
Full-low evaluation methods for bound and linearly constrained
derivative-free optimization

C. W. Royer1, O. Sohab∗2, and L. N. Vicente2

1LAMSADE, CNRS, Université Paris Dauphine-PSL, Place du Maréchal de Lattre de
Tassigny, 75016 Paris, France

2Department of Industrial and Systems Engineering, Lehigh University, 200 West Packer
Avenue, Bethlehem, PA 18015-1582, USA

June 1, 2024

Abstract

Derivative-free optimization (DFO) consists in finding the best value of an objective func-
tion without relying on derivatives. To tackle such problems, one may build approximate
derivatives, using for instance finite-difference estimates. One may also design algorithmic
strategies that perform space exploration and seek improvement over the current point.
The first type of strategy often provides good performance on smooth problems but at the
expense of more function evaluations. The second type is cheaper and typically handles
non-smoothness or noise in the objective better. Recently, full-low evaluation methods have
been proposed as a hybrid class of DFO algorithms that combine both strategies, respec-
tively denoted as Full-Eval and Low-Eval. In the unconstrained case, these methods showed
promising numerical performance.

In this paper, we extend the full-low evaluation framework to bound and linearly con-
strained derivative-free optimization. We derive convergence results for an instance of this
framework, that combines finite-difference quasi-Newton steps with probabilistic direct-
search steps. The former are projected onto the feasible set, while the latter are defined
within tangent cones identified by nearby active constraints. We illustrate the practical
performance of our instance on standard linearly constrained problems, that we adapt to
introduce noisy evaluations as well as non-smoothness. In all cases, our method performs
favorably compared to algorithms that rely solely on Full-eval or Low-eval iterations.

1 Introduction

Derivative-Free Optimization (DFO) [3, 15, 16, 27, 37] methods are developed for the mini-
mization of functions whose corresponding derivatives are unavailable for use or expensive to
compute. Particularly useful for complex simulation problems, DFO is often employed when
the objective function is derived from numerical simulations, making derivatives inaccessible

∗Corresponding author. Email: ous219@lehigh.edu
Contributing authors: clement.royer@lamsade.dauphine.fr, lnv@lehigh.edu

1

for algorithmic purposes. The field of derivative-free optimization now spans a wide range of
algorithms and has been applied in numerous engineering and applied science fields [1].

In these settings, evaluating the objective function represents the main computational bot-
tleneck, that must be accounted for while designing DFO algorithms. Besides, simulation codes
often enforce hard constraints on their parameters, typically under the form of bounds or linear
relationships, that must be satisfied for the simulation to terminate and for function informa-
tion to be obtained. As a result, a plurality of DFO schemes have been developed to target
constrained problems, with a careful classification of the nature of those constraints. For a com-
prehensive coverage of constraints in DFO, we refer the reader to existing survey papers [27, 28].
We review below algorithmic approaches that bear direct relevance to this paper.

Direct-search methods [25] are a common choice of derivative-free algorithms due to their
ease of implementation. These iterative methods sample new function evaluations along suit-
ably chosen directions at every iteration, in order to find a point at which the function value
decreases. Direct-search schemes have been endowed with theoretical guarantees even in pres-
ence of non-smooth objectives, while being intrinsically robust to the presence of noise in the
function evaluations [3]. In presence of linear constraints, direct-search methods generally use
directions that conform to the geometry of the feasible set, thereby ensuring feasible descent
without relying on derivative information [26]. Recent results have proposed probabilistic vari-
ants of direct search, in which the directions are only guaranteed to be feasible descent with a
given probability [22]. A probabilistic direct-search iteration can be performed using a signifi-
cantly smaller number of directions (and, thus, of function evaluations) than its deterministic
counterpart.

An alternative to direct-search techniques consists in building an approximate derivative
from function evaluations, which then enables the calculation of steps similar to those in the
derivative-based setting. Model-based derivative-free techniques obey this logic, and rely on
trust-region globalization arguments from nonlinear optimization to guarantee convergence of
the methods [15]. As a result, bounds and linear constraints are typically handled in a similar
fashion as in the derivative-based setting [13], even though ad hoc strategies have also been con-
sidered [21]. Another widely common approach consists in using finite differences to approximate
derivatives, so as to leverage existing algorithms from the derivative-based literature [35, Chapter
8]. In particular, recent advances in applying quasi-Newton updates using finite-difference gra-
dients have demonstrated good numerical performance, especially in a smooth setting [8, 9, 39].
This performance is mitigated by the inherent cost of finite-difference estimates, that scales at
least linearly with the dimension, and thus may be expensive to perform in a simulation-based
environment.

The full-low evaluation (Full-Low Evaluation) framework was recently proposed as a prin-
cipled way of combining derivative-free steps with different costs and properties [9]. In the
unconstrained setting, it was proposed to instantiate this framework using a BFGS step com-
puted through finite differences as well as a probabilistic direct-search iteration. This hybrid
approach was shown to outperform the individual strategies while being competitive with an
established solver on smooth and piecewise smooth problems.

In this paper, we propose an extension of the Full-Low Evaluation framework that handles
bounds and linear constraints by producing feasible iterates and feasible steps. We analyze
an instance of this approach that combines projected steps built on finite-difference gradient
estimates with direct-search steps based on probabilistic feasible descent as handled in [22].
The former (Full-Eval step) is considered expensive in terms of evaluations but provides good

2

performance and convergence results in the presence of a smooth objective. The latter (Low-Eval
step) is cheaper in terms of evaluations, while being more robust to noise or non-smoothness
in the objective. Similarly to the unconstrained setting, a switching condition determines the
nature of the step taken at each iteration.

The rest of this paper is organized as follows. Section 2 states our problem of interest, as well
as the key geometrical concepts used to design our algorithm. Section 3 describes our generic
Full-Low Evaluation framework, as well as the two subroutines that define our instance of
interest. Section 4 provides convergence results for both smooth and non-smooth objectives.
Section 5 details our implementation and our experimental setup, while the output of our tests
is analyzed in Section 6. Final remarks are given in Section 7. A list of our test problems is
provided in Appendix A.

2 Linearly constrained optimization and tangent cones

The purpose of this section is twofold. First, we describe our problem of interest as well as
associated optimality measures in Section 2.1. These concepts will serve as a basis for the
Full-Eval part of our algorithm. Secondly, we discuss the notion of tangent cones and its
connection to feasibility in Section 2.2. Those definitions will be instrumental in designing our
Low-Eval step based on direct search.

2.1 Problem and optimality measure

In this paper, we are interested in solving linearly constrained problems of the form

min
x∈Rn

f(x)

s.t. Ax = b

ℓ ≤ AIx ≤ u,

(2.1)

where f : Rn → R, A ∈ Rm×n, AI ∈ RmI×n, b ∈ Rm and (ℓ, u) ∈ R̄mI × R̄mI where
R̄ = R ∪ {−∞, ∞} with ℓ < u. To encompass bound constrained problems into the general
formulation (2.1), we consider the possibility that the matrix A is empty, in which case m
is equal to zero. When m > 0, the matrix A is assumed to have full row rank, and we let
W ∈ Rn×(n−m) be an orthonormal basis for the null space of A. When m = 0, we consider W
to be the identity matrix in Rn. Finally, we denote the set of feasible points by F .

Assuming that the function f is continuously differentiable, it is possible to define a criticality
measure for problem (2.1) that characterizes first-order stationary point. We focus on the
quantity q(·) defined by

∀x ∈ F , q(x) := ∥PF [x − ∇f(x)] − x∥ , (2.2)

where PF [x] = argminy∈F ∥x − y∥ is the projection of x onto the feasible region F and ∥ · ∥
denotes the Euclidean norm. In derivative-free optimization, the metric (2.2) has been employed
for analyzing the convergence of algorithms designed for the linearly constrained setting [29, 30].
Although more recent approaches have focused on another metric bearing a close connection
with the direct-search stepsize [22, 25], the measure (2.2) is quite common in projected gradient
techniques [10]. Since our theory relies on that of projected gradient techniques in the smooth
setting, we naturally focus on the measure (2.2).

3

When the smoothness of the function f is not guaranteed but f is locally Lipschitz contin-
uous, necessary optimality condition for problem (2.1) can be formulated based on the Clarke-
Jahn generalized directional derivative of f [24]. For a given point x ∈ F , a direction d is called
feasible at x there exists ϵ > 0 for which x + ϵd ∈ F . Given x ∈ F and a feasible direction d at
x, the Clarke-Jahn generalized directional derivative of f at x in direction d is defined as

f◦(x; d) := lim sup
y → x, y ∈ F

t ↓ 0, y + td ∈ F

f(y + td) − f(y)
t

. (2.3)

Any x∗ ∈ F such that f◦(x∗; d) ≥ 0 for any feasible direction d is called a Clarke-Jahn stationary
point. Note that such a condition was recently used in the context of non-smooth optimization
with linear constraints [7]. In the linearly constrained case, the set of feasible directions at x∗

coincides with the tangent cone T (x∗).

2.2 Approximate Tangent Cones

Tangent cones are key concepts to characterize feasibility and optimality in constrained opti-
mization [35]. Although approximate tangent cones have been less studied, they have proven
quite useful in the context of derivative-free optimization, as they characterize directions that
are feasible for a given step size, by accounting for constraints that are either active or approx-
imately active [25]. We recall below the key definitions related to approximate tangent cones,
by following the presentation in Gratton et al. [22].

For convenience, we will define approximate tangent cones based on a parameterization of
the feasible set. More precisely, we fix a reference vector x̄ ∈ Rn−m such that Ax̄ = b. Then,
any feasible point x ∈ F can be written as x = Wx̃ + x̄, where x̃ ∈ Rn−m is such that

ℓ − AI x̄ ≤ AIWx̃ ≤ u − AI x̄.

Using this decomposition, we define the approximate active inequality constraints at x = Wx̃+ x̄
according to a step size ξ > 0 as

{
Iu(x, ξ) :=

{
i : |ui − [AI x̄]i − [AIWx̃]i| ≤ ξ

∥∥∥W ⊤A⊤
I ei

∥∥∥}
Iℓ(x, ξ) :=

{
i : |ℓi − [AI x̄]i − [AIWx̃]i| ≤ ξ

∥∥∥W ⊤A⊤
I ei

∥∥∥} ,
(2.4)

where e1, . . . , emI denote the coordinate vectors in RmI . Note that one can assume without
loss of generality that W ⊤A⊤

I ei ̸= 0, otherwise, given that we assume that F is nonempty, the
inequality constraints/bounds ℓi ≤ [AIx]i ≤ ui would be redundant. Those indices in turn
define the approximate normal cone associated with (x, ξ) as

N(x, ξ) := Cone
(
{W ⊤A⊤

I ei}i∈Iu(x,ξ)} ∪ {−W ⊤A⊤
I ei}i∈Il(x,ξ)}

)
. (2.5)

Rather than using directions from the approximate normal cone to compute steps, we rely
on the polar of this cone, called the approximate tangent cone and defined by

T (x, ξ) :=
{

v ∈ Rn |vTu ≤ 0 ∀u ∈ N(x, ξ)
}

. (2.6)

4

An important property of the approximate tangent cone is that it approximates the feasible
region around x, and that moving along all its directions for a distance of ξ from x does not
break feasibility [22]. Lemma 2.1 below provides a formal description of this property (see [22,
Lemma 2.1] which is based on [26, Proposition 2.2]).

Lemma 2.1 Let x ∈ F and ξ > 0. Then, for any vector d̃ ∈ T (x, ξ) such that ∥d̃∥ ≤ ξ, we have
x + Wd̃ ∈ F .

Direct-search techniques rely on approximate tangent cones to define new feasible points in
a way that guarantees convergence to first-order stationarity [26].

3 Full-low evaluation framework with linear constraints

In this section, we describe our main algorithmic framework, that belongs to the class of
Full-Low Evaluation algorithms. The main idea behind this technique is the combination
of two categories of steps. On the one hand, Full-Eval steps, that are produced at a signifi-
cant cost in terms of function evaluations, are used to yield good performance of the method
especially in the presence of smoothness. On the other hand, Low-Eval steps are cheaper to
compute because they require less evaluations, and are often designed to handle the presence of
noise and/or non-smoothness in the objective function. We first present our general algorithm
that combines both types of steps, then dedicate a section to each category.

The general mechanism of the Full-Low Evaluation approach is described in Algorithm 1.
In this framework, the iteration type, denoted as tk, determines whether Full-Eval or Low-Eval
is invoked. The subsequent iteration type tk+1 is decided within the invoked function itself,
possibly through a user-defined condition. We detail the conditions for switching from one
iteration type to another in the next sections.

Algorithm 1 Full-Low Evaluation framework
Input: Initial iterate x0 ∈ F , low-eval stepsize α0 > 0 and iteration type t0 = Full-Eval.
Output: The final iterate x∞.

1: For k = 0, 1, 2, . . .
2: If tk = Full-Eval:
3: Call [tk+1, xk+1, αk+1] = Full-Eval(xk, αk) to compute a Full-Eval step.
4: Else if tk = Low-Eval:
5: Call [tk+1, xk+1, αk+1] = Low-Eval(xk, αk) to compute a Low-Eval step.

Apart from requiring feasibility of the initial point, note that Algorithm 1 is identical to that
of Berahas et al. [9], and that linear constraints are assumed to be handled upon computation
of a Low-Eval or a Full-Eval step. In the next sections, we detail our choices for computing
those steps.

3.1 Full-eval step based on projections

Full-Eval steps can be implemented by building a model of the objective function around the
current point and minimizing it to define the next point. A popular approach that lies within
the derivative-free paradigm consists in computing a finite-difference gradient approximation to

5

define a search direction, as well as a stepsize computed via line search based on this approx-
imation [9]. We extend here this approach to the linearly constrained setting by considering
projections onto the feasible set, a popular technique for dealing with linear constraints [10].

If the k-th iteration of Algorithm 1 is a Full-Eval step, we define a search direction pk based
on an approximate gradient gk computed through finite differences. A natural choice consists in
using pk = −gk. In Section 5, we detail our practical choices based on quasi-Newton formulas.
Once pk has been computed, we then seek candidate steps by considering the feasible direction

x̄k = PF [xk + pk] , (3.1)

and performing a line search along the direction x̄k − xk. More precisely, we seek the largest
value β ∈ (0, β̄] such that

f (xk + β(x̄k − xk)) ≤ f(xk) + cβg⊤
k (x̄k − xk). (3.2)

where c ∈ (0, 1). We will show in Section 4 that condition (3.2) is satisfied for a sufficiently
small value of β.

Algorithm 2 describes the calculation of a Full-Eval step for the k-th iteration of Algo-
rithm 1. Similarly to the unconstrained case [9], we introduce a switching condition∗ that
controls the norm of the Full-Eval step. A value β is accepted if it satisfies the decrease
condition (3.2) and

β ≥ γαk, (3.3)

where γ > 0 is independent of k. Condition (3.3) guarantees that β does not go below a certain
multiple of αk, which is the stepsize used for computing Low-Eval steps (see Section 3.2). When
both (3.2) and (3.3) are satisfied, we set βk = β and define the new iterate as xk + βk (x̄k − xk).
On the other hand, if condition (3.3) is violated, the Full-Eval step is skipped.

Algorithm 2 Constrained Full-Eval Iteration: Feasible Line Search
Input: Iterate xk ∈ F and αk. Backtracking global parameters β̄ ∈ (0, 1], γ > 0, τ ∈ (0, 1).
Output: tk+1, xk+1, and αk+1.

1: Compute the gradient approximation gk as well as a search direction pk. Compute x̄k

according to (3.1).
2: Backtracking line-search: Set β = β̄.
3: While True
4: if (3.2) is true or (3.3) is false, break.
5: Set β = τβ.
6: If (3.3) is true, set βk = β, xk+1 = xk + βk(x̄k − xk), and tk+1 = Full-Eval. Else, set

xk+1 = xk and tk+1 = Low-Eval.
(The Low-Eval parameter αk remains unchanged, αk+1 = αk; see Algorithm 3.)

The convexity of the set F guarantees that all iterates remain within the feasible set. This
is evident when expressing xk+1 in the form (1 − βk)xk + βkx̄k.

∗In the unconstrained case [9], we have proposed the switching condition β ≥ γρ(αk). Both work for the
convergence theory, in the sense of Lemma 4.2.

6

3.2 Low-eval step based on feasible descent cones

Low-Eval steps are based on the low evaluation paradigm of probabilistic direct search. This
approach can be extended to the linearly constrained case as described in Algorithm 3. We
suppose that a feasible initial point is provided by the user. At every iteration, the algorithm
uses a finite number of polling directions to seek a new feasible iterate x+ that reduces the
objective function value by a sufficient amount

f(x+) ≤ f(x) − ρ(α), (3.4)

where ρ is a forcing function classically employed in direct-search methods. The characteristics
of ρ are specified in Section 4.2.

Algorithm 3 Constrained Low-Eval Iteration: Feasible Direct Search
Input: Iterate xk ∈ F and stepsize αk. Direct-search global parameters λ ≥ 1 and θ ∈ (0, 1).
Output: tk+1, xk+1, and αk+1.

1: Generate a finite set Dk of non-zero polling directions.
2: If a feasible poll point xk + αkdk is found such that (3.4) is true for some dk ∈ Dk, set

xk+1 = xk + αkdk and αk+1 = λαk.
3: Else, set xk+1 = xk and αk+1 = θαk.
4: Decide if tk+1 = Low-Eval or if tk+1 = Full-Eval through a user-defined condition.

To ensure the feasibility in Line 2, one can choose directions of the form Wd̃, where d̃ ∈
T (xk, αk) with a stepsize less or equal than αk, as shown by Lemma 2.1.

As Line 4 indicates, the user has the discretion to decide the switching condition from
Low-Eval to Full-Eval. The only theoretical requirement is the eventual return to Full-Eval.
An example of such condition could involve restricting the sequence to a predetermined max-
imum of Low-Eval iterations. In our actual implementation, this is achieved by limiting the
number of unsuccessful Low-Eval attempts to equal the count of backtracking steps executed
during the preceding Full-Eval. This approach ensures a balanced distribution of effort between
both types of steps.

4 Convergence Analysis

4.1 Rate of convergence in the smooth case

In this section, we analyze the behavior of the class of Full-Low Evaluation methods in the
smooth case. We show that if the Full-Eval step generates an infinite sequence of iterates, then
the norm of q(xk) converges to zero with a rate of 1/

√
k. We now introduce the assumptions

needed for the analysis, starting with standard boundedness and smoothness requirements.

Assumption 4.1 The objective function f is bounded below by flow ∈ R, i.e., f(x) ≥ flow for
all x ∈ Rn.

Assumption 4.2 The function f is continuously differentiable and its gradient ∇f is Lipschitz
continuous with constant L > 0.

7

The next assumptions are related to our approximate gradient and stationary measure. For
any iterate xk in F computed by Algorithm 1, we define

qk = PF [xk − ∇f(xk)] − xk, qg
k = PF [xk − gk] − xk and qp

k = x̄k − xk = PF [xk + pk] − xk,
(4.1)

In our algorithm, we rely on directions defined using gk. Those should be close to the negative
of that approximate gradient, in the sense of Assumption 4.3 below.

Assumption 4.3 For every iteration k,

(−gk)⊤qp
k

∥qg
k∥∥qp

k∥
≥ κ and up∥qp

k∥ ≤ ∥qg
k∥ ≤ Up∥qp

k∥.

with up > 0, Up > 0 and κ ∈ (0, 1].

When pk = −gk, Assumption 4.3 holds with κ = up = Up = 1. Indeed, the first inequality
can be proved using the property of the projection [10, Proposition 1.1.4(b)] that implies that

(xk − gk − x̄k)⊤(x − x̄k) ≤ 0 ∀x ∈ F .

Moreover, using x = xk in the previous inequality as well as x̄k − xk = qg
k = qp

k gives

g⊤
k (x̄k − xk) ≤ −∥x̄k − xk∥2 ⇒ −g⊤

k qp
k ≥ ∥qg

k∥∥qp
k∥,

Finally, in order to relate the control the discrepancy between the true criticality measure and
its approximation using gk, we require the following assumption.

Assumption 4.4 The approximate gradient gk computed at xk satisfies

∥∇f(xk) − gk∥ ≤ ug∥qg
k∥, (4.2)

where ug ∈ (0, κ(1 − c)) is independent of k.

This condition generalizes that in full-low methods for unconstrained optimization [9, Assump-
tion 3.2], albeit with a restriction on the constant ug that becomes superfluous in the uncon-
strained setting. Nevertheless, condition (4.2) can be guaranteed in a finite number of steps
when the gradient is estimated using finite differences as shown in Section 4.3.

We now start our analysis by establishing a lower bound on the stepsize βk.

Lemma 4.1 Let Assumptions 4.2, 4.3, and 4.4 hold. If the k-th iteration is a successful
Full-Eval iteration, then

βk ≥ βmin := min
{

β̄,
2τ(κ(1 − c) − ug)up

L

}
. (4.3)

Proof. If βk = β̄ satisfies the decrease condition (3.2), then (4.3) holds trivially. Therefore,
we consider the case where βk < β̄ and at least one backtracking step was performed. We
consider βk = τβf

k where βf
k represents the final unsuccessful attempt before satisfying the

sufficient decrease condition (3.2). This implies that

cβf
k g⊤

k (x̄k − xk) < f(xk + βf
k (x̄k − xk)) − f(xk). (4.4)

8

Using a Taylor expansion of f around xk on the right-hand side of (4.4), we obtain the
following inequalities

cβf
k g⊤

k (x̄k − xk) ≤ βf
k ∇f(xk)⊤(x̄k − xk) + L

2 (βf
k)2∥x̄k − xk∥2

cβf
k g⊤

k (x̄k − xk) ≤ βf
k g⊤

k (x̄k − xk) + βf
k [∇f(xk) − gk]⊤(x̄k − xk)

+L

2 (βf
k)2∥x̄k − xk∥2

0 ≤ (1 − c)βf
k g⊤

k (x̄k − xk) + βf
k [∇f(xk) − gk]⊤(x̄k − xk)

+L

2 (βf
k)2∥x̄k − xk∥2. (4.5)

Using Assumption 4.3, we have

(gk)⊤qp
k ≤ −κ∥qg

k∥∥qp
k∥ ⇔ g⊤

k (x̄k − xk) ≤ −κ∥qg
k∥∥x̄k − xk∥,

hence
(1 − c)βf

k g⊤
k (x̄k − xk) ≤ −(1 − c)κβf

k ∥qg
k∥∥x̄k − xk∥. (4.6)

We now turn to the second term in the right-hand side of (4.5). Using Cauchy-Schwarz inequality
together with Assumption 4.4, we obtain

[∇f(xk) − gk]⊤(x̄k − xk) ≤ ∥∇f(xk) − gk∥∥x̄k − xk∥
≤ ug∥qg

k∥∥x̄k − xk∥.

Overall, we thus obtain that

βf
k [∇f(xk) − gk]⊤(x̄k − xk) ≤ ugβf

k ∥qg
k∥∥x̄k − xk∥. (4.7)

Putting (4.6) and (4.7) into (4.5), we obtain

0 ≤ −(1 − c)κβf
k ∥qg

k∥∥x̄k − xk∥ + ugβf
k ∥qg

k∥∥x̄k − xk∥

+L

2 (βf
k)2∥x̄k − xk∥2

0 ≤ −(κ(1 − c) − ug)βf
k ∥qg

k∥∥x̄k − xk∥ + L

2 (βf
k)2∥x̄k − xk∥2.

Using κ(1 − c) − ug ≥ 0 from Assumption 4.4 together with Assumption 4.3, we show

0 ≤ −(κ(1 − c) − ug)uqβf
k ∥x̄k − xk∥2 + L

2 (βf
k)2∥x̄k − xk∥2

The latter inequality only holds as long as

βf
k ≥ 2(κ(1 − c) − ug)up

L
.

Since βf
k = βk/τ , we can conclude that

βk ≥ 2τ(κ(1 − c) − ug)up

L
.

Combining this result with the case βk = β̄ gives the desired result. □
We can now establish the main result of the smooth case.

9

Theorem 4.1 Let Assumptions 4.1–4.4 hold. Let K ≥ 1 be the first iteration such that ∥qK+1∥ =
∥PF [xK+1 − ∇f(xK+1)] − xK+1∥ ≤ ϵ. Then, to achieve ∥qK+1∥ ≤ ϵ, Algorithm 1 takes at most
nK

SF successful Full-Eval iterations, where

nK
SF ≤

⌈
L1(f(x0) − flow)ϵ−2

⌉
, (4.8)

with L1 = (ug + 1)2Up

cκβmin
.

Proof. We denote by IK
SF the set of indices corresponding to successful Full-Eval iterations.

Let k ∈ IK
SF . By definition of such an iteration, the sufficient decrease condition (3.2) is satisfied

for xk+1 = x̄k(βk), where βk satisfies (4.3). Moreover, as shown in the proof of Lemma 4.1, we
have

g⊤
k (x̄k − xk) ≤ −κ∥qg

k∥∥x̄k − xk∥.

Overall, we obtain

f(xk) − f(xk+1) ≥ −cβkg⊤
k (x̄k − xk) (4.9)

≥ cκβk∥qg
k∥∥x̄k − xk∥

≥ cκβmin
Up

∥qg
k∥2.

Meanwhile, using Assumption 4.4 gives

∥qk∥ ≤ ∥qk − qg
k∥ + ∥qg

k∥ ≤ (ug + 1)∥qg
k∥.

Therefore, the decrease achieved at iteration k satisfies

f(xk) − f(xk+1) ≥ cκβmin
Up(ug + 1)2 ∥qk∥2. (4.10)

We now consider the changes in function values across all iterations in {0, . . . , K − 1}. Since the
iterate does not change on unsuccessful iterations and the function value decreases on successful
Low-Eval iterations, we have f(xk)−f(xk+1) ≥ 0 for all k ≤ K −1. Combining this observation
with Assumption 4.1 and (4.10) leads to

f(x0) − flow ≥ f(x0) − f(xK)

=
K−1∑
k=0

f(xk) − f(xk+1)

≥
∑

k∈IK
SF

f(xk) − f(xk+1)

≥ cκβmin
Up(ug + 1)2

∑
k∈IK

SF

∥qk∥2

>
cκβmin

Up(ug + 1)2 nK
SF ϵ2.

Re-arranging the terms and using the assumption that for ∥qk∥ > ϵ for k ≤ K, lead to the
desired conclusion. □

10

The rate (4.8) matches existing result for the unconstrained case [9]. This result primarily
addresses the number of successful iterations. However, in the context of DFO, the focus shifts
more towards the number of function evaluations. Estimating the upper bound on function
evaluations needed to achieve ∥qK+1∥ ≤ ϵ demands careful consideration of various critical
aspects. As outlined in Algorithm 1, an iteration could either be a Full-Eval iteration, which
incurs a cost of up to n + log(βmin/β̄)/ log(τ) + 1 function evaluations, or a Low-Eval iteration,
whose cost is primarily determined by the cardinality of the polling set. While the number of
successful Full-Eval is established, the dynamics between consecutive Low-Eval iterations and
unsuccessful Full-Eval iterations introduce a layer of complexity that makes it challenging to
infer their respective numbers. This difficulty already arises in the unconstrained setting [9],
and accurately calculating such a bound falls outside the scope of this convergence analysis.

4.2 Convergence in the non-smooth case

When the smoothness of the function f is not guaranteed, we rely on the properties of the
Low-Eval steps, and in particular on the sufficient decrease guarantees certified by the forcing
function. To this end, we make the following assumptions.

Assumption 4.5 The function ρ : R>0 → R>0 is continuous, positive, non-decreasing, and
satisfies limα→0+ ρ(α)/α = 0.

An example of such function is ρ(α) = αp with p > 1. As in the unconstrained setting [9],
we require the following assumption on the failure of Full-Eval iterations.

Assumption 4.6 There exists ϵg > 0 such that for any k ∈ ISF , where ISF denotes the set of
successful Full-Eval iterations, ∥qg

k∥ > ϵg.

However, we still rely in the analysis on the switching condition (3.3), along with the as-
sumption that the Low-Eval iterations generate an infinite subsequence of iterates to prove that
the direct-search parameter αk goes to zero. This result requires the forcing function to satisfy
Assumption 4.5 used in the unconstrained regime.

Lemma 4.2 Let Assumption 4.1, 4.5, and 4.6 hold. Assume that the sequence of iterates {xk}
is bounded. Then, there exists a point x∗ and a subsequence K ⊂ IUL of unsuccessful Low-Eval
iterates for which

lim
k∈K

xk = x∗ and lim
k∈K

αk = 0.

Proof. First, suppose that the set ISF ∪ IUF ∪ ISL is of infinite cardinality, where IUF

and ISL are the sets of unsuccessful Full-Eval and successful Low-Eval iterations, respectively.
Note that this set represents all iterations k for which αk does not decrease.

For all successful Full-Eval iterations k ∈ ISF , recall that (3.2) holds, i.e.

f(xk) − f(xk+1) ≥ −cβkgT
k (x̄k − xk) ≥ cκβk

Up
∥qg

k∥2.

Furthermore, the condition (3.3) is satisfied for β = βk, leading to

f(xk) − f(xk+1) ≥ cκγ

Up
αk∥qg

k∥2 ≥
cκγϵ2

g

Up
αk. (4.11)

11

Meanwhile, successful Low-Eval iterations k ∈ ISL achieve sufficient decrease,

f(xk) − f(xk+1) ≥ ρ(αk). (4.12)

Note that in Full-Eval unsuccessful iterations k ∈ IUF neither xk nor αk changes.
Hence, given that for unsuccessful Low-Eval iterations (IUL) the function does not decrease,

we can sum from 0 to k ∈ ISF ∪ IUF ∪ ISL the inequalities (4.11) and (4.12) to obtain

f(x0) − f(xk+1) ≥
∑

k∈ISF

(f(xk) − f(xk+1)) +
∑

k∈ISL

(f(xk) − f(xk+1))

≥
cκγϵ2

g

Up

∑
k∈ISF

αk +
∑

k∈ISL

ρ(αk).

By the boundedness (from below) of f , we conclude that the series are summable, which implies
that limk∈ISF

αk = 0 or limk∈ISL
ρ(αk) = 0 if one of the sets is infinite. Since α remains

unchanged during unsuccessful Full-Eval steps, and under Assumption 4.5, it follows that
lim infk∈ISF ∪IUF ∪ISL

αk = 0 (and thus there must be an infinite subsequence of unsuccessful
Low-Eval steps driving αk to zero). If both ISF and ISL are finite, this implies that IUF is
infinite. In this case, given the mechanism of the algorithm, there must also exist an infinite
subsequence of unsuccessful Low-Eval steps driving αk to zero. Similarly, if IUL is infinite, there
must exist an infinite sequence of unsuccessful Low-Eval steps driving αk to zero.

Overall, there must be an infinite sequence of unsuccessful Low-Eval steps driving αk to
zero. From the boundedness of the sequence of iterates, one can extract a subsequence K of that
subsequence satisfying the statement of the lemma. □

We note that this proof also shows that αk goes to zero for all k. As in the unconstrained case,
convergence results are established using the notion of generalized Clarke-Jahn derivative [12]
at x along a direction d. In Theorem 4.2, we show that there exists a limit point which is
Clarke-Jahn stationary, provided the so-called refining directions are dense in the tangent cone.

Theorem 4.2 Let Assumption 4.1, 4.5, and 4.6 hold. Assume that the sequence of iterates {xk}
is bounded. Let the function f be Lipschitz continuous around the point x∗ defined in Lemma 4.2.
Let the set of limit points of {

dk

∥dk∥
, dk ∈ Dk, k ∈ K

}
(4.13)

be dense in the tangent cone T (x∗), where K ⊂ IUL is given in Lemma 4.2.
Then, x∗ is a Clarke-Jahn stationary point, i.e., f◦(x∗; d) ≥ 0 for all normalized d in T (x∗).

Proof. The proof follows standard arguments in [4, 5, 41]. Let d̄ be a limit point of (4.13),
identified for a certain subsequence L ⊆ K. Then, from the basic properties of the generalized

12

Clarke-Jahn derivative, and k ∈ L,

f◦(x∗; d̄) = lim sup
xk → x∗, xk ∈ F

αk ↓ 0, xk + αkd̄ ∈ F

f(xk + αkd̄) − f(xk)
αk

≥ lim sup
xk → x∗, xk ∈ F

αk ↓ 0, xk + αkdk ∈ F

{
f(xk + αkdk) − f(xk)

αk
− L∗

f ∥dk − d̄∥
}

= lim sup
xk → x∗, xk ∈ F

αk ↓ 0, xk + αkdk ∈ F

{
f(xk + αkdk) − f(xk)

αk
+ ρ(αk)

αk

}
,

where L∗
f is the Lipschitz constant of f around x∗. Since k ∈ L are unsuccessful Low-Eval

iterations, it follows that f(xk + αkdk) > f(xk) − ρ(αk) which implies that

lim sup
xk → x∗, xk ∈ F

αk ↓ 0, xk + αkdk ∈ F

f(xk + αkdk) − f(xk) + ρ(αk)
αk

≥ 0.

From this and Assumption 4.5, we obtain f◦(x∗; d̄) ≥ 0. Given the continuity of f◦(x∗; ·), one
has for any d ∈ T (x∗) such that ∥d∥ = 1, f◦(x∗; d) = limd̄→d f◦(x∗; d̄) ≥ 0. □

4.3 More on the smooth case (use of finite difference gradients)

Let us return to the smooth case to clarify the imposition of Assumption 4.4. Such an assumption
is related to the satisfaction of the so-called criticality step in DFO trust-region methods [14, 15]
based on fully linear models. In the context of Algorithm 2, those models correspond to an
approximate gradient gk built from finite differences.

The i-th component of the forward finite-differences (FD) approximation of the gradient at
xk is defined as

[∇hk
f(xk)]i = f(xk + hkei) − f(xk)

hk
, i = 1, . . . , n, (4.14)

where hk is the finite difference parameter and ei ∈ Rn is the i-th canonical vector. Computing
such a gradient approximation costs n function evaluations per iteration, and it is implicitly
assumed that such evaluations can be made. By using a Taylor expansion, the error in the
finite-differences gradient (in the smooth and noiseless setting) can be shown [15] to satisfy

∥∇f(xk) − ∇hk
f(xk)∥ ≤ 1

2
√

n L hk. (4.15)

It becomes then clear that one way to ensure Assumption 4.4 in practice, when gk =
∇hk

f(xk), is to enforce hk ≤ u′
g∥qhk

k ∥, where qhk
k = PF [xk − ∇hk

f(xk)]−xk and u′
g = 2ug/(

√
nL).

Enforcing such a condition is expensive but can be rigorously done through a criticality-step
type argument (see Algorithm 4).

13

Algorithm 4 Criticality step: Performed if hk > u′
g

∥∥∥qhk
k

∥∥∥
Input: hk, qhk

k

(0)
= qhk

k , and ω ∈ (0, 1). Let j = 0.
Output: qhk

k = qhk
k

(j)
and hk.

1: While hk > u′
g

∥∥∥∥qhk
k

(j)
∥∥∥∥ Do

2: Set j = j + 1 and hk = ωju′
g

∥∥∥∥qhk
k

(0)
∥∥∥∥.

3: Compute ∇hk
f(xk) using (4.14) and set qhk

k

(j)
= PF [xk − ∇hk

f(xk)] − xk

Proposition 4.1 shows that Algorithm 4 terminates in a finite number of steps.

Proposition 4.1 Let Assumption 4.2 hold. If ∥qk∥ > 0, then Algorithm 4 terminates in finitely
many iterations by computing hk such that the condition hk ≤ u′

g∥qhk
k ∥ is satisfied.

Proof. Let us suppose that the algorithm loops infinitely. Then, for all j ≥ 1, using Step 2
and the satisfaction of the while–condition in Step 1,

∥qhk
k

(j)
∥ ≤ ωj∥qhk

k

(0)
∥. (4.16)

On the other hand, for all j ≥ 1, the FD bound (4.15), followed by Step 2, gives us

∥∇f(xk) − ∇hk
f(xk)(j)∥ ≤ 1

2
√

nL ωju′
g∥qhk

k

(0)
∥. (4.17)

Hence, using (4.16)–(4.17), we have

∥qk∥ ≤ ∥qk − qhk
k

(j)
∥ + ∥qhk

k

(j)
∥ ≤ ∥∇f(xk) − ∇hk

f(xk)(j)∥ + ∥qhk
k

(j)
∥

≤ ∥∇f(xk) − ∇hk
f(xk)(j)∥ + ωj∥qhk

k

(0)
∥

≤
(√

nLu′
g

2 + 1
)

ωj∥qhk
k

(0)
∥,

where the second inequality on the first line comes from the [non-expansiveness of orthogonal
projection. By taking limits (and noting that ω ∈ (0, 1)), we conclude that qk = 0, which yields
a contradiction. □

5 Numerical setup

In this section, we will first present our implementation choices for the Full-Low Evaluation
linearly constrained method. The complete MATLAB implementation is available on GitHub†.
The repository includes all the necessary algorithms and testing scripts. The numerical environ-
ment of our experiments is also introduced (other methods/solvers tested, test problems chosen,
and performance profiles). The tests were run using MATLAB R2019b on an Asus Zenbook
with 16GB of RAM and an Intel Core i7-8565U processor running at 1.80GHz.

†https://github.com/sohaboumaima/FLE

14

https://github.com/sohaboumaima/FLE

5.1 Practical Full-Eval implementation

In this section, we present a detailed discussion of the implementation of the
Full-Low Evaluation algorithm in the linearly constrained case. Building upon the principles
used in the unconstrained case, we introduce a direction pk that leverages second-order infor-
mation for faster convergence. Specifically, we define pk = −WHkW ⊤gk, where Hk represents
an approximation of the inverse Hessian using the Broyden-Fletcher-Goldfarb-Shanno (BFGS)
quasi-Newton update [11, 18, 20, 38], as described in Algorithm 5. Here, W ∈ Rn×(n−m) denotes
an orthonormal basis for the null space of matrix A. Notably, due to the positive definiteness
of Hk, it follows that WHkW ⊤ is also positive definite.

Using WHkW ⊤gk instead of Hkgk offers two significant advantages. Firstly, the resulting
value of xk + pk automatically satisfies the equality constraints, since

A(xk − WHkW ⊤gk) = b − AW (HkW ⊤gk) = b.

Secondly, using this direction allows us to compute W ⊤gk rather than directly calculating gk,
thus reducing the computational cost of finite differences from n to n − m function evaluations.
Indeed, the forward finite-differences approximation can be reduced to the null space of the
linear equality constraints:

[W ⊤gk]i = f(xk + hkwi) − f(xk)
hk

, for i = 1, . . . , n − m, (5.1)

where hk is the finite difference parameter, and wi ∈ Rn is the i-th column vector of W . In the
numerical experiments, the parameter hk is set to the square root of Matlab’s machine precision.

Our Full-Eval line-search iteration is described in Algorithm 5, which includes BFGS up-
dates for the inverse Hessian approximation Hk using (5.4). Here, jk refers to the previous
Full-Eval iteration, and sk and yk are given in (5.3). Notably, in the non-convex case, the in-
ner product s⊤

k yk cannot be ensured to be positive. To maintain the positive definiteness of the
matrix Hk, we skip the BFGS update if s⊤

k yk < ϵc∥sk∥∥yk∥, with ϵc ∈ (0, 1) being independent
of k. In our implementation, we use ϵc = 10−10.

The line search follows the backtracking scheme described in Algorithm 2, using standard
values β̄ = 1 and τ = 0.5. A key feature of our Full-Low Evaluation methodology that led to
rigorous results (see the proof of Lemma 4.2) is to stop the line search once condition (3.3) is
violated. In our implementation, we use:

γ = 1, ρ(αk) = min(γ1, γ2α2
k), with γ1 = γ2 = 10−5. (5.2)

For k = 0, we perform a backtracking line search using p0 = −WW ⊤g0 (and update t1
and x1) as in Algorithm 2 (with constants as in Algorithm 5). The initialization of H0 is done
as follows: If t1 = Full-Eval, then we set H0 = (y⊤

0 s0)/(y⊤
0 y0)I, in an attempt to make the

size of H0 similar to that of ∇2f(x0)−1 [35]. However, if t1 = Low-Eval, we set H0 = I.

5.2 Low-Eval implementation

We now elaborate on our implementation of Algorithm 3, and more precisely on the calculation
of the polling sets. Our algorithm uses positive generators of the approximate tangent cones
described in Section 2.2. By describing an approximate tangent cone as a conic hull of a finite
set of vectors, we can then use those vectors as (feasible) directions.

15

Algorithm 5 Full-Eval Iteration: BFGS with FD Gradients
Input: Iterate xk with k ≥ 1. Information (xjk

, gjk
, Hjk

) from the previous Full-Eval itera-
tion jk (if k > 0). Backtracking parameters β̄ > 0 and τ ∈ (0, 1). Other parameters ϵc, γ, γ1 > 0.
Output: tk+1 and (xk+1, Hk, gk). Return the number nbk of backtrack attempts.

1: Compute the FD gradient W ⊤gk = W ⊤∇hk
f(xk) using (5.1).

2: Set
sk = xk − xjk

and yk = gk − gjk
. (5.3)

3: If s⊤
k yk ≥ ϵc∥sk∥∥yk∥, set

Hk =
(

I − sky⊤
k

y⊤
k sk

)
Hjk

(
I − yks⊤

k

y⊤
k sk

)
+ sks⊤

k

y⊤
k sk

. (5.4)

4: Else, set Hk = Hjk
.

5: Compute the direction −WHkW ⊤gk.
6: Perform a backtracking line-search and update tk+1 and xk+1 as in Algorithm 2.

The problem of finding such positive generators from a description of the cone through
linear inequalities has attracted significant research in computational geometry, and is sometimes
referred to as the representation conversion problem [33]. Recent advances in linearly constrained
optimization have featured off-the-shelf softwares to compute those generators [7]. We follow here
a popular approach in the direct-search community [31], that splits the problem of computing
positive generators in two cases. In the first case, we are able to leverage the description of the
approximate normal cone through positive generators given by (2.5) to directly define that of
the approximate tangent cone. In the second case, we compute positive generators for a subset
of the cone, and positive generators of the tangent cone are then obtained by considering the
union of all these sets for all possible subsets of columns that yield a full row rank matrix [36].
One drawback of this strategy is that it leads to combinatorial explosion in the subsets of
columns that must be considered and the number of positive generators that are obtained. For
this reason, several implementations [25, 31] have relied on the double description method from
computational geometry [19]. This technique can significantly reduce the number of generators
that are used to describe the approximate tangent cone, in the minority of cases where it is
needed on standard test problems [31].

Our implementation is that of a probabilistic variant of the aforementioned approach pro-
posed by Gratton et al. [22], in which the approximate tangent cone is decomposed into a
subspace part and a pointed cone part (i.e. a cone that does not contain a straight line). Given
a set of generators for the approximate tangent cone, we can then replace the subset related to
the subspace by a direction drawn uniformly at random within that subspace and its negative,
while we can randomly sample a fraction of the other generators corresponding to the pointed
cone part. Such an approach reduces the number of polling directions even further, while being
endowed with almost-sure convergence guarantees [22, Proposition 7.1]. Our implementation
follows that of the dspfd MATLAB code [22], that uses its own implementation of the double
description method.

16

5.3 Other solvers

We compared the numerical performance of our implementation of Full-Low Evaluation (de-
noted constFLE) to four other approaches: (i) a line-search BFGS method based on FD gradients
(as if there were only Full-Eval iterations), referred to as constBFGS; (ii) probabilistic direct
search (as if there were only Low-Eval iterations), referred to as dspfd; (iii) a mesh adaptive
direct search solver, NOMAD; (iv) a direct search solver, referred to as patternsearch.

Given the detailed description of constFLE, constBFGS, and dspfd in previous sections, we
only elaborate on NOMAD and patternsearch below. NOMAD [6] is a solver that implements Mesh
Adaptive Direct Search (MADS) [5] under general nonlinear constraints. The polling directions
belong to positive spanning sets that asymptotically cover the unit sphere densely. In the case
of inequality constraints, the user is allowed to choose to handle them via extreme-barrier,
progressive-barrier [2] or filter approaches. In our experiments, we choose the default option
which is progressive-barrier, but note that an extreme-barrier approach would provide similar
conclusions. The patternsearch function is a MATLAB’s built-in function that comes as a
part of the global optimization TOOLBOX [23]. This is a directional direct search method that
progresses by accepting a point as the new iterate if it satisfies a simple decrease condition.
For bounds and linear constraints, patternsearch modifies poll points to be feasible at every
iteration, meaning to satisfy all bounds and linear constraints. We adopted the default settings
in the choice of polling set which uses the Generalized Pattern Search strategy [40].

5.4 Classes of problems tested

Evaluating optimization methods crucially involves assessing their performance across diverse
scenarios. In pursuit of this, we perform experiments on smooth, noisy, and non-smooth prob-
lems. For each category, the test set is classified into three distinct classes, namely bound
constrained problems, general linearly constrained problems, and problems with at least one
linear inequality constraint. Detailed dimensions and inequality counts for each problem are
provided in the Appendix for reference.

For smooth bound constrained problems, we selected 41 instances from the CUTEst library.
The dimensions of these instances range from 2 to 20, and the number of bounds varies between 1
and 40. The relevant details are summarized in Table 1. In the context of smooth general linearly
constrained problems, we consider a comprehensive set of 76 CUTEst problems. Each of these
problems involves at least one linear constraint, which is not a bound on the variable. The
dimensions vary from 2 to 24, and in cases where linear inequalities are present, their count
ranges from 1 to 2000. A detailed overview of these general constrained problems can be found
in Tables 2 to 3.

To investigate the behavior of the optimization solvers on noisy functions, we conduct ex-
periments using perturbed versions of the aforementioned problems. Following the approach
of [34], the perturbed functions are formulated as f(x) = ϕ(x)(1 + ξ(x)), where ϕ represents
the original smooth function. In this case, ξ(x) is a realization of a uniform random variable
U(−ϵf , ϵf). These noisy functions provide valuable insights into the robustness of optimization
algorithms in practical scenarios.

To perform a comparison on nonsmooth problems, we considered two different test sets. The
first test set is built from our smooth benchmark, and is meant to illustrate the behavior of our
method in presence of mild nonsmoothness. To create such problems, we considered problems
with both bounds and general linear constraints, and moved either the general linear constraints

17

or the bounds into the objective function. As a result of this transformation, we generated a
total of 52 bound constrained problems and 107 problems with general linear constraints, out
of which 52 included at least one inequality constraint. Comprehensive details about these
problems are presented in Tables 4 to 6. In generating general linearly constrained optimization
problems, we adopt a method where we penalize only the first portion of the bound constraints
in certain cases. This prevents the outcome from being dominated solely by linear equality or
inequality constraints. We denote this category as ”1/2B” in the tables for ease of reference.
As an illustrative example, let us consider the transformation of problem LSQFIT. The original
problem is formulated as follows:

min
x,y

5∑
i=1

(aix + y − bi)2

s.t. x + y ≤ 0.85
x ≥ 0,

(5.5)

where a = [0.1, 0.3, 0.5, 0.7, 0.9] and b = [0.25, 0.3, 0.625, 0.701, 1.0]. After the transformation,
the problem becomes:

min
x,y

5∑
i=1

(aix + y − bi)2 + λ|x + y − 0.85|

s.t. x ≥ 0,

(5.6)

where λ represents the penalty parameter. Our second test set of nonsmooth problems consists in
14 linearly constrained minimax problems as introduced in [32]. In this set, the non-smoothness
is introduced by the max operator, resulting in less structured non-smoothness compared to the
previous set. Detailed information about these problems is provided in Table 7.

6 Numerical Results

We present numerical results under the form of performance profiles in order to gauge opti-
mization solvers’ effectiveness. As outlined in [17], these profiles provide a mean of assessing
the performance of a designated set of solvers S across a given set of problems P. They are a
visual tool where the highest curve corresponds to the solver with the best overall performance.
Let tp,s > 0 be a performance measure of the solver s ∈ S on the problem p ∈ P, which in our
case was set to the number of function evaluations. The curve for a solver s is defined as the
fraction of problems where the performance ratio is at most α,

ρs(α) = 1
|P|

size {p ∈ P : rp,s ≤ α} ,

where the performance ratio rp,s is defined as

rp,s = tp,s

min{tp,s : s ∈ S}
.

The convention rp,s = +∞ is used when a solver s fails to satisfy the convergence test for
problem p. The convergence test used is

f(x0) − f(x) ≥ (1 − τ)(f(x0) − fL), (6.1)

18

where τ > 0 is a tolerance, x0 is the starting point for the problem, and fL is computed for
each problem p ∈ P as the smallest value of f obtained by any solver within a given number of
function evaluations.

In our experiments, we use 100(n + 1) as a maximum number of function evaluations which
is what is need for 100 simplex gradients. Solvers with the highest values of ρs(1) are the most
efficient, and those with the highest values of ρs(α), for large α, are the most robust.

6.1 Smooth problems

Bound constrained problems

Analyzing those results given in Figure 1, one observes that Full-Low Evaluation (blue curve)
demonstrates the best performance in terms of efficiency (as indicated by the highest curve at
a ratio of 1). It is closely followed by pure Full-Eval (red curve), with NOMAD (magenta curve)
ranking third. When considering robustness, Full-Low Evaluation outperforms the others,
while NOMAD ranks second. patternsearch ranks last in both efficiency and robustness.

1 2 4 8 16 32 64

Ratio of function calls (log scale)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
ra

ct
io

n
of

 p
ro

bl
em

s
so

lv
ed

 = 10 -3

constFLE
constBFGS
dspfd
NOMAD
patternsearch

1 2 4 8 16 32

Ratio of function calls (log scale)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
ra

ct
io

n
of

 p
ro

bl
em

s
so

lv
ed

 = 10 -5

constFLE
constBFGS
dspfd
NOMAD
patternsearch

Figure 1: Performance profiles with τ = 10−3, 10−5 of the 5 solvers: constFLE, constBFGS,
dspfd, NOMAD, and patternsearch. The test set contains 41 smooth bound constrained problems from

the CUTEst library.

Linearly constrained problems

On general linear equality problems, Figure 2 illustrates that our method outperforms the four
other solvers in terms of both efficiency and robustness. Pure Full-Eval comes second in terms
of efficiency, while pure Low-Eval performing exceptionally well in terms of robustness and
ranks second for that metric. On the other hand, patternsearch ranks fourth both in terms of
efficiency and robustnes, while NOMAD exhibits lower performance due to its limited handling of
linear equality constraints, which are present in some of the problems.

19

Figure 3 provides a more specific comparison of the four solvers on the subset of problems
that contain at least one inequality constraint. Even in this context, Full-Low Evaluation
demonstrates the best performance, followed by Low-Eval, Full-Eval, then patternsearch. It
is worth noting that NOMAD shows improved performance compared to the previous experiment
given the lack of equality constraints.

1 2 4 8 16 32 64 128

Ratio of function calls (log scale)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
ra

ct
io

n
of

 p
ro

bl
em

s
so

lv
ed

 = 10 -3

constFLE
constBFGS
dspfd
NOMAD
patternsearch

1 2 4 8 16 32 64 128 256

Ratio of function calls (log scale)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
ra

ct
io

n
of

 p
ro

bl
em

s
so

lv
ed

 = 10 -5

constFLE
constBFGS
dspfd
NOMAD
patternsearch

Figure 2: Performance profiles with τ = 10−3, 10−5 of the 5 solvers: constFLE, constBFGS,
dspfd, NOMAD, and patternsearch. The test set contains 76 smooth problems with general linear

constraints from the CUTEst library.

6.2 Non-smooth problems

6.2.1 ℓ1 norm problems

Bound constrained problems: Figure 4 displays the results obtained from testing non-
smooth bound constrained problems. Full-Low Evaluation is here the most efficient solver,
while Full-Eval takes the second spot for both low and high accuracy. Meanwhile, NOMAD
showcases the best robustness. This observed ranking of solvers in the bound constrained setting
remains more or less consistent even with the introduction of the non-smooth regularization.

20

1 2 4 8 16 32 64 128

Ratio of function calls (log scale)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
ra

ct
io

n
of

 p
ro

bl
em

s
so

lv
ed

 = 10 -3

constFLE
constBFGS
dspfd
NOMAD
patternsearch

1 2 4 8 16 32 64 128 256

Ratio of function calls (log scale)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
ra

ct
io

n
of

 p
ro

bl
em

s
so

lv
ed

 = 10 -5

constFLE
constBFGS
dspfd
NOMAD
patternsearch

Figure 3: Performance profiles with τ = 10−3, 10−5 of the 5 solvers: constFLE, constBFGS,
dspfd, NOMAD, and patternsearch. The test set contains 40 smooth problems with at least one

inequality constraint from the CUTEst library.

1 2 4 8 16 32 64

Ratio of function calls (log scale)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
ra

ct
io

n
of

 p
ro

bl
em

s
so

lv
ed

 = 10 -3

constFLE
constBFGS
dspfd
NOMAD
patternsearch

1 2 4 8 16 32 64

Ratio of function calls (log scale)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
ra

ct
io

n
of

 p
ro

bl
em

s
so

lv
ed

 = 10 -5

constFLE
constBFGS
dspfd
NOMAD
patternsearch

Figure 4: Performance profiles with τ = 10−3, 10−5 of the 5 solvers: constFLE, constBFGS,
dspfd, NOMAD, and patternsearch. The test set contains 52 non-smooth bound constrained problems.

21

Linearly constrained problems: In Figure 5, we present the results on general non-
smooth problems. One can see that the Full-Low Evaluation curve is above all, followed
by Low-Eval and patternsearch which exhibit similar performance, Full-Eval, then NOMAD.
As with the smooth case, employing Full-Low Evaluation yields better results than using
individual steps alone, providing further confirmation of the effectiveness of our approach.

Furthermore, even within this context, NOMAD faces challenges posed by equality constraints.
However, upon their removal as shown in Figure 6, NOMAD demonstrates improved robustness
compared to Full-Eval.

1 2 4 8 16 32 64 128

Ratio of function calls (log scale)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
ra

ct
io

n
of

 p
ro

bl
em

s
so

lv
ed

 = 10 -3

constFLE
constBFGS
dspfd
NOMAD
patternsearch

1 2 4 8 16 32 64 128 256

Ratio of function calls (log scale)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
ra

ct
io

n
of

 p
ro

bl
em

s
so

lv
ed

 = 10 -5

constFLE
constBFGS
dspfd
NOMAD
patternsearch

Figure 5: Performance profiles with τ = 10−3, 10−5 of the 5 solvers: constFLE, constBFGS,
dspfd, NOMAD, and patternsearch. The test set contains 107 non-smooth general linear equality

constraints.

6.2.2 Minimax problems

When the non-smoothness is less structured, methods that estimate the gradient are significantly
impacted. Figure 7 illustrates that the relative performance of these methods is notably different
from the earlier observations. On this test set, NOMAD outperforms the other solvers in terms
of both efficiency and robustness, followed by Low-Eval. Full-Eval comes in third, while
patternsearch takes the fourth spot. Among all the methods, Full-Eval ranks as the least
efficient and robust for the reasons aforementioned.

22

1 2 4 8 16 32 64 128

Ratio of function calls (log scale)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
ra

ct
io

n
of

 p
ro

bl
em

s
so

lv
ed

 = 10 -3

constFLE
constBFGS
dspfd
NOMAD
patternsearch

1 2 4 8 16 32 64 128 256

Ratio of function calls (log scale)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
ra

ct
io

n
of

 p
ro

bl
em

s
so

lv
ed

 = 10 -5

constFLE
constBFGS
dspfd
NOMAD
patternsearch

Figure 6: Performance profiles with τ = 10−3, 10−5 of the 5 solvers: constFLE, constBFGS,
dspfd, NOMAD, and patternsearch. The test set contains 52 non-smooth problems with at least one

inequality constraint.

6.3 Noisy functions

Bound constrained problems

In this context, NOMAD demonstrates the best performance in terms of efficiency and robustness.
Referring to Figure 8, we can see that the curve corresponding to Full-Low Evaluation is
between the Full-Eval and Low-Eval curves. Such results are conform to observations made
in the unconstrained case [9], especially for low accuracy. This correspondence arises from
Full-Eval performing poorly when h is equal to the square root of machine precision. Note that
Full-Low Evaluation is able to outperform Low-Eval for high accuracy in term of robustness.
On the other hand, at lower accuracies, patternsearch ranks fourth, followed by Full-Eval.
However, its performance improves significantly at higher accuracies, where it ranks second in
both efficiency and robustness. This demonstrates its effectiveness in noisy settings.

Linearly constrained problems

When tested on general linear equality constrained problems, patternsearch stands out as the
most efficient and robust solver. Pure Low-Eval (probabilistic direct search) shows a comparable
efficiency, especially for higher accuracy, followed by Full-Low Evaluation which is more robust
than Low-Eval. Conversely as observed in Figure 9, NOMAD experiences a performance decline
similar to observations in both smooth and non-smooth cases. Figure 10 sheds light on problems
featuring linear inequalities. Notably, in this context, NOMAD’s performance stands on par with
Full-Eval, and it even surpasses it, especially under conditions demanding higher accuracy. The
relative order of performance among the other solvers remained consistent, with patternsearch

23

1 2 4

Ratio of function calls (log scale)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
ra

ct
io

n
of

 p
ro

bl
em

s
so

lv
ed

 = 10 -3

constFLE
constBFGS
dspfd
NOMAD
patternsearch

1 2 4

Ratio of function calls (log scale)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
ra

ct
io

n
of

 p
ro

bl
em

s
so

lv
ed

 = 10 -5

constFLE
constBFGS
dspfd
NOMAD
patternsearch

Figure 7: Performance profiles with τ = 10−3, 10−5 of the 5 solvers: constFLE, constBFGS,
dspfd, NOMAD, and patternsearch. The test set contains 14 bound and linearly constrained problems

non-smooth problems.

demonstrating superior performance.

7 Conclusions

We have proposed an instance of the Full-Low Evaluation framework tailored to the presence
of bound and linear constraints, by combining projected BFGS steps with probabilistic direct-
search steps within approximate tangent cones. The result method is equipped with similar
guarantees than in the unconstrained case. In addition, its performance has been validated in
linearly constrained problems with smooth, non-smooth, and noisy objectives. Those experi-
ments overall suggest that our algorithm is able to get the best of both worlds, and improve
over existing algorithms that do not combine Full-Eval and Low-Eval steps.

Other variants of the Full-Low Evaluation framework may be able to improve on our cur-
rent implementation. In particular, one could rely on trust-region steps as Full-Eval, while
one- or two-point feedback feasible approaches that have been proposed more generally in the
convexly constrained setting. In fact, extending the Full-Low Evaluation framework to non-
linear, convex constraints is a natural continuation of our work, which may benefit from existing
results in feedback methods as well as mature theory regarding projected gradient techniques.

Acknowledgments

This work is partially supported by the U.S. Air Force Office of Scientific Research (AFOSR)
award FA9550-23-1-0217, and by Agence Nationale de la Recherche through program ANR-19-
P3IA-0001 (PRAIRIE 3IA Institute).

24

1 2 4 8 16 32 64 128

Ratio of function calls (log scale)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
ra

ct
io

n
of

 p
ro

bl
em

s
so

lv
ed

 = 10 -1

constFLE
constBFGS
dspfd
NOMAD
patternsearch

1 2 4 8 16

Ratio of function calls (log scale)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
ra

ct
io

n
of

 p
ro

bl
em

s
so

lv
ed

 = 10 -3

constFLE
constBFGS
dspfd
NOMAD
patternsearch

Figure 8: Performance profiles with τ = 10−1, 10−3 of the 5 solvers: constFLE, constBFGS,
dspfd, NOMAD, and patternsearch. The test set contains 41 noisy bound constrained problems.

Declarations

Conflict of interest: All authors declare that they have no conflict of interest.
Data Availability: The data used to support the findings is publicly available.

References

[1] S. Alarie, C. Audet, A. E. Gheribi, M. Kokkolaras, and S. Le Digabel. Two decades of
blackbox optimization applications. EURO J. Comput. Optim., 9:100011, 2024.

[2] C. Audet and J. E. Dennis Jr. A progressive barrier for derivative-free nonlinear program-
ming. SIAM J. Optim., 20:445–472, 2009.

[3] C. Audet and W. Hare. Derivative-Free and Blackbox Optimization. Springer Series in
Operations Research and Financial Engineering. Springer, Cham, Switzerland, 2017.

[4] C. Audet and J. E. Dennis Jr. Analysis of generalized pattern searches. SIAM J. Optim.,
13:889–903, 2002.

[5] C. Audet and J. E. Dennis Jr. Mesh adaptive direct search algorithms for constrained
optimization. SIAM J. Optim., 17:188–217, 2006.

[6] C. Audet, S. L. Digabel, V. R. Montplaisir, and C. Tribes. Nomad version 4: Nonlinear
optimization with the mads algorithm. arXiv preprint arXiv:2104.11627, 2021.

[7] A. Beck and N. Hallak. On the convergence to stationary points of deterministic and
randomized feasible descent directions methods. SIAM J. Optim., 30:56–79, 2020.

25

1 2 4 8 16 32 64

Ratio of function calls (log scale)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
ra

ct
io

n
of

 p
ro

bl
em

s
so

lv
ed

 = 10 -1

constFLE
constBFGS
dspfd
NOMAD
patternsearch

1 2 4 8 16 32 64

Ratio of function calls (log scale)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
ra

ct
io

n
of

 p
ro

bl
em

s
so

lv
ed

 = 10 -3

constFLE
constBFGS
dspfd
NOMAD
patternsearch

Figure 9: Performance profiles with τ = 10−3, 10−5 of the 5 solvers: constFLE, constBFGS,
dspfd, NOMAD, and patternsearch. The test set contains 76 noisy problems with general linear

constraints.

[8] A. S. Berahas, R. H. Byrd, and J. Nocedal. Derivative-free optimization of noisy functions
via quasi-newton methods. SIAM J. Optim., 29:965–993, 2019.

[9] A. S. Berahas, O. Sohab, and L. N. Vicente. Full-low evaluation methods for derivative-free
optimization. Optim. Methods Softw., 38:386–411, 2022.

[10] D. P. Bertsekas. Nonlinear Programming. Athena Scientific, Belmont, MA, third edition,
2016.

[11] C. G. Broyden. The convergence of a class of double-rank minimization algorithms 1.
General considerations. IMA J. Appl. Math., 6:76–90, 1970.

[12] F. H. Clarke. Optimization and Nonsmooth Analysis. John Wiley & Sons, New York, 1983.
Reissued by SIAM, Philadelphia, 1990.

[13] A. R. Conn, N. I. M. Gould, and P. L. Toint. Trust-Region Methods. MPS-SIAM Series on
Optimization. Society for Industrial and Applied Mathematics, Philadelphia, 2000.

[14] A. R. Conn, K. Scheinberg, and L. N. Vicente. Global convergence of general derivative-
free trust-region algorithms to first- and second-order critical points. SIAM J. Optim., 20:
387–415, 2009.

[15] A. R. Conn, K. Scheinberg, and L. N. Vicente. Introduction to Derivative-Free Optimization.
MPS-SIAM Series on Optimization. SIAM, Philadelphia, 2009.

[16] A. L. Custódio, K. Scheinberg, and L. N. Vicente. Methodologies and software for derivative-
free optimization. In T. Terlaky, M. F. Anjos, and S. Ahmed, editors, Chapter 37 of

26

1 2 4 8 16 32 64

Ratio of function calls (log scale)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
ra

ct
io

n
of

 p
ro

bl
em

s
so

lv
ed

 = 10 -1

constFLE
constBFGS
dspfd
NOMAD
patternsearch

1 2 4 8 16 32 64

Ratio of function calls (log scale)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
ra

ct
io

n
of

 p
ro

bl
em

s
so

lv
ed

 = 10 -3

constFLE
constBFGS
dspfd
NOMAD
patternsearch

Figure 10: Performance profiles with τ = 10−3, 10−5 of the 5 solvers: constFLE, constBFGS,
dspfd, NOMAD, and patternsearch. The test set contains 40 noisy problems with at least one inequality

constraint.

Advances and Trends in Optimization with Engineering Applications, MOS-SIAM Book
Series on Optimization. SIAM, Philadelphia, 2017.

[17] E. D. Dolan and J. J. Moré. Benchmarking optimization software with performance profiles.
Math. Program., 91:201–213, 2002.

[18] R. Fletcher. A new approach to variable metric algorithms. The Computer Journal, 13:
317–322, 1970.

[19] K. Fukuda and A. Prodon. Double description method revisited. In M. Deza, R. Euler,
and I. Manoussakis, editors, Combinatorics and Computer Science: 8th Franco-Japanese
and 4th Franco-Chinese Conference, Brest, France, July 3–5, 1995 Selected Papers, pages
91–111. Springer, 1996.

[20] D. Goldfarb. A family of variable-metric methods derived by variational means. Math.
Comp., 24:23–26, 1970.

[21] S. Gratton, P. Toint, and A. Tröltzsch. An active-set trust-region method for derivative-free
nonlinear bound-constrained optimization. Optim. Methods Softw., 21:873–894, 2011.

[22] S. Gratton, C. W. Royer, L. N. Vicente, and Z. Zhang. Direct search based on probabilistic
feasible descent for bound and linearly constrained problems. Comput. Optim. Appl., 72:
525–559, 2019.

[23] T. M. Inc. Global optimization toolbox, user’s guide. Version 3.3, Oct 2014.

27

[24] J. Jahn. Introduction to the Theory of Nonlinear Optimization. Springer Nature, 1994.

[25] T. G. Kolda, R. M. Lewis, and V. Torczon. Optimization by direct search: New perspectives
on some classical and modern methods. SIAM Rev., 45:385–482, 2003.

[26] T. G. Kolda, R. M. Lewis, and V. Torczon. Stationarity results for generating set search
for linearly constrained optimization. SIAM J. Optim., 17:943–968, 2007.

[27] J. Larson, M. Menickelly, and S. Wild. Derivative-free optimization methods. Acta Numer.,
28:287–404, 2019.

[28] S. Le Digabel and S. M. Wild. A taxonomy of constraints in black-box simulation-based
optimization. Optim. Eng., 25:1125–1143, 2024.

[29] R. M. Lewis and V. Torczon. Pattern search algorithms for bound constrained minimization.
SIAM J. Optim., 9:1082–1099, 1999.

[30] R. M. Lewis and V. Torczon. Pattern search methods for linearly constrained minimization.
SIAM J. Optim., 10:917–941, 2000.

[31] R. M. Lewis, A. Shepherd, and V. Torczon. Implementing generating set search methods
for linearly constrained minimization. SIAM J. Sci. Comput., 29:2507–2530, 2007.

[32] L. Lukšan and J. Vlcek. Test problems for nonsmooth unconstrained and linearly con-
strained optimization. Technical Report 798, Institut of Computer Science, Academy of
Sciences of the Czech Republic, 2000.

[33] T. Matheiss and D. S. Rubin. A survey and comparison of methods for finding all vertices
of convex polyhedral sets. Math. Oper. Res., 5:167–185, 1980.

[34] J. Moré and S. M. Wild. Benchmarking derivative-free optimization algorithms. SIAM J.
Optim., 20:172–191, 2009.

[35] J. Nocedal and S. J. Wright. Numerical Optimization. Springer-Verlag, Berlin, second
edition, 2006.

[36] C. J. Price and I. D. Coope. Frames and grids in unconstrained and linearly constrained
optimization: a nonsmooth approach. SIAM J. Optim., 14:415–438, 2003.

[37] L. M. Rios and N. V. Sahinidis. Derivative-free optimization: A review of algorithms and
comparison of software implementations. J. Global Optim., 56:1247–1293, 2013.

[38] D. F. Shanno. Conditioning of quasi-Newton methods for function minimization. Math.
Comp., 24:647–656, 1970.

[39] H.-J. M. Shi, M. Q. Xuan, F. Oztoprak, and J. Nocedal. On the numerical performance
of finite-difference-based methods for derivative-free optimization. Optim. Methods Softw.,
38:289–311, 2023.

[40] V. Torczon. On the convergence of pattern search algorithms. SIAM J. Optim., 7:1–25,
1997.

[41] L. N. Vicente and A. L. Custódio. Analysis of direct searches for discontinuous functions.
Math. Program., 133:299–325, 2012.

28

Appendix A List of Problems

The complete list of test problems is presented in Tables 1 through 7. The columns represent
various parameters of the problems: Size refers to the dimension of the problem, Bounds indicates
the number of bound constraints, LE stands for the number of equality constraints, LI represents
the number of inequality constraints, and Func. denotes the number of partial functions in the
minimax problem.

Name Size Bounds
chenhark 10 10

explin 12 24
harkerp2 10 10
hatfldb 4 5

hs3 2 1
hs4 2 2

maxlika 8 16
ncvxbqp1 10 20

oslbqp 8 11
pspdoc 4 1
weeds 3 4
camel6 2 4

eg1 3 4
cvxbqp1 10 20

Name Size Bounds
explin2 12 24
hart6 6 12

himmelp1 2 4
hs2 2 1

hs3mod 2 1
hs5 2 4

mccormck 10 20
ncvxbqp2 10 20
palmer1a 6 2
palmer4a 6 2
qrtquad 12 12
simbqp 2 2

yfit 3 1
expquad 12 12

Name Size Bounds

hatflda 4 4
hs1 2 1
hs38 4 8
hs45 5 10
hs110 10 20
logros 2 2

mdhole 2 1
ncvxbqp3 10 20
palmer2b 4 2
palmer5b 9 2
probpenl 10 20

s368 8 16
sineali 20 40

Table 1: Bound constrained problems.

29

Name Size Bounds LE
aug2d 24 0 9

bt3 5 0 3
hs28 3 0 1
hs49 5 0 2
hs51 5 0 3

cvxqp2 10 20 2
fccu 19 19 8
hs41 4 8 1
hs54 6 12 1
hs62 3 6 1

ncvxqp1 10 20 5
ncvxqp3 10 20 5
ncvxqp5 10 20 2

fits 10 10 6
portfl2 12 24 1
portfl4 12 24 1

reading2 9 14 4
sosqp2 20 40 11

Name Size Bounds LE
genhs28 10 0 8

hs9 2 0 1
hs48 5 0 2
hs50 5 0 3
hs52 5 0 3

cvxqp1 10 20 5
degenlpa 20 40 15

hong 4 8 1
hs53 5 10 3
hs55 6 8 6
hs112 10 10 3

ncvxqp2 10 20 5
ncvxqp4 10 20 2
ncvxqp6 10 20 2
portfl1 12 24 1
portfl3 12 24 1
portfl6 12 24 1
sosqp1 20 40 11

Table 2: Linear equality constrained problems.

30

Name Size Bounds LE LI
avgasa 8 16 0 10
biggsc4 4 8 0 7
dualc2 7 14 1 228
expfitb 5 0 0 102
hatfldh 4 8 0 7
hs118 15 30 0 17

hs21mod 7 8 0 1
hs268 5 0 0 5

hs35mod 3 4 0 1
hs36 3 6 0 1
hs44 4 4 0 6
hs76 4 4 0 3
hs86 5 5 0 10
lsqfit 2 1 0 1
oet3 4 0 0 1002

simpllpa 2 2 0 2
sipow1 2 0 0 2000
sipow2 2 0 0 2000
sipow3 4 0 0 2000

stancmin 3 3 0 2

Name Size Bounds LE LI
tfi2 3 0 0 101

avgasb 8 16 0 10
dualc1 9 18 1 214
dualc5 8 16 1 277
expfita 5 0 0 22
expfitc 5 0 0 502
hs105 8 16 0 1
hs21 2 4 0 1
hs24 2 2 0 3
hs35 3 3 0 1
hs37 3 6 0 2

hs44new 4 4 0 6
hubfit 2 1 0 1
oet1 3 0 0 1002

pentagon 6 0 0 15
simpllpb 2 2 0 3
sipow1m 2 0 0 2000
sipow2m 2 0 0 2000
sipow4 4 0 0 2000

zecevic2 2 4 0 2

Table 3: Linear inequality constrained problems.

31

Name Pen. Const

avgasa LI
biggsc4 LI
dualc2 LE & LI
hatfldh LI
hs118 LI
hs21mod LI
hs35mod LI
hs36 LI
hs44 LI
hs76 LI
hs86 LI
lsqfit LI
simpllpa LI
stancmin LI
avgasb LI
dualc1 LE & LI
dualc5 LE & LI

Name Pen. Const

hs105 LI
hs21 LI
hs24 LI
hs35 LI
hs37 LI
hs44new LI
hubfit LI
simpllpb LI
zecevic2 LI
cvxqp2 LE
fccu LE
hs41 LE
hs54 LE
hs62 LE
ncvxqp1 LE
ncvxqp3 LE
ncvxqp5 LE

Name Pen. Const
odfits LE
portfl2 LE
portfl4 LE
reading2 LE
sosqp2 LE
cvxqp1 LE
degenlpa LE
hong LE
hs53 LE
hs55 LE
hs112 LE
ncvxqp2 LE
ncvxqp4 LE
ncvxqp6 LE
portfl1 LE
portfl3 LE
portfl6 LE
sosqp1 LE

Table 4: Non-smooth bound constrained problems.

Name Pen. Const
dualc2 LI
dualc1 LI
dualc5 LI
cvxqp2 B
cvxqp2 1/2 B
fccu B
fccu 1/2 B
hs41 B
hs41 1/2 B
hs54 B
hs54 1/2 B
hs62 B
hs62 1/2 B
ncvxqp1 B
ncvxqp1 1/2 B
ncvxqp3 B
ncvxqp3 1/2 B
ncvxqp5 B
ncvxqp5 1/2 B

Name Pen. Const

odfits B
odfits 1/2 B
portfl2 B
portfl2 1/2 B
portfl4 B
portfl4 1/2 B
reading2 B
reading2 1/2 B
sosqp2 B
sosqp2 1/2 B
cvxqp1 B
cvxqp1 1/2 B
degenlpa B
degenlpa 1/2 B
hong B
hong 1/2 B
hs53 B
hs53 1/2 B

Name Pen. Const

hs55 B
hs55 1/2 B
hs112 B
hs112 1/2 B
ncvxqp2 B
ncvxqp2 1/2 B
ncvxqp4 B
ncvxqp4 1/2 B
ncvxqp6 B
ncvxqp6 1/2 B
portfl1 B
portfl1 1/2 B
portfl3 B
portfl3 1/2 B
portfl6 B
portfl6 1/2 B
sosqp1 B
sosqp1 1/2 B

Table 5: Non-smooth linear equality constrained problems.

32

Name Pen. Const

avgasa B
avgasa 1/2 B
biggsc4 B
biggsc4 1/2 B
dualc2 B
dualc2 LE
hatfldh B
hatfldh 1/2 B
hs118 B
hs118 1/2 B
hs21mod B
hs21mod 1/2 B
hs35mod B
hs35mod 1/2 B
hs36 B
hs36 1/2 B
hs44 B

Name Pen. Const
hs44 1/2 B
hs76 B
hs76 1/2 B
hs86 B
hs86 1/2 B
lsqfit B
lsqfit 1/2 B
simpllpa B
simpllpa LE
stancmin B
stancmin 1/2 B
avgasb B
avgasb 1/2 B
dualc1 B
dualc1 LE
dualc5 B
dualc5 LE
hs105 B

Name Pen. Const

hs105 1/2 B
hs21 B
hs21 1/2 B
hs24 B
hs24 1/2 B
hs35 B
hs35 1/2 B
hs37 B
hs37 1/2 B
hs44new B
hs44new 1/2 B
hubfit B
hubfit 1/2 B
simpllpb B
simpllpb 1/2 B
zecevic2 B
zecevic2 1/2 B

Table 6: Non-smooth linear inequality constrained problems.

Name Size Func. Bounds LE LI
MAD1 2 3 0 0 1
MAD2 2 3 0 0 1
MAD4 2 3 0 0 1
MAD5 2 3 0 0 1
PENTAGON 6 3 0 0 15
MAD6 7 163 1 1 7
Wong 2 10 6 0 0 3
Wong 3 20 14 0 0 4
MAD8 20 38 10 0 0
BP filter 9 124 0 0 4
HS114 10 9 20 1 4
Dembo 3 7 13 14 0 2
Dembo 5 8 4 16 0 3
Dembo 7 16 19 32 0 1

Table 7: Non-smooth minimax linearly constrained problems.

33

	Introduction
	Linearly constrained optimization and tangent cones
	Problem and optimality measure
	Approximate Tangent Cones

	Full-low evaluation framework with linear constraints
	Full-eval step based on projections
	Low-eval step based on feasible descent cones

	Convergence Analysis
	Rate of convergence in the smooth case
	Convergence in the non-smooth case
	More on the smooth case (use of finite difference gradients)

	Numerical setup
	Practical Full-Eval implementation
	Low-Eval implementation
	Other solvers
	Classes of problems tested

	Numerical Results
	Smooth problems
	Non-smooth problems
	1 norm problems
	Minimax problems

	Noisy functions

	Conclusions
	List of Problems

