 and 30). The last check performed in the main loop verifies whether the vehicle
capacity is violated by either Θ−

min or Θ+
max and, if so, a cut in the form of constraints (23)

is added for S = {R2, . . . , Ri} assuming that the demand of all stations in L attain their
worst-case deviation (lines 25-26).

5.2.2. Separation for Fractional Solutions.
The first procedure, namely FracSepST, is used to separate subtour cuts and uses the

standard max-flow-based separation algorithm for VRPs. For the sake of completeness, we
describe the algorithm as follows. Given a fractional solution x̄, a support graph Ḡ = (V, Ā)
is built such that Ā = {(i, j) ∈ A : x̄ij > 0}. Each arc (i, j) ∈ Ā is assigned a capacity equal
to x̄ij . Then, for each station i ∈ I, we evaluate the max-flow/min-cut on Ḡ from the depot
to i. If the resulting min-cut value is less than one, the subset S induced by the min-cut
containing vertex i violates constraints (23). Whenever a violation is detected, a cut of the
same form is generated using the most violated term on the right-hand side with Γ = 0.

A second procedure called FracSepCap, is used to separate the following capacity con-
straints, which are a subset of constraints (23) for the deterministic case:

x(S̄, S) ≥
⌈
−
∑

i∈S di

Q

⌉
, ∀ S ⊆ I, S̄ = V \ S, (28)

x(S̄, S) ≥
⌈∑

i∈S di

Q

⌉
, ∀ S ⊆ I, S̄ = V \ S. (29)
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We begin by building a support graph Ḡ′ = (V̄ ′, Ā′) such that V̄ ′ = V ∪ {n + 1, n + 2}, where
n + 1 and n + 2 are dummy vertices. The set Ā′ is composed by the following three types
of arcs: (i, j) ∈ A such that x̄ij > 0, with an assigned capacity equal to x̄ij ; (n + 1, j) for
all j ∈ I : dj > 0, with capacity dj/Q; and (i, n + 2) for all i ∈ I : di < 0, with capacity
−di/Q. We then compute the maximum flow from n + 1 to n + 2 in Ḡ′. Let S be the subset
induced by the associated min-cut that contains vertex n + 2, let S̄ = V̄ ′ \ S, and consider
f as the resulting min-cut value. If f <

∑
i∈I:di<0−di/Q, then subset S violates constraints

(28). This separation procedure was used by Dell’Amico et al. (2014) for the BRP and is
basically the same as the one proposed by Hernández-Pérez and Salazar-González (2004a)
for the 1-PDTSP, with the exception that, for the BRP, the depot must be included in the
separation and the support graph contains cycles. Depending on the problem, having cycles
on this type of support graph may lead to issues, as bikes that return to the depot at the end
of a route might be used to fulfill the demand of customers in other routes. However, this
is not an issue for either the BRP or the RBPR because, in these problems, the depot can
provide any number of additional bikes to the system and absorb any surplus. Considering
such observations and the fact that the proof of correctness has not been shown by Dell’Amico
et al. (2014), we present it in the following proposition.

Proposition 2. The relaxed version of constraints (28) can be separated in polynomial time.

Proof. We are given a possibly fractional solution x̄. Let d(S) =
∑

i∈S di and let us partition
d(S) = d+(S) + d−(S), where d+(S) =

∑
i∈S:di>0 di and d−(S) =

∑
i∈S:di<0 di. Then, let us

rewrite a relaxed version of constraints (28) as

x(S̄ : S) ≥ −
(

d+(S) + d−(S)
Q

)
. (30)

By extension, we can also partition d(V) = d+(V) + d−(V), where d−(V) = d−(S) + d−(S̄).
This enables us to rewrite (30) as

x(S̄ : S) + d+(S)
Q

≥ d−(S̄)− d−(V)
Q

, (31)

and then

x(S̄ : S) + d+(S)
Q

− d−(S̄)
Q

≥ −d−(V)
Q

. (32)

Now, consider the support graph Ḡ′ built by FracSepCap. The procedure solves a max-
flow problem considering vertices n + 1 and n + 2 as the source and sink, respectively. Figure
2 presents an example of part of the graph Ḡ′ focusing on a station j ∈ I and its relationship
with the min-cut, represented by the dashed line in the figure.

Note that, for each station j ∈ I, there are two possible cases:

1. if j ∈ S, by construction, its contribution to the min-cut value f is equal to ∑i∈S̄ x̄ij .
In case dj > 0, we must also add dj/Q.
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Figure 2: Example of the support graph Ḡ′ and the associated min-cut represented by the dashed line.

2. otherwise, if j ∈ S̄, its contribution to f is given by ∑k∈S x̄jk, plus −dj/Q depending
on whether dj < 0.

The value of f can be then expressed as the sum of the contributions from all stations such
that:

f =
∑
i∈S̄

∑
j∈S

x̄ij +
∑

j∈S:dj>0

dj

Q
+

∑
j∈S̄:dj<0

−dj

Q
= x(S̄ : S) + d+(S)

Q
− d−(S̄)

Q
. (33)

Therefore, the procedure is correct considering the fact that the left-hand side of (32) is
equivalent to the value of the min-cut.

To separate constraints (29), procedure FracSepCap builds a second support graph Ḡ′′.
The only differences are that, in Ḡ′′, the dummy vertex n + 1 is connected to each delivery
station i ∈ I : di < 0 by an arc with capacity −di/Q, and each pickup station i ∈ I : di > 0
is connected to vertex n + 2 by an arc with capacity di/Q. When the resulting min-cut value
is less than d+(V)/Q, constraints (29) are violated by the induced set S. Note that the proof
of correctness of this second procedure follows the same steps as for Proposition 2.

Additionally, we run separation procedures considering two specific demand realizations,
as follows. Let d̃+

max ∈ U(Γ) be the demand realization in which ξi = 1 for all i ∈ Smax, where
Smax ⊆ I, |Smax| = Γ and ∑i∈Smax

d̂i is the largest. This is a particular realization in which
the demands of the Γ stations with the largest demand deviations attain their worst case.
Since the load in the vehicle is non-monotonic in the RBRP, this realization may not be the
one yielding the worst-case vehicle load (as it would be in other VRP variants, such as the
VRPTW). However, ensuring robust-feasibility regarding this realization is still a necessary
condition. A similar observation is valid for realization d̃−

max ∈ U(Γ) when assuming ξi = −1
for all i ∈ Smax. We use these observations to derive a third separation procedure, called
FracSepCapPlus. In this procedure, we initially run FracSepCap with the demand of
each station i ∈ Smax set to di + d̂i and adjusting the value of d0 accordingly. If a violation
is found, a cut in the form of Constraints (23) is added considering S = Smax. After that,
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the procedure runs FracSepCap for a second time by adjusting the demand of each station
i ∈ Smax to di − d̂i.

Finally, as in Dell’Amico et al. (2014), the separation of the tournament constraints (27)
is performed by a path extension algorithm. This procedure, called FracSepTournament,
starts by creating a path R that, initially, only contains the depot. Then, by using a depth-
first strategy, the path is iteratively extended to the next vertex i ∈ I such that arc (R|R|, i)
has a positive value in x̄. Because the initial load of the vehicle is only known when the path is
complete, the procedure always keeps track of the current initial load required and updates it
whenever a new vertex is added. When the path becomes infeasible with respect to the vehicle
capacity, a tournament cut is added, and the procedure backtracks. Furthermore, whenever
the current path has no chance of violating constraints (27) (i.e., ∑(i,j)∈A(R) x̄ij < |A(R)|−1),
the algorithm backtracks to the previous vertex.

6. Computational Results

In this section, we show the results of computational experiments that verify the perfor-
mance of the proposed approaches and their relevance to decision-making under uncertainty
in BSSs. Section 6.1 shows the results of experiments with different configurations of our
B&C algorithm, whereas Section 6.2 compares the performance of the proposed compact
model against the performance of the best configuration of the B&C algorithm. Finally, Sec-
tion 6.3 presents a robustness analysis of the solutions provided by the RBRP under demand
uncertainty. For the sake of clarity, the tables in this section present summarized results.
Detailed results can be found at the website http://www.dep.ufscar.br/munari/rbrp.

All approaches were coded in C++ and executed on an Intel Xeon(R) E5-2650 2.20GHz
computer, with 128 GB of RAM and the Ubuntu 16.04.6 LTS operating system. The math-
ematical formulations and the B&C algorithm were implemented using IBM CPLEX Opti-
mization Studio v.22.1. A time limit of one hour was set for each experiment and CPLEX
was set to default options on a single thread.

We derived a set of benchmark instances based on the set proposed by Dell’Amico et al.
(2014). The original set is composed of 65 instances generated based on real data collected
from 22 BSS operators located all around the world. Similarly to Dell’Amico et al. (2014),
we consider an unlimited fleet. To model uncertainty, the demand deviations are defined
as d̂i = ⌈|di| × α⌉ for each station i ∈ I and α ∈ {0.1, 0.25, 0.5}, where di is the nominal
demand of station i provided in the instance. Hence, we consider deviations of 10%, 25%
and 50% from the nominal demands. Considering that split demands are not allowed, if
|di| + d̂i > Q for any station i ∈ I, that instance is considered infeasible and is discarded.
We consider the budget values Γ ∈ {0, 1, 5, 10}, where Γ = 0 corresponds to the deterministic
case. The resulting benchmark set comprises a total of 515 instances. For the sake of clarity,
instances are grouped into subsets called G1 (n = 13, . . . , 21), G2 (n = 23, . . . , 45) and G3
(n = 51, . . . , 80) according to their number of stations.
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6.1. Computational Performance of the B&C Algorithm

The first round of experiments assesses the effectiveness of the separation procedures pre-
sented in Section 5, highlighting the best configuration for the proposed B&C algorithm. Re-
call that the separation procedures considering candidate incumbent solutions are mandatory
to ensure feasibility, whereas the procedures for fractional solutions are optional. Moreover,
the order in which these procedures are called is important because, once a procedure finds
at least one valid cut, the separation process is finished and no other procedure is called in
this round of cut generation. Table 1 presents the configurations tested. The procedures are
shown in the same order as they are called.

Table 1: Configurations for the proposed B&C algorithm
ID Separation procedures for fractional solutions

B&C Incumbent No separation for fractional solutions
B&C FracSepST FracSepST
B&C FracSepCap FracSepST, FracSepCap
B&C FracSepCapPlus FracSepST, FracSepCapPlus
B&C FracSepTour FracSepST, FracSepCapPlus, FracSepTour

Table 2 summarizes the results of the experiments with the different configurations of
the B&C algorithm. For these experiments, the separation of cuts considering fractional
solutions was performed at the root node only. Column Group identifies the instance group,
while columns Γ and Dev present the values of the budget of uncertainty and deviations,
respectively. Column #Feas specifies the number of feasible instances associated with the
respective group, and values of Γ and Dev. Then, for each configuration of the algorithm,
column Gap presents the average percentage gap (calculated as (UB−LB)/LB×100, where
UB and LB represent the primal and dual bounds, respectively); column Time shows the
average computing time (in seconds); and column #Opt gives the number of instances solved
to optimality. The best results are highlighted in bold. Additionally, the expression t.lim.
specifies that the time limit was reached.

The results in Table 2 show that separating cuts for fractional solutions is worthwhile
and even the simplest configuration can yield improvements. Notably, on average, the best
configuration over all aspects is B&C FracSepCapPlus, which proved optimality for ap-
proximately 5% more instances than B&C Incumbent. The largest improvements can be
seen in the gap values of B&C FracSepCapPlus, which are overall about 21% better than
B&C Incumbent. Furthermore, there is a consistent improvement from one configuration
to the next as more separation procedures are considered. The only exception is for B&C
FracSepTour, in which the separation of the tournament constraints (27) is included. The
results imply that separating these constraints can be detrimental to the overall performance,
which might be explained by the fact that they are relatively weak.

An interesting observation from the results in Table 2 is that the gain in performance
from separating cuts for fractional solutions is considerably larger in the deterministic case
(Γ = 0). On average, the overall gap for B&C Incumbent when Γ = 0 across all instances
is about 22%. In turn, for B&C FracSepST it drops to about 13%, which corresponds to
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approximately 39% of improvement. On the other hand, when Γ > 0, the improvements are
less significant. This difference in performance is partially due to the inherited complexity
associated with the robust case, but it might also be explained by the fact that most of the
separation procedures for fractional solutions are tailored to deterministic solutions.

Our next set of experiments aims at empirically determining the maximum depth in the
branch-and-bound tree, to which fractional solutions should be considered in the separation
procedures. In these experiments, the separation of fractional solutions follows the best
configuration indicated by the results in Table 2, namely B&C FracSepCapPlus. The
results are summarized in Table 3 considering all instances in the groups G1, G2 and G3.
The meaning of columns Γ , Dev and #Feas is the same as in Table 2. The next columns
refer to the B&C algorithm with different choices of the maximum depth for cut separation
using fractional solutions. In Root only, fractional solutions were separated only at the root
node, whereas in Max depth = 5 and Max depth = 10, they were separated up to the fifth
and tenth levels of the B&C tree, respectively. Finally, Unlimited means that the separation
considering fractional solutions was called in all levels of the tree. The columns Gap, Time
and #Opt have the same meaning as in Table 2.

Table 3: Results of the B&C algorithm with different choices of maximum depth for separating cuts using
fractional solutions.

Γ Dev #Feas Root only Max depth = 5 Max depth = 10 Unlimited

Gap (%) Time (s) #Opt Gap (%) Time (s) #Opt Gap (%) Time (s) #Opt Gap (%) Time (s) #Opt

0 0 65 13.2 1309.4 42 12.9 1124.2 45 10.9 1080.2 46 8.7 925.4 51
1 10 55 16.6 1621.0 32 14.4 1439.1 34 15.1 1442.9 34 14.9 1383.7 35
1 25 50 15.8 1585.9 29 15.9 1505.5 30 14.7 1500.7 30 14.8 1489.5 30
1 50 45 18.2 1835.5 23 18.1 1571.0 26 16.3 1591.7 26 17.9 1600.9 25
5 10 55 28.7 2232.0 22 27.1 2139.4 23 28.4 2160.4 22 29.1 2159.9 23
5 25 50 28.8 2383.5 17 27.4 2220.2 19 28.1 2192.0 20 28.4 2179.6 20
5 50 45 33.1 2537.9 14 32.2 2490.4 14 31.9 2498.8 14 33.3 2500.9 14
10 10 55 32.7 2644.7 15 31.5 2592.0 16 31.9 2576.5 16 32.8 2604.7 16
10 25 50 32.1 2526.9 15 31.1 2456.1 16 30.5 2453.7 16 32.1 2453.6 16
10 50 45 34.5 2758.3 12 32.8 2783.8 11 32.6 2780.8 11 33.2 2790.9 11

Avg./sum 515 24.9 2113.1 221 23.9 1999.2 234 23.6 1993.5 235 24.0 1970.1 241

The results in Table 3 suggest that, on average, the unlimited configuration has a better
performance in terms of computing times and the number of instances solved to optimality.
By following this strategy, the proposed B&C is around 7% faster and finds 8% more optimal
solutions than its version separating fractional solutions at the root node only. Notably,
setting the maximum depth to 10 leads to better average gaps overall.

A closer look at Table 3 reveals interesting observations. For example, the configuration
with maximum depth equal to 5 seems to present slightly better results for Γ = 1 and
Dev = 50, and Γ = 5 with deviations of 10%, 25% and 50%. On the other hand, setting the
maximum depth to 10 seems to yield marginally better results for Γ = 10 when compared
to the configurations unlimited and root only. In the deterministic case, when Γ = 1, the
unlimited configuration results in improved performance in terms of computing time and the
number of optimal solutions, without significantly degrading gap values.
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6.2. Compact Formulation and the Best B&C Configuration
Table 4 presents a comparison between the compact formulation and our best B&C al-

gorithm, given by B&C FracSepCapPlus with no restrictions on the maximum depth for
the separation of cuts using fractional solutions. Columns have the same meaning as in the
previous tables.

Table 4: Comparison of the results obtained with the compact formulation and the best configuration of the
B&C algorithm.

Group Γ Dev #Feas Compact formulation B&C

Gap (%) Time (s) #Opt Gap (%) Time (s) #Opt

G1

0 0 23 0.69 319.47 21 0.00 0.08 23
1 10 20 0.64 473.63 18 0.18 206.90 19
1 25 20 1.16 753.14 17 0.10 186.14 19
1 50 20 4.09 931.03 15 3.51 540.50 17
5 10 20 8.65 1319.00 13 6.62 738.03 16
5 25 20 8.39 1387.40 14 7.81 929.64 15
5 50 20 12.05 1870.68 11 10.42 1305.97 13

10 10 20 12.77 1801.25 11 7.84 1266.51 13
10 25 20 12.37 1921.55 11 8.53 1088.51 14
10 50 20 16.76 2610.01 7 9.89 1779.34 11

Avg./sum - - 203 7.65 1323.65 138 5.41 792.28 160

G2

0 0 18 11.14 2052.13 9 0.00 28.75 18
1 10 14 12.00 2483.68 5 0.40 685.97 12
1 25 13 15.41 2543.02 4 4.18 1119.09 9
1 50 11 12.94 2373.57 4 3.71 984.42 8
5 10 14 21.65 3199.08 2 12.11 2286.42 6
5 25 13 24.44 3287.46 2 16.37 2244.93 5
5 50 11 33.40 t.lim. 0 28.19 3274.24 1

10 10 14 29.73 t.lim. 0 19.02 3023.26 3
10 25 13 34.57 t.lim. 0 22.09 3054.29 2
10 50 11 42.00 t.lim. 0 28.10 t.lim. 0

Avg./sum - - 132 22.93 2990.98 26 12.54 1926.82 64

G3

0 0 24 34.18 t.lim. 0 23.62 2484.74 10
1 10 21 42.10 t.lim. 0 38.61 2969.73 4
1 25 17 39.65 t.lim. 0 40.16 3306.26 2
1 50 14 44.00 t.lim. 0 49.76 t.lim. 0
5 10 21 59.24 t.lim. 0 61.90 3429.67 1
5 25 17 61.36 t.lim. 0 61.81 t.lim. 0
5 50 14 69.79 t.lim. 0 69.89 t.lim. 0

10 10 21 73.18 t.lim. 0 65.86 t.lim. 0
10 25 17 71.62 t.lim. 0 67.53 t.lim. 0
10 50 14 77.79 t.lim. 0 70.51 t.lim. 0

Avg./sum - - 180 56.12 t.lim. 0 53.36 2497.71 17

The results indicate that the performance of both approaches is affected by the level of
uncertainty in the instance. The larger the budget of uncertainty, the more challenging the
instances become, on average. We observe a similar trend for the deviation values. Even for
Γ = 1 and a demand deviation of 10%, we see a significant impact on the number of instances
solved to optimality with respect to the deterministic case. For the B&C, we observe a
considerable increase in the running time in the same comparison, indicating that the RBRP
under demand uncertainty is more challenging than its deterministic counterpart.

The compact formulation can be efficiently used to solve small-sized instances such as the
ones of group G1, for which it was able to prove optimality for 138 instances. This is a good
result as instances in group G1 model real-world BSSs, showing that this formulation is a
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simple, yet viable option for similar cases. As expected, the efficiency of the MIP solver with
this formulation was severely impaired when considering larger instances though, proving
only 26 optimal solutions for group G2 and none for group G3. If we consider the optimal
primal bounds proved by the B&C, it can be observed that, although it was not able to close
the gap, the compact formulation found 41 additional optimal solutions.

Notably, the B&C algorithm shows a superior performance in all groups of instances and
it proved optimality for almost 50% more instances than the compact formulation. In terms of
computational time, there is also a significant difference between both approaches, especially
in groups G2 and G3. Nevertheless, it is important to emphasize that both approaches
have their value in practice. Despite being outperformed, the compact formulation can still
be relevant for OR practitioners as it is efficient for small-sized instances, does not require
advanced coding techniques, and can be solved by any general-purpose integer programming
software.

6.3. Robustness analysis

We now analyze the relevance of incorporating uncertainty into the design of routes for
rebalancing operations in BSSs. To do so, we run Monte Carlo simulations to verify the
robustness of the solutions provided by the RBRP under demand uncertainty. By robustness
of a solution, we mean how protected this solution is against the realization of random
variables. For the simulations, we generated 10,000 uniformly random realizations (scenarios)
of the demand in the interval [di− d̂i, di + d̂i], ∀i ∈ I. Then, the feasibility of each solution is
tested against each demand realization. The percentage of realizations in which this solution
is infeasible gives the empirical probability of constraint violation, or risk.

The solutions of the RBRP are expected to be feasible with a greater probability in
comparison to the solutions obtained from its deterministic counterpart (BRP), especially for
large deviations. In addition, we expect that gains in terms of feasibility can counterbalance
possibly increasing routing costs caused by the incorporation of robustness. With this in
mind, the following metrics were used to evaluate each solution of the RBRP: (i) the price
of robustness (PoR), computed as the relative change in the objective function value of an
RBRP solution with respect to its deterministic counterpart, given a deviation α and budget
Γ; (ii) the risk, calculated as the relative frequency of infeasible solutions among the total
number of demand realizations given by the Monte Carlo simulations.

Table 5 presents the results of the Monte Carlo simulations for the solutions obtained
with the best configuration of the B&C algorithm (see Section 6.1). For each combination of
Γ ∈ {0, 1, 5, 10} and demand deviation (10, 25 and 50%), this table shows average values of
PoR and risk. It also presents the overall results for each Γ, considering all deviations. To
ensure a fair comparison, especially for measuring the PoR, we only consider instances solved
to optimality for both the robust and deterministic cases. The results presented in the table
confirm that the deterministic approach (i.e., Γ = 0), is ineffective in safeguarding solutions
against uncertainties. On average, there is approximately a 73% chance that solutions be-
come infeasible, even in the presence of minor demand deviations. If we exclude small-sized
instances (group G1), this risk increases to about 87%.
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Table 5: Average price of robustness (PoR) and probability of constraint violation (risk) considering different
values of budget of uncertainty and deviation

Γ 10% 25% 50% Overall

PoR (%) Risk (%) PoR (%) Risk (%) PoR (%) Risk (%) PoR (%) Risk (%)

0 — 72.18 — 72.72 — 74.33 — 73.03
1 2.32 47.59 3.40 39.22 5.48 34.20 3.56 41.03
5 6.60 3.96 10.75 2.24 17.40 0.48 10.71 2.50
10 10.38 0.06 14.09 0.02 25.33 0.00 15.58 0.03

Conversely, the solutions of the RBRP promote significant risk reductions. Even in cases
where the number of stations deviating from their nominal demand is small (i.e., Γ = 1),
the overall risk decreases to approx. 41% with an increase in solution costs of around ∼3%,
on average. Notably, the risk does not seem to be as sensitive to changes in the demand
deviations for a fixed Γ value. A larger budget (Γ = 5) causes a substantial decrease in
risk but at the expense of a larger solution cost, which rises to ∼ 11%. Although it is
possible to reach close-to-zero risk by incrementally increasing the value of Γ, in real-world
applications, there comes a point where decreasing risk will not compensate for the growing
PoR. In practice, it is up to the decision-maker to assess the trade-off between mitigating
risk at the expense of routing costs in order to find the best compromise for their business,
and the proposed approaches are valuable tools in this context.

In what follows, we broaden our discussion by delving into an interesting insight gained
from a careful analysis of our solutions. In the RBRP, each vehicle usually departs from the
depot with the minimal amount of bikes needed to fulfill the demand of each station in its
route, while accounting for a possible budget of uncertainty. This is due to the calculation
of the initial load which simultaneously considers positive and negative deviations as shown
in Section 3. At the same time, it is likely that vehicles will not depart with a full load
from the depot. In this case, any increment in the initial load would not impact a solution’s
feasibility or its cost. Clearly, in practice, sending a vehicle with additional bikes would result
in additional effort for the working crew. However, considering that the load of vehicles is
non-monotonic in the RBRP, there might be benefits in doing so regarding the risk measure.
To investigate that, we performed a second round of simulations in which the initial load of
the vehicle (θd) for each route is modified to θd = θd + (Q − θd) × β, where β ∈ [0, 1]. The
results of these simulations are presented in Figure 3, in which we compare the associated
risk for different values of β and α = {10, 25, 50}.

Figure 3a shows that it is possible to reduce the overall average risk in the deterministic
case from ∼72% to ∼64% by simply modifying the initial load of vehicles by a factor of
β = 0.3. This result is not entirely surprising considering that, in the deterministic case,
there is often little margin for demand variations, and any preemptive measure to add more
flexibility to initial vehicle loads can potentially result in positive outcomes. On the other
hand, the benefits of changing initial loads fade as we increase the budget of uncertainty.
Indeed, for Γ = 5, there is almost no benefit at all at carrying more bikes from the depot,
and any value of β ≥ 0.4 results in significantly larger risk values. This suggests that robust-
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(a) Deterministic case
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(b) Γ = 1
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(c) Γ = 5
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(d) Γ = 10

Figure 3: Results of Monte Carlo simulations to investigate the impact of changing the initial load of each
vehicle.

feasible solutions are usually protected enough so that the decision-maker is not required to
perform additional changes to initial loads.

7. Conclusions

We introduced the Robust Bike Sharing Rebalancing Problem (RBRP), an extension
of the BRP that takes into account uncertainties on demand. One of the characteristics
that make the RBRP a challenging problem is that demand realizations at each station
may completely differ from their forecast (nominal) values. Therefore, delivery stations may
become pickup stations due to such variations, making a route planned according to the
demand forecast infeasible in practice.

We proposed two different formulations for the RBRP. The first one is a compact for-
mulation, derived from the linearization of recursive equations that model the vehicles’ load
along the routes. This linearization technique allowed us to tackle the complex RBRP by
using MTZ-like constraints to represent robustness. The second formulation is based on cut-
ting planes that ensure robust feasibility and better LP relaxation lower bounds. A B&C
algorithm tailored for the RBRP was proposed to solve this second formulation.

A number of computational experiments were performed on a set of instances in order
to assess the efficiency of the proposed solution approaches. Results from the first set of
experiments revealed the best configuration for the B&C algorithm. Next, we compared
the compact formulation with the best B&C configuration. Results from this second set
of experiments demonstrated that the compact formulation can be used to efficiently solve
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small-sized instances with up to 21 stations. This indicates the importance of this formulation
as it represents a simple yet effective solution method for practitioners. On the other hand,
the B&C algorithm showed superior performance, as expected, in all groups of instances.

From an application standpoint, results from Monte Carlo simulations attested to the
relevance of applying robustness in the context of the RBRP. In summary, we observed that
it is possible to protect solutions against uncertainty up to a certain level without significantly
increasing routing costs. Moreover, in a second round of Monte Carlo simulations, we showed
that solutions in the deterministic case can be better protected from uncertainties by simply
varying the initial load of the vehicles. However, the benefit of such a strategy decreases
as the budget of uncertainty increases, showing the importance of considering uncertainties
during the route planning phase.

Future research may focus on different sources of uncertainties in the RBRP and related
problems, bringing more insights regarding the importance of robust solutions in decision-
making for BSSs. We believe that a greater focus on the development of robust-feasibility
cuts could improve the computational performance of the proposed B&C. In addition, this
research motivates the development of other types of exact and heuristic algorithms, based
on, e.g., branch-and-price and metaheuristics, respectively.

Acknowledgments

This research was partially supported by: National Council for Scientific and Techno-
logical Development (CNPq) [grant numbers 406245/2021-5, 405702/2021-3, 313220/2020-4];
Paraíba State Research Foundation (FAPESQ) [grant number 261/2020]; São Paulo Research
Foundation (FAPESP) [grant numbers 13/07375-0, 19/23596-2, 22/05803-3]; and Universi-
dade Federal da Paraíba through the Public Call n. 03/2020 “Produtividade em Pesquisa
PROPESQ/PRPG/UFPB”, proposal code PVL13394-2020.

References

Agra A, Christiansen M, Figueiredo R, Hvattum LM, Poss M, Requejo C, 2013 The robust vehicle
routing problem with time windows. Computers & Operations Research 40(3):856–866.

Ascheuer N, Fischetti M, Grötschel M, 2000 A polyhedral study of the asymmetric traveling salesman
problem with time windows. Networks 36(2):69–79.

Battarra M, Cordeau JF, Iori M, 2014 Chapter 6: Pickup-and-delivery problems for goods transporta-
tion. Vehicle Routing: Problems, Methods, and Applications, Second Edition, 161–191 (SIAM).

Ben-Tal A, Ghaoui LE, Nemirovski A, 2009 Robust optimization (Princeton university press).
Berbeglia G, Cordeau JF, Gribkovskaia I, Laporte G, 2007 Static pickup and delivery problems: a

classification scheme and survey. Top 15(1):1–31.
Bertsimas D, Dunning I, Lubin M, 2016 Reformulation versus cutting-planes for robust optimization.

Computational Management Science 13(2):195–217.
Bertsimas D, Sim M, 2004 The price of robustness. Operations Research 52(1):35–53.
Bruck BP, Cruz F, Iori M, Subramanian A, 2019 The static bike sharing rebalancing problem with

forbidden temporary operations. Transportation Science 53(3):882–896.

27



Bruck BP, Subramanian A, 2020 Bike-Sharing Rebalancing Problems, 1–9 (Cham: Springer Interna-
tional Publishing).

Bruck BP, Subramanian A, 2023 Bike-Sharing Rebalancing Problems, 1–9 (Cham: Springer Interna-
tional Publishing).

Bulhões T, Subramanian A, Erdoğan G, Laporte G, 2018 The static bike relocation problem with
multiple vehicles and visits. European Journal of Operational Research 264(2):508–523.

Büsing C, Gersing T, Koster AM, 2023 A branch and bound algorithm for robust binary optimization
with budget uncertainty. Mathematical Programming Computation 15:269–326.

Campos R, Munari P, Coelho LC, 2022 Compact formulations for the robust vehicle routing problem
with time windows under demand and travel time uncertainty. Technical report, CIRRELT-2022-
34, Faculté des Sciences de l’Administration, Université Laval, CIRRELT, Canada.

Casazza M, Ceselli A, Calvo RW, 2021 A route decomposition approach for the single commodity
split pickup and split delivery vehicle routing problem. European Journal of Operational Research
289(3):897–911.

Casazza M, Ceselli A, Chemla D, Meunier F, Calvo RW, 2018 The multiple vehicle balancing problem.
Networks 72(3):337–357.

Cavagnini R, Bertazzi L, Maggioni F, Hewitt M, 2018 A two-stage stochastic optimization model for
the bike sharing allocation and rebalancing problem. Technical report, Working paper.

Chemla D, Meunier F, Calvo RW, 2013 Bike sharing systems: Solving the static rebalancing problem.
Discrete Optimization 10(2):120–146.

Contardo C, Morency C, Rousseau LM, 2012 Balancing a dynamic public bike-sharing system. Tech-
nical report, CIRRELT-2012-09, Montréal, Canada.

Cruz F, Subramanian A, Bruck BP, Iori M, 2017 A heuristic algorithm for a single vehicle static bike
sharing rebalancing problem. Computers and Operations Research 79:19–33.

De La Vega J, Munari P, Morabito R, 2020 Exact approaches to the robust vehicle routing problem
with time windows and multiple deliverymen. Computers & Operations Research 124:105062.

Dell’Amico M, Hadjicostantinou E, Iori M, Novellani S, 2014 The bike sharing rebalancing problem:
Mathematical formulations and benchmark instances. Omega 45(0):7–19.

Dell’Amico M, Iori M, Novellani S, Stützle T, 2016 A destroy and repair algorithm for the bike sharing
rebalancing problem. Computers and Operations Research 71:149–162.

Dell’Amico M, Iori M, Novellani S, Subramanian A, 2018 The bike sharing rebalancing problem with
stochastic demands. Transportation Research Part B: Methodological 118:362–380.

Dror M, Fortin D, Roucairol C, 1998 Redistribution of self-service electric cars: A case of pickup and
delivery. Technical report, INRIA.

Erdoğan G, Battarra M, Calvo RW, 2015 An exact algorithm for the static rebalancing problem arising
in bicycle sharing systems. European Journal of Operational Research 245:667–679.

Erdoğan G, Laporte G, Calvo RW, 2014 The static bicycle relocation problem with demand intervals.
European Journal of Operational Research 238:451–457.

Fu C, Zhu N, Ma S, Liu R, 2022 A two-stage robust approach to integrated station location and rebal-
ancing vehicle service design in bike-sharing systems. European Journal of Operational Research
298(3):915–938.

Gendreau M, Jabali O, Rei W, 2014 Stochastic vehicle routing problems. Vehicle routing: problems,
methods, and applications, 2nd edn, 213–239 (Society for Industrial and Applied Mathematics).

28



Gounaris CE, Wiesemann W, Floudas CA, 2013 The robust capacitated vehicle routing problem under
demand uncertainty. Operations Research 61(3):677–693.

Gunes C, van Hoeve WJ, Tayur S, 2010 Vehicle routing for food rescue programs: A comparison of
different approaches. International Conference on Integration of Artificial Intelligence (AI) and
Operations Research (OR) Techniques in Constraint Programming, 176–180 (Springer).

Hernández-Pérez H, Salazar-González JJ, 2004a A branch-and-cut algorithm for a traveling salesman
problem with pickup and delivery. Discrete Applied Mathematics 145(1):126–139.

Hernández-Pérez H, Salazar-González JJ, 2004b Heuristics for the one-commodity pickup-and-delivery
traveling salesman problem. Transportation Science 38(2):245–255.

Hernández-Pérez H, Salazar-González JJ, 2018 An exact algorithm for the split-demand one-commodity
pickup-and-delivery travelling salesman problem. International Symposium on Combinatorial
Optimization, 241–252 (Springer).

Hernández-Pérez H, Salazar-González JJ, 2022 A branch-and-cut algorithm for the split-demand one-
commodity pickup-and-delivery travelling salesman problem. European Journal of Operational
Research 297(2):467–483.

Hernández-Pérez H, Salazar-González JJ, Santos-Hernández B, 2018 Heuristic algorithm for the split-
demand one-commodity pickup-and-delivery travelling salesman problem. Computers and Oper-
ations Research 97:1–17.

Laporte G, Meunier F, Calvo RW, 2018 Shared mobility systems: an updated survey. Annals of
Operations Research 271:105–126.

Lu CC, 2016 Robust multi-period fleet allocation models for bike-sharing systems. Networks and Spatial
Economics 16:61–82.

Lu D, Gzara F, 2019 The robust vehicle routing problem with time windows: Solution by branch and
price and cut. European Journal of Operational Research 275:925–938.

Maggioni F, Cagnolari M, Bertazzi L, Wallace SW, 2019 Stochastic optimization models for a bike-
sharing problem with transshipment. European Journal of Operational Research 276(1):272–283.

Meddin R, 2023 The bike-sharing world map. http://bikesharingworldmap.com, accessed: August,
2023.

Miller CE, Tucker AW, Zemlin RA, 1960 Integer programming formulation of traveling salesman
problems. Journal of the ACM (JACM) 7(4):326–329.

Munari P, Moreno A, De La Vega J, Alem D, Gondzio J, Morabito R, 2019 The robust vehicle
routing problem with time windows: compact formulation and branch-price-and-cut method.
Transportation Science 53(4):1043–1066.

Oyola J, Arntzen H, Woodruff DL, 2017 The stochastic vehicle routing problem, a literature review,
Part II: solution methods. EURO Journal on Transportation and Logistics 6(4):349–388.

Oyola J, Arntzen H, Woodruff DL, 2018 The stochastic vehicle routing problem, a literature review,
Part I: models. EURO Journal on Transportation and Logistics 7(3):193–221.

Pillac V, Gendreau M, Guéret C, Medaglia AL, 2013 A review of dynamic vehicle routing problems.
European Journal of Operational Research 225(1):1–11.

Regue R, Recker W, 2014 Proactive vehicle routing with inferred demand to solve the bikesharing rebal-
ancing problem. Transportation Research Part E: Logistics and Transportation Review 72:192–
209.

Salazar-González JJ, Santos-Hernández B, 2015 The split-demand one-commodity pickup-and-delivery
travelling salesman problem. Transportation Research Part B: Methodological 75:58–73.

29

http://bikesharingworldmap.com


Shui C, Szeto W, 2020 A review of bicycle-sharing service planning problems. Transportation Research
Part C: Emerging Technologies 117:102648.

Si H, Shi J, Wu G, Chen J, Zhao X, 2019 Mapping the bike sharing research published from 2010 to
2018: A scientometric review. Journal of Cleaner Production 213:415–427.

Subramanyam A, 2023 Robust vehicle routing problems. Encyclopedia of Optimization, 1–7 (Springer).
Yu Q, Cheng C, Zhu N, 2022 Robust team orienteering problem with decreasing profits. INFORMS

Journal on Computing 34(6):3215–3233.
Yuan M, Zhang Q, Wang B, Liang Y, Zhang H, 2019 A mixed integer linear programming model for

optimal planning of bicycle sharing systems: A case study in beijing. Sustainable Cities and
Society 47:101515.

Zeng B, Zhao L, 2013 Solving two-stage robust optimization problems using a column-and-constraint
generation method. Operations Research Letters 41(5):457–461.

Zhang D, Yu C, Desai J, Lau H, Srivathsan S, 2017 A time-space network flow approach to dy-
namic repositioning in bicycle sharing systems. Transportation Research Part B: Methodological
103:188–207.

30


	Introduction
	Related literature
	The Robust Bike Sharing Rebalancing Problem (RBRP)
	MIP Formulations
	Compact Formulation
	Cut-based Formulation

	Branch-and-Cut Algorithm
	Valid Inequalities
	Separation Procedures
	Separation for Candidate Incumbent Solutions.
	Separation for Fractional Solutions.


	Computational Results
	Computational Performance of the B&C Algorithm
	Compact Formulation and the Best B&C Configuration
	Robustness analysis

	Conclusions

