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Abstract. In this paper, we consider a general low-rank matrix optimization problem which
is modeled by a general Schatten p-quasi-norm (0 < p < 1) regularized matrix optimization.
For this nonconvex nonsmooth and non-Lipschitz matrix optimization problem, based on the
matrix p-thresholding operator, we first propose a fixed point continuation algorithm with
extrapolation (FPCAe) for solving it. Secondly, we prove that any accumulation point of the
iterative sequence generated by the proposed algorithm is not only a critical point but also
a global stationary point of the problem, where the global stationary point possesses some
global optimality which can exclude too many stationary points even some local minimiz-
ers of the nonconvex problem. We also prove the rank invariance of the iterative sequence.
Thirdly, we prove the global convergence and R-linear convergence rate of the whole itera-

tive sequence generated by the proposed algorithm under some mild conditions. Finally, we

conduct a large number of numerical experiments on random square and rectangular ma-
trix completion problem, grayscale image and three-channel image recovery problem. The

numerical results illustrate that the proposed FPCAe algorithm is competitive with some

state-of-the-art algorithms for low-rank matrix recovery in terms of speed, accuracy, robust-
ness and anti-noise.

Keywords. Low-rank matrix recovery problem, Schatten p-quasi-norm, fixed point continu-
ation algorithm with extrapolation, global whole sequence convergence, R-linear convergence

rate
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1 Introduction

In the last twenty years, the low-rank matrix recovery problem has received great attention,

which can be described as the recovery of unknown matrix from limited information. The
low-rank matrix recovery problem arises in a wide range of fields, such as computer vision
and pattern recognition [3,21], compressed sensing [6,8], control [14,49], machine learning
[44], and system identification [30,35,50]. The general low-rank matrix recovery problem can
be modeled as finding a matrix of minimum rank that satisfies a given linear system, namely,

min
𝑋∈R𝑚×𝑛

{rank(𝑋) s.t. 𝒜(𝑋) = 𝑏}, or min
𝑋∈R𝑚×𝑛

‖𝒜(𝑋) − 𝑏‖2 + 𝜆 · rank(𝑋), (1.1)
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where 𝒜 : R𝑚×𝑛 → R𝑑 with 𝑑 ≪ 𝑚𝑛 is a linear map, and 𝑏 ∈ R𝑑 is a vector. A typical
example of the low-rank matrix recovery problem is the matrix completion problem

min
𝑋∈R𝑚×𝑛

{rank(𝑋) s.t. 𝑋𝑖,𝑗 = 𝑀𝑖,𝑗 , (𝑖, 𝑗) ∈ 𝛺}, (1.2)

where 𝛺 is a subset of index set of 𝑋. Problem (1.2) is non-convex, non-smooth, non-
Lipschitz, even discontinuous. Some researchers [15,26,27,50,52] have pointed out that (1.1)
is an NP-hard problem from different perspectives. Fazel [15] first proposed a convex relax-
ation model to solve problem (1.1), and proved that the nuclear norm is the tightest convex
envelope of rank function. The convex relaxation model can be expressed as

min
𝑋∈R𝑚×𝑛

{‖𝑋‖* s.t. 𝒜(𝑋) = 𝑏}, or min
𝑋∈R𝑚×𝑛

𝜆‖𝑋‖* + ‖𝒜(𝑋) − 𝑏‖2, (1.3)

where ‖𝑋‖* :=
𝑚𝑖𝑛{𝑚,𝑛}∑︀

𝑖=1

𝜎𝑖(𝑋), 𝜎𝑖(𝑋) is the 𝑖-th singular value of 𝑋. Many scholars [7,9,

48] have studied the feasibility of nuclear norm relaxation for this problem, including the
exact recovery conditions and effective algorithms. The study of exact recovery conditions
include null space property [39,46,47], restricted isometry property [40,45], etc. Effective al-
gorithms for solving problem (1.3) include semi-definite programming SDPT3 method [47],

singular value thresholding algorithm [5], interior-point methods [30], fixed point and Breg-
man iterative methods [34], iteratively reweighted algorithm [16], proximal point algorithm

[29], alternating direction methods [10], linearized augmented Lagrangian [56], alternating
direction methods [56] and so on. In order to accelerate the convergence of the iterations,

some accelerate technique have been adopted for such convex optimization problems, dating

back to Polyak’s heavy ball method [43], Nesterov’s extrapolation techniques [36,37,51]. A
representative algorithm that combines these techniques is the accelerated proximal gradient

with linesearch-like acceleration strategy (APGL) algorithm [51]. We know that the func-

tion values generated by APGL converges at a rate of 𝒪( 1
𝑘2 ), which is faster than the 𝒪( 1

𝑘 )
convergence rate of the proximal gradient algorithm.

However, some strict conditions are required to successfully and accurately recover low-

rank matrix through nuclear norm. In addition, the nuclear norm convex relaxation model

may generate the matrix with a rank much higher than the real rank, and cannot recover
the low-rank targets from the minimum measurements. After all, the rank function may not
be approximated very well by the nuclear norm since the former is nonconvex but the latter
is convex. Hence, many researchers began using some non-convex relaxations of the rank

function [23,28,31,32,38,41,50,60,62], among which the matrix Schatten p-quasi-norm with

0 < 𝑝 < 1 has been studied by many researchers [22,23,28,31,32,38,41,61]. The results show
that the matrix Schatten p-quasi-norm provides better results from theory and practice than
the standard nuclear norm relaxation. The matrix Schatten p-quasi-norm relaxation model
for problem (1.1) is given as

min
𝑋∈R𝑚×𝑛

{‖𝑋‖𝑝𝑝 s.t. 𝒜(𝑋) = 𝑏}, or min
𝑋∈R𝑚×𝑛

𝜆‖𝑋‖𝑝𝑝 + ‖𝒜(𝑋) − 𝑏‖2, (1.4)

where ‖𝑋‖𝑝 :=
(︁min{𝑚,𝑛}∑︀

𝑖=1

𝜎𝑝
𝑖 (𝑋)

)︁1/𝑝
is the Schatten p-quasi-norm of matrix 𝑋.

In this paper, we consider a more general Schatten p-quasi-norm regularized matrix op-
timization problem:

min
𝑋∈R𝑚×𝑛

𝑓𝜆(𝑋) := 𝜃(𝑋) + 𝜆‖𝑋‖𝑝𝑝, (1.5)
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where 𝜆 > 0 is a regularization parameter, 𝜃 : R𝑚×𝑛 → R is bounded from below and is a
smooth convex function with 𝐿-Lipschitz continuous gradient in R𝑚×𝑛, i.e.,

‖∇𝜃(𝑋) −∇𝜃(𝑌 )‖ ≤ 𝐿‖𝑋 − 𝑌 ‖𝐹 .

Many numerical results [28,31,32,41,61] have shown that the solutions of nonconvex
problem (1.4) are of lower rank than the solutions of convex problem (1.3), and the same
low-rank solution can be obtained at a lower sampling rate by the former. Therefore, problem
(1.5) has been studied extensively in recent years. Let’s briefly review some of them. Reference
[11] showed that even if problem (1.5) degenerates to the vector case, it is still strongly NP-
hard. The optimality conditions for problem (1.5) have been analyzed in [32,41,61], and
several different lower bound estimations for nonzero singular values of the solution matrices
of probelm (1.5) have been obtained. The exact recovery condition has been analyzed in
[22,23] and the estimation of error bounds for the recovery matrices has been established.
In addition, many algorithms for solving problem (1.5) or its variants have been proposed,
including truncated iteratively reweighted unconstrained ℓ𝑝 minimization algorithm [16,23,
32], majorization minimization method [33], smoothing majorization method [31], fixed point
continuation algorithms [41,42], and singular value p-shrinkage thresholding algorithm [28],
inexact accelerated proximal gradient algorithm [50], proximal linearization method [61],

etc. However, almost all of these works [16,23,28,31,32,41,42,50,55,60] only obtained the

subsequential convergence of the algorithms to some stationary/critical points. Although the
whole sequence convergence of the algorithms were discussed in [58,61], the convergence rate

is not investigated.

The main purpose of this paper is to exploit the extrapolation technique to accelerate

the fixed point continuation algorithm for problem (1.5), and more importantly, to provide
a deep analysis for the global whole sequence convergence and fast convergence rate of the

proposed algorithm under some mild conditions.

The main contributions of this paper are as follows.

(i) For the nonconvex nonsmooth and non-Lipschitz matrix optimization problem (1.5),
based on the matrix p-thresholding operator, we first propose a fixed point continua-

tion algorithm with extrapolation (FPCAe) for solving it.
(iii) Prove that any accumulation point of the iterative sequence generated by the proposed

algorithm is not only a critical point but also a global stationary point of the problem,
where the global stationary point possesses some global optimality which can exclude too
many stationary points even some local minimizers of the nonconvex problem. The rank

invariance of the iterative sequence is also proved.

(iii) Analyze the global convergence and R-linear convergence rate of the whole iterative se-
quence generated by the proposed algorithm under the assumption of Kurdyka- Lojasiewicz
(K L) property.

(iv) Conduct a large number of numerical experiments on random square and rectangular
matrix completion problem, grayscale image and three-channel image recovery problem

to demonstrate the efficiency of the proposed FPCAe algorithm.

The structure of the remaining part of this paper is as follows. Section 2 mainly introduces

some notations and preliminaries. Section 3 gives the scheme of the proposed algorithm
and its convergence analysis including the subsequential convergence, the whole sequence
convergence and the convergence rate. Section 4 exhibits the numerical results on simulated
data and real data for low matrix recovery problem. The last section is a brief conclusion.
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2 Notations and preliminaries

For an extended-real-valued function ℎ : R𝑚×𝑛 → [−∞,∞], and denote its domain by
domℎ = {𝑋 ∈ R𝑚×𝑛 : ℎ(𝑋) < ∞}. The function ℎ is said to be proper if its value is not
equal to −∞ and domℎ ̸= ∅, and is said to be closed if it is lower semicontinuous.

For any proper closed function ℎ : R𝑚×𝑛 → R
⋃︀
{∞}, the (limiting) subdifferential [24,

48] of ℎ at 𝑋 ∈ domℎ is written as

𝜕ℎ(𝑋) :=
{︁
𝜈 ∈ R𝑚×𝑛 : ∃𝑋𝑘 ℎ→ 𝑋, 𝜈𝑘 → 𝜈 with 𝜈𝑘 ∈ ̂︀𝜕ℎ(𝑋𝑘) for all k

}︁
,

where ̂︀𝜕ℎ(𝑍) denotes the Fréchet subdifferential of ℎ at 𝑍 ∈ domℎ, which is defined as

̂︀𝜕ℎ(𝑍) :=

{︂
𝜈 ∈ R𝑚×𝑛 : lim inf

𝑌 ̸=𝑍,𝑌→𝑍

ℎ(𝑌 ) − ℎ(𝑍) − ⟨𝜈, 𝑌 − 𝑍⟩
‖𝑌 − 𝑍‖

≥ 0

}︂
,

and 𝑋𝑘 ℎ→ 𝑋 means 𝑋𝑘 → 𝑋 and ℎ(𝑋𝑘) → ℎ(𝑋).

It is known from [48] that if ℎ is convex, then the subdifferential of ℎ can be expressed as

𝜕ℎ(𝑋) = {𝜈 ∈ R𝑚×𝑛 : ℎ(𝑌 ) − ℎ(𝑋) − ⟨𝜈, 𝑌 −𝑋⟩ ≥ 0 for each 𝑌 ∈ R𝑚×𝑛}.

If ℎ is continuously differentiable, then 𝜕ℎ(𝑋) = {∇ℎ(𝑋)}, which is a singleton of the

gradient of ℎ, see [48]. Denote dom𝜕ℎ := {𝑋 ∈ R𝑚×𝑛 : 𝜕ℎ(𝑋) ̸= ∅}.

In the following part of this section, we provide some useful lemmas needed in the later

analysis.

Lemma 2.1 [19,20] For any two matrices 𝐴 ∈ R𝑚×𝑛 and 𝐵 ∈ R𝑚×𝑛, it holds

‖𝜎(𝐴) − 𝜎(𝐵)‖22 ≤ ‖𝐴−𝐵‖2𝐹 ,

where 𝜎(𝐴) = (𝜎1(𝐴), · · · , 𝜎min(𝑚,𝑛)(𝐴))⊤ is the singular value vectors of the matrix 𝐴

arranged in non-increasing order, that is, 𝜎1(𝐴) ≥ · · · ≥ 𝜎min(𝑚,𝑛)(𝐴).

The following lemma can be found in [41, Lemma 2.1], which provides the p-thresholding

function (or proximal operator) for the function |𝑥|𝑝. One can refer to [12,50,63] for more
properties of the p-thresholhing function.

Lemma 2.2 [41] Let 𝜏 > 0, 0 < 𝑝 < 1. Define

ℎ𝜏 (𝑡) := Arg min
𝑥≥0

𝑥𝑝 +
1

2𝜏
(𝑥− 𝑡)2, 𝑡 ∈ R. (2.1)

Then

ℎ𝜏 (𝑡) :=

⎧⎪⎨⎪⎩
ℎ𝜏,𝑝(𝑡), 𝑖𝑓 𝑡 > 𝑡*,

{[2𝜏(1 − 𝑝)]1/(2−𝑝), 0}, 𝑖𝑓 𝑡 = 𝑡*,

0, 𝑖𝑓 𝑡 < 𝑡*,

(2.2)

where 𝑡* = 2−𝑝
2(1−𝑝) [2𝜏(1−𝑝)]1/(2−𝑝), and ℎ𝜏,𝑝(𝑡) is the unique root in (�̄�,+∞) of the following

equation:

𝑝𝜏𝑥𝑝−1 + 𝑥− 𝑡 = 0 (2.3)

where �̄� = [𝜏(1 − 𝑝)]1/(2−𝑝) > 0, and ℎ𝜏,𝑝(𝑡) is differentiable and strictly increasing on

[𝑡*,+∞).
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As mentioned in [41], equation (2.3) has a unique root in (�̄�,+∞), so ℎ𝜏,𝑝(𝑡) can be simply
calculated by the Newton method

𝑥𝑘+1 = 𝑥𝑘 −
𝑝𝜏𝑥𝑝−1

𝑘 + 𝑥𝑘 − 𝑡

𝑝(𝑝− 1)𝜏𝑥𝑝−2
𝑘 + 1

with the initial point 𝑥0 = 1.5�̄�.
Since ℎ𝜏 (𝑡) has two values when 𝑡 = 𝑡*, then ℎ𝜏 : R ⇒ R+ is essentially a set-valued

mapping, which is called p-thresholding function.

Proposition 2.3 (ℎ𝜏 (·) is monotone) The p-thresholding function ℎ𝜏 (·) is monotone, i.e.,
for any 𝑦*𝑖 ∈ ℎ𝜏 (𝜔𝑖), 𝑖 = 1, 2, it holds 𝑦*1 ≥ 𝑦*2 whenever 𝜔1 > 𝜔2.

Proof Since 𝑥𝑝 is lower bounded and lim
𝑥→+∞

𝑥𝑝 = +∞, the solution ℎ𝜏 (𝑡) of problem (2.1) is

finite. By the optimality of problem (2.1) and 𝑦*𝑖 ∈ ℎ𝜏 (𝜔𝑖), 𝑖 = 1, 2, we have

(𝑦*2)𝑝 +
1

2𝜏
(𝑦*2 − 𝜔1)2 ≥ (𝑦*1)𝑝 +

1

2𝜏
(𝑦*1 − 𝜔1)2, (2.4)

(𝑦*1)𝑝 +
1

2𝜏
(𝑦*1 − 𝜔2)2 ≥ (𝑦*2)𝑝 +

1

2𝜏
(𝑦*2 − 𝜔2)2. (2.5)

Summing (2.4) and (2.5), we obtain (𝑦*1 − 𝑦*2) · (𝜔1 − 𝜔2) ≥ 0. �

The following lemma provides the proximal operator of the matrix Schatten p-quasi-norm

‖𝑋‖𝑝𝑝, which is called matrix p-thresholding operator in [41].

Lemma 2.4 [41] Let 𝜏 > 0, 0 < 𝑝 < 1. Suppose 𝑌 ∈ R𝑚×𝑛 of rank 𝑟 admits a singular

value decomposition (SVD) as
𝑌 = 𝑈Diag(𝜎)𝑉 ⊤,

where 𝑈 and 𝑉 are, respectively 𝑚×𝑟 and 𝑛×𝑟 matrices with orthonormal columns, and the
vector 𝜎 = (𝜎1, · · · , 𝜎𝑟)⊤ consists of positive singular values of Y arranged in non-increasing

order (unless specified otherwise, we will always suppose the SVD of a matrix is given in

this reduced form). Then 𝐻𝜏 (𝑌 ) := 𝑈Diag(ℎ𝜏 (𝜎1), · · · , ℎ𝜏 (𝜎𝑟))𝑉 ⊤ is the proximal operator
of the matrix Schatten p-quasi-norm ‖𝑋‖𝑝𝑝, that is,

𝐻𝜏 (𝑌 ) = Arg min
𝑋∈R𝑚×𝑛

‖𝑋‖𝑝𝑝 +
1

2𝜏
‖𝑋 − 𝑌 ‖2𝐹 .

𝐻𝜏 (𝑌 ) is called matrix p-thresholding operator.

From [48, Theorem 10.1], the necessary optimality condition of problem (1.5) at the local
minimizer 𝑋* is given by 0 ∈ 𝜕𝑓𝜆(𝑋*) = ∇𝜃(𝑋*) + 𝜕(𝜆‖𝑋*‖𝑝𝑝).

Definition 2.5 𝑋* ∈ R𝑚×𝑛 is a critical point of problem (1.5) if

0 ∈ 𝜕𝑓𝜆(𝑋*) = ∇𝜃(𝑋*) + 𝜕(𝜆‖𝑋*‖𝑝𝑝). (2.6)

From [41, Theorem 2.5], the necessary optimality condition of problem (1.5) at the global
minimizer 𝑋* is described as 𝑋* ∈ 𝐻𝜆𝜇(𝑋* − 𝜇∇𝜃(𝑋*)) for some 0 < 𝜇 < 1

𝐿 .

Definition 2.6 𝑋* ∈ R𝑚×𝑛 is called a global stationary point of problem (1.5) if there exists

0 < 𝜇 < 1
𝐿 such that

𝑋* ∈ 𝐻𝜆𝜇(𝑋* − 𝜇∇𝜃(𝑋*)), (2.7)

where 𝐿 is the Lipschitz constant of ∇𝜃(·).
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We now recall the Kurdyka- Lojasiewicz (K L) property, which can be satisfied by many
functions, such as proper closed semialgebraic functions, and which plays an important role
in global convergence analysis and convergence rate of some first-order methods, see, for
example[1,2,4,54,57,59,61].

Definition 2.7 (K L property) A proper closed function ℎ is said to satisfy the K L property
at �̄� ∈ dom𝜕ℎ, if there exist 𝑎 ∈ (0,∞], a neighborhood 𝒰 of �̄�, and a continuous and
concave function 𝜓 : [0, 𝑎) → R+ such that

(i) 𝜓 is continuously differentiable in (0, 𝑎) with 𝜓(0) = 0 and 𝜓′(𝑡) > 0 for all 𝑡 ∈ (0, 𝑎);
(ii) For any 𝑋 ∈ 𝒰 with ℎ(�̄�) < ℎ(𝑋) < ℎ(�̄�) + 𝑎, it holds

𝜓′(ℎ(𝑋) − ℎ(�̄�))dist(0, 𝜕ℎ(𝑋)) ≥ 1.

A proper closed function ℎ is called a K L function if it satisfies the K L property at all points
in dom𝜕ℎ.

Lemma 2.8 [4] (Uniformized K L property) Suppose that h is a proper closed function and
let 𝛤 be a compact set. If ℎ is a constant on 𝛤 and satisfies the K L property at each point
of 𝛤 , then there exist 𝜖 > 0, 𝑎 > 0 and a continuous and concave function 𝜓 : [0, 𝑎) → R+

such that
(i) 𝜓 is continuously differentiable in (0, 𝑎) with 𝜓(0) = 0 and 𝜓′(𝑡) > 0 for all 𝑡 ∈ (0, 𝑎);

(ii) For any �̄� ∈ 𝛤 and any 𝑋 ∈ 𝒰 with dist(𝑋,𝛤 ) < 𝜖 and ℎ(�̄�) < ℎ(𝑋) < ℎ(�̄�) + 𝑎,
it holds

𝜓′(ℎ(𝑋) − ℎ(�̄�))dist(0, 𝜕ℎ(𝑋)) ≥ 1. (2.8)

3 FPCAe algorithm for problem (1.5) and its convergence analysis

In this section, we first present a fixed point algorithm with extrapolation (FPe algorithm)

for solving problem (1.5). Secondly, we analyze the global subsequential convergence of the
FPe algorithm. Thirdly, we analyze the global whole sequence convergence and convergence

rate of the FPe algorithm under K L property. Finally, two acceleration technologies, i.e. the

continuation of the parameter and the approximate SVD, are employed to the FPe algorithm
to get the FPCAe algorithm.

3.1 Scheme of FPe algorithm for problem (1.5)

In order to analyze and solve problem (1.5), we need an auxiliary function. Define

𝑄𝜆,𝜇(𝑋,𝑌 ) := 𝜃(𝑌 ) + ⟨∇𝜃(𝑌 ), 𝑋 − 𝑌 ⟩ +
1

2𝜇
‖𝑋 − 𝑌 ‖2𝐹 + 𝜆‖𝑋‖𝑝𝑝.

Note that it holds 𝑓𝜆(𝑋) = 𝑄𝜆,𝜇(𝑋,𝑋) for all 𝑋 ∈ R𝑚×𝑛.
The main iteration of FPe for problem (1.5) is as below. Suppose 𝑋𝑘−1 and 𝑋𝑘 have

been obtained, let 𝑌 𝑘 = 𝑋𝑘 + 𝛽𝑘(𝑋𝑘 −𝑋𝑘−1), where 𝛽𝑘 > 0 is an extrapolation coefficient,

then 𝑋𝑘+1 is generated by solving problem min
𝑋

𝑄𝜆,𝜇(𝑋,𝑌 𝑘), that is,

𝑋𝑘+1 ∈ Arg min
𝑋∈R𝑚×𝑛

𝑄𝜆,𝜇(𝑋,𝑌 𝑘)

= Arg min
𝑋∈R𝑚×𝑛

1

2𝜇
‖𝑋 − (𝑌 𝑘 − 𝜇∇𝜃(𝑌 𝑘)‖2𝐹 + 𝜆‖𝑋‖𝑝𝑝 (3.1)

= 𝐻𝜆𝜇

(︀
𝑌 𝑘 − 𝜇∇𝜃(𝑌 𝑘)

)︀
.

The detailed scheme of FPe algorithm for problem (1.5) is in Algorithm 1.
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Algorithm 1 FPe algorithm for problem (1.5)

For the given parameter 𝜆 > 0, select a nonnegative sequence {𝛽𝑘};
Initialize: Take 𝑋−1 = 𝑋0 ∈ R𝑚×𝑛, and set 𝑘 = 0;
Step1. Compute 𝑌 𝑘 by

𝑌 𝑘 = 𝑋𝑘 + 𝛽𝑘(𝑋𝑘 −𝑋𝑘−1); (3.2)

Step2. Compute 𝐺𝑘 by 𝐺𝑘 = 𝑌 𝑘 − 𝜇∇𝜃(𝑌 𝑘) and its SVD:

𝐺𝑘 = 𝑈𝑘Diag(𝜎𝑘)(𝑉 𝑘)𝑇 ; (3.3)

Step3. Compute 𝑋𝑘+1 by

𝑋𝑘+1 = 𝑈𝑘Diag(ℎ𝜆𝜇(𝜎𝑘
1 ), ..., ℎ𝜆𝜇(𝜎𝑘

min{𝑚,𝑛}))(𝑉 𝑘)𝑇 (3.4)

∈ 𝐻𝜆𝜇

(︀
𝑌 𝑘 − 𝜇∇𝜃(𝑌 𝑘)

)︀
;

Step4. If some stop criteria is attained, let 𝑋* = 𝑋𝑘+1;
Otherwise, let 𝑘 := 𝑘 + 1 and return to Step 1.

Output: 𝑋*, 𝑟* = rank(𝑋*).

3.2 Global subsequential convergence of Algorithm 1

In this subsection, we give the general convergence results of Algorithm 1 for problem (1.5).

For convenience, we first define the following auxiliary function and quantity

𝛷𝜌(𝑋,𝑌 ) := 𝑓𝜆(𝑋) + 𝜌‖𝑋 − 𝑌 ‖2𝐹 , (3.5)

𝛷𝑘,𝜌 := 𝛷𝜌(𝑋𝑘, 𝑋𝑘−1), (3.6)

where 𝜌 > 0 is a parameter.

In the following discussion, we always suppose the parameters {𝛼, 𝛽𝑘, 𝐿, 𝜇, 𝜌} satisfy the
following conditions:

∙ 0 < 𝛼 < 1, 0 < 𝜇𝐿 < 1, 0 < 𝛽𝑘 ≤ 𝛾 :=

√︃
𝛼(1 − 𝛼)(1 − 𝜇𝐿)

1 − (1 − 𝛼)𝜇𝐿
; (3.7)

∙ 𝛾2

2

(︁
𝐿+

1

𝛼
(
1

𝜇
− 𝐿)

)︁
< 𝜌 ≤ 1

2

(︁ 1

𝜇
− 𝐿

)︁
(1 − 𝛼). (3.8)

Lemma 3.1 Let {𝑋𝑘} be a sequence generated by Algorithm 1, then

𝛷𝑘+1,𝜌 − 𝛷𝑘,𝜌 ≤
[︂
𝛽2
𝑘

2

(︂
𝐿+

1

𝛼
(
1

𝜇
− 𝐿)

)︂
− 𝜌

]︂
‖𝑋𝑘 −𝑋𝑘−1‖2𝐹

−
[︂

1

2

(︁ 1

𝜇
− 𝐿

)︁
(1 − 𝛼) − 𝜌

]︂
‖𝑋𝑘+1 −𝑋𝑘‖2𝐹 . (3.9)
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Proof Since ∇𝜃 is Lipschitz continuous with modulus 𝐿 > 0 as well as (3.1), we have

𝑓𝜆(𝑋𝑘+1) = 𝜆‖𝑋𝑘+1‖𝑝𝑝 + 𝜃(𝑋𝑘+1)

≤ 𝜆‖𝑋𝑘+1‖𝑝𝑝 + 𝜃(𝑌 𝑘) + ⟨∇𝜃(𝑌 𝑘), 𝑋𝑘+1 − 𝑌 𝑘⟩ +
𝐿

2
‖𝑋𝑘+1 − 𝑌 𝑘‖2𝐹

= 𝜆‖𝑋𝑘+1‖𝑝𝑝 + 𝜃(𝑌 𝑘) + ⟨∇𝜃(𝑌 𝑘), 𝑋𝑘+1 − 𝑌 𝑘⟩ +
1

2𝜇
‖𝑋𝑘+1 − 𝑌 𝑘‖2𝐹

+
1

2

(︁
𝐿− 1

𝜇

)︁
‖𝑋𝑘+1 − 𝑌 𝑘‖2𝐹

≤ 𝜆‖𝑋𝑘‖𝑝𝑝 + 𝜃(𝑌 𝑘) + ⟨∇𝜃(𝑌 𝑘), 𝑋𝑘 − 𝑌 𝑘⟩ +
1

2𝜇
‖𝑋𝑘 − 𝑌 𝑘‖2𝐹

+
1

2

(︁
𝐿− 1

𝜇

)︁
‖𝑋𝑘+1 − 𝑌 𝑘‖2𝐹 . (3.10)

Due to the convexity of 𝜃, we have

𝜃(𝑌 𝑘) + ⟨∇𝜃(𝑌 𝑘), 𝑋𝑘 − 𝑌 𝑘⟩ ≤ 𝜃(𝑋𝑘). (3.11)

From (3.10), (3.11) and the definition of 𝑌 𝑘, we obtain immediately that

𝑓𝜆(𝑋𝑘+1) − 𝑓𝜆(𝑋𝑘)

≤ 1

2𝜇
‖𝑋𝑘 − 𝑌 𝑘‖2𝐹 − 1

2

(︂
1

𝜇
− 𝐿

)︂
‖𝑋𝑘+1 − 𝑌 𝑘‖2𝐹

=
1

2𝜇
𝛽2
𝑘‖𝑋𝑘 −𝑋𝑘−1‖2𝐹 − 1

2

(︂
1

𝜇
− 𝐿

)︂
‖𝑋𝑘+1 −𝑋𝑘 − 𝛽𝑘(𝑋𝑘 −𝑋𝑘−1)‖2𝐹

=
𝐿

2
𝛽2
𝑘‖𝑋𝑘 −𝑋𝑘−1‖2𝐹 − 1

2

(︂
1

𝜇
− 𝐿

)︂
‖𝑋𝑘+1 −𝑋𝑘‖2𝐹

+

(︂
1

𝜇
− 𝐿

)︂
⟨𝑋𝑘+1 −𝑋𝑘, 𝛽𝑘(𝑋𝑘 −𝑋𝑘−1)⟩. (3.12)

Moreover, for any 𝛼 > 0, it holds from the inequality 𝑎𝑏 ≤ 𝛼
2 𝑎

2 + 1
2𝛼𝑏

2 that

⟨𝑋𝑘+1 −𝑋𝑘, 𝛽𝑘(𝑋𝑘 −𝑋𝑘−1)⟩ ≤ 𝛼

2
‖𝑋𝑘+1 −𝑋𝑘‖2𝐹 +

1

2𝛼
𝛽2
𝑘‖𝑋𝑘 −𝑋𝑘−1‖2𝐹 . (3.13)

Summing (3.12) and (3.13), we get that

𝑓𝜆(𝑋𝑘+1) − 𝑓𝜆(𝑋𝑘)

≤ 𝐿

2
𝛽2
𝑘‖𝑋𝑘 −𝑋𝑘−1‖2𝐹 − 1

2

(︂
1

𝜇
− 𝐿

)︂
‖𝑋𝑘+1 −𝑋𝑘‖2𝐹

+
𝛼

2

(︂
1

𝜇
− 𝐿

)︂
‖𝑋𝑘+1 −𝑋𝑘‖2𝐹 +

1

2𝛼

(︂
1

𝜇
− 𝐿

)︂
𝛽2
𝑘‖𝑋𝑘 −𝑋𝑘−1‖2𝐹

=
𝛽2
𝑘

2

(︂
𝐿+

1

𝛼
(
1

𝜇
− 𝐿)

)︂
‖𝑋𝑘 −𝑋𝑘−1‖2𝐹 − 1

2

(︁ 1

𝜇
− 𝐿

)︁
(1 − 𝛼)‖𝑋𝑘+1 −𝑋𝑘‖2𝐹 . (3.14)
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By (3.14) and the definition of 𝛷𝑘,𝜌 in (3.6), we obtain

𝛷𝑘+1,𝜌 − 𝛷𝑘,𝜌

= 𝑓𝜆(𝑋𝑘+1) + 𝜌‖𝑋𝑘+1 −𝑋𝑘‖2𝐹 − 𝑓𝜆(𝑋𝑘) − 𝜌‖𝑋𝑘 −𝑋𝑘−1‖2𝐹

≤ 𝛽2
𝑘

2

(︂
𝐿+

1

𝛼
(
1

𝜇
− 𝐿)

)︂
‖𝑋𝑘 −𝑋𝑘−1‖2𝐹 − 1

2

(︁ 1

𝜇
− 𝐿

)︁
(1 − 𝛼)‖𝑋𝑘+1 −𝑋𝑘‖2𝐹

+𝜌‖𝑋𝑘+1 −𝑋𝑘‖2𝐹 − 𝜌‖𝑋𝑘 −𝑋𝑘−1‖2𝐹

=

[︂
𝛽2
𝑘

2

(︂
𝐿+

1

𝛼
(
1

𝜇
− 𝐿)

)︂
− 𝜌

]︂
‖𝑋𝑘 −𝑋𝑘−1‖2𝐹 −

[︂
1

2

(︁ 1

𝜇
− 𝐿

)︁
(1 − 𝛼) − 𝜌

]︂
‖𝑋𝑘+1 −𝑋𝑘‖2𝐹 .

This completes the proof. �

Lemma 3.2 Let {𝑋𝑘} be a sequence generated by Algorithm 1, then the following statements
hold.

(i) The sequence {𝛷𝑘,𝜌} is non-increasing and convergent. Moreover,

𝛷𝑘+1,𝜌 − 𝛷𝑘,𝜌 ≤
[︂
𝛽2
𝑘

2

(︂
𝐿+

1

𝛼
(
1

𝜇
− 𝐿)

)︂
− 𝜌

]︂
‖𝑋𝑘 −𝑋𝑘−1‖2𝐹 . (3.15)

(ii)
∞∑︀
𝑘=0

‖𝑋𝑘+1 −𝑋𝑘‖2𝐹 <∞.

Proof (i) From conditions (3.7) and (3.8), we have[︂
𝛽2
𝑘

2

(︂
𝐿+

1

𝛼
(
1

𝜇
− 𝐿)

)︂
− 𝜌

]︂
< 0 and

[︂
1

2

(︁ 1

𝜇
− 𝐿

)︁
(1 − 𝛼) − 𝜌

]︂
≥ 0. (3.16)

Then from Lemma 3.1, we get

𝛷𝑘+1,𝜌 − 𝛷𝑘,𝜌 ≤ 0,

which means that {𝛷𝑘,𝜌} is non-increasing. Since 𝜃(·) and ‖ · ‖𝑝𝑝 are both bounded from

below, we know that {𝑓𝜆(𝑋𝑘)} and {𝛷𝑘,𝜌} are both bounded from below, and then {𝛷𝑘,𝜌}
is convergent.

(ii) From Lemma 3.1 and (3.16), we obtain

0 ≤
[︂
𝜌− 𝛽2

𝑘

2

(︂
𝐿+

1

𝛼
(
1

𝜇
− 𝐿)

)︂]︂
‖𝑋𝑘 −𝑋𝑘−1‖2𝐹 ≤ 𝛷𝑘,𝜌 − 𝛷𝑘+1,𝜌. (3.17)

Summing both sides of (3.17) for 𝑘 from 0 to 𝑁 , we have

0 ≤
𝑁∑︁

𝑘=0

[︂
𝜌− 𝛽2

𝑘

2

(︂
𝐿+

1

𝛼
(
1

𝜇
− 𝐿)

)︂]︂
‖𝑋𝑘 −𝑋𝑘−1‖2𝐹

≤
𝑁∑︁

𝑘=0

(𝛷𝑘,𝜌 − 𝛷𝑘+1,𝜌) = 𝛷0,𝜌 − 𝛷𝑁+1,𝜌.

Let 𝑁 → ∞, then the convergence of {𝛷𝑘,𝜌} implies that

∞∑︁
𝑘=0

[︂
𝜌− 𝛽2

𝑘

2

(︂
𝐿+

1

𝛼
(
1

𝜇
− 𝐿)

)︂]︂
‖𝑋𝑘 −𝑋𝑘−1‖2𝐹 <∞. (3.18)
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Conditions (3.7) and (3.8) yield that[︂
𝜌− 𝛽2

𝑘

2

(︂
𝐿+

1

𝛼
(
1

𝜇
− 𝐿)

)︂]︂
≥
[︂
𝜌− 𝛾2

2

(︂
𝐿+

1

𝛼
(
1

𝜇
− 𝐿)

)︂]︂
> 0.

Hence, from (3.18), we get
∞∑︀
𝑘=0

‖𝑋𝑘+1 −𝑋𝑘‖2𝐹 <∞. �

Theorem 3.3 (Global subsequential convergence) Let {𝑋𝑘} be a sequence generated
by Algorithm 1. Then the following statements hold.

(i) The sequence {𝑋𝑘} is bounded;

(ii) Any accumulation point of {𝑋𝑘} is both a critical point and a global stationary point
of problem (1.5).

(iii) There exists a constant 𝛷* such that 𝑓𝜆(𝑋*) ≡ 𝛷(𝑋*, 𝑋*) ≡ 𝛷* for any accumulation
point 𝑋* of {𝑋𝑘}.

Proof (i) By the definition of 𝛷𝑘,𝜌 (3.6), we have

𝛷𝑘, 12 (
1
𝜇−𝐿)(1−𝛼) = 𝛷𝑘, 12 (

1
𝜇−𝐿)(1−𝛼)(𝑋

𝑘, 𝑋𝑘−1)

= 𝑓𝜆(𝑋𝑘) +
1

2
(
1

𝜇
− 𝐿)(1 − 𝛼)‖𝑋𝑘 −𝑋𝑘−1‖2𝐹 .

Since {𝛷𝑘, 12 (
1
𝜇−𝐿)(1−𝛼)} is non-increasing and 𝑋−1 = 𝑋0 as well as condition (3.7), then

𝑓𝜆(𝑋𝑘) ≤ 𝛷𝑘, 12 (
1
𝜇−𝐿)(1−𝛼)(𝑋

𝑘, 𝑋𝑘−1) ≤ 𝛷0, 12 (
1
𝜇−𝐿)(1−𝛼)(𝑋

0, 𝑋−1) = 𝑓𝜆(𝑋0).

That is, {𝑋𝑘} ⊂ {𝑋 : 𝑓𝜆(𝑋𝑘) ≤ 𝑓𝜆(𝑋0)}. By the lower boundedness of 𝜃(·), we have

lim
‖𝑋‖→∞

𝑓𝜆(𝑋) ≥ inf 𝜃(𝑋) + lim
‖𝑋‖→∞

𝜆‖𝑋‖𝑝𝑝 = ∞.

Consequently, both {𝑋 : 𝑓𝜆(𝑋𝑘) ≤ 𝑓𝜆(𝑋0)} and {𝑋𝑘} are bounded.

(ii) Let 𝑋* be any accumulation point of {𝑋𝑘}, then there exists a subsequence {𝑋𝑘𝑖}
such that lim𝑖→∞𝑋𝑘𝑖 = 𝑋*. By (3.1),

𝑋𝑘𝑖+1 ∈ 𝐻𝜆𝜇

(︀
𝑌 𝑘𝑖 − 𝜇∇𝜃(𝑌 𝑘𝑖)

)︀
= Arg min

𝑋∈R𝑚×𝑛

1

2𝜇𝜆
‖𝑋 − (𝑌 𝑘𝑖 − 𝜇∇𝜃(𝑌 𝑘𝑖))‖2𝐹 + ‖𝑋‖𝑝𝑝,

then for any 𝑋 ∈ R𝑚×𝑛 we have that

1

2𝜇𝜆
‖𝑋𝑘𝑖+1 − (𝑌 𝑘𝑖 − 𝜇∇𝜃(𝑌 𝑘𝑖))‖2𝐹 + ‖𝑋𝑘𝑖+1‖𝑝𝑝

≤ 1

2𝜇𝜆
‖𝑋 − (𝑌 𝑘𝑖 − 𝜇∇𝜃(𝑌 𝑘𝑖))‖2𝐹 + ‖𝑋‖𝑝𝑝. (3.19)

Since 𝑌 𝑘𝑖 = 𝑋𝑘𝑖 +𝛽𝑘𝑖
(𝑋𝑘𝑖−𝑋𝑘𝑖−1) and ‖𝑋𝑘𝑖+1−𝑋𝑘𝑖‖ → 0 as 𝑖→ ∞ (Lemma 3.2 (ii)), then

𝑋𝑘𝑖+1 → 𝑋* and 𝑌 𝑘𝑖 → 𝑋* as 𝑖→ ∞. Letting 𝑖→ ∞ in (3.19) and using the continuity of

∇𝜃(·) and ‖ · ‖𝑝𝑝, we obtain

1

2𝜇𝜆
‖𝑋* − (𝑋* − 𝜇∇𝜃(𝑋*))‖2𝐹 + ‖𝑋*‖𝑝𝑝 ≤ 1

2𝜇𝜆
‖𝑋 − (𝑋* − 𝜇∇𝜃(𝑋*))‖2𝐹 + ‖𝑋‖𝑝𝑝,
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which implies that

𝑋* ∈ Arg min
𝑋∈R𝑚×𝑛

1

2𝜇𝜆
‖𝑋 − (𝑋* − 𝜇∇𝜃(𝑋*))‖2𝐹 + ‖𝑋‖𝑝𝑝. (3.20)

From Lemma 2.4, we obtain 𝑋* ∈ 𝐻𝜆𝜇 (𝑋* − 𝜇∇𝜃(𝑋*)), that is, 𝑋* is a global stationary
point of problem (1.5).

In addition, the optimality condition of (3.20) gives that

0 ∈ 1

𝜇

(︁
𝑋* − (𝑋* − 𝜇∇𝜃(𝑋*))

)︁
+ 𝜕(𝜆‖ · ‖𝑝𝑝)𝑋=𝑋* = ∇𝜃(𝑋*) + 𝜕(𝜆‖ · ‖𝑝𝑝)𝑋=𝑋* = 𝜕𝑓𝜆(𝑋*).

That is, 𝑋* is also a critical point of problem (1.5).
(iii) According to (3.17), there exists 𝛾 > 0 such that

𝛷𝜌(𝑋𝑘, 𝑋𝑘−1) − 𝛷𝜌(𝑋𝑘+1, 𝑋𝑘) ≥ 𝛾‖𝑋𝑘 −𝑋𝑘−1‖2𝐹 . (3.21)

That is, {𝛷𝜌(𝑋𝑘, 𝑋𝑘−1)} is non-increasing with respect to 𝑘. Note that
{︀
𝛷𝜌(𝑋𝑘, 𝑋𝑘−1)

}︀
is bounded from below since 𝜃(·) is bounded from below. Hence, there exists 𝛷* such that
lim
𝑘→∞

𝛷𝜌(𝑋𝑘, 𝑋𝑘−1) = 𝛷*. For the accumulation point 𝑋* and the subsequence {𝑋𝑘𝑖} con-

verging to 𝑋*, since 𝛷𝜌(·, ·) is continuous, we have 𝛷* ≡ 𝛷𝜌(𝑋*, 𝑋*) ≡ 𝑓𝜆(𝑋*). �

Remark 3.4 Note that it can be deduced from (3.20) that 𝑋* is a critical point of problem

(1.5), but the opposite is not true. That is, if 𝑋* is a global stationary point, it must be

a critical point of problem (1.5), but the opposite is not true. The global stationary point
possesses some global optimality, which can exclude too many stationary points even some

local minimizers of the nonconvex problem. One can see an interesting example [62, Example

4.5] for details.

The following theorem shows that {rank(𝑋𝑘)} will become a constant when 𝑘 is suffi-
ciently large and that all the accumulation points of {𝑋𝑘} have a same rank.

Theorem 3.5 (Rank invariance) Let {𝑋𝑘} be a sequence generated by Algorithm 1. Then

there exist two positive integers 𝑘0 and 𝑟 such that, whenever 𝑘 > 𝑘0,

rank(𝑋𝑘) = rank(𝑋*) ≡ 𝑟,

where 𝑋* is any accumulation point of {𝑋𝑘}.

Proof (i) On the one hand, from (2.2) and (3.4), we know that

𝜎𝑖(𝑋
𝑘) = ℎ𝜆𝜇(𝜎𝑖(𝐺

𝑘)) ≥ 𝜏𝑝 := [2𝜆𝜇(1 − 𝑝)]
1

(2−𝑝) , if 𝜎𝑖(𝑋
𝑘) ̸= 0, (3.22)

for each 𝑖 = 1, · · · ,min{𝑚,𝑛} and any 𝑘 > 0. Let 𝑟𝑘 := rank(𝑋𝑘). If rank(𝑋𝑘+1) ̸= rank(𝑋𝑘)
(i.e., rank(𝑋𝑘+1) > rank(𝑋𝑘) or rank(𝑋𝑘+1) < rank(𝑋𝑘) ), then from (3.22) and the mono-

tonicity of ℎ𝜆𝜇(·) (Proposition (2.3)), we have

‖𝜎(𝑋𝑘+1) − 𝜎(𝑋𝑘)‖2 ≥ min{𝜎𝑟𝑘+1(𝑋𝑘+1), 𝜎𝑟𝑘(𝑋𝑘)} ≥ 𝜏𝑝. (3.23)

On the other hand, by Lemma 3.2 (ii), ‖𝑋𝑘+1−𝑋𝑘‖𝐹 → 0, then there exists a sufficiently
large positive integer 𝑘0 such that whenever 𝑘 > 𝑘0 it holds

‖𝑋𝑘+1 −𝑋𝑘‖𝐹 < 𝜏𝑝,

which together with Lemma 2.1 yields that

‖𝜎(𝑋𝑘+1) − 𝜎(𝑋𝑘)‖2 ≤ ‖𝑋𝑘+1 −𝑋𝑘‖𝐹 < 𝜏𝑝, (3.24)
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which contradicts to (3.23). This contradiction shows that the equality rank(𝑋𝑘+1) =
rank(𝑋𝑘) must hold for any sufficiently large positive integer 𝑘. That is, rank(𝑋𝑘) must
be a constant 𝑟 whenever 𝑘 > 𝑘0 for some sufficiently large positive integer 𝑘0.

(ii) For any accumulation point 𝑋*, there exists a subsequence {𝑋𝑘𝑗} converging to 𝑋*.
Then there exists a sufficiently large positive integer 𝑗0 > 𝑘0 such that whenver 𝑗 > 𝑗0,

rank(𝑋𝑘𝑗 ) = 𝑟 and ‖𝑋𝑘𝑗 −𝑋*‖𝐹 < 𝜏𝑝.

Similar to (i), we can obtain

rank(𝑋𝑘𝑗 ) = rank(𝑋*).

Thus, we get rank(𝑋*) = 𝑟. This together with (i) yields that rank(𝑋𝑘) = rank(𝑋*) ≡ 𝑟
whenever 𝑘 > 𝑘0. �

3.3 Global whole sequence convergence and convergence rate of Algorithm 1

In this subsection, we discuss the global whole sequence convergence and convergence rate
of Algorithm 1 under the additional assumption that the function 𝛷𝜌(·, ·) (defined in (3.5))
is a K L function.

Theorem 3.6 (Global whole sequence convergence) Let {𝑋𝑘} be a sequence generat-

ed by Algorithm 1. Suppose 𝛷𝜌 is a K L function. Then the following statements hold.

(i) lim
𝑘→∞

dist((0, 0), 𝜕𝛷𝜌(𝑋𝑘, 𝑋𝑘−1)) = 0;

(ii)
∞∑︀
𝑘=1

‖𝑋𝑘 −𝑋𝑘−1‖𝐹 <∞;

(iii) The whole sequence {𝑋𝑘} converges to a critical point and global stationary point of

problem (1.5).

Proof (i) We first consider the subdifferential of 𝛷𝜌 at (𝑋𝑘, 𝑋𝑘−1). Note that for any 𝑘 > 0,

we have

𝜕𝛷𝜌(𝑋𝑘, 𝑋𝑘−1) = 𝜕𝑋𝛷𝜌(𝑋𝑘, 𝑋𝑘−1) × 𝜕𝑌 𝛷𝜌(𝑋𝑘, 𝑋𝑘−1)

=
{︁
∇𝜃(𝑋𝑘) + 𝜕(𝜆‖𝑋𝑘‖𝑝𝑝) + 2𝜌(𝑋𝑘 −𝑋𝑘−1)

}︁
×
{︁
− 2𝜌(𝑋𝑘 −𝑋𝑘−1)

}︁
. (3.25)

The optimality condition of subproblem (3.1) yields that

0 ∈ 1

𝜇
(𝑋𝑘 − 𝑌 𝑘−1) + ∇𝜃(𝑌 𝑘−1) + 𝜕(𝜆‖𝑋𝑘‖𝑝𝑝). (3.26)

Substitute (3.26) into (3.25), we obtain{︁
2𝜌(𝑋𝑘 −𝑋𝑘−1) − 1

𝜇
(𝑋𝑘 − 𝑌 𝑘−1) + ∇𝜃(𝑋𝑘) −∇𝜃(𝑌 𝑘−1)

}︁
×
{︁
− 2𝜌(𝑋𝑘 −𝑋𝑘−1)

}︁
∈ 𝜕𝛷𝜌(𝑋𝑘, 𝑋𝑘−1).

By 𝑌 𝑘−1 = 𝑋𝑘−1 + 𝛽𝑘−1(𝑋𝑘−1 −𝑋𝑘−2), we have

{︂
(2𝜌− 1

𝜇
)(𝑋𝑘 −𝑋𝑘−1) +

𝛽𝑘−1

𝜇
(𝑋𝑘−1 −𝑋𝑘−2) + ∇𝜃(𝑋𝑘)

−∇𝜃
(︀
𝑋𝑘−1 + 𝛽𝑘−1(𝑋𝑘−1 −𝑋𝑘−2)

)︀}︁
×
{︁
− 2𝜌(𝑋𝑘 −𝑋𝑘−1)

}︁
∈ 𝜕𝛷𝜌(𝑋𝑘, 𝑋𝑘−1).
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Considering the Lipschitz continuity of ∇𝜃(·), the above relation implies that there exists
𝑀 > 0 such that

dist((0, 0), 𝜕𝛷𝜌(𝑋𝑘, 𝑋𝑘−1)) ≤𝑀(‖𝑋𝑘 −𝑋𝑘−1‖𝐹 + ‖𝑋𝑘−1 −𝑋𝑘−2‖𝐹 ). (3.27)

From Lemma 3.2 (ii), ‖𝑋𝑘+1 −𝑋𝑘‖𝐹 → 0 (𝑘 → ∞), we obtain that

lim
𝑘→∞

dist((0, 0), 𝜕𝛷𝜌(𝑋𝑘, 𝑋𝑘−1)) = 0.

(ii) From Theorem 3.3 (iii) and its proof, for any accumulation point 𝑋* of {𝑋𝑘}, we
have

lim
𝑘→∞

𝛷𝜌(𝑋𝑘, 𝑋𝑘−1) = 𝛷𝜌(𝑋*, 𝑋*) = 𝑓𝜆(𝑋*) = 𝛷*.

Note that 𝛷𝜌(𝑋𝑘, 𝑋𝑘−1) = 𝑓𝜆(𝑋𝑘) + 𝜌‖𝑋𝑘 −𝑋𝑘−1‖2𝐹 and ‖𝑋𝑘 −𝑋𝑘−1‖𝐹 → 0 as 𝑘 → ∞
(Lemma 3.2 (ii)), then by the continuity of 𝑓𝜆 and 𝛷𝜌(·, ·), we get

lim
𝑘→∞

𝑓𝜆(𝑋𝑘) = lim
𝑘→∞

𝛷𝜌(𝑋𝑘, 𝑋𝑘−1) = 𝑓𝜆(𝑋*) = 𝛷*. (3.28)

Since {𝛷𝜌(𝑋𝑘, 𝑋𝑘−1)} is non-increasing, then 𝛷𝜌(𝑋𝑘, 𝑋𝑘−1) ≥ 𝛷* for all 𝑘.

We next consider the following two cases:

∙ 𝛷𝜌(𝑋𝑘, 𝑋𝑘−1) = 𝛷*;

∙ 𝛷𝜌(𝑋𝑘, 𝑋𝑘−1) > 𝛷*.

(1) Consider the case that 𝛷𝜌(𝑋𝑘, 𝑋𝑘−1) = 𝛷* for some 𝑘 = 𝑘. Since 𝛷𝜌(𝑋𝑘, 𝑋𝑘−1) is
non-increasing and converges to 𝛷*, then 𝛷𝜌(𝑋𝑘, 𝑋𝑘−1) ≡ 𝛷* for all 𝑘 ≥ 𝑘. From (3.21),

we obtain that 𝑋𝑘+�̂� = 𝑋 �̂� for all 𝑘 ≥ 1. This means that {𝑋𝑘} has only finite number of
elements.

(2) Consider the case that 𝛷𝜌(𝑋𝑘, 𝑋𝑘−1) > 𝛷* for all 𝑘 ≥ 0. Denote the set of accumula-

tion points of {𝑋𝑘} by 𝛤 . If 𝑋𝑘𝑖 → 𝑋*, then from ‖𝑋𝑘𝑖+1−𝑋𝑘𝑖‖ → 0, we can get 𝑋𝑘𝑖+1 →
𝑋*, which together with the definition of 𝛤 implies that 𝛺 := {(𝑋,𝑋) : 𝑋 ∈ 𝛤} is the set of

accumulation points of {(𝑋𝑘, 𝑋𝑘−1)}. Consequently, we have lim
𝑘→∞

dist((𝑋𝑘, 𝑋𝑘−1), 𝛺) = 0.

Thus, there exists 𝑁1 > 0 such that

dist((𝑋𝑘, 𝑋𝑘−1), 𝛺) < 𝜖 (3.29)

for any 𝜖 > 0 and any 𝑘 ≥ 𝑁1. From Theorem 3.3 (iii), we know that 𝛷𝜌 is a constant on

𝛺. Since 𝛷𝜌 is a K L function, by the property of K L functions (Lemma 2.8), there exist
𝑎 ∈ (0,+∞], 𝜖 > 0 and a continuous concave function 𝜓 : [0, 𝑎) → R+ such that

𝜓′(𝛷𝜌(𝑋,𝑌 ) − 𝛷*) · dist((0, 0), 𝜕𝛷𝜌(𝑋,𝑌 )) ≥ 1 (3.30)

for all (𝑋,𝑌 ) ∈ 𝒰 , where

𝒰 =
{︁

(𝑋,𝑌 ) ∈ R𝑚×𝑛 ×R𝑚×𝑛 : dist((𝑋,𝑌 ), 𝛺) < 𝜖
}︁

⋂︁{︁
(𝑋,𝑌 ) ∈ R𝑚×𝑛 ×R𝑚×𝑛 : 𝛷* < 𝛷𝜌(𝑋,𝑌 ) < 𝛷* + 𝑎

}︁
.

Similarly, since {𝛷𝜌(𝑋𝑘, 𝑋𝑘−1)} is non-increasing and converges to 𝛷* with 𝛷𝜌(𝑋𝑘, 𝑋𝑘−1) >
𝛷* for all 𝑘, then there exists 𝑁2 > 0 such that 𝛷* < 𝛷𝜌(𝑋𝑘, 𝑋𝑘−1) < 𝛷* + 𝑎 whenever
𝑘 ≥ 𝑁2. This together with (3.29) gives that

{(𝑋𝑘, 𝑋𝑘−1)}𝑘≥𝑁3
⊂ 𝒰 (3.31)
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whenever 𝑘 ≥ 𝑁3 := max{𝑁1, 𝑁2}. Thus, from (3.30), we obtain that

𝜓′(𝛷𝜌(𝑋𝑘, 𝑋𝑘−1) − 𝛷*) · dist((0, 0), 𝜕𝛷𝜌(𝑋𝑘, 𝑋𝑘−1)) ≥ 1 (3.32)

whenever 𝑘 ≥ 𝑁3. By use of the concavity of 𝜓 and (3.32), we have that

[𝜓(𝛷𝜌(𝑋𝑘, 𝑋𝑘−1) − 𝛷*) − 𝜓(𝛷𝜌(𝑋𝑘+1, 𝑋𝑘) − 𝛷*)] · dist((0, 0), 𝜕𝛷𝜌(𝑋𝑘, 𝑋𝑘−1))

≥ 𝜓′(𝛷𝜌(𝑋𝑘, 𝑋𝑘−1) − 𝛷*) · dist((0, 0), 𝜕𝛷𝜌(𝑋𝑘, 𝑋𝑘−1)) · (𝛷𝜌(𝑋𝑘, 𝑋𝑘−1) − 𝛷𝜌(𝑋𝑘+1, 𝑋𝑘))

≥ 𝛷𝜌(𝑋𝑘, 𝑋𝑘−1) − 𝛷𝜌(𝑋𝑘+1, 𝑋𝑘). (3.33)

By (3.21), (3.27) and (3.33), we get that

‖𝑋𝑘 −𝑋𝑘−1‖2𝐹 ≤ 1

𝛾
[𝛷𝜌(𝑋𝑘, 𝑋𝑘−1) − 𝛷𝜌(𝑋𝑘+1, 𝑋𝑘)]

≤ 1

𝛾
[𝜓(𝛷𝜌(𝑋𝑘, 𝑋𝑘−1) − 𝛷*) − 𝜓(𝛷𝜌(𝑋𝑘+1, 𝑋𝑘) − 𝛷*)]

·dist((0, 0), 𝜕𝛷𝜌(𝑋𝑘, 𝑋𝑘−1))

≤ 𝑀

𝛾
[𝜓(𝛷𝜌(𝑋𝑘, 𝑋𝑘−1) − 𝛷*) − 𝜓(𝛷𝜌(𝑋𝑘+1, 𝑋𝑘) − 𝛷*)]

·(‖𝑋𝑘 −𝑋𝑘−1‖𝐹 + ‖𝑋𝑘−1 −𝑋𝑘−2‖𝐹 ). (3.34)

Taking square root on both sides of (3.34), and by the inequality
√︀

|𝑎𝑏| ≤ |𝑎|+|𝑏|
2 , we obtain

‖𝑋𝑘 −𝑋𝑘−1‖𝐹 ≤

√︃
2𝑀

𝛾

[︁
𝜓(𝛷𝜌(𝑋𝑘, 𝑋𝑘−1) − 𝛷*) − 𝜓(𝛷𝜌(𝑋𝑘+1, 𝑋𝑘) − 𝛷*)

]︁
·
√︂

‖𝑋𝑘 −𝑋𝑘−1‖𝐹 + ‖𝑋𝑘−1 −𝑋𝑘−2‖𝐹
2

≤ 𝑀

𝛾

[︁
𝜓(𝛷𝜌(𝑋𝑘, 𝑋𝑘−1) − 𝛷*) − 𝜓(𝛷𝜌(𝑋𝑘+1, 𝑋𝑘) − 𝛷*)

]︁
+

1

4
‖𝑋𝑘 −𝑋𝑘−1‖𝐹 +

1

4
‖𝑋𝑘−1 −𝑋𝑘−2‖𝐹 .

Rearranging the terms of the above inequality, we get

1

2
‖𝑋𝑘 −𝑋𝑘−1‖𝐹 ≤ 𝑀

𝛾

[︁
𝜓(𝛷𝜌(𝑋𝑘, 𝑋𝑘−1) − 𝛷*) − 𝜓(𝛷𝜌(𝑋𝑘+1, 𝑋𝑘) − 𝛷*)

]︁
+

1

4
(‖𝑋𝑘−1 −𝑋𝑘−2‖𝐹 − ‖𝑋𝑘 −𝑋𝑘−1‖𝐹 ). (3.35)

Summing both sides of (3.35) for 𝑘 from 𝑁3 to ∞, and by the continuity of 𝜓, we obtain

∞∑︁
𝑘=𝑁3

‖𝑋𝑘 −𝑋𝑘−1‖𝐹 ≤ 2𝑀

𝛾
𝜓(𝛷𝜌(𝑋𝑁3 , 𝑋𝑁3−1) − 𝛷*) +

1

2
‖𝑋𝑁3−1 −𝑋𝑁3−2‖𝐹 <∞.

This means that the statement (ii) holds and that {𝑋𝑘} is a Cauchy sequence which implies

that {𝑋𝑘} is convergent. Then by Theorem 3.3 (ii), {𝑋𝑘} converges to a critical point and
global stationary point of problem (1.5). �

At the end of this subsection, we derive the convergence rate of Algorithm 1 under the
assumption that 𝛷𝜌 is a K L function. Our analysis is similar to that in [1,25,54].
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Theorem 3.7 (Convergence rate) Let {𝑋𝑘} be a sequence generated by Algorithm 1.
Suppose 𝛷𝜌 is a K L function such that the function 𝜓 in the K L inequality (3.30) takes
the form 𝜓(𝑠) = 𝑐𝑠1−𝜗 for some 𝜗 ∈ [0, 1) and 𝑐 > 0. Then the following statements hold.

(i) [Finite termination] If 𝜗 = 0, then 𝑋𝑘 is a constant for all sufficiently large 𝑘;

(ii) [R-linear convergence rate] If 𝜗 ∈ (0, 12 ], then there exists 𝜂 ∈ (0, 1) and 𝜅1 > 0 such
that ‖𝑋𝑘 −𝑋*‖𝐹 < 𝜅1𝜂

𝑘 for all sufficiently large 𝑘;

(iii) [R-sublinear convergence rate] If 𝜗 ∈ (12 , 1), then there exists 𝜅2 > 0 such that

‖𝑋𝑘 −𝑋*‖𝐹 < 𝜅2𝑘
− 1−𝜗

2𝜗−1 for all sufficiently large 𝑘.

Proof (i) If 𝜗 = 0, we deduce that there must exists 𝑘0 > 0 such that 𝛷𝜌(𝑋𝑘0 , 𝑋𝑘0−1) = 𝛷*,
where 𝛷* is given in Theorem 3.3. Assume on the contrary that 𝛷𝜌(𝑋𝑘, 𝑋𝑘−1) > 𝛷* for
all 𝑘 > 0 since {𝛷𝜌(𝑋𝑘, 𝑋𝑘−1)} is non-increasing and convergent to 𝛷* by Theorem 3.3. It
follows from 𝜓(𝑠) = 𝑐𝑠 and the K L inequality (3.30) that

dist((0, 0), 𝜕𝛷𝜌(𝑋𝑘, 𝑋𝑘−1) ≥ 1

𝑐
(3.36)

for all sufficiently large 𝑘, which contradicts (3.29). Since 𝛷𝜌(𝑋𝑘, 𝑋𝑘−1) is non-increasing
and converges to 𝛷*, then 𝛷𝜌(𝑋𝑘, 𝑋𝑘−1) ≡ 𝛷* for all 𝑘 ≥ 𝑘0. From (3.21), we obtain that

𝑋𝑘+𝑘0 = 𝑋𝑘0 for all 𝑘 ≥ 1. This means that 𝑋𝑘 is a constant for all sufficiently large 𝑘.

(ii) When 𝜗 ∈ (0, 1), let 𝑑𝑘 =
∞∑︀
𝑡=𝑘

‖𝑋𝑡+1 −𝑋𝑡‖𝐹 , then from Theorem 3.6 (ii), 𝑑𝑘 is well

defined and non-increasing. It follows from (3.35) that for all 𝑘 ≥ 𝑁3,

𝑑𝑘 ≤ 2𝑀

𝛾
𝜓(𝛷𝜌(𝑋𝑘, 𝑋𝑘−1) − 𝛷*) +

1

2
‖𝑋𝑘−1 −𝑋𝑘−2‖𝐹

=
2𝑀

𝛾
𝜓(𝛷𝜌(𝑋𝑘, 𝑋𝑘−1) − 𝛷*) +

1

2
(𝑑𝑘−2 − 𝑑𝑘−1). (3.37)

From (3.27), (3.37) and 𝑑𝑘 is non-increasing, we have

𝑑𝑘 ≤ 2𝑀

𝛾
𝜓(𝛷𝜌(𝑋𝑘, 𝑋𝑘−1) − 𝛷*) +

1

2
(𝑑𝑘−2 − 𝑑𝑘) (3.38)

and

dist((0, 0), 𝜕𝛷𝜌(𝑋𝑘, 𝑋𝑘−1)) ≤𝑀(𝑑𝑘−2 − 𝑑𝑘). (3.39)

From (3.30), lim
𝑘→∞

𝑋𝑘 = 𝑋* and 𝜓′(𝑠) = 𝑐(1 − 𝜗)𝑠−𝜗, it follows that

𝑐(1 − 𝜗)(𝛷𝜌(𝑋𝑘, 𝑋𝑘−1) − 𝛷*)−𝜗 · dist((0, 0), 𝜕𝛷𝜌(𝑋𝑘, 𝑋𝑘−1)) ≥ 1 (3.40)

for all 𝑘 ≥ 𝑁3. Combining (3.39) and (3.40), we have

(𝛷𝜌(𝑋𝑘, 𝑋𝑘−1) − 𝛷*)𝜗 ≤𝑀 · 𝑐(1 − 𝜗)(𝑑𝑘−2 − 𝑑𝑘). (3.41)

Due to 𝜓(𝑠) = 𝑐𝑠1−𝜗 and (3.41), we get

𝜓(𝛷𝜌(𝑋𝑘, 𝑋𝑘−1) − 𝛷*) = 𝑐(𝛷𝜌(𝑋𝑘, 𝑋𝑘−1) − 𝛷*)1−𝜗

≤ 𝑐
(︀
𝑀 · 𝑐(1 − 𝜗)(𝑑𝑘−2 − 𝑑𝑘)

)︀(1−𝜗)/𝜗
. (3.42)
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From (3.37) and (3.42), for all 𝑘 ≥ 𝑁3 it follows that

𝑑𝑘 ≤ 2𝑀

𝛾
𝜓(𝛷𝜌(𝑋𝑘, 𝑋𝑘−1) − 𝛷*) +

1

2
(𝑑𝑘−2 − 𝑑𝑘)

≤ 2𝑀

𝛾
𝑐
(︀
𝑀 · 𝑐(1 − 𝜗)(𝑑𝑘−2 − 𝑑𝑘)

)︀(1−𝜗)/𝜗
+

1

2
(𝑑𝑘−2 − 𝑑𝑘)

= 𝐶(𝑑𝑘−2 − 𝑑𝑘)(1−𝜗)/𝜗 +
1

2
(𝑑𝑘−2 − 𝑑𝑘). (3.43)

where 𝐶 := 2𝑀
𝛾 𝑐(𝑀 · 𝑐(1 − 𝜗))

1−𝜗
𝜗 > 0. By Theorem (3.6) (ii), we have

𝑑𝑘−2 − 𝑑𝑘 = ‖𝑋𝑘 −𝑋𝑘−1‖𝐹 + ‖𝑋𝑘−1 −𝑋𝑘−2‖𝐹 → 0. (3.44)

If 𝜗 ∈ (0, 12 ], then (1 − 𝜗)/𝜗 ≥ 1. Then from (3.43) and (3.44), for all sufficiently large 𝑘
it follows that

𝑑𝑘 ≤ 𝐶(𝑑𝑘−2 − 𝑑𝑘)(1−𝜗)/𝜗 +
1

2
(𝑑𝑘−2 − 𝑑𝑘)

≤ 𝐶(𝑑𝑘−2 − 𝑑𝑘) +
1

2
(𝑑𝑘−2 − 𝑑𝑘) ≤ (𝐶 +

1

2
)(𝑑𝑘−2 − 𝑑𝑘).

This means that 𝑑𝑘 ≤ 2𝐶+1
2𝐶+3𝑑𝑘−2 =

(︁√︁
2𝐶+1
2𝐶+3

)︁2
𝑑𝑘−2. Thus,

‖𝑋𝑘 −𝑋*‖𝐹 ≤
∞∑︁
𝑡=𝑘

‖𝑋𝑡+1 −𝑋𝑡‖𝐹 = 𝑑𝑘 ≤

(︃√︂
2𝐶 + 1

2𝐶 + 3

)︃2

𝑑𝑘−2

≤

(︃√︂
2𝐶 + 1

2𝐶 + 3

)︃4

𝑑𝑘−4 ≤ · · · ≤ 𝑑𝑘1

(︃√︂
2𝐶 + 1

2𝐶 + 3

)︃𝑘−𝑘1

= 𝜅1𝜂
𝑘, ∀ 𝑘 ≥ 𝑘1(≥ 𝑁3),

where 𝜂 :=
√︁

2𝐶+1
2𝐶+3 ∈ (0, 1) and 𝜅1 := 𝑑𝑘1

𝜂−𝑘1 > 0.

(iii) If 𝜗 ∈ (12 , 1), then 1−𝜗
𝜗 ∈ (0, 1). From (3.43) and (3.44), for all sufficiently large 𝑘 it

follows that

𝑑𝑘 ≤ 𝐶(𝑑𝑘−2 − 𝑑𝑘)(1−𝜗)/𝜗 +
1

2
(𝑑𝑘−2 − 𝑑𝑘)

≤ 𝐶(𝑑𝑘−2 − 𝑑𝑘)(1−𝜗)/𝜗 +
1

2
(𝑑𝑘−2 − 𝑑𝑘)(1−𝜗)/𝜗

= (𝐶 +
1

2
)(𝑑𝑘−2 − 𝑑𝑘)(1−𝜗)/𝜗.

Note that 𝜗
1−𝜗 > 1, then the above inequality yields that

𝑑
𝜗

1−𝜗

𝑘 ≤
(︁
𝐶 +

1

2

)︁ 𝜗
1−𝜗

(𝑑𝑘−2 − 𝑑𝑘) = 𝐶2(𝑑𝑘−2 − 𝑑𝑘) (3.45)

for all sufficiently large 𝑘, where 𝐶2 :=
(︀
𝐶 + 1

2

)︀ 𝜗
1−𝜗 .

Consider the subsequence {𝛥𝑘 := 𝑑2𝑘}, then inequality (3.45) yields that

𝛥
𝜗

1−𝜗

𝑘 ≤ 𝐶2(𝛥𝑘−1 −𝛥𝑘) (3.46)

for all sufficiently large 𝑘. From (3.46), by the proof similar to that of [1, Theorem 2],
especially that from inequality (13) to the second inequality after (15) in [1], we can get that

𝛥𝑘 ≤ 𝐶3𝑘
− 1−𝜗

2𝜗−1 = 𝐶3𝑘
−𝜉 (3.47)



FPCAe algorithm for Schatten p-quasi-norm regularized matrix optimization problems 17

for all sufficiently large 𝑘, where 𝐶3 > 0 is a constant and 𝜉 := 1−𝜗
2𝜗−1 > 0. Then for all

sufficiently large 𝑘, we have that

‖𝑋𝑘 −𝑋*‖𝐹 ≤ 𝑑𝑘

{︃
= 𝛥𝑘

2
≤ 2𝜉𝐶3𝑘

−𝜉 if 𝑘 is even,

≤ 𝑑𝑘−1 = 𝛥𝑘−1
2

≤ 2𝜉𝐶3(𝑘 − 1)−𝜉 ≤ 4𝜉𝐶3𝑘
−𝜉 if 𝑘 is odd and 𝑘 > 2,

≤ 𝜅2𝑘
−𝜉

where 𝜅2 := 4𝜉𝐶3 > 0. Thus, the proof is complete. �

3.4 Accelerated version of Algorithm 1: FPCAe algorithm

We adopt two technologies to accelerate Algorithm 1. The first one is the continuation
technique of the parameter 𝜆, which is similar to that in [32,34,41,42]. In detail, choose
a decreasing sequence {𝜆𝑘} : 𝜆0 > 𝜆1 > · · · > 𝜆𝐾 = 𝜆𝑓𝑖𝑛𝑎𝑙 > 0, then repeat to apply
Algorithm 1 to solve (1.5) with 𝜆 = 𝜆𝑘 until 𝜆 reaching 𝜆𝑓𝑖𝑛𝑎𝑙. The second one is to compute
the approximate SVD of the matrix 𝐺𝑘 in each iteration instead of computing its full SVD,
which is similar to that in [34,41,42]. Concretely, we adopt the Linear Time SVD algorithm
developed by Drineas et al. [13], which computes the approximate SVD by a fast Monte
Carlo algorithm, whose details can be referred to [13,34]. Algorithm 1 by employing these

two acceleration techniques is called FPCAe algorithm.

4 Numerical experiments

In this section, we conduct numeric experiments to test the performance of our FPCAe

algorithm. Concretely, we apply it to solve problem (1.5) with 𝜃(𝑋) = 1
2‖𝑃𝛺(𝑋−𝑀)‖22, i.e.,

min
𝑋∈R𝑚×𝑛

𝑓𝜆(𝑋) :=
1

2
‖𝑃𝛺(𝑋 −𝑀)‖22 + 𝜆‖𝑋‖𝑝𝑝, (4.1)

where 𝑀 ∈ R𝑚×𝑛, 𝛺 is a subset of index pairs (𝑖, 𝑗), and 𝑃𝛺 is the orthogonal projection

onto the subspace of sparse matrices with nonzero entries restricted to the index subset 𝛺
and zero entries outside 𝛺. Problem (4.1) is also called matrix completion.

The parameters and initial values in FPCAe for problem (4.1) are given as follows: 𝑋0 =

𝑃𝛺(𝑀), 𝜆0 = min{3,𝑚𝑛/|𝛺|}‖𝑃𝛺(𝑀)‖2, 𝜇 = 1.9, 𝜂 = 0.9, 𝛽 = 0.01, 𝜆𝑘+1 = 𝜂𝜆𝑘, 𝜆𝑓𝑖𝑛𝑎𝑙=1e-
6, xtol=1e-4, maxiter = 1000 and terminate it when

‖ 𝑋𝑘+1 −𝑋𝑘 ‖𝐹
max{1, ‖ 𝑋𝑘 ‖𝐹 }

< xtol.

All experiments are performed in MATLAB R2018a on a 64-bit PC with an Inter(R)
Core(TM) i5-7500 CPU (3.40GHz) and 8GB of RAM.

4.1 Choice of p

In this subsection, we use the same way as [23,34] to generate random matrix 𝑀 ∈ R𝑚×𝑛

of rank 𝑟 by the MATLAB code: M=randn(m,r)*randn(r,n), then sample a subset 𝛺 of
𝑞 entries uniformly at random. We use SR := 𝑞/(𝑚𝑛) to denote the sampling ratio and
os := 𝑞/[𝑟(𝑚 + 𝑛 − 𝑟)] to denote the oversampling rate, which is the ratio between the
number of samples to the “degree of freedom” of the 𝑚×𝑛 matrix of rank 𝑟. If os < 1, there
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is always an infinite number of matrices with rank 𝑟 having the given entries, so one cannot
hope to recover the matrix in this situation, then there must be os ≥ 1. Furthermore, the
closer the os value is to 1, the harder the problem is to solve.

We take 𝑚 = 𝑛 = 100, os = 2.5, and let the rank increase from 4 to 38 by 2 each
time. Through this experiment, we select the best value of 𝑝 among {0.1,0.3,0.5,0.7,0.9}.
The results are shown in Figure 4.1.

(a) (b) (c) (d)

Fig. 4.1: Results for 𝑚 = 𝑛 = 100, os = 2.5 with the rank increasing from 4 to 38 by 2 each time.

From Figure 4.1, we can see that FPCAe with 𝑝 = 0.1 outperforms 𝑝 = 0.3, 0.5, 0.7,

0.9 since 𝑝 = 0.1 has the higher success frequencies, the less time, the fewer iterations and

the smaller relative errors than those of 𝑝 = 0.3, 0.5, 0.7, 0.9. Thus, we use 𝑝 = 0.1 in the
remaining experiments.

4.2 Comparison of FPCAe algorithm and FPC algorithm

In this subsection, we compare FPCAe and FPC [41] (without extrapolation) to show the ef-

fect of extrapolation. The test problem is generated as follows. For each (𝑚,𝑛, 𝑟)=(500,500,50),

(1000,1000,50), we take SR = 0.20, os = 5.0. We plot ‖𝑋𝑘 − 𝑋*‖𝐹 against the number of
iterations of FPCAe and FPC, where 𝑋* are the real solution of the problems. We also

plot the value of loss function 𝜃(𝑋𝑘) with respect to the number of iterations of the two
algorithms. The results are presented in Figure 4.2.

(a) m=500, n=500, r=50 (b) m=1000, n=1000, r=100 (c) m=500, n=500, r=50 (d) m=1000, n=1000, r=100

Fig. 4.2: Results of ‖𝑋𝑘 −𝑋*‖𝐹 and 𝜃(𝑋𝑘) for FPCAe and FPC

Figure 4.2 shows that both FPCAe and FPC are convergent, while FPCAe is R-linearly
convergent which is obviously faster than FPC. The results illustrate that the extrapolation
technique improves the convergence rate of the algorithm.
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4.3 Comparison of four algorithms for low-rank matrix recovery

In this subsection, we compare FPCAe with some state-of-the-art algorithms for low-rank
matrix recovery problems such as WNNM [17], APGL [51] and tIRucLq M [23]. We consider
two classes of low-rank matrix recovery problems as below:

∙ square matrix recovery with different scales, ranks, sampling ratios, and noise levels.

∙ rectangular matrix recovery with different ratios of length to width.

In all the experiments, the parameters of above compared algorithms are taken the same
as given in the original literatures. We set the maximum number of iteration maxiter = 1000,
xtol = 10−4 and use the same stopping criteria for inner loops. We compare the behavior
of WNNM, APGL, FPCAe and tIRucLq M in the presence and absence of noise. For each
scale of the problems, we run 10 instances, record the average of relative error ‘Rel.err’ and
the average CPU time ‘Time’, and highlight the best results in bold for each problem in the
tables.

4.3.1 Square matrix recovery

We first compare the four algorithms for square matrix recovery problems. The parameters of

problems and numerical results for noiseless problems (𝜎 = 0) and noise problems (𝜎 = 0.01)

are presented in Tables 4.1 and 4.2 respectively.

Table 4.1: Comparison results of four algorithms for square matrix recovery problems without noise (i.e., 𝜎 = 0)

Problems WNNM APGL FPCAe tIRucLq M

𝑚 = 𝑛 r os Time Rel.err Time Rel.err Time Rel.err Time Rel.err

500

10 2.5 7.06 2.41e − 4 0.88 2.35e − 3 3.04 3.93e − 5 8.91 7.88e − 5

20 2 7.24 2.78e − 4 2.20 1.60e − 1 3.76 8.40e − 6 32.21 6.52e − 5

60 1.5 7.21 3.59e − 4 5.36 3.34e − 1 5.42 1.15e − 6 39.49 3.57e − 5

800

10 2.5 21.24 2.30e − 4 2.03 2.04e − 3 7.93 2.69e − 4 83.83 2.15e − 4

20 2 22.55 2.72e − 4 5.81 2.00e − 1 8.81 6.98e − 5 75.85 1.11e − 4

60 1.5 24.15 3.71e − 4 13.27 4.20e − 1 14.13 2.29e − 5 80.35 6.30e − 5

1000

10 2.5 35.00 2.20e − 4 0.81 1.79e − 3 12.92 5.70e − 4 123.25 3.34e − 4

40 2 32.27 2.65e − 4 14.39 3.30e − 1 15.49 3.57e − 6 79.19 2.15e − 5

110 1.5 50.96 3.53e − 4 20.43 3.12e − 3 29.06 2.27e − 6 260.19 2.50e − 5

2000

15 2.5 169.47 2.05e − 4 2.25 1.77e − 3 63.30 5.12e − 4 489.29 7.10e − 4

40 2 230.35 2.55e − 4 47.14 3.07e − 1 56.75 8.50e − 5 804.32 4.81e − 5

110 1.5 258.80 3.63e − 4 92.54 4.86e − 3 80.94 6.34e − 5 2786.36 5.24e − 5

3000

20 2.5 464.01 2.00e − 4 3.79 1.58e − 3 151.74 5.65e − 4 1318.98 3.70e − 4

40 2 498.98 2.43e − 4 29.73 4.53e − 2 140.09 3.01e − 4 2732.00 1.36e − 5

110 1.5 619.55 3.54e − 4 170.96 4.94e − 3 203.42 2.37e − 4 8881.97 1.23e − 4

For the noiseless tested problems in Table 4.1, APGL algorithm is always the fastest
one, but its accuracy is the worst. Our FPCAe algorithm win the first place many times in

accuracy, while its speed is in general the second fastest. What’s more, when FPCAe is not

the best, it tends to be very close to the best one regardless of speed or accuracy.

For the noise tested problems in Table 4.2, APGL algorithm is still the fastest but the
least accurate one, while tIRucLq M algorithm possesses the highest accuracy but almost the
slowest speed. It can be seen that our FPCAe algorithm is almost as accurate as tIRucLq M
algorithm and only slightly slower than APGL algorithm, while both APGL and FPCAe
algorithms are much faster than WNNM and tIRucLq M algorithms.
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Table 4.2: Comparison results of four algorithms for square matrix recovery problems with noise (𝜎 = 0.01)

Problems WNNM APGL FPCAe tIRucLq M

𝑚 = 𝑛 r os Time Rel.err Time Rel.err Time Rel.err Time Rel.err

500

10 2.5 20.15 5.69e − 3 0.81 3.64e − 3 4.98 3.09e − 3 24.15 2.81e − 3

20 2 19.87 4.34e − 3 2.16 1.67e − 1 5.47 2.65e − 3 18.03 2.38e − 3

60 1.5 21.62 2.73e − 3 5.09 3.31e − 1 9.04 2.01e − 3 17.82 1.69e − 3

800

10 2.5 53.11 5.84e − 3 1.88 3.51e − 3 11.78 3.15e − 3 61.42 2.82e − 3

20 2 51.91 4.43e − 3 4.91 1.52e − 1 12.72 2.65e − 3 49.63 2.38e − 3

60 1.5 55.21 2.94e − 3 12.39 4.16e − 1 18.46 2.06e − 3 53.11 1.84e − 3

1000

10 2.5 85.24 5.75e − 3 0.79 3.25e − 3 18.01 3.15e − 3 120.67 2.64e − 3

40 2 96.27 3.06e − 3 13.75 3.33e − 1 25.00 1.84e − 3 41.19 1.61e − 3

110 1.5 151.63 2.07e − 3 21.44 3.50e − 3 40.33 1.48e − 3 150.63 1.25e − 3

2000

15 2.5 412.25 4.59e − 3 2.02 2.95e − 3 70.75 2.56e − 3 521.62 2.23e − 3

40 2 422.31 3.13e − 3 34.28 3.51e − 1 83.80 1.86e − 3 456.80 1.67e − 3

110 1.5 602.93 2.22e − 3 98.41 5.10e − 3 122.35 1.52e − 3 1780.09 1.38e − 3

3000

20 2.5 976.08 3.86e − 3 3.55 2.50e − 3 159.23 2.21e − 3 1378.01 1.95e − 3

40 2 1070.18 3.08e − 3 38.81 1.27e − 1 206.24 1.86e − 3 2381.94 1.68e − 3

110 1.5 1438.76 2.20e − 3 173.41 5.19e − 3 251.60 1.53e − 3 7083.88 1.46e − 3

4.3.2 Rectangular matrix recovery

This subsection compares the four algorithms for rectangular matrix recovery problems.

The parameters of problems and numerical results for noiseless problems (𝜎 = 0) and noise

problems (𝜎 = 0.01) are presented in Tables 4.3 and 4.4 respectively.

Table 4.3: Comparison results of four algorithms for rectangular matrix recovery problems without noise (i.e., 𝜎 = 0)

Problems WNNM APGL FPCAe tIRucLq M

m n r os Time Rel.err Time Rel.err Time Rel.err Time Rel.err

200 100
10 2.0 0.29 3.10e − 4 0.45 4.55e − 3 0.35 7.99e − 5 39.02 3.91e − 4

15 1.5 0.28 1.32e − 3 0.85 7.69e − 3 0.46 1.44e − 3 37.28 2.39e − 3

400 300
15 2.0 4.18 2.84e − 4 1.01 2.34e − 3 0.84 9.44e − 6 34.12 1.31e − 4

20 1.5 5.07 4.07e − 4 1.70 5.43e − 1 1.30 3.39e − 4 62.68 8.70e − 4

600 400

15 2.0 6.45 2.89e − 4 1.38 2.77e − 3 2.72 1.14e − 4 65.86 2.23e − 4

20 2.0 6.72 2.78e − 4 1.37 2.32e − 4 2.69 9.21e − 6 43.12 8.37e − 5

50 1.5 6.40 3.66e − 4 4.27 3.98e − 1 4.78 4.42e − 6 46.69 5.74e − 5

800 450

15 2.0 8.12 2.85e − 4 1.67 4.67e − 3 4.47 3.05e − 4 92.26 6.46e − 4

20 2.0 9.46 2.82e − 4 3.55 2.45e − 1 3.96 7.34e − 5 75.25 1.14e − 4

50 1.5 9.65 3.75e − 4 5.93 4.19e − 1 6.20 2.36e − 5 217.49 7.57e − 5

1000 800

15 2.0 28.28 2.68e − 4 1.35 2.29e − 3 11.42 5.60e − 4 169.23 6.58e − 4

20 2.0 27.24 2.69e − 4 3.53 1.51e − 1 8.99 1.57e − 4 166.15 1.67e − 4

50 1.5 30.56 3.73e − 4 12.05 4.87e − 1 12.84 9.11e − 5 224.45 1.10e − 4

3000 2000

50 2.0 298.28 2.53e − 4 22.02 2.22e − 3 80.40 8.12e − 5 2970.79 2.43e − 5

100 2.0 278.38 2.57e − 4 46.44 1.24e − 3 87.33 1.23e − 6 2684.71 1.19e − 5

150 1.5 516.04 3.71e − 4 109.22 3.37e − 3 148.61 4.19e − 5 6031.38 4.39e − 5

5000 3000

50 2.0 849.70 2.40e − 4 56.27 6.77e − 3 250.55 2.97e − 4 8158.50 2.96e − 4

100 2.0 794.65 2.60e − 4 123.80 2.15e − 3 237.43 2.08e − 5 10003.90 1.13e − 5

150 1.5 1375.44 3.52e − 4 205.55 4.04e − 3 437.79 1.84e − 4 21669.32 1.62e − 4

For the noiseless rectangular matrix recovery problems in Table 4.3, FPCAe algorithm

outperforms tIRucLq M and WNNM algorithms in terms of running time and accuracy, and
attains higher accuracy than APGL algorithm but needs slightly more time. For the noise
rectangular matrix recovery problems in Table 4.4, APGL algorithm is still the fastest one
with the lowest accurate, while tIRucLq M algorithm has the highest accuracy but the slowest

speed. Obviously, our FPCAe algorithm is almost as accurate as tIRucLq M algorithm and
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Table 4.4: Comparison results of four algorithms for rectangular matrix recovery problems with noise (𝜎 = 0.01)

Problems WNNM APGL FPCAe tIRucLq M

m n r os Time Rel.err Time Rel.err Time Rel.err Time Rel.err

200 100
10 2.0 0.51 5.57e − 3 0.35 4.82e − 3 0.53 3.91e − 3 78.60 3.65e − 3

15 1.5 0.48 5.55e − 3 0.66 8.77e − 3 0.59 4.53e − 3 28.66 4.84e − 3

400 300
15 2.0 11.67 5.01e − 3 0.81 3.81e − 3 1.57 3.07e − 3 21.75 2.81e − 3

20 1.5 9.51 5.16e − 3 1.65 5.37e − 1 1.62 3.71e − 3 50.56 3.47e − 3

600 400

15 2.0 19.07 5.10e − 3 1.34 4.26e − 3 5.04 3.06e − 3 44.33 2.82e − 3

20 2.0 18.75 4.35e − 3 1.91 1.24e − 1 5.52 2.64e − 3 25.83 2.38e − 3

50 1.5 18.86 3.07e − 3 3.99 3.99e − 1 7.74 2.23e − 3 26.52 1.97e − 3

800 450

15 2.0 25.34 5.16e − 3 1.66 4.47e − 3 7.35 3.27e − 3 68.05 2.83e − 3

20 2.0 26.04 4.41e − 3 3.11 2.42e − 1 8.20 2.65e − 3 60.79 2.36e − 3

50 1.5 25.12 3.18e − 3 5.92 4.17e − 1 10.35 2.23e − 3 54.56 2.00e − 3

1000 800

15 2.0 66.76 5.16e − 3 1.27 4.00e − 3 15.30 3.10e − 3 139.58 2.87e − 3

20 2.0 72.78 4.47e − 3 2.85 5.43e − 2 16.03 2.64e − 3 96.47 2.43e − 3

50 1.5 67.31 3.32e − 3 11.87 4.88e − 1 20.56 2.27e − 3 138.83 2.13e − 3

3000 2000

50 2.0 691.47 2.14e − 3 11.25 2.22e − 3 130.14 1.64e − 3 1589.73 1.45e − 3

100 2.0 948.16 1.89e − 3 43.49 1.60e − 3 195.33 1.15e − 3 1372.97 9.96e − 4

150 1.5 1141.34 1.88e − 3 106.04 3.38e − 3 245.55 1.29e − 3 4319.47 1.11e − 3

5000 3000

50 2.0 2051.01 2.74e − 3 19.07 2.47e − 3 323.06 1.64e − 3 7702.01 1.46e − 4

100 2.0 2417.49 1.94e − 3 116.09 2.42e − 3 462.58 1.15e − 3 5770.84 1.03e − 3

150 1.5 2737.64 1.89e − 3 207.16 4.46e − 3 563.88 1.30e − 3 17683.42 1.24e − 3

only slightly slower than APGL algorithm, while both APGL and FPCAe algorithms are
much faster than WNNM and tIRucLq M algorithms.

Therefore, our FPCAe algorithm is competitive with the three compared algorithms in

terms of speed, accuracy, robustness and anti-noise.

4.4 Experiments on grayscale images recovery

In this subsection, we apply FPCAe to recover the grayscale images and continue to compare

it with WNNM, APGL and tIRucLq M in different sampling ratios. We use the following

four indicators: peak signal to noise ratio (PSNR) ([18]), structural similarity (SSIM) ([53]),
root mean square error (RMSE) ([53]) and CPU time (Time) to evaluate the numerical

performance of the compared algorithms for image recovery problems, where PSNR is defined

as follows:

PSNR := 10 * log10

(︂
𝑚𝑛 * 2552

‖𝑀 −𝑋*‖2𝐹

)︂
. (4.2)

The higher PSNR and SSIM values and the smaller RMSE and Time values represent better
recovery performance.

The four grayscale images in Figure 4.3 are all of 512× 512, and all downloaded from the
CVG-UGR image database at https://ccia.ugr.es/cvg/CG/base.htm.

Since these original images themselves do not have the low-rank structure, we randomly
sample 10.0%, 20.0%, 30.0% pixels respectively of each image to reconstruct an image of
rank 80 by each algorithm as low-rank approximation to the original image, that is, sr =

0.1, 0.2, 0.3 respectively and all with 𝑟 = 80. The recovered images are presented in Figure

4.4 with sr = 0.1, 0.2, 0.3 respectively, while the numerical results of PSNR, SSIM, RMSE
and Time for the recovered images are reported in Table 4.5.

From Figure 4.4, we can see that the recovered images by FPCAe algorithm are clearer

and closer to the original images than those of other algorithms. Further from Table 4.5,
we can see that our FPCAe algorithm always perform better than other three algorithms in
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(a) Barbara (b) Boat (c) Man (d) Couple

Fig. 4.3: Four original grayscale images

(a) sr=0.1 (b) sr=0.2 (c) sr=0.3

Fig. 4.4: Recovery results for grayscale images with different sampling ratios

Table 4.5: Numerical results for grayscale images recovery of the four algorithms

Images Methods sr=0.1 sr=0.2 sr=0.3

PSNR SSIM RMSE Time PSNR SSIM RMSE Time PSNR SSIM RMSE Time

Barbara WNNM 14.61 0.09 47.41 8.33 17.21 0.21 35.14 16.62 19.26 0.34 27.75 27.27

APGL 17.02 0.22 35.91 0.83 17.70 0.32 33.25 0.66 19.76 0.40 26.20 0.78

FPCAe 18.05 0.24 31.90 6.07 20.70 0.41 23.51 7.12 23.23 0.58 17.56 9.28

tIRucLq M 14.96 0.11 45.55 2.41 18.52 0.26 30.23 11.68 21.95 0.47 20.36 69.53

Boat WNNM 16.09 0.13 39.99 10.37 19.36 0.27 27.41 17.16 21.62 0.39 21.15 29.30

APGL 18.55 0.31 30.12 0.72 19.60 0.40 26.71 0.64 19.82 0.43 26.00 0.74

FPCAe 19.59 0.32 26.70 5.13 22.54 0.48 19.02 7.59 25.33 0.62 13.79 10.45

tIRucLq M 16.44 0.15 38.37 2.20 20.18 0.32 24.97 10.12 23.82 0.53 16.42 59.54

Man WNNM 15.91 0.11 40.81 9.98 19.22 0.23 27.86 16.83 21.52 0.35 21.40 26.56

APGL 18.30 0.30 30.99 0.62 18.97 0.35 28.68 0.54 19.15 0.40 28.11 0.57

FPCAe 19.45 0.32 27.16 5.42 22.51 0.42 19.08 7.30 25.51 0.60 13.51 9.20

tIRucLq M 15.91 0.15 40.80 2.29 19.96 0.28 25.59 10.89 23.75 0.48 16.54 49.67

Couple WNNM 16.86 0.17 36.56 10.11 19.65 0.32 26.53 16.34 22.22 0.47 19.73 27.26

APGL 19.33 0.33 27.52 0.60 20.07 0.42 25.28 0.54 20.24 0.46 24.79 0.64

FPCAe 20.05 0.35 25.35 5.56 22.89 0.52 18.28 7.20 25.86 0.68 12.97 9.25

tIRucLq M 16.71 0.16 37.20 2.31 20.42 0.35 24.27 8.05 24.13 0.58 15.84 63.13

all the cases. Although APGL algorithm is always the fastest one, but its PSNR, SSIM and
RMSE are not very good, which makes the quality of its recovered images poor.

4.5 Experiments on three-channel images recovery

In this subsection, we select four popular three-channel images (Figure 4.5) with dimension
256*256*3 for this experiment, whose entries denote the pixels of the corresponding images.
We also randomly sample 10%, 20% pixels respectively of each image to reconstruct an
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image of rank 30 by each algorithm as low-rank approximations to the original image, that
is, sr=0.1, 0.2 respectively and all with 𝑟 = 30. The recovered images are presented in Figure
4.6 with sr = 0.1, 0.2 respectively, while the numerical results of PSNR, SSIM, RMSE and
Time for the recovered images are reported in Table 4.6.

(a) Flower (b) House (c) Plants (d) Peppers

Fig. 4.5: Four original three-channel images

(a) sr=0.1 (b) sr=0.2

Fig. 4.6: Recovery results for three-channel images with different sampling ratios

From Figure 4.6, we can see that when sr = 0.1, all the compared algorithms fail to recov-

er the clear images, while the quality of the recovery images of all the compared algorithms
becomes better as the sampling ratios becomes larger. When sr = 0.2, the recovered images
by FPCAe algorithm are clearer and closer to the original images than those of other algo-

rithms. Further from Table 4.6, we can see that FPCAe algorithm always recover the target
images stably with higher PSNR and SSIM values and less CPU time compared to WNNM
and tIRucLq M algorithms. Although the speed of APGL algorithm and the RMSE value
of tIRucLq M algorithm are smaller than other algorithms, their other aspects of numerical

results are not as good as FPCAe algorithm.
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Table 4.6: Numerical results for three-channel images recovery of the four algorithms

Images Methods
sr=0.1 sr=0.2

PSNR SSIM RMSE Time PSNR SSIM RMSE Time

Flower WNNM 13.24 0.08 0.03 2.83 19.87 0.34 0.01 4.96

APGL 11.48 0.06 0.13 1.73 19.49 0.34 0.01 0.49

FPCAe 17.83 0.23 0.005 0.74 20.96 0.41 0.001 1.24

tIRucLq M 15.20 0.12 0.004 0.98 19.11 0.29 0.001 10.63

House WNNM 12.09 0.07 0.02 2.68 22.05 0.47 0.009 5.39

APGL 13.83 0.15 0.07 2.26 21.10 0.46 0.01 0.28

FPCAe 19.32 0.34 0.002 0.81 22.88 0.52 0.001 1.18

tIRucLq M 15.41 0.11 0.002 1.08 20.09 0.30 0.001 10.40

Plants WNNM 15.64 0.21 0.08 3.98 22.37 0.45 0.02 5.66

APGL 14.47 0.19 0.14 2.13 19.31 0.43 0.03 1.21

FPCAe 19.91 0.38 0.01 0.81 23.40 0.54 0.008 1.14

tIRucLq M 17.07 0.26 0.02 1.29 20.94 0.41 0.006 30.34

Peppers WNNM 11.66 0.07 0.13 2.43 19.10 0.35 0.07 5.19

APGL 10.21 0.07 0.20 2.49 18.58 0.36 0.06 0.55

FPCAe 16.00 0.21 0.03 0.75 20.01 0.42 0.05 1.20

tIRucLq M 13.45 0.10 0.03 0.99 17.55 0.26 0.04 15.80

5 Conclusion

In this paper, we studied a general Schatten p-quasi-norm (0 < p < 1) regularized matrix
optimization problem which is modeled by (1.5). For this nonconvex nonsmooth and non-

Lipschitz optimization problem, based on the matrix p-thresholding operator, we propose a
fixed point continuation algorithm with extrapolation (FPCAe) for solving it. We prove that

any accumulation point of the iterative sequence generated by the proposed algorithm is not

only a critical point but also a global stationary point of the problem, where the global sta-
tionary point possesses some global optimality which can exclude too many stationary points

even some local minimizers of the nonconvex problem. We also prove the rank invariance

of the iterative sequence. Further, we established global convergence and R-linear conver-
gence rate of the whole iterative sequence generated by the proposed algorithm under some

mild conditions. Finally, a large number of numerical experiments on random square and
rectangular matrix completion problems, grayscale image and three-channel image recovery

problems demonstrated that the proposed FPCAe algorithm possesses very excellent perfor-
mance and so is a very competitive algorithm for low-rank matrix optimization problems in
comparison with some state-of-the-art algorithms.

Acknowledgements This work is supported by the National Natural Science Foundation of China (12261020),

the Guizhou Provincial Science and Technology Program (ZK[2021]009), the Foundation for Selected Excellent Project of

Guizhou Province for High-level Talents Back from Overseas ([2018]03), and the Research Foundation for Postgraduates

of Guizhou Province (YJSCXJH[2020]085).

References

1. Attouch, H., Bolte, J.: On the convergence of the proximal algorithm for nonsmooth functions involving analytic

features. Math. Program., 116(1-2), 5-16 (2009)

2. Attouch, H., Bolte, J., Redont, P., Soubeyran, A.: Proximal alternating minimization and projection methods for

nonconvex problems: An approach based on the Kurdyka- Lojasiewicz inequality. Math. Oper. Res., 35(2), 438-457

(2010)

3. Bertalmio, M., Sapiro, G., Caselles, V., Ballester, C.: Image Inpainting. ACM SIGGRAPH, 417-424 (2000)

4. Bolte, J., Sabach, S., Teboublle, M.: Proximal alternating linearized minimization for nonconvex and nonsmooth

problems. Math. Comput., 146(1-2), 459-494 (2014)



FPCAe algorithm for Schatten p-quasi-norm regularized matrix optimization problems 25

5. Cai, J., Candès, E., Shen, Z.: A singular value thresholding algorithm for matrix completion. SIAM J. Optim.,

20(4), 1956-1982 (2010)

6. Candès, E., Plan, Y.: Matrix completion with noise. Proceedings of the IEEE, 98(6), 925-936 (2010)

7. Candès, E., Plan, Y.: Tight Oracle bounds for low-rank matrix recovery from a minimal number of noisy random

measurements. IEEE Trans. Inform. Theory, 57(4), 2342-2359 (2011)

8. Candès, E., Recht, B.: Exact matrix completion via convex optimization. Found. Comput. Math., 9(6), 717-772

(2009)

9. Candès, E., Tao, T.: The power of convex relaxation: Near-optimal matrix completion. IEEE Trans. Inform. Theory,

56(5), 2053-2080 (2010)

10. Chen, C., He, B., Yuan, X.: Matrix completion via alternating direction methods. IMA J. Numer. Anal., 32(32),

227-245 (2012)

11. Chen, X., Ge, D., Wang, Z., Ye, Y.: Complexity of unconstrained 𝑙2-𝑙𝑝 minimization. Math. Program., 143(1-2),

371-383 (2014)

12. Chen, Y., Xiu, N., Peng, D.: Global solutions of non-Lipschitz 𝑆2-𝑆𝑝 minimization over the positive semidefinite

cone. Optim. Lett., 8, 2053-2064 (2014)

13. Drineas, P., Kannan, R., Mahoney, M.: Fast Monte Carlo algorithms for matrices II: Computing low-rank approx-

imations to a matrix. SIAM J. Comput. 36(1), 158-183 (2006)

14. Fazel, M., Hindi, H., Boyd, S.: Rank minimization and applicationsin system theory. Proceedings of the 2004

American Control Conference, 4, 3273-3278 (2004)

15. Fazel, M.: Matrix rank minimization with applications. Ph.D. thesis, Stanford University, 2002.

16. Fornasier, M., Rauhut, H., Ward, R.: Low-rank matrix recovery via iteratively reweighted least squares minimiza-

tion. SIAM J. Optim., 21, 1614-1640 (2011)

17. Gu, S., Xie, Q., Meng, D., Zuo, W., Feng, X., Zhang, L.: Weighted nuclear norm minimization and its applications

to low level vision. Int. J. Comput. Vis., 121(2), 183-208 (2017)

18. He, L., Wang, Y., Xiang, Z.: Support driven wavelet frame-based image deblurring. Inf. Sci., 479, 250-269 (2019)

19. Hoffman, A., Wielandt, H.: The variation of the spectrum of a normal matrix. Duke Math. J., 20(1), 37-39 (1953)

20. Horn, R.A., Johnson, C.R.: Matrix Analysis, 2nd edn. Cambridge University Press, Cambridge (1985)

21. Korah, T., Rasmussen, C.: Spatio-temporal inpainting for recovering texture maps of occluded building facades.

IEEE Trans. Image Process., 16(7), 2262-2271 (2007)

22. Lai, M.-J., Liu, Y., Li, S., Wang, L.: On the Schatten p-quasi-norm minimization for low-rank matrix recovery,

Appl. Comput. Harmon. A., 51(2), 157-170 (2021)

23. Lai, M.-J., Xu, Y., Yin, W.: Improved iteratively reweighted least squares for unconstrained smoothed 𝑙𝑞 minimiza-

tion. SIAM J. Numer. Anal, 51(2), 927-957 (2013)

24. Lewis, A.S., Sendov, H.S.: Nonsmooth analysis of singular values. Part I: theory. Set-Valued Anal., 13(3), 213-241

(2005)

25. Li, G., Pong, T.K.: Calculus of the exponent of Kurdyka- Lojasiewicz inequality and its applications to linear

convergence of first-order methods. Found. Comput. Math., 18(5), 1199-1232 (2018)

26. Li, X., Luo, Z.: Normal cones intersection rule and optimality analysis for low-rank matrix optimization with affine

manifolds. SIAM J. Optim., 33(3), 1333-1360 (2023)

27. Li, X., Xiu, N., Zhou, S.: Matrix optimization over low-rank spectral sets: stationary points and local and global

minimizers. J. Optim. Theory Appl., 184(3), 895-930 (2020)

28. Li, Y., Shang, K., Huang, Z.: A singular value p-shrinkage thresholding algorithm for low rank matrix recovery.

Comput. Optim. Appl. 73, 453-476 (2019)

29. Liu, Y., Sun, D., Toh, K.: An implementable proximal point algorithmic framework for nuclear norm minimization.

Math. Program., 133(1-2), 399-436 (2012)

30. Liu, Z., Vandenberghe, L.: Interior-point method for nuclear norm approximation with application to system iden-

tification. SIAM J. Matrix Anal. Appl., 31(3), 1235-1256 (2009)

31. Lu, Y., Zhang, L., Wu, J.: A smoothing majorization method for 𝑙2-𝑙𝑝 matrix minimization. Optim. Methods Softw.,

30(4), 682-705 (2015)

32. Lu, Z., Zhang, Y., Lu, J.: ℓ𝑝 regularized low-rank approximation via iterative reweighted singular value minimization.

Comput. Optim. Appl., 68, 619-642 (2017)

33. Marjanovic, G., Solo, V.: On 𝑙𝑝 optimization and matrix completion. IEEE Trans. Signal Process, 60(11), 5714-5724

(2012)

34. Ma, S., Goldfarb, D., Chen, L.: Fixed point and Bregman iterative methods for matrix rank minimization. Math.

Program., 128(1-2), 321-353 (2011)



26

35. Mohan, K., Fazel, M.: Reweighted nuclear norm minimization with application to system identification. American

Control Conference, 2953-2959 (2010)

36. Nesterov, Y.: A method of solving a convex programming problem with convergence rate O( 1
𝑘2 ). Sov. Math. Dokl.,

27, 372-376 (1983)

37. Nesterov, Y.: Gradient methods for minimizing composite functions. Math. Program., 140(1), 125-161 (2013)

38. Nie, F., Huang, H., Ding, C.: Low-rank matrix recovery via efficient Schatten p-norm minimization. Proceedings of

the Twenty-Sixth AAAI Conference on Artificial Intelligence, 1(1), 655-661 (2012)

39. Oymak, S., Hassibi, B.: New null space results and recovery thresholds for matrix rank minimization, Eprint Arxiv,

58(4), 766-773 (2010)

40. Oymak, S., Mohan, K., Fazel, M., Hassibi, B.: A simplified approach to recovery conditions for low rank matrices.

Proceedings of IEEE International Symposium on Information Theory Proceedings, 2318-2322 (2011)

41. Peng, D., Xiu, N., Yu, J.: Global optimality conditions and fixed point continuation algorithm for non-Lipschitz ℓ𝑝

regularized matrix minimization. Sci. China Math., 61, 1139-1152 (2018)

42. Peng, D., Xiu, N., Yu, J.: S1/2 regularization methods and fixed point algorithms for affine rank minimization

problems. Comput. Optim. Appl., 67, 543-569 (2017)

43. Polyak, B.T.: Some methods of speeding up the convergence of iteration methods. USSR Comput. Math. Phys., 4,

1-17 (1964)

44. Rakotomamonjy, A., Flamary, R., Gasso, G.: ℓ𝑝-ℓ𝑞 penalty for sparse linear and sparse multiple kernel multitask

learning. IEEE Trans. Neural Network, 22(8), 1307-1320 (2011)

45. Recht, B., Fazel, M., Parrilo, P.A.: Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm

minimization. SIAM Rev., 52(3), 471-501 (2010)

46. Recht, B., Xu, W., Hassibi, B.: Necessary and sufficient conditions for success of the nuclear norm heuristic for

rank minimization. 2008 47th IEEE Conference on Decision and Control, 3065-3070 (2008)

47. Recht, B., Xu, W., Hassibi, B.: Null space conditions and thresholds for rank minimization. Math. Program., 127(1),

175-202 (2011)

48. Rockafellar, R., Wets, R.-J.: Variational Analysis. Springer Science & Business Media (2009)

49. Skelton, R., Iwasaki, T., Grigoriadis, K.: A unified algebraic approach to linear control design. Abingdon: Taylor

and Francis (1998)

50. Sleem, O.M., Ashour, M.E., Aybat, N.S., Lagoa,C.: Lp quasi-norm minimization: algorithm and applications (2023).

https://arxiv.org/abs/2301.12027v1.

51. Toh, K., Yun, S.: An accelerated proximal gradient algorithm for nuclear norm regularized least squares problems.

Pacific J. Optim., 6(3), 615-640 (2010)

52. Vandenberghe, L., Boyd, S.: Semidefinite programming. SIAM Rev., 38(1), 49-95 (1996)

53. Wang, Z., Bovik, A., Sheikh, H., Simoncelli, E.: Image quality assessment: from error visibility to structural simi-

larity. IEEE Trans. Image Process., 13(4), 600-612 (2004)

54. Wen, B., Chen, X., Pong, T.: A proximal difference-of-convex algorithm with extrapolation. Comput. Optim. Appl.,

69(2), 297-324 (2018)

55. Wen, Y.-W., Li, K., Chen, H.: Accelerated matrix completion algorithm using continuation strategy and randomized

SVD. J. Comput. Appl. Math. (2023). https://doi.org/10.1016/j.cam.2023.115215.

56. Yang, J., Yuan, X.: Linearized augmented Lagrangian and alternating direction methods for nuclear norm mini-

mization. Math. Comput., 82, 301-329 (2013)

57. Yang, L., Pong, T., Chen, X.: Alternating direction method of multipliers for a class of nonconvex and nonsmooth

problems with applications to background/foreground extraction. SIAM J. Imaging Sci., 10(1), 74-110 (2017)

58. Yang, Z., Han, L.: A global exact penalty for rank constrained optimization problem and applications. Comput.

Optim. Appl., 84, 477-508 (2023)

59. Yu, P., Li, G., Pong, T.K.: Kurdyka- Lojasiewicz exponent via INF-projection. Found. Comput. Math., 22, 1-47

(2021)

60. Yu, Q., Zhang, X.: A smoothing proximal gradient algorithm for matrix rank minimization problem. Comput.

Optim. Appl. 81, 519-538 (2022)

61. Zeng, C.: Proximal linearization methods for Schatten p-quasi-norm minimization. Numer. Math., 153, 213-248

(2023)

62. Zhang, X., Peng, D., Su, Y.: A singular value shrinkage thresholding algorithm for folded concave penalized low-rank

matrix optimization problems. J. Global Optim. (2023). https://doi.org/10.1007/s10898-023-01322-8.

63. Zhou, S., Xiu, X., Wang, Y., Peng, D.: Revisiting Lq (0 ≤ 𝑞 < 1) norm regularized optimization (2023). http-

s://doi.org/10.48550/arXiv.2306.14394.


	Introduction
	Notations and preliminaries
	FPCAe algorithm for problem (1.5) and its convergence analysis
	Numerical experiments
	Conclusion

