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1. Introduction14

Goods distribution is one of the most important logistics activities. For this reason, the Vehicle15

Routing Problem (VRP), which effectively models the main aspects of goods distribution, is one of16

the most well-known and extensively researched combinatorial optimization problems. Many studies17

have handled different variants of the VRP to satisfy the practical constraints that arise in real-life18

applications of distribution companies (Golden et al., 2008; Toth and Vigo, 2014). In this paper,19

we are interested in a variant known as the Green Vehicle Routing Problem with Two-Dimensional20

Loading Constraints and Split Delivery (G2L-SDVRP). It generalizes the VRP by incorporating21

practical restrictions on two-dimensional loading, split delivery, and environmental issues concerning22

carbon dioxide (CO2) emissions. The G2L-SDVRP is a combination of the Capacitated VRP23

with Two-dimensional Loading Constraints (2L-CVRP) (Iori et al., 2007), the Split Delivery VRP24

(SDVRP) (Archetti et al., 2014; Munari and Savelsbergh, 2022), and the Pollution-Routing Problem25

(PRP) (Bektaş and Laporte, 2011). Since the G2L-SDVRP is a generalization of the VRP, it is26

also a challenging NP-hard problem.27

In many situations, such as the distribution of household appliances, heavy machinery, and28

pallet cargoes, the loads are typically large, fragile, and cannot be stacked. As a consequence, the29

arrangement of items in the vehicles typically has a significant impact on the routes, especially if30

we consider unloading constraints (Iori et al., 2007). The unloading constraint, also known as the31

last-in-first-out (LIFO) constraint, imposes items of a customer on being unloaded from the vehicle32

without moving any items of other customers, motivated by the difficulty or even impossibility of33

moving items due to their weight and size (Nascimento et al., 2021). Therefore, by considering34

routing, packing, and unloading decisions simultaneously, we may prevent situations in which the35

designed routes cannot be associated with a feasible packing or schedule.36

Moreover, each customer’s demand can be higher than the vehicle capacity in real-world ap-37

plications. Therefore, it is useful to resort to split delivery so that a customer can be visited by38

more than one vehicle when its demand exceeds the vehicle capacity. Previous studies indicate that39

allowing split delivery to customers, even if the demand is not higher than the vehicle capacity,40

may provide savings in the costs and number of used vehicles (Archetti et al., 2006). Our study is41

also motivated by the urgent need to reduce gas emissions and improve air quality in urban centers42

(Demir et al., 2014). Transportation activities influence the environment because it is a major43

consumer of petroleum and produces a significant amount of CO2 emissions (Salimifard et al.,44

2012). Therefore, it is necessary to consider the environmental impact of freight transportation45

while planning the routing schedule.46

The G2L-SDVRP incorporates all the practical motivations mentioned above. It consists of47

determining vehicle routes that minimize the amount of CO2 emitted while satisfying all customer48

demands. These demands correspond to two-dimensional rectangular items that must be loaded49

onto the vehicle’s rectangular base without overlapping and respecting the base dimensions, besides50

satisfying unloading constraints. If the splitting is beneficial, customers can be served by one or51

more vehicles, where each vehicle transports a fraction of the demand (i.e., a part of the customers’52

items).53

1.1. Related literature54

To the best of our knowledge, the only available solution methodology for the G2L-SDVRP is55

the exact approach developed by Ferreira et al. (2021). The authors proposed a tailored branch-56

and-cut method with specific procedures to handle the packing subproblem. Due to the difficulty57
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of solving this subproblem, the authors used different strategies such as heuristics, lower bound58

procedures, and a constraint programming model. Additionally, a hash table to save routes already59

checked was used to reduce the computational effort, while a pattern (grid) of points was used60

to reduce the number of available points to pack items. The method solved instances with up61

to 35 customers and 114 items, where only 23 out of 60 instances were optimally solved. These62

authors compared the solutions of the G2L-SDVRP with those of three other problems, namely63

the 2L-CVRP, the Vehicle Routing Problem with Two-Dimensional Loading Constraints and Split64

Delivery (2L-SDVRP), and the Green Vehicle Routing Problem with Two-Dimensional Loading65

Constraints (G2L-CVRP). The results indicated that solving the G2L-SDVRP is the best choice66

overall for practical purposes, with an average percentage difference of 1.69%, 5.82%, and 3.65% in67

comparison to the G2L-CVRP, 2L-SDVRP, and 2L-CVRP, respectively. Moreover, incorporating68

environmental issues reduces emissions, while the possibility of split delivery makes it possible to69

minimize emissions even further.70

Other studies have addressed the combination of the 2L-CVRP with split deliveries (Annouch71

et al., 2016; Ji et al., 2021) and the SDVRP with environmental considerations (Vornhusen and72

Kopfer, 2015; Matos et al., 2018). Annouch et al. (2016) proposed an exact branch-and-cut approach73

to solve the 2L-CVRP with split delivery and additional constraints motivated by the distribution of74

liquid petroleum gas. Ji et al. (2021) addressed another variant of the 2L-CVRP with split delivery,75

in which items can be rotated by 90◦ and relocated during unloading operations at customers.76

The authors proposed an enhanced neighborhood search algorithm combined with the maximum-77

space-utilization heuristic to solve the problem. Vornhusen and Kopfer (2015) proposed an exact78

method based on branch-and-cut for the SDVRP with time windows, a heterogeneous fleet, and CO279

emissions. The problem aims to reduce CO2 emissions, estimated according to the total weight of80

the vehicles in each arc. Matos et al. (2018) developed a hybrid algorithm that combines an iterated81

local search, random variable neighborhood descent procedure, and a set covering model for the82

green vehicle routing and scheduling problem, considering the minimization of CO2 emission. The83

problem involves a heterogeneous fleet of vehicles that can perform split deliveries to customers84

and assumes time-varying network traffic congestion. The authors measured the CO2 emission by85

observing vehicle speed, weight, and traveled distance.86

It is worth mentioning that there are different exact and heuristic methods for standalone87

variants of the 2L-CVRP (Iori et al., 2007; Zachariadis et al., 2013; Wei et al., 2015; Côté et al.,88

2017; Wei et al., 2018; Silva et al., 2022; Zhang et al., 2022), SDVRP (Dror et al., 1994; Archetti89

et al., 2014; Silva et al., 2015; Shi et al., 2018; Munari and Savelsbergh, 2020, 2022; Balster et al.,90

2023), and PRP (Bektaş and Laporte, 2011; Zhang et al., 2014; Ehmke et al., 2016; Dabia et al.,91

2016; Dewi and Utama, 2021). Another closely related problem is the split delivery vehicle routing92

problem with three-dimensional loading constraints (3L-SDVRP). It considers the packing of three-93

dimensional items. There is a very limited number of studies on this problem, and they involve94

heuristics based on one-stage local search (Ceschia et al., 2013), data-driven three-layer search (Li95

et al., 2018), tabu search (Yi and Bortfeldt, 2018), local search (Bortfeldt and Yi, 2020), and column96

generation (Rajaei et al., 2022). We refer to Pollaris et al. (2015); Archetti and Speranza (2012);97

Lin et al. (2014) and Krebs and Ehmke (2023) for more details and overviews.98

1.2. Our contributions99

The literature review on the G2L-SDVRP and related problems shows limited studies on VRP100

variants, including split delivery and CO2 emissions. Notably, these studies clearly indicate the101

importance of including such features in solution approaches, as they improve the quality of the102
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solutions regarding practical aspects (Ferreira et al., 2021; Ji et al., 2021; Bortfeldt and Yi, 2020).103

For example, Ferreira et al. (2021) show that the gains from considering split delivery and CO2104

emissions are superior to 1%. However, since they managed to solve only small instances using105

their approach, there is a lack of effective solution approaches for medium and large-sized instances106

of this problem. Hence, we close this gap by proposing a metaheuristic to effectively solve large107

instances, i.e., instances with more customers.108

We develop the first metaheuristic for the G2L-SDVRP, which is a Variable Neighborhood109

Search (VNS), motivated by the outstanding performance of this approach on related VRP variants110

(Hemmelmayr et al., 2009; Imran et al., 2009; Wei et al., 2015; Xiao and Konak, 2016; Ferreira et al.,111

2018; Sadati and Çatay, 2021). We are not aware of any other metaheuristic approach proposed for112

this problem. Our implementation relies on five neighborhood operators, a local search based on113

the random variable neighborhood descent, a set partitioning model in the intensification phase, a114

diversification procedure to escape from local optima, and a procedure with different strategies to115

quickly check the feasibility of packings. Our method searches only in the feasible solution space.116

The main difference between our approach and that of Ferreira et al. (2021) lies in the method-117

ology used to address the problem. We develop a metaheuristic based on VNS, while Ferreira et al.118

(2021) introduce an exact algorithm with a branch-and-cut technique. Both approaches rely on119

similar packing procedures; however, in contrast to Ferreira et al. (2021), we consider only those120

procedures with low computational effort. Moreover, we incorporate several enhancements, includ-121

ing a technique for adjusting the dimensions of items when there is unused space in the vehicle122

base, a more sophisticated heuristic for packing items, and a pattern of points that considers the123

unloading requirements. It is important to note that these adjustments are necessary due to the124

divergent nature of the two approaches, each requiring components better suited to its respective125

purpose.126

In summary, the main contributions are: (i) the introduction of the first metaheuristic for the127

G2L-SDVRP; (ii) an ad hoc solution representation scheme for the G2L-SDVRP; (iii) the proposal128

of specific neighborhood operations to generate solutions with split delivery; (iv) a procedure to129

reduce the feasible positions of items in the solution vector of the packing problem, which is based130

on the unloading constraint; and (v) new bounds and improved solutions for benchmark and new131

instances of the G2L-SDVRP and 2L-CVRP.132

Computational experiments with benchmark instances indicate that the proposed approach can133

provide high-quality solutions in relatively short computing times. More precisely, it obtains the134

same best-known solutions reported in the literature for 32 (out of 60) instances and improves the135

solutions of the other 21 instances, with an average and maximum improvement in the objective136

value of 0.38% and 9.38%, respectively. Furthermore, when applied to solve benchmark instances137

of the 2L-CVRP, the results show that our method is competitive with state-of-the-art approaches.138

It finds the best-known solution for 97 (out of 180) instances and improves the records for 50 other139

instances of the 2L-CVRP.140

The remainder of this paper is organized as follows. Section 2 describes the G2L-SDVRP.141

Section 3 presents the proposed VNS metaheuristic. Section 4 introduces the procedure for checking142

packing feasibility. Section 5 discusses the computational experiments. Finally, concluding remarks143

and suggestions for future works are given in Section 6.144
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2. Problem description145

The G2L-SDVRP can be defined on a complete directed graph G = (N, A), where N =146

{0, 1, . . . , n} is the set of nodes and A = {(i, j) | i, j ∈ N, i ̸= j} is the set of arcs. Node 0147

represents the central depot, and the remaining nodes denote the customers. Each arc (i, j) ∈ A is148

associated with a travel distance Dij , which, for the sake of simplicity, we assume is proportional149

to the travel cost. There is a set K = {1, . . . , Kmax} of Kmax identical vehicles available at the150

depot. Each vehicle k ∈ K has weight capacity Q and a rectangular loading surface/base of width151

W and length L, whose total area is AT = W × L.152

Each customer j demands a set Rj of rectangular items with total weight Pj =
∑|Rj |

r=1 pjr and153

total area Aj =
∑|Rj |

r=1 ajr. Each item r ∈ Rj has width wjr, length ljr, weight pjr, and area154

ajr = wjr × ljr. Each rectangular item is described by a pair (j, r), where r is the item index. A155

feasible solution for the problem satisfies the following constraints:156

• each vehicle, if used, starts and ends its route at the depot;157

• the number of routes is less than or equal to the number of vehicles;158

• the demand assigned to each route does not exceed the vehicle capacity in terms of weight159

and area;160

• each customer is served by at least one vehicle, and her total demand is satisfied;161

• each vehicle visits a customer only once;162

• each item has a fixed orientation and cannot be rotated during the packing;163

• each item is loaded with its edges parallel to those of the vehicle base;164

• items do not overlap when packed in the same vehicle;165

• items are not rearranged during the unloading operation at customers.166

The objective function aims to minimize the amount of CO2 emitted by executing the planned167

routes. The CO2 emission is calculated based on the number of liters of fuel consumed, measured168

in terms of the traveled distance and the weight of the fully loaded and empty vehicle (Xiao et al.,169

2012). Therefore, the amount of CO2 emission in each arc (i, j) ∈ A is given by ERCO2(ρ0 +170
ρf−ρ0

Q fij)Dij , where ERCO2 is the CO2 emission rate per liter of fuel consumed; ρ0 and ρf are171

constants that represent the fuel consumption rate when the vehicle is empty and fully loaded,172

respectively; and, fij is the transported load in the arc (i, j). We set the values of ρ0 and ρf to 1173

and 3, respectively, as in the previous study of Ferreira et al. (2021). We refer to the same paper174

for a complete mathematical formulation of the G2L-SDVRP.175

3. The variable neighborhood search metaheuristic for the G2L-SDVRP176

The proposed approach consists of a multi-start metaheuristic mainly based on VNS (Mlade-177

nović and Hansen, 1997). The VNS metaheuristic explores the solution space by systematically178

changing neighborhoods when an improvement move is not found. In general, the steps of our179

VNS metaheuristic can be summarized as (i) generate an initial solution; (ii) shake the solution by180
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applying neighborhood structures; (iii) apply the local search; (iv) perform intensification on the181

solution; and, (v) diversify the best solution. Furthermore, whenever a new route is found during182

any step (i)-(v), the approach verifies the feasibility of the packing involving the items of customers183

in the route. If the packing is infeasible, the route is discarded since only feasible solutions are184

accepted.185

The pseudo-code of the developed VNS is presented in Algorithm 1. The algorithm has two186

input parameters: NN is the maximum number of consecutive iterations allowed without improving187

the best solution, Tmax is the time limit, and Kmax is the total number of vehicles at the depot.188

The best solution is represented by X∗. In Section 3.1, we describe how a solution is represented.189

Section 3.2 describes the procedure that constructs the initial solution X. The routes of the initial190

solution are stored in a pool Ppartition. After that, solution X is submitted to the local search191

procedure described in Section 3.4. In the loop of lines 12-18, a neighbor solution X ′ is obtained192

using one of the five neighborhood structures described in Section 3.3. If an improved solution193

is found, the sequence with the neighborhood structures V is shuffled randomly, as we adopt a194

random ordering of neighborhoods. After Kmax iterations, if the best solution X∗ is improved, the195

counter nn is reinitialized. Thus, the set partitioning problem is solved as described in Section 3.5,196

and if the solution X is better than X∗, we update X∗ accordingly. Otherwise, the diversification197

procedure is applied, following the procedure given in Section 3.6. The algorithm ends when the198

time limit Tmax is reached or the best solution X∗ is not improved after NN consecutive iterations.199

After all, the best solution X∗ is returned.200

Algorithm 1: VNS metaheuristic for the G2L-SDVRP.
1 Input: NN , Tmax, Kmax;
2 Output: Best solution found;
3 Construct the initial solution X;
4 Ppartition ← Add the routes of X into the route pool;
5 X ← Apply the local search on X;
6 X∗ ← X; nn← 0;
7 Define the set of neighborhood structures V = {V1, V2, V3, V4, V5};
8 while time < Tmax and nn < NN do
9 nn← nn+ 1;

10 for k ← 1 to Kmax do
11 v ← 1;
12 while v ≤ 5 do
13 Generate a random neighbor X

′
of X using Vv;

14 X
′′ ← Apply the local search on X

′
;

15 if X
′′

is better than X then
16 X ← X

′′
; v ← 0;

17 Shuffle the order of the neighborhood structures V ;

18 v ← v + 1;

19 if X is better than X∗ then X∗ ← X; nn← 0 ;
20 X ← Solve the set partitioning problem on X∗;
21 if X is better than X∗ then X∗ ← X; nn← 0 ;
22 else X ← Apply the diversification procedure on X∗;

23 return X∗;
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3.1. Solution representation201

With the possibility of splitting deliveries in the G2L-SDVRP, it is necessary to determine and202

store which customer items will be in each vehicle. Hence, solution encoding is very important to203

make an effective method. In our implementation, a solution X is represented as a set of sequences204

rk, for k = 1, . . . , ,Kmax. For each vehicle k, rk represents the sequence of customers served by205

vehicle k in the order they will be visited. Additionally, for each customer i = 1, . . . , n, we create206

a sequence Si containing the vehicle index that will serve each item of customer i.207

Figure 1 illustrates the representation of a solution for a given G2L-SDVRP instance. There is208

a central depot (node 0), 10 customers (nodes 1 to 10), and 3 vehicles (i.e., Kmax = 3). The first209

five customers (1 to 5) require two items each, and the last five (6 to 10) require three. Customers210

9, 10, and 1 are served by route r1; customers 6, 3, 8, and 5 are served by r2; and customers 6, 2,211

4, and 7 are served by r3. Customer 6 is served by two different routes (r2 and r3), where items 1212

and 3 are delivered by vehicle 2, and item 2 is delivered by vehicle 3.213
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Figure 1: An example of a solution and its representation for a given G2L-SDVRP instance.

3.2. Initial solution214

The initial solution is constructed using the two-phase procedure of Wei et al. (2018). In the first215

phase, routes are generated by the savings algorithm (Clarke and Wright, 1964). This algorithm216

starts with single-customer routes that have no split deliveries, i.e., for each customer i = 1, . . . , n,217

it creates the route (0 − i − 0). Next, the savings (Di0 +D0j −Dij) are calculated and sorted in218

descending order. In each step, two routes are merged according to the largest savings. For this, the219

arc (i, j), from the top of the list of savings, is considered. If customers i and j can be merged, and220

the vehicle capacity and loading constraints are respected, the arc (i, j) is added, and then the arcs221

(i, 0) and (0, j) are removed. Notice that all savings are calculated without considering the CO2222

emission; only the route costs are used. Given that the calculation of the CO2 emission is based on223

the weight transported between two nodes, it would be necessary to recalculate the savings after224

merging any two routes, requiring extra computing time. In preliminary computational experiments225
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using this recalculation, the procedure required up to 1200 seconds to obtain an initial solution for226

some instances. For this reason, we decided to ignore CO2 emission in the savings calculation. For227

the same reason, split deliveries were not considered in this procedure either. We instead rely on228

specific local search operators to generate split deliveries, as this strategy has proven to be more229

efficient in the computational tests.230

The savings algorithm ends when no further route merge is possible/feasible. If the number of231

routes is less than or equal to the number of available vehicles, the procedure returns the constructed232

routes as a feasible solution; otherwise, it starts the second phase. In each iteration of this phase, the233

route with the lowest utilization rate of the vehicle base is eliminated, and its customers are added234

to a pool. These customers are sorted by decreasing area and reinserted into the solution using235

the cheapest insertion algorithm. In other words, each customer is inserted into the position and236

route with the lowest incremental cost, respecting the problem constraints. One route is randomly237

selected when a customer cannot be inserted into any route because of not respecting the vehicle238

capacity and loading constraints. Customers in this route are successively removed and added to239

the pool until the given customer is inserted into this route. Thus, the reinsertion procedure of the240

customers in the pool is restarted.241

3.3. Neighborhood structures242

We use five neighborhood structures in our implementation (line 7 of Algorithm 1), which are243

based on the literature of (meta)heuristics for solving the 2L-CVRP (Zachariadis et al., 2013; Wei244

et al., 2015, 2018; Ji et al., 2021), SDVRP (Silva et al., 2015; Matos et al., 2018) and other VRP245

variants. They are:246

• Customer relocation: a customer is relocated to another position;247

• Route exchange: the positions of two customers are exchanged;248

• Route interchange: two positions i and j are selected. If they are on the same route (intra-249

route), the segment of customers between i and j (including them) is considered in reverse250

order. When i and j belong to different routes (inter-route), the first part of the route that251

is before i is connected with the second part of the route that is after j, and the second part252

of the route after that is after i is connected with the first part of the route that is before j;253

• Block exchange: the positions of two segments are exchanged;254

• Block relocation: a segment of customers is relocated to another position.255

Each neighborhood structure can perform operations in a single route (intra-route) and two256

routes (inter-route). All position and route choices are random in the shaking step. The se-257

quence/segment size is limited to four positions in neighborhoods block exchange and block reloca-258

tion. It is worth mentioning that other values were tested in preliminary experiments, but the best259

results have been obtained using the sequence limited to four positions.260

3.4. Local search261

The local search relies on the randomized variable neighborhood descent (RVND) algorithm262

(Subramanian et al., 2010). An important issue related to the variable neighborhood descent is263

the order in which the local search operators are applied. To overcome this difficulty, we randomly264

generated the order in which the local search operators are considered. By incorporating randomness265
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into the (deterministic) variable neighborhood descent algorithm, this strategy avoids an extra266

parameter to define the neighborhood order, which needs to be calibrated. A similar strategy267

was used by, e.g., Subramanian and Battarra (2013); Penna et al. (2013); Silva et al. (2015); Wei268

et al. (2015); Matos et al. (2018). Our RVND adopts the first improvement strategy, i.e., the local269

search tries all possible movements of an operator until reaching the first one that results in a270

solution better than the current. In addition, if some local search operator improves the current271

best solution, the improved solution is added to the route pool Ppartition. Algorithm 2 describes272

our RVND.273

Algorithm 2: Local search based on the Random Variable Neighborhood Descent.
1 Input: X ′, Tmax, pmax;
2 Output: Best solution found;
3 X ′′ ← X ′;
4 p← 1;
5 P ← {1, . . . , pmax};
6 Shuffle the order to apply the local search operators P ;
7 while p ≤ pmax and time < Tmax do
8 X ′′ ← Apply the local search Pp on X ′;
9 if X ′′ is better than X ′ then

10 X ′ ← X ′′; p← 1;
11 Shuffle the order to apply the local search operators P ;
12 Add the routes of X ′′ to the pool Ppartition;

13 p← p+ 1;

14 return X ′;

We develop ten local search neighborhood structures. Three of them consider intra-route oper-274

ations, while seven are related to inter-route operations. Concerning the ones based on inter-route275

operations, two are specific to handling split deliveries. Six of the ten neighborhood structures276

consider both intra- and inter-route operations. They are customer relocation (intra-route), cus-277

tomer relocation (inter-route), route exchange (intra-route), route exchange (inter-route), route278

interchange (intra-route), and route interchange (inter-route). These local search neighborhoods279

are based on the neighborhood structures in Section 3.3. The others are neighborhood structures280

based on inter-route operations, i.e.:281

• Exchange(2, 1): exchange the positions of two adjacent customers with a customer of another282

route;283

• Relocation(2, 0): two adjacent customers are removed from one route and inserted in another284

route;285

• Split-delivery relocation: given two positions i and j from different routes, one customer item286

at position i is removed and inserted before position j. Figure 2 shows an example in which287

customer 5 is served with split delivery. Only item 2 of customer 5 can be moved to route r1288

without violating the vehicle capacity and loading constraints.289

• Split-delivery exchange: given two positions i and j from different routes, the customer at290

position i is inserted before the customer at position j and one of the items of the customer291
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Figure 2: Example of a split-delivery relocation operation.

at position j is inserted before position i. Figure 3 shows an example in which customer 5 is292

served by routes r1 and r2, and customer 1 is moved to route r2.
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Figure 3: Example of a split-delivery exchange operation.

293

We tested other neighborhood structures, such as block exchange and block relocation, but294

since they were time-consuming without consistently improving the final solution, we decided not295

to include them in our method. Moreover, aiming to reduce the computing times, we used a296

hash structure to keep track of the routes that cannot be further improved by applying the local297

search neighborhood structures. Since routes obtained by removing one or more customers always298

result in feasible packing, there is no need to solve their packing subproblem. This observation299

is considered in customer relocation (intra- and inter-route), relocation(2,0), and split-delivery300

relocation neighborhood structures. A hash structure is created for each local search neighborhood.301

In intra-route operations, only information from one route is stored, while in inter-route operations,302

information from both routes is kept. For each route, the key is a string with the customer sequence,303

cost, demand, and total area, such that the customers are separated by “|” and the cost, demand,304
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and area are separated by “-”. Additionally, in the inter-route operations, the routes are separated305

by “+”. Aiming to reduce the computational effort, we evaluate the solution cost before solving the306

packing subproblem. This means there is no need to check the packing feasibility of routes costing307

more than those in the current solution.308

3.5. Intensification procedure based on the set partitioning problem309

We solve exactly a variant of the set partitioning problem (SPP) in the intensification procedure
of the proposed VNS. Let SR be the set of all feasible routes known for an instance. They are
stored in the pool Ppartition. We define SRi ⊆ SR as the subset of all routes that contain customer
i ∈ N \ {0}; Ck as the cost of route k ∈ SR; and τik as the number of items of customer i served
by route k. The SPP formulation is composed of the objective function (1) and constraints (2) to
(5). The decision variable ϕk is equal to 1 if route k is chosen; and 0 otherwise.

min
∑
k∈SR

Ck ϕk, (1)

s.t.
∑

k∈SRi

τikϕk = |Ri|, ∀i ∈ V \ {0}, (2)

ϕs = ϕk, ∀k, s ∈ SR : k and s have at least one split delivery in common, (3)∑
k∈SR

ϕk ≤ Kmax, (4)

ϕk ∈ {0, 1}, ∀k ∈ SR. (5)

The objective function (1) aims to minimize the total cost of the chosen routes. Constraints (2)310

ensure that all items Ri of customer i are delivered. Constraints (3) guarantee that routes having311

at least one split delivery customer in common are in the solution, i.e., if a route with a partial312

delivery to a customer is selected, then any other route serving this customer with partial delivery313

must also be selected. These constraints were adapted from Matos et al. (2018). Constraint (4)314

ensures that the number of routes does not exceed Kmax. Constraints (5) define the domain of the315

variables.316

Given that the number of feasible routes is exponential in the instance size, we limit the number317

of routes in SR to be Nr, a parameter we set in advance. When we find Nr routes, we solve the318

formulation and delete all routes except those in the incumbent solutions obtained from the SPP319

formulation. Hence, the best solutions are preserved. After preliminary tests, we set Nr to 10000.320

Moreover, we rely on hashing strategies to avoid duplicate routes, and the best solution is provided321

as the initial solution when solving the SPP formulation.322

3.6. Diversification procedure323

We propose a diversification procedure that significantly changes the best solution and avoids the324

VNS becoming stuck in local optima solutions. We consider procedure based on the ruin-reconstruct325

mechanism of Wei et al. (2015). In the ruin process, Nc customers are randomly removed from the326

solution and inserted into a pool. If a customer with split delivery is selected, it is removed from all327

routes that visit her. Next, the reconstruction step generates the solution as described in Section328

3.2. In accordance with Wei et al. (2015), parameter Nc is defined as min{0.5× n, 0.1× n+ nn},329

where n is the total number of customers and nn is the number of VNS consecutive iterations330

without improving the best solution.331
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4. A heuristic approach for the two-dimensional loading subproblem332

The procedure to check the feasibility of a route due to loading constraints is frequently invoked333

by our VNS method. Thus, it is essential to have a fast and effective approach. We use six334

procedures to quickly determine the feasibility of a route, including lower bounds, heuristics, solving335

a mathematical model, updating items’ dimensions, and using a hash structure. The hash structure336

keeps track of the routes already checked due to the packing to reduce computational effort. In this337

structure, each route is associated with a key given by the sequence of customers and items. In338

addition, some procedures do not consider the unloading requirements. Thus, if a route is infeasible,339

it implies that any sequence permutation involving those customers is also infeasible. Therefore, in340

our hash structure, each key is associated with one of the following three status values: 1, a route341

with a feasible packing (Procedures 5 and 6); -1, a route with an infeasible packing (Procedures 4342

and 6); and -2, a route with an infeasible packing, regardless of the sequence in which customers343

are to be visited (Procedures 1, 2 and 3).344

The six procedures are called sequentially until the packing is proven feasible or infeasible.345

Initially, we check whether the route is already in the pool of hashed routes. If this is true, we346

return its status; otherwise, we apply, next, the procedure proposed by Boschetti et al. (2002)347

to update items’ dimensions. This procedure preserves optimality and increases the item width348

and length in accordance with the unused area of the vehicle base. The width and length of each349

item i ∈ M , given M as the set of all items of the customers on a route, are updated using (6)350

and (7), respectively. Consequently, the new dimension of item i ∈ M in terms of width becomes351

wi+(W −w∗
i ), and in terms of length it becomes li+(L− l∗i ). The problem in (6) and (7) consists352

of a one-dimensional knapsack problem, which we solve using the dynamic programming algorithm353

presented by Martello and Toth (1990). More details about this and related procedures can be354

found in Almeida Cunha et al. (2020).355

356

w∗
i = max

w =
∑

j∈I\{i}

εjwk + wi | w ≤W, εj ∈ {0, 1}, j ∈ I \ {i}

 , (6)

357

l∗i = max

l =
∑

j∈I\{i}

εjlk + li | l ≤ L, εj ∈ {0, 1}, j ∈ I \ {i}

 . (7)

358

After updating the items’ dimensions, Procedure 1 is applied. In the next step, we calculate the359

total area of items and then determine in which order to apply Procedures 2-6. If the total area is360

less than 80% of the vehicle area, there is a high chance the route will be feasible for packing, so the361

following order is considered: Procedures 5, 4, 3, 2, and 6; otherwise, we consider Procedures 2, 3,362

4, 5, and 6, in this order. In addition, in Procedures 1 to 4, if the lower bound value is larger than363

the length of the vehicle base, the route packing is infeasible. Algorithm 3 describes the procedure364

for checking whether a packing is feasible considering the set of M items.365

Procedure 1: a lower bound of the minimum length required to pack all items is obtained from366

dividing the sum of the areas of the items in M by the width of the vehicle base.367

Procedure 2: a lower bound on the required length of the loading area is estimated by the alter-368

nate constructive procedure of Alvarez-Valdés et al. (2009). This procedure changes items’369
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dimensions. If the modified items do not fit in the vehicle base, then the original instance has370

no feasible packing.371

Procedure 3: a lower bound on the minimum length required to pack all items in M is estimated372

by dual feasible functions. We consider only the first three dual feasible functions described373

in (Boschetti et al., 2002) since the fourth may require a high computational effort. Côté374

et al. (2017) adopted a similar strategy.375

Procedure 4: a lower bound from Côté et al. (2014) on the minimum length of the vehicle base376

is calculated considering unloading requirements. The idea is to constrain positions in which377

items can be on the length of the vehicle base.378

Procedure 5: a Randomized Local Search (RLS) metaheuristic combined with the Open Space379

technique (Wei et al., 2018). This method is called RLS+OP and is detailed in Section 4.1.380

Procedure 6: a constraint programming (CP) model based on solving the non-preemptive cumulative-381

scheduling problem (Clautiaux et al., 2008). We reduce the domain of the decision variables382

by considering the grid of normal patterns (Herz, 1972). If CP provides no feasible solution,383

then the route is infeasible. We apply CP to check only the packing of routes obtained using384

the local search procedures and only if the percentage difference between the current solution385

and the modified solution is greater than 0.5%.386

Algorithm 3: Solving the packing subproblem.
1 Input: S, M ;
2 Output: Whether route S has a feasible packing;
3 feas← False;
4 if S is not in the hash pool then
5 Update the dimensions of items in M ;
6 feas← Apply Procedure 1;
7 if feas is False then
8 if total area of items in S is less than 80% then LP ← Consider Procedures {2, 3, 4, 5, 6}

;
9 else LP ← Consider Procedures {5, 3, 4, 2, 6} ;

10 foreach p ∈ LP do
11 feas← Apply Procedure p;
12 if feas is True and p is equal to Procedure 5 then Break the loop ;
13 else if feas is False and p is different of Procedure 5 then Break the loop ;

14 Add S into the hash pool with the status in feas;

15 else feas← Status of the packing for the route S ;
16 return feas;

4.1. RLS+OP metaheuristic387

We propose the RLS+OP algorithm inspired by the sequence-based random local search method388

and the open space heuristic, both from Wei et al. (2018). In our algorithm, RLS generates the389

sequence/order in which items will be packed in the vehicle base. The open space technique is390

applied to pack the items following the given sequence. For the sake of simplicity, we consider M391
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as the set of all items in a route and σ as the order in which these items are packed in the vehicle392

assigned to this route.393

A vector of ordered items represents the solution in the RLS+OP. Because the items’ order394

greatly influences the algorithm performance, we develop a procedure to reduce the possible posi-395

tions in which items can be allocated in the vector solution. Based on the unloading requirements,396

we estimate the indices of the minimum and maximum positions each item can be in the se-397

quence/vector. First, we check whether two items with different visit orders cannot be packed side398

by side in the vehicle base; because of the unloading constraint, items with orders greater than i399

(i.e., that must be visited after i) cannot obstruct the unloading path of i. Figure 4 illustrates this400

scenario, where the hatched region marks the area where no item j, with σj > σi, can be since401

it blocks item j during the unloading operation (note that rehandling items is not allowed). The402

pseudo-code of the procedure to estimate the minimum (Posmin) and maximum (Posmax) positions403

is shown in Algorithm 4.

i
(p, q)

W

L

j

Figure 4: Illustrating items’ (minimum and maximum) position in the solution vector.
404

First, the minimum position is determined by sorting items (σ) in increasing delivery orders. In405

the case of a tie, the item with the largest width is considered first. Next, for each pair of positions406

i and j, we check whether the item in position Mi is delivered before Mj and the sum of their407

widths does not exceed the width of the vehicle base. If both conditions are true, the items in408

positions Mi and Mj cannot be packed side by side. Therefore, the item in position Mi must be409

packed below the item in position Mj and, consequently, it must be in the solution vector after the410

position j. This combination of positions i and j, to define the minimum position of the item in411

Mi, is applied until finding an item in Mj whose order is equal to Mi. On reaching this criterion412

(line 9 of Algorithm 4), if the width of Mi is equal to the width of the vehicle base, the position j413

is a limit for Mi.414

In the case of the maximum position in Algorithm 4, items are sorted in decreasing delivery415

orders, but the tie-breaking criterion is by the item with the smallest width. For each position i, it416

is verified whether the item in Mi has a width equal to the vehicle base. If true, the item in Mi has417

i as the maximum position in the solution vector. Otherwise, for each position i and j, it is checked418

whether the order of the item in Mj is smaller than the one in Mi and the sum of the items’ widths419

is greater than the width of the vehicle base. If these conditions are true, the maximum position420

of the item in Mi is j − 1.421

For each route, the first step in the RLS+OP in Algorithm 5 is to compute the minimum and422

maximum positions each item in M can be in the solution vector. We consider Itermax iterations423
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Algorithm 4: Procedure to calculate items’ minimum and maximum positions in the
solution vector.
1 Input: M , set of items with dimensions (wi, li) for i ∈M ; σ, order in which items are packed; W ,

width of the vehicle base;
2 Output: Minimum and maximum positions that each item can have in the solution vector;
3 m← number of items in set M ;
4 M ′ ←M ;
5 σ′

i ← σi, w′
i ← wi, for i← 1, . . . , m;

6 Posmin(i)← 0, for i← 1, . . . ,m ; // Minimum position
7 M ′ ← Sort items in M ′, as well as w′ and σ′, in decreasing order of visit, breaking ties by choosing

the item with the largest width first;
8 for i← 1 to m do
9 for j ← 1 to m do

10 if σ′
j > σ′

i and w′
i + w′

j > W then Posmin(M
′
i)← j + 1 ;

11 else if σj = σi then
12 if w′

i = W then Posmin(M
′
i)← j ;

13 Break the loop;

14 Posmax(i)← m, for i = 1, . . . ,m ; // Maximum position
15 M ′ ← Sort items in M ′, as well as w′ and σ′, in decreasing order of visit, breaking ties by choosing

the item with the smallest width first;
16 for i← 1 to m do
17 if w′

i = W then Posmax(M
′
i)← i ;

18 else
19 for j ← i+ 1 to m do
20 if σ′

j < σ′
i and w′

i + w′
j > W then

21 Posmax(M
′
i)← j − 1;

22 Break the loop;

23 return Posmin and Posmax;

of the RLS algorithm to check the packing feasibility of a route. Besides that, we obtain an initial424

solution by using three sorting rules, which are: decreasing order by area (Od1), decreasing order425

by length (Od2), and decreasing order by width (Od3). Given a sequence of items, the open space426

heuristic performs the packing, which returns the total area packed and the position of the last427

item packed in the vehicle base. If the packed area (packedarea) is equal to the total area of items428

(totalarea), we have a feasible packing for this route. In the loop of lines 14–25, two items have429

their positions swapped, and the new sequence is submitted to the open space heuristic. If the430

packed area of the solution is equal to the total area, the procedure ends with the status True (i.e.,431

a feasible solution is found). After all, the algorithm returns the status False, which, in this case,432

means an undefined solution.433

The open space heuristic packs item by item, following the sequence generated by the RLS. In434

this heuristic, a packing pattern is represented by the packed region (i.e., the area occupied by the435

packed items) and the unpacked region (i.e., the union of all the free spaces, rectangular areas not436

occupied by an item). An open space is a free space with one side that coincides with the vehicle’s437

rear door. The heuristic consists of updating the open spaces, which are candidate positions for438

positioning items, whenever a new item is packed. An item is packed in the open space with the439
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Algorithm 5: RLS+OP metaheuristic of the Procedure 5.
1 Input: M , sequence of items i with dimensions (wi, li);
2 Output: Whether a feasible packing for M exists.;
3 Construct an initial solution X;
4 Posmin, Posmax ← Calculate the valid positions of items by Algorithm 4;
5 m← number of items in M ;
6 totalarea ← sum of the area of all items in M ;
7 Itermax ← max{m, ⌈100× (1− ( totalarea

At
))⌉};

8 for i← 1 to Itermax do
9 for t← 1 to 3 do

10 Sort the items in M using the sorting rule Odt;
11 packedarea ← Apply the open space heuristic given M ;
12 pos← position of the last item packed by the open space heuristic;
13 if packedarea = totalarea then return True ;
14 for j ← 1 to m do
15 M ′ ← randomly swap the position of two items in M ;
16 packed′area ← Apply the open space heuristic given M ′;
17 if packed′area > packedarea then
18 j ← 1;
19 M ←M ′;
20 packedarea ← packed′area;
21 pos← position of the last item packed by the open space heuristic;
22 if packedarea = totalarea then return True ;

23 else if packed′area = packedarea then
24 M ←M ′;
25 pos← position of the last item packed by the open space heuristic;

26 return False

smallest y-coordinate that respects the unloading constraint. The algorithm aims to pack as many440

items as possible. In the end, it returns the total area of the packed items and the position of the441

last packed item. A complete description of the open space heuristic is given by Wei et al. (2018).442

5. Computational experiments443

The performance of the proposed VNS method is evaluated through computational experiments444

using benchmark and newly created instances. We compare our method with state-of-the-art meth-445

ods, considering the best-known solutions reported in the literature for the G2L-SDVRP and 2L-446

CVRP. The VNS was coded in C++ and uses the Gurobi Optimizer, version 8.1, to solve the447

set partitioning model, and the Constraint Programming in the IBM ILOG CPLEX Optimization448

Studio, version 12.8, to solve the constraint programming model. All experiments were run on a449

computer with an Intel Core i7-8700 3.2 GHz processor, 8 GB of RAM, and Linux Ubuntu 18.04450

LTS as the operating system. We run the proposed VNS 10 times for each instance, with the seed451

varying from 1 to 10 since it has random internal parameters. From these runs, the value of the452

best solution found is reported.453
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5.1. Instances and parameters454

We use two sets of instances to evaluate the performance of the proposed VNS. The first set455

comprises 180 benchmark instances from the 2L-CVRP literature, originally proposed by Iori et al.456

(2007) and Gendreau et al. (2008). These instances are organized into five classes (Classes 1 to457

5) based on the number of rectangular items per customer. Each class has 36 instances in which458

the number of items per customer is limited to the class number. These instances are available at459

http://www.or.deis.unibo.it/.460

The second set (Class 6) includes 36 new instances we generate and use for the first time in this461

paper. They were generated following the same approach used for generating the instances of Class462

5 (see Iori et al. (2007) for more details), except for the number of items per customer, which is463

in the range [2, 4] instead of [1, 5]. Additionally, to define the number of vehicles in the instances,464

we tried the strategy used by Iori et al. (2007) and Ferreira et al. (2021) but returned infeasible465

instances. Hence, we decided to set the number of vehicles as the same number in the instances of466

Class 5. In this way, we were able to guarantee the newly generated instances are feasible. These467

instances are available at https://bit.ly/taq.468

Recall that our VNS approach has two input parameters, namely Tmax and NN . The time469

limit Tmax is set according to the number of customers in the instances. If n ≤ 50, we set Tmax to470

1800 seconds; otherwise, we set it to 3600 seconds, in accordance with Wei et al. (2018). Through471

preliminary tests, NN = 100 provided the best overall results.472

5.2. Results of the 2L-CVRP473

As mentioned, our VNS method is the first metaheuristic proposed for the G2L-SDVRP. Hence,474

to assess its performance in relation to other methods in the literature, we first solve the 2L-CVRP475

instances. Next, we compare our results against the state-of-the-art algorithms for this problem:476

the VNSW of Wei et al. (2015) and the SA of Wei et al. (2018). The best-known solution (BKS) is477

used to verify the quality of the solutions obtained by all the methods. The BKS is obtained from478

these authors. For each method, we report the cost of the best solution obtained from 10 runs.479

Table 1 presents a comparison of the VNS results with the literature on the pure CVRP instances480

(Class 1) and 2L-CVRP (average over Classes 2–5). For each method, the table shows the number of481

worse, equal, and better solutions compared to the BKS; the relative difference (Gap) in percentage,482

computed as 100× ((fV NS − fBKS)/fBKS), where fV NS is the value of the best solution obtained483

using the VNS and fBKS is the BKS value; and the average computing time in seconds. The484

computing time refers to the time until obtaining the last best solution, which is in accordance with485

Wei et al. (2015, 2018). We did not compare computing times because the computer configurations486

(i.e., CPU speed, operating system, compiler, among others) are different, and it could result in487

an unfair comparison. The detailed results of the 2L-CVRP obtained using the proposed VNS are488

available in Appendix A, Table A.6.489

The results show that our VNS is competitive with the state-of-the-art methods and has the490

smallest gap value overall. For Class 1, all methods obtained more than 50% of the solutions equal491

to the BKS. Besides that, the VNS improved the solution of five instances. Since all customers492

in Class 1 demand only one item of dimensions (1,1), only the routing counterpart is examined in493

these instances. Therefore, these results indicate that the routing components of our VNS are very494

efficient. In Classes 2-5, the proposed approach obtained 17 solutions better than the BKS, with495

an average improvement of 0.09%.496

In Figure 5, we present the average gap of Classes 2 to 5 for each instance in which the solution497

of one method differs from the BKS. The figure shows that VNSW obtains the most distant solutions498
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Table 1: Results obtained using the proposed VNS and the state-of-the-art methods on instances of the 2L-CVRP.

Metaheuristic Class 1 Classes 2–5
Worse Equal Better Gap (%) Time (s) Worse Equal Better Gap (%) Time (s)

VNSw 8 28 0 0.04 460.53 22 14 0 0.28 975.32
SA 7 29 0 0.02 448.63 6 30 0 0.02 1062.95

VNS 4 27 5 0.01 55.49 12 7 17 -0.09 1033.65

from the BKS, and, for three instances, the gap is greater than 1%. The SA approach has a gap499

varying between 0 and 0.5%. The proposed VNS has no gap greater than 0.5% and obtains a500

solution better than the BKS with a difference larger than 1%.501

Figure 5: Gaps obtained using the proposed VNS and the state-of-the-art methods in instances of Classes 2-5.
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For each class, Table 2 has the comparison of the proposed VNS with the BKS. It also shows the502

average computing time per class. We observe that the larger the number of items, the higher the503

computing times are. The method achieves the highest average computing time for Class 5, with504

an average value of 1195.64 seconds. Notably, the VNS has more difficulty solving the instances505

in Class 5, where the number of items per customer is the highest. This feature makes it more506

difficult to pack items, as accommodating many items requires efficient utilization of the vehicle507

base. Overall, the VNS finds better solutions for 50 instances and matches the best solutions for508

97 ones. The average improvement over the BKS is 0.04%. It is important to mention that our509

objective is not to solve the 2L-CVRP, but even so, the proposed VNS is much better compared510

with the state-of-the-art methods for the 2L-CVRP.511

5.3. Results of the G2L-SDVRP512

For the G2L-SDVRP, we compare the results obtained using the proposed VNS and those513

obtained using the branch-and-cut (BC) method in Ferreira et al. (2021). Recall that in the packing514

procedure, especially in Procedure 6, we pack items over a grid of points, thus reducing the number515

of points where to pack items. In the preliminary experiments, our method obtained better results516

when considering, in the constraint programming model, the normal patterns (Herz, 1972) instead517
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Table 2: Results of the proposed VNS method on each instance class for the 2L-CVRP.

Class Worse Equal Better Gap (%) Time (s)

1 4 27 5 0.01 55.49
2 3 24 9 -0.14 676.67
3 0 19 17 -0.18 1072.21
4 3 14 19 -0.25 1190.06
5 23 13 0 0.37 1195.64

1-5 33 97 50 -0.04 838.02

of the meet-in-the-middle patterns (Côté and Iori, 2018), particularly for large-scale instances. In518

this way, we also extended it to the BC in Ferreira et al. (2021). This means the BC uses the519

normal patterns when handling the loading subproblems. As a result, an average improvement of520

0.03% is obtained using this new version of the BC compared to the original authors. This method521

is also applied to solve the new instances (Class 6). The complete results obtained using the BC522

method (with the normal patterns) are presented in Appendix A, Tables A.11 and A.12.523

Table 3 summarizes the results obtained using the VNS and BC methods. For the VNS, we524

present the worst (VNSWorst), average (VNSAverage) and best (VNSBest) solution values over the525

ten runs. The first column in the table presents the instance class, and the next two columns show526

the number of optimal solutions (OPT) and the average computing time (in seconds) for the BC527

method. Then, for each result of the VNS, we present the number of instances in which the VNS528

obtained better (B), equal (E), and worse (B) solutions in comparison to the BC; the average relative529

difference (Gap) between the solution values obtained using the BC and VNS, as a percentage530

(considering the CO2 emission); and the worst, average or best computing time (in seconds) for531

VNSWorst, VNSAverage and VNSBest, respectively. Negative values of the gap indicate that the VNS532

outperforms the BC regarding the solution quality; null values mean that both approaches have533

the same solution; and values greater than zero indicate the BC method is superior to the VNS.534

Instances of Class 1 are not included in this experiment since split delivery does not apply to them,535

given that all customers demand only a single item.536

Table 3: Results of the VNS and BC methods in instances of the G2L-SDVRP.

Class BC VNSWorst VNSAverage VNSBest

OPT Time (s) B E W Gap(%) Time (s) B E W Gap(%) Time (s) B E W Gap(%) Time (s)

2 5 2279.87 4 7 1 -0.86 105.41 4 7 1 -0.88 74.36 4 8 0 -0.93 1.42
3 4 2572.07 5 5 2 -0.16 133.62 6 4 2 -0.33 143.45 6 6 0 -0.50 15.16
4 6 2264.64 2 6 4 -0.04 297.51 3 5 4 -0.15 266.85 3 6 3 -0.26 119.88
5 5 2383.10 4 5 3 -0.37 292.48 4 5 3 -0.46 247.14 5 6 1 -0.68 162.38

2-5 20 2374.92 15 23 10 -0.36 207.25 17 21 10 -0.46 182.95 18 26 4 -0.59 74.71

The results in Table 3 indicate the superior performance of the VNS approach in relation to537

the BC method in all classes, regarding both the gap and computing time. The solutions obtained538

using the VNS are superior considering the VNSWorst, VNSAverage and VNSBest, with an average539

gap of 0.36%, 0.46% and 0.59%, respectively. As expected, the BC method requires more run time540

than the VNS in all classes, with an average difference larger than 2000 seconds. Moreover, from541

the detailed results, we observe the BC reports an optimal solution in all instances, and the VNS542
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finds a solution with the same amount of CO2 emissions. Moreover, the best results obtained using543

our VNS (VNSBest) show reductions in the CO2 emissions for 17 instances. It is worse than the BC544

only in four instances.545

Figure 6 compares the quality of the solutions obtained with the VNS against those obtained546

using the BC, considering the measures VNSWorst, VNSAverage and VNSBest. These results show547

that our VNS outperforms the BC method considering all measures. On average, the VNS can548

reduce route costs and CO2 emissions compared to the exact method, highlighting its efficiency in549

solving the problem. In the worst case, the VNS reduces the CO2 emissions and route costs by550

0.36% and 0.29%, respectively, while in the best case, the gains in reducing the CO2 emissions and551

route costs can reach 0.59% and 0.84%.
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Figure 6: Comparison of the BC solutions with the VNS solutions.

552

Figure 7 reports the average gap for the worst, average, and best solutions considering the CO2553

emissions (Figure 7a) and route costs (Figure 7b). We calculate the average value for each measure554

considering the four classes (2–5). Then, we compute the gap in relation to the solution of the BC.555

Notably, the gain obtained with the VNS regarding CO2 emissions varies between 0.12% to 4.59%,556

while the savings regarding route costs are between 0.15% and 6.49%. The worst solution concerns557

instance E026-08m, which emitted 0.70% more CO2 than the solution obtained with the BC.

Figure 7: Average gap of the solutions.

(a) CO2 emissions: GAPG.
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(b) Route cost: GAPR.
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Table 4 presents the solution gaps for instances in which the best solution obtained using the559

VNS (VNSBest) is different from the solution obtained using the BC method. The maximum560

reduction in CO2 emissions and routes cost is 9.38% and 12.19%, respectively, as observed in561

instance E033-03n of Class 2. When the VNS obtains a solution with higher CO2 emissions, it is,562

at most, 0.26% worse than the BC solution. This is a small increase, especially considering the563

difference in computing times (see Table 3). Finally, we observe an interesting result in instance564

E016-05m of Class 5, as the best solutions the VNS obtains (VNSbest) has the same CO2 emission565

of the BC solution, but the VNS improves the route cost by 1.28%.

Table 4: Gap in instances where the BC and VNS have different solutions.

Instancess Route costs CO2 emissions
Class 2 Class 3 Class 4 Class 5 Class 2 Class 3 Class 4 Class 5

E016-05m - - - -1.28 - - - 0.00
E022-06m - - 0.00 - - - 0.005 -
E023-03g -1.38 -7.92 -1.98 0.15 -0.24 -0.65 -0.68 -0.25
E023-05s - - 0.00 2.85 - - 0.01 -0.82
E026-08m - 0.32 -0.97 -1.01 - -1.11 0.18 0.26
E030-03g -1.27 0.00 - -0.44 -0.31 -0.33 - -0.30
E033-03n -12.19 -4.04 -0.08 -7.43 -9.38 -1.27 -1.35 -5.09
E036-11h -1.13 -1.27 -1.52 0.00 -1.21 -1.86 -1.29 -1.35

566

5.4. Results of the G2L-SDVRP for Class 6567

Table 5 reports the comparison between the two methods, BC and VNS, for instances of Class568

6. The columns present the routes cost (SolR), the amount of CO2 emission (SolG), and the total569

computing time in seconds. Additionally, for the VNS results, the table shows the average gap570

between the VNS solutions and the BC solutions, in terms of the total cost of routes (GAPR)571

and CO2 emissions (GAPG). Notably, the average computing time of the VNS solutions is smaller572

than that of the BC method by about 2000 seconds. On average, the best solutions of the VNS573

(VNSBest) reduce the CO2 emissions and the routes cost by 0.20% and 0.16%, respectively. Con-574

cerning CO2 emissions, these solutions are better in four instances, equal in four others, and worse575

in three instances. Regarding the worst and average results obtained with the VNS (VNSWorst and576

Table 5: Results obtained using the VNS and BC methods for instances of the G2L-SDVRP in Class 6.

Instance BC VNSWorst VNSAverage VNSBest

SolR SolG Time (s) SolR SolG Time (s) GapR GapG SolR SolG Time (s) GapR GapG SolR SolG Time (s) GapR GapG

E016-03m 284 1152.93 4.40 284 1152.93 9.70 0.00 0.00 284.00 1152.93 8.34 0.00 0.00 284 1152.93 0.01 0.00 0.00
E016-05m 308 1494.37 66.16 312 1494.37 7.73 1.30 0.00 310.80 1494.37 6.04 0.91 0.00 308 1494.37 0.02 0.00 0.00
E021-04m 360 1577.67 818.81 365 1585.04 89.16 1.39 0.47 363.00 1581.98 88.39 0.83 0.27 360 1577.67 1.91 0.00 0.00
E021-06m 427 1967.97 3598.25 427 1967.97 32.72 0.00 0.00 427.00 1967.97 25.79 0.00 0.00 427 1967.97 0.22 0.00 0.00
E022-04g 367 1751.55 158.19 367 1751.55 186.22 0.00 0.00 367.00 1751.55 168.72 0.00 0.00 367 1751.55 0.87 0.00 0.00
E022-06m 473 2311.50 3596.45 471 2315.40 32.13 -0.42 0.17 475.00 2312.01 46.27 0.42 0.02 479 2308.55 2.86 1.27 -0.13
E023-03g 653 2414.24 3581.86 690 2484.63 458.40 5.67 2.92 687.70 2482.20 422.54 5.31 2.81 667 2460.34 314.81 2.14 1.91
E023-05s 653 2414.24 3581.81 690 2484.63 439.34 5.67 2.92 684.20 2476.38 438.70 4.78 2.57 655 2426.45 247.33 0.31 0.51
E026-08m 598 2828.42 3597.31 606 2845.57 60.93 1.34 0.61 606.00 2845.57 46.43 1.34 0.61 606 2845.57 0.23 1.34 0.61
E030-03g 662 2560.66 3596.88 650 2534.70 1256.13 -1.81 -1.01 647.50 2529.49 1415.99 -2.19 -1.22 637 2510.52 609.38 -3.78 -1.96
E033-03n 2439 8981.47 3572.22 2433 8852.62 1488.63 -0.25 -1.43 2424.90 8834.57 1410.89 -0.58 -1.64 2424 8832.43 68.56 -0.62 -1.66
E036-11h 707 3250.60 3299.97 695 3205.64 89.32 -1.70 -1.38 690.80 3199.64 105.55 -2.29 -1.57 689 3196.96 2.87 -2.55 -1.65
Average 2456.03 345.87 0.93 0.27 348.64 0.71 0.16 104.09 -0.16 -0.20
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VNSAverage), we observe a slightly superior performance of the BC method in these instances re-577

garding the solution quality. However, considering the significant difference between the computing578

times (superior to 2000 seconds), the VNS will likely obtain better quality solutions if it runs longer.579

Therefore, the VNS is very competitive in Class 6, presenting significantly shorter computing times580

even in larger instances.581

Figure 8 shows the gap of the best solutions obtained using the VNS (VNSBest) for the instances582

in Class 6, considering only the instances in which the VNS and BC methods have different solutions.583

The maximum reduction in terms of CO2 emissions is due to instance E030-03g. In this case,584

the VNS improved the BC solution by 1.96% and reduced the route cost by 3.78%. The VNS585

worst solution is in instance E023-03g, with a difference in CO2 emissions by 1.91%. The highest586

improvement in the route cost is in instance E030-03g, in which the VNS obtains an improvement587

of 3.78% compared to the BC solution.588
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Figure 8: Gap of instances in Class 6 that the VNS and BC have different solutions.

5.5. Convergence analysis and solution improvement on large-scale instances589

To further analyze the convergence of the proposed VNS method, we carried out experiments590

on the large-scale instances 31–36 of Class 5 and Class 6. For each instance, the VNS is executed591

only once, with the random seed set to 1, to maintain consistency across the experiments. Figures592

9 and 10 show the convergence of the solution for these instances in Classes 5 and 6, respectively,593

representing the reduction of the CO2 emissions according to the running time. Observing the594

figures, the VNS shows a rapid convergence in many instances.595

As mentioned, the BC method of Ferreira et al. (2021) can only report optimal solutions for596

small instances. Hence, to verify the efficiency of the proposed VNS on large-scale instances, we597

compare the final solution obtained with the VNS against its initial solution. The complete results598

are presented in Appendix A, Tables A.9 and A.10. Figure 11 presents the gap between the initial599

and final solutions, calculated by 100×((Initial solution−Best solution)/Best solution), considering600

the best result out of the ten runs (VNSBest). In all classes, we observe an improvement over the601

initial solutions superior to 30% for more than half the instances. Moreover, the overall improvement602

is superior to 47%, on average.603
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Figure 9: Convergence of the proposed VNS on instances 31–36 of Class 5.
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Figure 10: The convergence of the proposed VNS on instances 31–36 of Class 6.
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Figure 11: Comparison between the initial and final solutions obtained with the proposed VNS.
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Figure 12 illustrates the average gap between the initial and final solutions (Figure 12a) and604

the ratio between the running time spent at the construction process and the total running time,605

computed as 100×(Initial solution time/Final solution time) (Figure 12b). These results show that606

the proposed VNS has more difficulty improving the initial solutions for instances with more items607

per customer. Notice the gaps in Classes 5 and 6 have the smallest improvements. In addition, for608

all classes, the average ratio is smaller than 1%, indicating that the VNS requires low computing609

time to obtain an initial solution.610

Figure 12: Improvement achieved with the VNS compared to its initial solution.
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6. Concluding remarks611

We propose the first metaheuristic method for the green vehicle routing problem with two-612

dimensional loading constraints and split delivery (i.e., the G2L-SDVRP). Besides defining vehicle613

routes to supply customers’ demand for rectangular items, we need to guarantee the two-dimensional614

loading of items on each route/vehicle is feasible. Moreover, a customer can be served by one or615

more vehicles, while the objective aims to minimize CO2 emissions. The proposed metaheuristic616

is a variable neighborhood search comprising five neighborhood structures, a local search based on617

the random variable neighborhood descent, a set partitioning model, a procedure to diversify the618

search, and different procedures to effectively check the packing feasibility of a route.619

The results of the computational experiments for the G2L-SDVRP indicate that the proposed620

VNS can achieve high-quality solutions compared to other literature methods, particularly the621

branch-and-cut of Ferreira et al. (2021). On average, the solutions obtained with the VNS reduce the622

CO2 emission by 0.38% compared to those obtained with the branch-and-cut method. Furthermore,623

the computing time required by the VNS to obtain the new, improved solutions is significantly less.624

Given the 60 instances, the proposed VNS reduces the CO2 emission for 21 ones and obtains625

solutions with the same emission for the other 32 instances. For the new instances, we once again626

confirm the superior performance of the VNS. On average, it obtains improvements superior to 40%627

compared to the initial solutions.628

We also attest to the superior performance of the proposed VNS when solving the capacitated629

vehicle routing problem with two-dimensional loading constraints (i.e., the 2L-CVRP). Our method630

is very competitive with the state-of-the-art methods, achieving superior results. It improves the631

best-known solution in 50 out of 180 instances while obtaining the same solution for the other 97632

instances.633
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There are interesting directions for future research. One trend is to further approximate the634

problem to the reality of logistics companies by including other practical requirements, e.g., urgent635

time windows, pickup and delivery, a heterogeneous fleet of vehicles, load-bearing, rotation of items,636

and cargo stability (Junqueira and Queiroz, 2022). Additionally, one may consider extending the637

problem to having three-dimensional loading constraints. Another relevant direction is to extend638

the proposed VNS to handle multi-objective formulations (Queiroz and Mundim, 2020), e.g., in639

which the route costs and CO2 emissions are modeled as objectives. Finally, new approaches can640

be proposed, especially exact techniques that efficiently handle subproblems related to packing and641

routing decisions, such as branch-and-price and branch-cut-and-price methods (Balster et al., 2023).642
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Appendix A. Detailed results of the computational experiments779

Table A.6 presents the detailed results obtained using the proposed VNS method for the 2L-780

CVRP. For each class, the following information is given: instance name; the value of the best-known781

solution (BKS) in the literature; the value of the solution obtained with the VNS, the computing782

time to obtain the best solution, in seconds (TB); the total computing time of the VNS (TT ), in783

seconds; and, the relative difference (Gap) between the solution value (fSol) and the BKS fBKS ,784

computed as 100× ((fSol − fBKS)/fBKS).785

Table A.7 and A.8 show the detailed results obtained using the proposed VNS for each instance786

of Classes 2 to 6. This table presents the instance name; the number of customers (n); and, for the787

VNS, we present the worst (VNSWorst), average (VNSAverage) and best (VNSBest) solutions over the788

27



ten runs. We also present the route costs (SolR) and the amount of CO2 emitted (SolG); and the789

computing time, in seconds, to obtain the best solution.790

Table A.9 and A.10 have a comparison between the VNS final solutions and the VNS initial791

solutions. The following information is presented for each instance: initial solution value (SolI);792

final solution value (SolF ); the gap between the final and initial solutions, computed as 100×(SolI−793

SolF )/SolF ; computing time, in seconds, to obtain the initial (TI) and final (TF ) solutions; and,794

the difference between the final and initial computing times (RT - computed as 100× (TI/TF )).795

Tables A.11 and A.12 show the detailed results obtained using the branch-and-cut (BC) method796

of Ferreira et al. (2021) (with the normal patterns) for the G2L-SDVRP. For each instance, these797

tables present the instance name, the number of customers, and the number of items, the lower798

(Kmin) and upper (Kmax) bounds on the number of vehicles to serve all customers’ demands,799

the number of vehicles in the solution (V H), the number of customers with split delivery in the800

solution (CS), the routes cost (SolR), the amount of CO2 emission (SolG), the total computing801

time (TimeT ), the computing time for solving the packing subproblems (TimeP ), and the number802

of cuts related to infeasible packings (CutP ).803
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VNSAverage
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VNSAverage
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SolR
SolG
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E016-03m
15

282
1329.64

47.43
282.00

1329.64
58.54

282
1329.64

71.07
291

1345.90
98.66

291.40
1347.58

142.44
295

1362.69
120.44

288
1195.44

20.72
288.00

1195.44
27.66

288
1195.44

38.25
284

1152.93
26.85

284.00
1152.93

34.83
284

1152.93
39.85

E016-05m
15

330
1558.24

5.45
332.40

1558.24
6.72

334
1558.24

8.08
333

1558.88
13.71

336.50
1561.20

20.65
342

1564.90
13.11

308
1494.37

8.97
310.40

1494.37
11.02

312
1494.37

13.92
308

1494.37
4.57

311.20
1494.37

6.89
312

1494.37
9.83

E021-04m
20

402
1683.62

23.27
402.00

1683.62
30.82

402
1683.62

40.52
391

1638.97
44.59

391.00
1638.97

60.87
391

1638.97
78.98

380
1605.27

45.35
380.00

1605.27
59.70

380
1605.27

80.49
360

1577.67
20.63

360.00
1577.67

29.05
360

1577.67
39.20

E021-06m
20

443
2022.97

12.64
443.00

2022.97
15.84

443
2022.97

17.98
427

1966.85
19.86

427.00
1966.85

22.06
427

1966.85
26.39

436
1995.89

34.15
436.00

1995.89
41.42

436
1995.89

51.71
436

2002.84
27.99

436.00
2002.84

31.34
436

2002.84
40.76

E022-04g
21

382
1811.93

47.94
382.00

1811.93
65.30

382
1811.93

87.31
373

1769.66
44.60

373.00
1769.66

62.87
373

1769.66
76.39

377
1825.55

87.36
377.00

1825.55
124.82

377
1825.55

155.83
367

1751.55
20.79

367.00
1751.55

31.91
367

1751.55
44.98
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473
2326.14

18.81
473.00

2326.14
24.88

473
2326.14

30.87
499

2338.15
27.63

499.00
2338.15

32.33
499

2338.15
43.29

479
2308.89

167.82
471.80

2315.88
119.95

471
2316.66

146.41
479

2308.77
23.25

478.20
2309.38

31.02
471

2314.88
27.97

E023-03g
22

715
2547.63

49.22
715.00

2547.63
58.83

715
2547.63

79.01
674

2502.23
154.11

726.20
2517.05

107.88
732

2518.70
130.10

694
2498.22

287.30
705.10

2511.91
179.29

708
2515.22

202.56
651

2437.96
162.63

651.00
2437.96

228.52
651

2437.96
295.85

E023-05s
22

681
2464.52

39.66
681.00

2464.52
64.22

681
2464.52

96.75
750

2564.96
72.81

750.00
2564.96

108.29
750

2564.96
141.10

699
2494.76

121.42
699.00

2494.76
224.33

699
2494.76

457.16
650

2393.99
166.86

650.00
2393.99

253.53
650

2393.99
317.36

E026-08m
25

613
2879.20

37.28
610.60

2893.90
28.61

610
2897.58

28.67
621

2885.36
135.23

623.40
2903.54

91.89
632

2914.50
53.64

615
2886.15

116.86
622.40

2891.41
89.73

623
2897.80

59.26
588

2797.82
65.10

607.80
2832.03

71.31
612

2838.17
78.84

E030-03g
29

700
2663.79

160.06
700.00

2663.79
234.52

700
2663.79

430.06
622

2503.73
282.77

621.80
2503.74

502.50
620

2503.87
327.06

703
2657.68

417.97
705.00

2660.16
560.02

707
2669.31

522.52
686

2625.00
673.49

688.50
2634.87

669.02
692

2647.20
608.92

E030-04s
29

709
2734.84

156.12
711.90

2735.70
225.30

738
2743.47

151.65
705

2674.84
462.84

705.00
2674.98

298.92
705

2675.00
369.85

782
2894.96

1131.61
794.50

2927.23
941.49

806
2947.58

714.15
630

2483.86
1126.28

639.60
2523.35

1216.21
639

2532.66
1352.07

E031-09h
30

609
2876.08

78.97
611.30

2876.83
112.38

632
2883.60

84.35
588

2794.28
34.46

594.70
2798.32

47.79
605

2803.45
33.71

606
2844.75

332.41
606.40

2849.96
341.51

608
2866.04

242.82
592

2762.39
146.49

591.00
2763.91

221.98
588

2773.15
169.62

E033-03n
32

2693
9528.91

138.14
2693.60

9535.02
243.28

2702
9543.50

288.57
2472

9101.12
332.73

2506.30
9140.82

483.96
2539

9167.02
482.97

2621
9269.25

1800.00
2618.20

9270.18
1483.82

2592
9273.24

1693.45
2381

8787.90
1800.00

2442.40
8882.08

1477.11
2468

8901.17
1800.00

E033-04g
32

1130
4718.85

288.97
1129.40

4720.52
440.11

1124
4735.52

525.67
1026

4519.54
1661.64

1068.50
4587.15

1334.75
1080

4606.52
1051.38

979
4361.11

1447.64
982.40

4367.54
1564.36

993
4373.05

1180.99
934

4204.27
1800.00

940.40
4250.22

1800.00
960

4299.03
1800.00

E033-05s
32

1041
4548.26

612.03
1057.30

4594.23
626.23

1098
4624.68

311.39
1168

4823.86
446.09

1168.00
4823.86

751.95
1168

4823.86
1096.45

1235
4921.60

1800.00
1231.30

4926.32
1800.00

1227
4935.93

1800.00
1227

4912.87
1800.00

1225.30
4922.27

1800.00
1237

4930.69
1800.00

E036-11h
35

699
3229.32

52.49
699.00

3229.32
60.76

699
3229.32

86.07
702

3230.41
119.36

703.20
3232.85

85.66
704

3233.30
109.92

711
3230.45

236.74
708.90

3238.27
280.42

704
3255.78

148.55
708

3230.17
66.92

708.00
3230.17

101.17
708

3230.17
206.14

E041-14h
40

848
3981.83

72.16
850.80

3986.67
78.91

855
3993.93

76.52
847

3972.59
84.22

832.60
3975.10

103.65
829

3975.73
118.86

846
3976.00

103.65
845.50

3977.75
189.39

841
3993.48

81.13
836

3972.50
114.77

831.90
3973.00

198.55
829

3973.49
303.30

E045-04f
44

1048
3620.90

1722.59
1054.00

3634.19
1696.05

1064
3658.51

1617.70
1085

3705.70
1800.00

1096.10
3730.69

1695.39
1096

3736.78
1800.00

1109
3762.42

1800.00
1119.40

3790.12
1800.00

1135
3842.46

1800.00
914

3282.76
1800.00

920.50
3290.76

1800.00
927

3304.90
1800.00

E051-05e
50

769
2850.56

1652.77
776.30

2852.95
1454.16

773
2854.96

1405.77
797

2871.54
1800.00

794.30
2871.63

1772.49
794

2871.64
1800.00

799
2861.89

1800.00
803.50

2869.53
1800.00

801
2883.48

1800.00
648

2578.73
1800.00

666.60
2589.60

1800.00
681

2593.63
1800.00

E072-04f
71

515
1677.44

1800.00
523.00

1691.90
1800.00

530
1718.17

1800.00
512

1658.53
1800.00

515.80
1663.17

1800.00
519

1669.77
1800.00

525
1683.04

1800.00
527.10

1689.03
1800.00

529
1694.49

1800.00
457

1502.95
1800.00

458.70
1510.52

1800.00
463

1527.23
1800.00

E076-07s
75

1047
3807.47

1800.00
1054.20

3824.54
1800.00

1067
3846.14

1800.00
1135

3961.93
1800.00

1136.50
3978.49

1800.00
1147

3992.42
1800.00

991
3601.74

1800.00
1000.50

3612.46
1800.00

1008
3623.94

1800.00
893

3401.90
1800.00

904.50
3413.81

1800.00
909

3423.61
1800.00

E076-08s
75

1077
4063.90

1800.00
1080.30

4078.76
1800.00

1083
4110.26

1800.00
1088

4053.98
1800.00

1097.50
4077.25

1800.00
1105

4088.47
1800.00

1076
4011.51

1800.00
1090.20

4028.50
1800.00

1106
4045.37

1800.00
977

3747.38
1800.00

976.40
3757.08

1800.00
973

3784.62
1800.00

E076-10e
75

1077
4439.88

1800.00
1093.70

4493.34
1800.00

1104
4554.75

1800.00
1106

4413.87
1800.00

1119.00
4423.79

1800.00
1124

4431.89
1800.00

1114
4358.91

1800.00
1120.00

4376.71
1800.00

1121
4387.43

1800.00
978

4065.32
1800.00

977.90
4081.31

1800.00
992

4097.48
1800.00

E076-14s
75

1226
5260.99

1800.00
1221.60

5275.70
1800.00

1212
5295.91

1800.00
1124

4935.29
1800.00

1128.10
4950.94

1800.00
1131

4968.81
1800.00

1149
4992.21

1800.00
1140.70

5001.73
1800.00

1156
5026.86

1800.00
1058

4783.90
1800.00

1072.40
4802.40

1800.00
1079

4814.56
1800.00

E101-08e
100

1443
5007.84

3600.00
1440.10

5025.21
3600.00

1447
5062.55

3600.00
1401

4896.90
3600.00

1408.40
4916.57

3600.00
1414

4935.24
3600.00

1421
4900.91

3600.00
1415.80

4917.74
3600.00

1418
4940.02

3600.00
1161

4320.95
3600.00

1190.70
4350.32

3600.00
1195

4366.57
3600.00

E101-10c
100

1293
5087.44

3600.00
1296.60

5103.31
3600.00

1301
5112.75

3600.00
1364

5289.94
3600.00

1374.20
5301.24

3600.00
1380

5309.36
3600.00

1417
5428.18

3600.00
1427.50

5447.89
3600.00

1442
5466.83

3600.00
1245

4957.78
3600.00

1246.80
4965.33

3600.00
1249

4971.60
3600.00

E101-14s
100

1371
5707.51

3600.00
1382.60

5730.94
3600.00

1362
5747.86

3600.00
1426

5755.35
3600.00

1426.90
5764.61

3600.00
1428

5777.40
3600.00

1353
5572.86

3600.00
1356.70

5597.86
3600.00

1360
5616.86

3600.00
1263

5345.80
3600.00

1276.70
5360.88

3600.00
1266

5381.20
3600.00

E121-07c
120

2694
9244.83

3600.00
2705.50

9271.55
3600.00

2713
9293.95

3600.00
2765

9416.43
3600.00

2794.90
9489.49

3600.00
2817

9547.13
3600.00

2691
9221.00

3600.00
2738.40

9340.76
3600.00

2794
9496.10

3600.00
2460

8610.39
3600.00

2481.60
8669.06

3600.00
2522

8765.47
3600.00

E135-07f
134

2221
7939.87

3600.00
2254.80

8006.73
3600.00

2326
8188.48

3600.00
2114

7648.45
3600.00

2136.10
7677.42

3600.00
2155

7725.14
3600.00

2241
7941.28

3600.00
2263.30

7999.16
3600.00

2331
8158.86

3600.00
2139

7621.06
3600.00

2160.90
7699.28

3600.00
2183

7822.73
3600.00

E151-12b
150

1835
6580.92

3600.00
1855.20

6641.04
3600.00

1875
6671.39

3600.00
1871

6659.61
3600.00

1897.70
6707.46

3600.00
1915

6755.72
3600.00

1864
6602.77

3600.00
1887.60

6660.48
3600.00

1899
6689.92

3600.00
1571

5841.17
3600.00

1577.00
5871.20

3600.00
1595

5926.88
3600.00

E200-16b
199

2321
8473.10

3600.00
2351.20

8525.49
3600.00

2379
8578.87

3600.00
2338

8491.20
3600.00

2357.00
8535.04

3600.00
2379

8585.54
3600.00

2443
8737.09

3600.00
2471.20

8819.72
3600.00

2491
8901.10

3600.00
2054

7725.28
3600.00

2087.10
7804.72

3600.00
2114

7862.17
3600.00

E200-17b
199

2329
8521.11

3600.00
2359.60

8590.53
3600.00

2408
8700.11

3600.00
2328

8385.21
3600.00

2330.70
8455.16

3600.00
2338

8513.93
3600.00

2321
8408.03

3600.00
2344.50

8473.65
3600.00

2386
8592.83

3600.00
2031

7647.62
3600.00

2047.50
7707.84

3600.00
2069

7775.93
3600.00

E200-17c
199

2330
8483.48

3600.00
2360.90

8577.19
3600.00

2371
8649.72

3600.00
2429

8707.23
3600.00

2441.50
8737.43

3600.00
2463

8766.71
3600.00

2434
8711.43

3600.00
2459.90

8777.69
3600.00

2471
8833.05

3600.00
2054

7670.75
3600.00

2062.90
7739.52

3600.00
2076

7831.75
3600.00

E241-22k
240

1087
4082.64

3600.00
1088.10

4107.71
3600.00

1102
4137.92

3600.00
1098

4124.09
3600.00

1108.60
4143.69

3600.00
1120

4176.20
3600.00

1095
4094.53

3600.00
1097.30

4110.38
3600.00

1113
4133.56

3600.00
938

3682.77
3600.00

943.80
3694.18

3600.00
957

3718.01
3600.00

E253-27k
252

1386
5166.51

3600.00
1399.10

5201.41
3600.00

1424
5246.25

3600.00
1461

5318.45
3600.00

1475.90
5364.66

3600.00
1478

5390.04
3600.00

1514
5505.35

3600.00
1546.90

5579.58
3600.00

1565
5659.19

3600.00
1243

4736.63
3600.00

1251.40
4759.00

3600.00
1265

4783.69
3600.00

E256-14k
255

1719
5536.86

3600.00
1728.20

5574.06
3600.00

1750
5634.36

3600.00
1789

5720.10
3600.00

1815.20
5789.81

3600.00
1836

5856.01
3600.00

1649
5334.09

3600.00
1659.90

5368.40
3600.00

1670
5400.61

3600.00
1490

4912.34
3600.00

1502.10
4944.50

3600.00
1515

4985.40
3600.00
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Table A.8: Complete results of the VNS for the G2L-SDVRP instances in Class 6.

Instance VNSBest VNSAverage VNSWorst

Name n SolR SolG Time(s) SolR SolG Time(s) SolR SolG Time(s)
E016-03m 15 284 1152.93 7.46 284.00 1152.93 8.34 284 1152.93 9.70
E016-05m 15 308 1494.37 4.26 310.80 1494.37 6.04 312 1494.37 7.73
E021-04m 20 360 1577.67 94.48 363.00 1581.98 88.39 365 1585.04 89.16
E021-06m 20 427 1967.97 21.84 427.00 1967.97 25.79 427 1967.97 32.72
E022-04g 21 367 1751.55 156.02 367.00 1751.55 168.72 367 1751.55 186.22
E022-06m 21 479 2308.55 22.64 475.00 2312.01 46.27 471 2315.40 32.13
E023-03g 22 667 2460.34 671.70 692.80 2487.66 422.54 741 2539.19 330.95
E023-05s 22 655 2426.45 581.78 684.20 2476.38 438.70 690 2484.63 439.34
E026-08m 25 606 2845.57 38.84 606.00 2845.57 46.43 606 2845.57 60.93
E030-03g 29 637 2510.52 1609.72 647.50 2529.49 1415.99 650 2534.70 1256.13
E030-04s 29 637 2510.52 1613.00 647.50 2529.49 1414.98 650 2534.70 1246.10
E031-09h 30 585 2760.26 99.01 587.50 2770.39 66.73 588 2778.45 74.75
E033-03n 32 2424 8832.43 1409.83 2424.90 8834.57 1410.89 2433 8852.62 1488.63
E033-04g 32 1114 4626.17 1800.00 1113.30 4651.97 1800.00 1126 4689.35 1800.00
E033-05s 32 1114 4626.17 1800.00 1113.30 4651.97 1800.00 1126 4689.35 1800.00
E036-11h 35 689 3196.96 58.36 690.80 3199.64 105.55 695 3205.64 89.32
E041-14h 40 842 3954.48 117.47 847.10 3966.32 133.70 860 3979.05 135.22
E045-04f 44 949 3351.76 1800.00 955.90 3369.76 1800.00 967 3391.31 1800.00
E051-05e 50 689 2604.56 1800.00 686.00 2611.45 1800.00 677 2618.55 1800.00
E072-04f 71 438 1455.88 1800.00 443.90 1472.39 1800.00 449 1485.28 1800.00
E076-07s 75 901 3432.02 1800.00 920.20 3454.91 1800.00 933 3487.81 1800.00
E076-08s 75 910 3640.26 1800.00 929.20 3669.67 1800.00 940 3687.00 1800.00
E076-10e 75 943 3983.81 1800.00 955.80 4020.01 1800.00 967 4031.00 1800.00
E076-14s 75 1058 4760.28 1800.00 1053.30 4761.77 1800.00 1064 4765.66 1800.00
E101-08e 100 1181 4308.79 3600.00 1187.50 4333.72 3600.00 1205 4373.83 3600.00
E101-10c 100 1207 4862.55 3600.00 1215.70 4883.12 3600.00 1217 4903.49 3600.00
E101-14s 100 1196 5198.67 3600.00 1207.90 5217.11 3600.00 1213 5237.72 3600.00
E121-07c 120 2303 8211.17 3600.00 2344.30 8321.22 3600.00 2392 8407.97 3600.00
E135-07f 134 1970 7174.28 3600.00 1970.50 7237.47 3600.00 1985 7312.08 3600.00
E151-12b 150 1610 5909.77 3600.00 1617.50 5947.26 3600.00 1625 5972.23 3600.00
E200-16b 199 1977 7544.48 3600.00 2002.50 7586.15 3600.00 2026 7642.37 3600.00
E200-17b 199 1989 7526.24 3600.00 2002.30 7573.83 3600.00 2025 7645.41 3600.00
E200-17c 199 1957 7471.74 3600.00 1983.20 7531.18 3600.00 2012 7583.38 3600.00
E241-22k 240 862 3489.76 3600.00 876.50 3520.40 3600.00 878 3538.16 3600.00
E253-27k 252 1205 4630.11 3600.00 1212.20 4650.32 3600.00 1221 4705.81 3600.00
E256-14k 255 1400 4673.65 3600.00 1410.10 4697.02 3600.00 1412 4712.29 3600.00
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E
016-03m

2158.28
1329.64

-38.39
0.40

47.43
0.84

2103.28
1345.90

-36.01
1.57

98.66
1.59

1764.70
1195.44

-32.26
0.32

20.72
1.54

1419.54
1152.93

-18.78
0.03

26.85
0.11

E
016-05m

2262.93
1558.24

-31.14
0.06

5.45
1.10

2258.18
1558.88

-30.97
0.15

13.71
1.09

2200.37
1494.37

-32.09
0.09

8.97
1.00

2195.38
1494.37

-31.93
0.01

4.57
0.22

E
021-04m

2454.42
1683.62

-31.40
0.01

23.27
0.04

2748.99
1638.97

-40.38
0.48

44.59
1.08

2369.38
1605.27

-32.25
0.01

45.35
0.02

2404.80
1577.67

-34.39
0.02

20.63
0.10

E
021-06m

3319.65
2022.97

-39.06
0.18

12.64
1.42

3114.19
1966.85

-36.84
0.07

19.86
0.35

3112.89
1995.89

-35.88
0.58

34.15
1.70

3112.52
2002.84

-35.65
1.07

27.99
3.82

E
022-04g

2395.89
1811.93

-24.37
0.03

47.94
0.06

3400.79
1769.66

-47.96
0.55

44.60
1.23

3511.71
1825.55

-48.02
3.71

87.36
4.25

2389.17
1751.55

-26.69
0.00

20.79
0.00

E
022-06m

3331.03
2326.14

-30.17
0.01

18.81
0.05

2877.76
2338.15

-18.75
0.03

27.63
0.11

4283.69
2308.89

-46.10
0.70

167.82
0.42

3531.43
2308.77

-34.62
0.01

23.25
0.04

E
023-03g

3134.08
2547.63

-18.71
0.06

49.22
0.12

3115.91
2502.23

-19.70
0.05

154.11
0.03

3296.59
2498.22

-24.22
0.02

287.30
0.01

3121.34
2437.96

-21.89
0.11

162.63
0.07

E
023-05s

3309.04
2464.52

-25.52
0.04

39.66
0.10

3687.80
2564.96

-30.45
0.11

72.81
0.15

3377.03
2494.76

-26.13
0.11

121.42
0.09

3799.18
2393.99

-36.99
0.24

166.86
0.14

E
026-08m

4346.82
2879.20

-33.76
0.17

37.28
0.46

3747.62
2885.36

-23.01
0.09

135.23
0.07

4012.02
2886.15

-28.06
0.11

116.86
0.09

4488.15
2797.82

-37.66
0.57

65.10
0.88

E
030-03g

3940.13
2663.79

-32.39
0.05

160.06
0.03

3400.22
2503.73

-26.37
0.09

282.77
0.03

4068.62
2657.68

-34.68
0.12

417.97
0.03

3237.18
2625.00

-18.91
0.19

673.49
0.03

E
030-04s

4038.35
2734.84

-32.28
0.13

156.12
0.08

3993.13
2674.84

-33.01
0.06

462.84
0.01

3633.26
2894.96

-20.32
0.10

1131.61
0.01

3614.88
2483.86

-31.29
0.43

1126.28
0.04

E
031-09h

4551.56
2876.08

-36.81
1.52

78.97
1.92

4275.12
2794.28

-34.64
0.25

34.46
0.73

4697.85
2844.75

-39.45
1.21

332.41
0.36

4815.73
2762.39

-42.64
1.47

146.49
1.00

E
033-03n

13395.60
9528.91

-28.87
0.04

138.14
0.03

14756.90
9101.12

-38.33
0.03

332.73
0.01

13930.70
9269.25

-33.46
0.15

1800.00
0.01

14386.70
8787.90

-38.92
0.30

1800.00
0.02

E
033-04g

5839.95
4718.85

-19.20
0.05

288.97
0.02

6172.88
4519.54

-26.78
0.09

1661.64
0.01

5413.66
4361.11

-19.44
0.23

1447.64
0.02

5595.79
4204.27

-24.87
0.65

1800.00
0.04

E
033-05s

5877.18
4548.26

-22.61
0.04

612.03
0.01

7227.10
4823.86

-33.25
0.70

446.09
0.16

5935.82
4921.60

-17.09
0.17

1800.00
0.01

5922.88
4912.87

-17.05
0.41

1800.00
0.02

E
036-11h

5494.30
3229.32

-41.22
0.29

52.49
0.55

5051.30
3230.41

-36.05
0.09

119.36
0.08

5342.54
3230.45

-39.53
0.13

236.74
0.05

5182.83
3230.17

-37.68
0.17

66.92
0.25

E
041-14h

6585.39
3981.83

-39.54
0.33

72.16
0.46

6706.80
3972.59

-40.77
0.04

84.22
0.05

6490.61
3976.00

-38.74
0.13

103.65
0.13

6432.78
3972.50

-38.25
0.07

114.77
0.06

E
045-04f

5415.55
3620.90

-33.14
0.08

1722.59
0.00

4425.75
3705.70

-16.27
0.12

1800.00
0.01

5148.74
3762.42

-26.93
0.23

1800.00
0.01

5831.13
3282.76

-43.70
1.09

1800.00
0.06

E
051-05e

4242.97
2850.56

-32.82
0.28

1652.77
0.02

4051.51
2871.54

-29.12
0.08

1800.00
0.00

4279.99
2861.89

-33.13
0.69

1800.00
0.04

4139.91
2578.73

-37.71
0.93

1800.00
0.05

E
072-04f

2682.84
1677.44

-37.48
0.85

1800.00
0.05

2533.43
1658.53

-34.53
1.57

1800.00
0.09

2217.19
1683.04

-24.09
0.41

1800.00
0.02

1971.55
1502.95

-23.77
1.03

1800.00
0.06

E
076-07s

7061.91
3807.47

-46.08
1.34

1800.00
0.07

5556.56
3961.93

-28.70
0.18

1800.00
0.01

5195.56
3601.74

-30.68
0.36

1800.00
0.02

5536.44
3401.90

-38.55
0.63

1800.00
0.04

E
076-08s

6919.94
4063.90

-41.27
0.92

1800.00
0.05

6078.35
4053.98

-33.30
0.99

1800.00
0.06

5749.04
4011.51

-30.22
1.47

1800.00
0.08

5879.32
3747.38

-36.26
1.05

1800.00
0.06

E
076-10e

7909.37
4439.88

-43.87
1.53

1800.00
0.09

6680.04
4413.87

-33.92
0.74

1800.00
0.04

7534.46
4358.91

-42.15
5.72

1800.00
0.32

5935.79
4065.32

-31.51
0.60

1800.00
0.03

E
076-14s

9181.62
5260.99

-42.70
0.68

1800.00
0.04

7386.20
4935.29

-33.18
0.80

1800.00
0.04

7783.84
4992.21

-35.86
1.55

1800.00
0.09

7246.75
4783.90

-33.99
0.41

1800.00
0.02

E
101-08e

7647.24
5007.84

-34.51
0.58

3600.00
0.02

7894.50
4896.90

-37.97
3.32

3600.00
0.09

7310.77
4900.91

-32.96
6.48

3600.00
0.18

6866.28
4320.95

-37.07
1.75

3600.00
0.05

E
101-10c

8665.30
5087.44

-41.29
1.82

3600.00
0.05

7246.86
5289.94

-27.00
2.57

3600.00
0.07

8770.74
5428.18

-38.11
11.90

3600.00
0.33

6347.59
4957.78

-21.90
1.19

3600.00
0.03

E
101-14s

8578.94
5707.51

-33.47
1.22

3600.00
0.03

8429.60
5755.35

-31.72
1.46

3600.00
0.04

8365.80
5572.86

-33.39
0.40

3600.00
0.01

8441.84
5345.80

-36.67
1.42

3600.00
0.04

E
121-07c

12858.00
9244.83

-28.10
2.57

3600.00
0.07

11071.60
9416.43

-14.95
0.65

3600.00
0.02

11203.30
9221.00

-17.69
3.06

3600.00
0.09

9883.25
8610.39

-12.88
3.54

3600.00
0.10

E
135-07f

14246.10
7939.87

-44.27
5.53

3600.00
0.15

10947.20
7648.45

-30.13
3.44

3600.00
0.10

12490.00
7941.28

-36.42
10.49

3600.00
0.29

9657.04
7621.06

-21.08
2.16

3600.00
0.06

E
151-12b

11414.30
6580.92

-42.34
2.97

3600.00
0.08

12755.80
6659.61

-47.79
15.24

3600.00
0.42

11219.90
6602.77

-41.15
15.68

3600.00
0.44

10154.50
5841.17

-42.48
3.13

3600.00
0.09

E
200-16b

13847.70
8473.10

-38.81
7.34

3600.00
0.20

14776.50
8491.20

-42.54
16.26

3600.00
0.45

14222.80
8737.09

-38.57
26.53

3600.00
0.74

12118.60
7725.28

-36.25
3.79

3600.00
0.11

E
200-17b

14038.70
8521.11

-39.30
6.29

3600.00
0.17

13430.40
8385.21

-37.57
7.19

3600.00
0.20

14450.80
8408.03

-41.82
36.72

3600.00
1.02

12567.00
7647.62

-39.15
6.57

3600.00
0.18

E
200-17c

17516.30
8483.48

-51.57
10.26

3600.00
0.29

12761.00
8707.23

-31.77
9.48

3600.00
0.26

13986.90
8711.43

-37.72
29.09

3600.00
0.81

11328.20
7670.75

-32.29
3.13

3600.00
0.09

E
241-22k

7225.88
4082.64

-43.50
11.84

3600.00
0.33

6248.06
4124.09

-33.99
11.89

3600.00
0.33

6772.61
4094.53

-39.54
49.26

3600.00
1.37

5252.76
3682.77

-29.89
4.82

3600.00
0.13

E
253-27k

10361.90
5166.51

-50.14
21.39

3600.00
0.59

7894.61
5318.45

-32.63
21.58

3600.00
0.60

11584.20
5505.35

-52.48
118.08

3600.00
3.28

5961.48
4736.63

-20.55
7.47

3600.00
0.21

E
256-14k

7487.28
5536.86

-26.05
18.40

3600.00
0.51

7545.22
5720.10

-24.19
23.16

3600.00
0.64

6249.99
5334.09

-14.65
4.57

3600.00
0.13

5907.36
4912.34

-16.84
19.53

3600.00
0.54
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Table A.10: Improvements obtained with the VNS compared to its initial solution for the G2L-SDVRP instances of
Class 6.

Instances VNS solution
SolI SolF Gap(%) TI TF RT

E016-03m 1399.16 1152.93 -17.60 0.00 7.46 0.00
E016-05m 2239.99 1494.37 -33.29 0.02 4.26 0.47
E021-04m 2543.54 1577.67 -37.97 0.07 94.48 0.07
E021-06m 3106.67 1967.97 -36.65 0.10 21.84 0.46
E022-04g 2470.41 1751.55 -29.10 0.11 156.02 0.07

E022-06m 3765.33 2308.55 -38.69 0.02 22.64 0.09
E023-03g 3226.23 2460.34 -23.74 0.34 671.70 0.05
E023-05s 3226.23 2426.45 -24.79 0.34 581.78 0.06

E026-08m 4526.82 2845.57 -37.14 0.45 38.84 1.16
E030-03g 3472.64 2510.52 -27.71 0.36 1609.72 0.02
E030-04s 3472.64 2510.52 -27.71 0.36 1613.00 0.02
E031-09h 4423.70 2760.26 -37.60 0.01 99.01 0.01
E033-03n 13816.30 8832.43 -36.07 0.45 1409.83 0.03
E033-04g 6454.57 4626.17 -28.33 0.66 1800.00 0.04
E033-05s 6454.57 4626.17 -28.33 0.66 1800.00 0.04
E036-11h 5336.44 3196.96 -40.09 0.01 58.36 0.02
E041-14h 5850.39 3954.48 -32.41 0.00 117.47 0.00
E045-04f 4501.05 3351.76 -25.53 1.40 1800.00 0.08
E051-05e 4555.68 2604.56 -42.83 0.81 1800.00 0.05
E072-04f 2051.81 1455.88 -29.04 1.01 1800.00 0.06
E076-07s 5460.04 3432.02 -37.14 1.84 1800.00 0.10
E076-08s 5917.82 3640.26 -38.49 2.21 1800.00 0.12
E076-10e 6722.73 3983.81 -40.74 1.54 1800.00 0.09
E076-14s 7519.89 4760.28 -36.70 0.56 1800.00 0.03
E101-08e 6939.74 4308.79 -37.91 3.43 3600.00 0.10
E101-10c 6393.05 4862.55 -23.94 1.77 3600.00 0.05
E101-14s 8555.26 5198.67 -39.23 2.64 3600.00 0.07
E121-07c 9512.14 8211.17 -13.68 5.02 3600.00 0.14
E135-07f 10028.70 7174.28 -28.46 6.48 3600.00 0.18
E151-12b 8889.45 5909.77 -33.52 4.97 3600.00 0.14
E200-16b 11691.80 7544.48 -35.47 7.09 3600.00 0.20
E200-17b 11691.80 7526.24 -35.63 6.62 3600.00 0.18
E200-17c 11597.70 7471.74 -35.58 6.01 3600.00 0.17
E241-22k 4931.31 3489.76 -29.23 5.65 3600.00 0.16
E253-27k 6203.04 4630.11 -25.36 11.05 3600.00 0.31
E256-14k 5467.73 4673.65 -14.52 22.19 3600.00 0.62
Average -31.67 2.67 1830.73 0.15
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Table A.11: Results of the BC method of Ferreira et al. (2021) (with the normal patterns) for the G2L-SDVRP
instances in Classes 1 to 5.

Instances Banch-and-cut solution
Name Class n R Kmin K VH CS SolR SolG TimeT TimeP CutP

E016-03m 1 15 15 3 3 3 0 273 1277.63 6.28 0.00 0
2 15 24 3 3 3 1 282 1329.64 236.56 8.49 66
3 15 31 3 3 3 2 291 1345.90 824.73 101.98 115
4 15 37 3 4 4 0 288 1195.44 93.17 75.50 13
5 15 45 3 4 4 0 284 1152.93 3.78 0.00 0

E016-05m 1 15 15 5 5 5 0 340 1561.18 3.78 0.00 0
2 15 25 5 5 5 1 330 1558.24 151.82 0.16 11
3 15 31 5 5 5 3 333 1558.88 214.02 0.70 17
4 15 40 5 5 5 1 308 1494.37 71.16 0.07 0
5 15 48 5 5 5 1 312 1494.37 46.52 0.04 0

E021-04m 1 20 20 4 4 4 0 372 1642.42 50.62 0.00 0
2 20 29 4 5 5 1 402 1683.62 3556.15 1.83 143
3 20 46 4 5 5 0 391 1638.97 3592.58 34.09 10
4 20 44 4 5 5 1 380 1605.27 653.54 0.04 0
5 20 49 4 5 5 0 360 1577.67 338.41 0.07 0

E021-06m 1 20 20 6 6 6 0 447 2025.85 30.65 0.00 0
2 20 32 6 6 6 1 443 2022.97 857.03 0.02 0
3 20 43 6 6 6 2 427 1966.85 629.00 0.07 1
4 20 50 6 6 6 1 436 1995.89 2372.69 0.16 0
5 20 62 6 6 6 1 436 2002.84 3598.53 0.00 0

E022-04g 1 21 21 4 4 4 0 367 1751.55 4.98 0.00 0
2 21 31 4 4 4 1 382 1811.93 159.58 1.37 22
3 21 37 4 4 4 0 373 1769.66 64.41 0.08 2
4 21 41 4 4 4 1 377 1825.55 478.57 39.55 305
5 21 57 4 5 4 0 367 1751.55 48.17 0.03 0

E022-06m 1 21 21 6 6 6 0 492 2341.64 55.50 0.00 0
2 21 33 6 6 6 1 473 2326.14 415.44 0.12 5
3 21 40 6 6 6 1 499 2338.15 3580.31 4.19 13
4 21 57 6 6 6 2 479 2308.78 1772.29 0.27 0
5 21 56 6 6 6 2 479 2308.77 2928.73 0.11 0

E023-03g 1 22 22 3 3 3 0 564 2298.92 29.41 0.00 0
2 22 32 4 5 5 0 725 2553.81 3597.16 2.74 108
3 22 41 4 5 5 0 732 2518.70 3596.29 111.07 79
4 22 51 4 5 5 0 708 2515.22 3569.34 262.01 6
5 22 55 3 6 4 1 650 2444.04 3589.27 605.40 5

E023-05s 1 22 22 3 5 3 0 564 2298.92 76.26 0.00 0
2 22 29 4 5 4 2 681 2464.52 3582.36 4.23 188
3 22 42 4 5 5 1 750 2564.96 3575.98 0.05 0
4 22 48 4 5 5 2 699 2494.53 3590.68 974.88 41
5 22 52 3 6 4 0 632 2413.90 3599.17 989.06 9

E026-08m 1 25 25 8 8 8 0 610 2897.58 163.52 0.00 0
2 25 40 8 8 8 2 613 2879.20 3597.51 0.03 0
3 25 61 8 8 8 1 619 2917.75 3591.87 0.25 3
4 25 63 8 8 8 4 621 2880.88 3522.69 0.28 0
5 25 91 8 8 8 4 594 2790.43 3597.66 0.08 0

E030-03g 1 29 29 3 3 3 0 549 2523.88 3299.82 0.00 0
2 29 43 5 6 6 0 709 2672.04 3299.87 1.48 47
3 29 49 4 6 5 2 622 2512.13 3299.97 77.37 49
4 29 72 6 7 6 1 703 2657.68 3368.04 1003.50 26
5 29 86 5 6 2 689 2632.92 3490.29 842.50 7

E033-03n 1 32 32 3 3 3 0 2034 8145.22 442.47 0.00 0
2 32 44 5 7 7 1 3067 10515.70 3299.85 9.41 506
3 32 56 5 7 7 1 2576 9218.05 3299.95 109.03 115
4 32 78 6 7 6 2 2623 9396.29 3276.52 760.22 71
5 32 102 5 8 5 4 2572 9258.79 3477.68 2533.93 20

E036-11h 1 35 35 11 11 11 0 708 3274.33 3299.96 0.00 0
2 35 56 11 11 11 1 707 3268.83 3299.92 0.01 0
3 35 74 11 11 11 0 711 3291.48 3299.91 0.07 1
4 35 93 11 11 11 3 722 3272.57 3299.95 0.24 1
5 35 114 11 11 11 0 708 3274.33 3299.90 0.00 0
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Table A.12: Results of the BC method of Ferreira et al. (2021) (with the normal patterns) for the G2L-SDVRP
instances in Class 6.

Instances Branch-and-cut solution
Name n R Kmin K VH CS SolR SolG TimeT TimeP CutP

E016-03m 15 48 3 4 4 0 284 1152.93 4.40 0.00 0
E016-05m 15 48 5 5 5 1 308 1494.37 66.16 0.00 0
E021-04m 20 66 4 5 5 0 360 1577.67 818.81 0.21 0
E021-06m 20 66 6 6 6 2 427 1967.97 3598.25 0.00 0
E022-04g 21 68 4 5 4 0 367 1751.55 158.19 0.35 0
E022-06m 21 68 6 6 6 2 473 2311.50 3596.45 0.00 0
E023-03g 22 70 4 6 4 2 653 2414.24 3581.86 2.24 0
E023-05s 22 70 4 6 4 2 653 2414.24 3581.81 3.55 0
E026-08m 25 79 8 8 8 3 598 2828.42 3597.31 0.30 0
E030-03g 29 91 5 7 7 2 662 2560.66 3596.88 245.60 1
E033-03n 32 99 5 8 6 3 2439 8981.47 3572.22 1458.16 14
E036-11h 35 109 11 11 11 5 707 3250.60 3299.97 0.00 0
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