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Abstract This literature review sought to identify the role of Operations Research and Management
(OR&M) in the Healthcare Systems (HS) decision/policy making processes that have undergone a
remarkable transformation when faced with pandemics, especially during the COVID-19 era. In this
study, we investigate OR models and OM techniques that facilitate clinical decision-making with short-
and long-term objectives for operational cost reductions and increase of social welfare from the HS’s
point of view and public policymaker’s perspective, respectively. Here, our concern is investigating
expensive and complex decisions to provide healthcare services during the outbreak of an infectious disease
such as SARSa, Ebola, seasonal influenza and influenza pandemicb, COVID-19 pandemic, while available
capacities are overwhelmed by the heavy influx of patients. The complexity of such tactical/operational
decisions during pandemics may even turn their scope into triage decisions which may entail unknown
future cost-trajectories. Based on the World Health Organization (WHO) guidelines, these decisions are
categorized into preparedness and response plans to be performed before the declaration of a pandemic,
in anticipation of such events and respectively, after its declaration to hedge its fatalities. We also
highlight decision-making practices designed to allocate strategic investments for public-health policy-
making purposes with conflicting and costly objectives to combat epidemics/pandemics at state- and
national-level governments. Finally, we present future research directions in the pandemic context.

© The Author(s) 2024. Submitted: 2023 as the Review.

aSevere Acute Respiratory Syndrome
bhttps://www.cdc.gov/flu/pandemic-resources/index.htm

1. Introduction

Since the early nineteenth century, several epidemics and
pandemics have occurred with varying morbidity and fa-
tality statistics. The "Spanish Influenza" was declared a
global pandemic in August of 1918. The European countries
faced the fatal wave of it in early summer, while the United
States experienced it during fall. It caused 20-40 million
losses of life worldwide (Taubenberger, 2006). In February of
2001, Foot-and-Mouth-Disease (FMD) started to spread in the
United Kingdom targeting livestock animals (Grubman and
Baxt, 2004). The FMD and its variants had detrimental eco-
nomic consequences that almost struck everywhere around
the globe, except New Zealand and North America. Asian
flu, known as H2N2, with 1-4 million deaths during 1957-
1958, and Hong Kong flu or H3N2 with 1-4 million fatali-
ties worldwide during 1968-1969 WHO (2009) are two other
pandemics from the past. The Severe Acute Respiratory Syn-
drome (SARS) was identified by the World Health Organiza-
tion (WHO) as a fatal disease in the Spring of 2003. It infected
27 countries on all continents. As reported by Heymann and
Rodier (2004), SARS and Avian influenza H5N1 are eventually
contained by imposing rigorous controls after their outbreaks,
although SARS still persists and turned into an endemic1. The
influenza H1N1 (2009) pandemic claimed the lives of 151,700-
575,400 individuals worldwide, as the report provided by the

1A pandemic that is always present.

Center for Disease Control and Prevention (CDC) says2.

FIGURE 1. Word cloud

On March 11th, 2020, the World Health Organization (WHO)
declared the COVID-19 infection3, caused by the SARS-CoV-

2https://www.cdc.gov/flu/pandemic-resources/2009-h1n1-pandem
ic.html

3https://www.cdc.gov/dotw/covid-19/index.html
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2 virus, a global pandemic4 only three months after the first
confirmed cases5. For the rest of this review we recall that,
an infectious6 disease is called an epidemic when it can spread
to many individuals in a community. It also can turn into a
pandemic when it globally propagates in several countries7.
Up to this date, more than 447.5 million confirmed COVID-
19 cases and about 6 million deaths worldwide are reported8.
In section §2, we represent epidemiological formulations de-
vised in the past and recent models proposed for COVID-19,
with which one can simulate pandemics’ propagation.
The COVID-19 global outbreak imposed an immediate global
life-threatening concern and a disruptive surge in demand for
healthcare services. The overwhelming shortages and vul-
nerabilities in the core operations of the Healthcare Systems
(HS), compounded by the heavy influx of patients, have mo-
tivated many innovative Operations Research and Manage-
ment (OR&M) studies in the pandemic context.
To hedge the unprecedented uncertainties and disruptions in
the healthcare service consumption and combat pandemics fa-
talities, there is a need for a national plan9 (US-HSC, 2005)
and global guidelines (WHO, 2009) to tackle such natural dis-
asters. A new or frequently emerging epidemic with strain
drifts (e.g., seasonal flu virus) entails more complexities to
these plans in the execution time, which leads WHO to up-
date them frequently (Holloway et al., 2014). These plans, in
general, can be divided into Preparedness §3 and Response §4
plans.
The preparedness plans may be in the form of surveillance
schemes combined with contact tracing to identify a new in-
fectious disease, or trace a recurring epidemic. To trace epi-
demics, governments monitor reported syndromes to mea-
sure pandemic spread, severity, and transmission rate in or-
der to estimate their outbreak risks. In preparedness phase,
one can also envision the stockpiles of scarce medical items to
tackle limited production capacities during recurring seasonal
flu. Moreover, to anticipate seasonal flu outbreaks and their
frequent drifts, the WHO decides the composition of vaccines
by examining different strain combinations and potential pro-
duction levels, see Fineberg (2014); Brandeau (2019) for pre-
paredness and response plans for the flu of 2009 and anthrax.
In section §5, we proceed with a policy-centric perspective
which notably increases the scope of plans to strategic Policy-
Driven decisions at the governmental level to tackle a pan-
demic hardened by severe clinical and financial uncertain-
ties. In such decision-making paradigms, the existing players’
(e.g., pandemic, host population/public, individuals, phar-
maceutical manufacturers, government, WHO, etc.) inter-
acting decisions seek distinct or sometimes conflicting objec-
tives. We investigate dealing with such challenges in both
game-theoretic and mathematical programming frameworks.
In the later, distinct decision model components such as ob-
jectives and constraints imposed by each player are mutually

4https://www.who.int/director-general/speeches/detail/who-direc
tor-general-s-opening-remarks-at-the-media-briefing-on-covid-19---11
-march-2020

5COVID-19 (2020) is the sixth international concern after the H1N1 in-
fluenza pandemic (2009), twice Ebola outbreaks in Africa (2014 and 2018),
the polio epidemic (2014), and Zika (2015).

6When the virus or other causes of an infectious disease may move
from one host to another using a transmission mode.

7On March 12th 2020, more than 120 countries report 44279 cases to-
tally, see https://www.who.int/docs/default-source/coronaviruse/situa
tion-reports/20200312-sitrep-52-covid-19.pdf

8https://www.nytimes.com/interactive/2021/world/covid-cases.h
tml

8The background figure for our word cloud is the virus causing the
COVID-19, see https://www.cdc.gov/dotw/covid-19/index.html

9Homeland Security Council (HSC)

combined into a unified fashion. We note that the mathe-
matical programming modeling approaches can barely pro-
vide a decision-making setting like the game-theory, in which
several competing individuals affect each other’s decisions
and/or represent heterogeneous collective behaviors in the
decentralized decision-making problems.
We have devoted section §6 to the best practices in health-
care supply chain during previous pandemics and natural
disasters. Epidemics in general may impose striking dis-
ruptions/failures and their consecutive ripple effects across
a supply chain network. These network failures are a com-
mon result of placing nonpharmaceutical interventions like
curfew/lockdown, closure, or an imbalance between supply
and demand during a pandemic. These restrictions may slow
or stop raw-material transportation to production-plants. The
latter consequences increase the production yield uncertainty
for the downstream manufacturers. At the supply point,
many manufacturing lines are capital-intensive; therefore, ca-
pacity expansions in the supply chain network under a se-
vere shock may not be the first viable option. At the de-
mand points, however, a pandemic may cause both increased
and decreased demands for various goods, thus resulting in
lengthened or idle services, including transportation opera-
tions.
We outline the future research avenues in OR&M applications
in the pandemic context in section §7.

Remark 1. In this remark, we present the theme of this review and
targeted audiences. The main purpose of this review is not to com-
pare the performance of OR&M mathematical formulations devised
to cope with pandemics and adapted solution methodologies therein
with each other, although we report all major and notable contribu-
tions.
Here, we rather address and highlight issues, challenges, and a col-
lection of decision/priority making processes faced by policymak-
ers in the planning, organizing, and delivery of healthcare services
to public in the epidemics/pandemics era that led OR&M commu-
nity to come up with such optimization approaches Brandeau et al.
(2005).

A word cloud of keywords used in this review is shown in
Figure 1.

2. Epidemic Models

In this section, we review the epidemiological models that are
developed to imitate the propagation of infectious diseases
through the host population. The epidemic models enable the
decision-maker to characterize the spread of the disease by
quantifying its components and statistics, such as the num-
ber of the susceptible and infected individuals, death cases,
transmission rate and contagiousness, etc., within the popu-
lation. The healthcare policymaker can then forecast the pan-
demic’s out-of-sample behavior and accordingly, the capaci-
ties and supplies to be provided to avoid future shortages.
Here, we first introduce the compartmental models in which
the host population is divided into a set of distinct compart-
ments, where each compartment exclusively represents indi-
viduals with an identical clinical status (e.g., compartments
of susceptible, infected, or recovered individuals.). In this
modeling category, during each time step, a constant number
of individuals leave their current compartment for another.
These transfers between compartments and their correspond-
ing rates determine the size of each compartment at each time-
step and overall dynamics through time. These changes in the
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size of compartments are mainly captured by differential or
integral equations, see §2.1.

We then investigate network models in section §2.2. In a net-
work, each node represents a unique individual in the host
population. Each edge between two nodes implies the prob-
ability of a social contact with another individual, because
of living in the same household, attending the same school,
workplace, or random contacts in public gatherings. To each
edge, a time-dependent contagiousness probability is also as-
signed.

The compartmental and network models represent two dis-
tinct sampling approaches of the host population. In compart-
mentalized models, individuals within each compartment are
sampled identically10 when are being transferred between
two compartments. However, in the network models, the so-
cial behavior, contact and transmission rates, and other demo-
graphic specifications are uniquely defined for each individ-
ual, in a heterogeneous fashion. At the end of this section,
we also present miscellaneous models in §2.3. The interested
reader may see Pan et al. (2021) and Choisy et al. (2007) for
a thorough exposition of various mathematical models pro-
posed for infectious diseases and the related solution meth-
ods.

2.1 The Compartmentalized Models: SIR, SEIR, and Their
Variants

The first compartmentalized model, called SIR (detailed in
what follows), and its variants are introduced in three semi-
nal papers by Kermack and McKendrick (1927, 1932, 1933). In
the SIR model (Kermack and McKendrick, 1927), a host pop-
ulation is partitioned into three compartments (i) individuals
Susceptible to infectious disease shown by S, (ii) currently In-
fected individuals denoted by I, and (iii) patients Removed due
to death or Recovered represented by R. In this model, each
susceptible individual meet other individuals (including in-
fected patients) according to a constant contact rate. During a
social contact with an infected individual, the infectious dis-
ease may be transmitted to the susceptible individual with the
contagiousness rate11. When infected, susceptible individuals
leave S to I with the transmission rate. In Kermack and McK-
endrick (1927), infected individuals will be transferred to the
R due to recovery12 or death at the same rates. It is worth not-
ing that the SIR model in Kermack and McKendrick (1927) is
suitable for epidemics in which the recovered individuals will
obtain full-immunity so they will remain in R, once recovered.

In Kermack and McKendrick (1932), however, the authors as-
sume that the infected population may be removed with dis-
tinct recovery and death rates. In this model, those recovered
only obtain partial immunity (López and Rodo, 2021) and will
regain susceptibility status through time. The infected indi-
viduals may also return to S due to false test results.

In many epidemic models, the infectious disease may also
represent an Exposed (E) stage or incubation period, thus par-
titioning the host population into four compartments, called
SEIR. During the incubation period, the transmitted infec-
tion represents a latency period during which, the individ-
ual is still asymptomatic and is not able to transmit infection.
Therefore, an exposed person first leaves S to E.

There are several variations of the SIR and SEIR models in

10All individuals contained in the same compartment represent the ex-
act replication of a single clinical status.

11It may be static or dynamic.
12When the immune system removes the infectious disease.

the literature13 that are constructed by envisioning additional
compartments in order to capture various clinical characteri-
zations more exclusively 14 such as new birth, natural death
(Carcione et al., 2020; López and Rodo, 2021), hospitaliza-
tion/quarantine (Bertsimas et al., 2021a; Giordano et al., 2020),
vaccination/partial immunity (López and Rodo, 2021; Ren
et al., 2013; Bertsimas et al., 2021a), and social distancing
(Mwalili et al., 2020). Other compartmental models rely on
repartitioning the existing compartments based on the sever-
ity of symptoms, government interventions (Li et al., 2021;
Gillis et al., 2021; Rǎdulescu et al., 2020), and disease subtypes,
see Porco and Blower (1998) for an HIV epidemic model with
two sub-types, the possibility of obtaining cross-immunity by
vaccination, and natural deaths.
Carcione et al. (2020) present a different version of the SEIR
model by accounting for new birth and natural death cases
while distinct recovery- and death-rates are considered. New
births will be added to S, and natural deaths will be heteroge-
neously reduced from all compartments. Mwalili et al. (2020)
develop a new SEIR-P epidemic model for COVID-19. The
proposed model represents some fundamental modifications
to the SEIR model, like repartitioning I into asymptomatic
and symptomatic subcompartments IA, IS (Rǎdulescu et al.,
2020), the possibility of moving from E to S, and a Pathogens
compartment P (Du et al., 2021). The latter compartment con-
tains the virus produced by IA and IS subcompartments and
its prevalence in the environment. Therefore, the individuals
in S can be exposed to IA, IS, and P compartments.
To precisely model various infection rates, each correspond-
ing to a specific type of social interaction in the host popula-
tion, Chung and Chew (2021) divide the overall types of in-
teractions into three sub-categories (i) fixed interactions (e.g.,
home, workplace, dormitories), (ii) temporary social gather-
ings, and (iii) random interactions in a crowd. Rǎdulescu et al.
(2020) propose a modified-SEIR model with seven compart-
ments and four age groups. The major difference is consider-
ing a fraction of exposed individuals in E who can also carry
enough pathogens to infect susceptibles.
López and Rodo (2021) present a modified-SEIR model to in-
vestigate the spread of COVID-19 in Italy and Spain with
new birth/natural death, hospitalization, and partial immu-
nity. In this model, hospitalized individuals are assumed to
be fully quarantined and unable to infect susceptibles. The
approach employed to solve the dynamical system is based
on an adjust-then-predict method (Bertsimas et al., 2021a), in
which the time-dependent recovery/death rates are first fit-
ted to historical data and then used in the test data for out-
of-sample predictions. Gillis et al. (2021) consider a modified-
SEIR model where I is repartitioned into three subcompart-
ments, presenting pre-symptomatic, mild, and severe infec-
tion signs; three quarantine subcompartments and a hospital-
ization compartment are also added to the SEIR model. Then,
each (sub)compartment is further divided by age and comor-
bidity indices. This model is used to measure the financial
impact of interventions designed for Nova Scotia, Canada.
Lemos-Paião et al. (2020) propose a compartmental model
with seven compartments, like incoming foreign travelers
and the risk of infection (Barnett and Fleming, 2022), nat-
ural death, quarantine, and general ward/ICU hospitaliza-
tions, see Wood et al. (2020) for scenario modeling to mitigate
ward/ICU capacity-dependent deaths. The main difference

13https://docs.idmod.org/projects/emod-hiv/en/latest/model-seir.
html

14And their associated dynamics to enter/leave a compartment from/to
other compartments.
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between previous models and this one is the possibility of be-
ing transferred between the general ward and ICU. In such
cases, the patients admitted to ICU who do not develop severe
symptoms can leave ICU for the general ward. Moreover, hos-
pitalized patients in the general ward will leave to quarantine
and then return to the S compartment due to recovery. Le-
ung et al. (2021) use a modified-SEIR model to capture the dy-
namics of a Cholera outbreak in three different demographic
populations: an urban city, a refugee camp, and an adminis-
trative complex with ten buildings. The Cholera infection can
be transmitted through contact with infected individuals and
the use of contaminated water. In this model, infected indi-
viduals may shed bacteria into the environment whether they
are clinically asymptomatic or symptomatic. The prescription
of a leaky vaccination with one or two doses reduces the sus-
ceptible population by providing partial immunity.

Watanabe and Matsuda (2022) address the deviation of ac-
tual infected COVID-19 patients from the confirm cases that
is due to asymptotic cases in an extended SEIR epidemic
model with three types of infections (asymptomatic, presymp-
tomatically infected, symptomatically infected) and isola-
tions, called SEII IHHHR (no vaccine and specific medicine is
modeled). The authors examine their proposed model under
various levels of detection rates and compliances with isola-
tion, with and without feedback on the latter. The numerical
results explicitly determine detection rates with which health-
care capacity will be overwhelmed or result in an underesti-
mation of death cases.

Bertsimas et al. (2021a) develop a new compartmental model
for COVID-19, called DELPHI, that consists of the following
compartments: susceptible S, exposed E, infected I, recov-
ered R, deceased D, undetected, detected hospitalized, de-
tected quarantined. Each one of these compartments is fur-
ther decomposed into those individuals who either recover
or die, shown by UR, UD , DHR, DHD , DQR and DQD , re-
spectively. The hospitalized patients are partitioned into HR

and HD as well. The diagnosed but undetected patients will
generate two subcompartments, UR, or UD , which present
the undetected individuals who will recover or die. The pa-
tients who have tested positive but have not been hospitalized
yet will be posed in the self-quarantine compartments QR or
QD . Then, an algorithm with descriptive, predictive, and pre-
scriptive modules employs historical data and clinical results
to train and test a regression model for forecasting compart-
ments’ size in the future.

Giordano et al. (2020) present an epidemic model in which the
host population is partitioned based on the severity of clinical
symptoms, being detected due to performing the COVID-19
test or being remained undetected. The SIDARTHE model
considers eight compartments denoted by S for susceptible,
I infected15, D diagnosed16, A ailing17, R recognized18, T
threatened19, H recovered, E extinct or dead. The clinical
assumption made in the SIDARTHE model, which makes it
different from the DELPHI model, is the possibility of being
healed while being in I, D, A, R, or T compartment. How-
ever, in the DELPHI model, the hospitalized individuals ad-
mitted to ICU (severe symptoms) will be removed and cannot
be healed. The second difference may lie in the fact that in the
SIDARTHE model, an individual only with life-threatening

15is asymptomatic or paucisymptomatic (i.e., below the threshold of de-
tection by HS) and undetected

16asymptomatic infected or detected individuals
17symptomatic infected and undetected
18symptomatic infected and detected
19infected with life-threatening symptoms and detected

clinical symptoms may be removed from E. However, in
the DELPHI model, the undetected or quarantined patients
can also be transferred to D too. The authors state that the
SIDARTHE model approaches its equilibrium phase20 when-
ever all I, D, A, R, and T compartments are empty, and apply
control theory to justify that under a basic reproduction rate
R0 < 1 this condition happens.

2.2 Network Models
We devote this section to reviewing network models that are
implemented in Agent-Based Simulation (ABS) modules to
imitate epidemics. The ABS modules are developed to investi-
gate the pandemics dynamic and efficiency of pharmaceutical
and nonpharmaceutical interventions.

Dalgıç et al. (2017) address the significant advantages of the
ABS models when compared to compartmentalized models
in vaccine allocation strategies. First, a modified-SEIR model
in which individuals are divided into five age groups is pre-
sented. Each individual whether susceptible, exposed, or
infected has a vaccinated/unvaccinated label. Various age-
based infection rates are considered, and these rates are inde-
pendent of vaccination-status of each individual. The above
compartmentalized model is then examined against FluTe21,
an open-source agent-based flu simulation code (Chao et al.,
2010). For both approaches, MADS algorithm (Audet et al.,
2021) is employed to perform a global search to assign vac-
cination priorities to various age-groups. The authors men-
tion that while the ABS model in FluTe is computationally
expensive, it results in a different vaccination strategy with
respect to the compartmentalized model. The main difference
between the ABS and compartmentalized models stems from
the fact that under various transmission rates, the ABS model
results in very different vaccination strategies. However, in
the modified-SEIR model, the age-based vaccination policies
remain unchanged when various pandemic scenarios are ex-
amined, implying to a major drawback in the compartmen-
talized models, see also Longini Jr. et al. (2005); Germann
et al. (2006); Halloran et al. (2008); Wu et al. (2006) for em-
ploying stochastic simulation models for measuring the qual-
ity of various interventions such as (a) antiviral prophylaxis,
(b) quarantine, (c) vaccination, (d) social mobility, (e) house-
hold quarantine, (f) isolation, (g) school closure, (h) commu-
nity and workplace social distancing to contain flu pandemics
under various infection rates and basic reproduction number
assumptions, see Dorjee et al. (2013) for a thorough exposition
of proposed simulation approaches for the flu pandemic.

To investigate the significance of mitigation strategies in the
flu outbreaks, Das et al. (2008) design a large-scale com-
prehensive stochastic simulation framework which precisely
mimics (i) the demographic- and community-based features
such as the varying size of households based on census data,
various businesses, schools, churches, shopping, and public
centers, (ii) pandemic uncertainties in contact, transmission,
mortality rates for each location, age, gender, health condi-
tion, and (iii) various daily activities for both weekdays and
weekends. The devised simulation model is then tested for
modeling a community of 1,100,000 inhabitants distributed in
400,000 households. The authors extensively examine several
pharmaceutical and nonpharmaceutical interventions like (1)
delay in declaring a pandemic due to a poor syndromic
surveillance, (2) various definitions of high-risk groups for

20The phase at which the pandemic will remain contained.
21https://www.cs.unm.edu/~dlchao/flute/

Report by Salavati-Khoshghalb et al. 4

https://www.cs.unm.edu/~dlchao/flute/


Healthcare OR&MOM under Pandemics: a Review 5

prioritizing hospitalization/vaccination22 and their efficacies,
and (3) a set of social distancing interventions, and (4) the
length of isolation at hospitals. An MDP framework is de-
vised to model the dynamic of a pandemic through time, and
interventions taken to control it. In this setting, the state-
space represents the pandemic’s statistics, the level of avail-
able pharmaceutical interventions to be used in the following
periods, the decision-space consists of various priority levels
that could be assigned to each risk-group for vaccination, and
the length of applying each intervention. We refer the inter-
ested reader to Aleman et al. (2011) for devising a simulation
model to test the effects of complying with stay-at-home in-
tervention on the number of infected individuals in Toronto
with 5,000,000 population grouped in 1,800,000 households.

Lee et al. (2013) aim at resolving the operational challenges in
the decentralized US health system to perform mass dispens-
ing of pharmaceutical items during pandemics. To do so, a
simulation-optimization routine, called RealOpt23 (Lee et al.,
2009) is developed. Mass dispensing for controlling a generic
pandemic’s propagation consists of the distribution of medi-
cal supplies through determining optimal dispensing facility
locations, staffing, resource allocation, and household assign-
ments to the opened facilities under a limited budget. The
devised simulation performs two phases to optimize opening
POD-facilities and in turn staffing them. Then, it assigns the
households to the opened facilities by considering their dis-
tances. By opening each POD-facility, its inter-POD epidemi-
ological dynamics capturing the social contacts within each
POD facility will be augmented to a master outer-POD system
that models the host-population epidemiological dynamic.

Rauner et al. (2005) address the HIV treatment challenges in
the underdeveloped countries due to their insufficient med-
ical and socioeconomic infrastructures. As reported, 70% of
affected HIV/AIDS individuals live in Africa, and 90% of in-
fections are transmitted from mother to child. To prevent
mother-to-child HIV transmission, two policies are imple-
mented in a discrete-event simulation module: (i) antiretro-
viral treatment using Nevirapine at the delivery time by ac-
counting for the mother’s infectiousness status, and (ii) bottle-
feeding. In this simulation, the age, gender, disease state,
treatment status, and disease propagation of the individuals
are assumed to be targeted indicators to represent various
subgroups in the host population. Overall, 27 scenarios for
the combined interventions are envisioned for a 9-month du-
ration. While the duration of using antiretroviral had a direct
effect on preventing the infectiousness, the simulation justi-
fies that the existing socioeconomic obstacles in the under-
developed countries may turn the bottle-feeding treatment
into a policy with counterproductive effects, see also Santos
et al. (2012) for setting up a data envelopment analysis model
to compare the efficiency of 52 countries in allocation of re-
sources to prevent mother-to-child HIV transmission.

Mniszewski et al. (2008) employ the EpiSimS simulation
model (Stroud et al., 2007) to examine the available pharma-
ceutical/nonpharmaceutical interventions such as antiviral
stockpiles and school closures to control an upcoming H5N1
avian flu pandemic, while a strain-specific vaccine takes 3-8
months to be developed. Here, antiviral medications are pre-
scribed for a ten-day course for each patient, and closure de-
cisions are imposed for a 6-month duration. This simulation
model imitates the population demographics in households,
rooms, and other mixing spaces by considering a diverse set

22We consider these decisions as triage decisions.
23https://www.orau.gov/rsb/realopt/

of social interactions. The numerical simulation justifies the
effect of these interventions in delaying an avian flu outbreak
and reducing its attack rate up to 1% below the baseline, al-
though re-opening schools may result in the second wave of
pandemic when full-immunity is not provided with vaccina-
tion.

2.3 Advanced Pandemic Models
In this part, we present compartmentalized epidemic models
in which the stochastic processes of individuals’ arrival rate
at various compartments, and their contact rates are explicitly
modeled.
Kaplan (1989) present a generalized epidemic model for the
prevalence of HIV during risky sexes. The new arrivals (sus-
ceptible individuals) starting their risky sex-life increase the
size of susceptible compartment when a generic vaccine only
produces partial-immunity. Whenever an individual gets in-
fected or his sex-life is finished without getting HIV, this size
will be reduced. In the same fashion, an exposed individual
leaves his compartment by the end of incubation time or sex-
life. Similar to models presented in section §2.1, the infectious-
ness depends on contact rate multiplied by the infectivity of
an infected individual. All primary compartments are repar-
titioned based on a set of predetermined rates of having risky
sex, the length (or rate) of having risky sex-life, and the in-
cubation rate of new arrivals. In this study, these rates may
follow arbitrary distributions. The authors generate a set of
scenarios based on the vaccine efficacy ratios using historical
data. The simulation of scenarios indicates that even under
an optimistic scenario, i.e., a full vaccine-efficiency, it takes at
least fifteen years to eradicate AIDS from San Francisco.
Larson (2007) depict the heterogeneous contact rates and so-
cial interactions within a host population under an influenza
pandemic by using a nonhomogeneous mixing model (see
also Zaric (2002) for mixing models in epidemic networks).
In the presented model, the susceptible and infected popu-
lations are repartitioned into several subcompartments each
corresponding to a distinct contact rate24, e.g., the individuals
with low or high contact rates (the contact rates of a house-
keeper and a student are assumed to be low and high, re-
spectively.), while all rates follow Poisson processes. For each
susceptible subpopulation, the probability that a susceptible
becomes infected during a social contact with an infected in-
dividual can be computed by multiplying the contact rate of
the susceptible person, probability of meeting an infected per-
son, and infectivity of the infectious person, where the last
two factors are independent of the social activity levels of any
susceptible person. These contact-based probabilities are used
to compute the reproduction number during each day and the
overall severity of the flu pandemic. The presented model is
extended to a generalized model with time-dependent contact
rates. This models ensures that the contact rates proportion-
ally tend to decrease when the size of susceptible population
tends to decrease.

3. Preparedness Plans

In the WHO’s classification of the pandemic propagation, the
first three phases are (i) uncertain sources of infection and
transmission rate, (ii) sustained transmission rate from human
to human, and (iii) pandemic (WHO, 2009). Before the pan-
demic phase, the preparedness plans - with which one aims
at identifying a new or declaring the start of a recurring pan-

24The set of distinct contact rates is predetermined.
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demic - for mitigating the pandemic in the early stages and
containing its first outbreak are of paramount importance, see
Brandeau (2019) for the comprehensive preparedness and re-
sponse plans in an anthrax pandemic.
The significant developments in global responses to pan-
demics in the past have helped the WHO to recalibrate its
guidelines and evaluations of best practices in the prepared-
ness plans. In this section, we review some of those best prac-
tices and the role of OR&M to combat infectious diseases be-
fore the pandemic phase. These areas are categorized as syn-
dromic surveillance and contact tracing §3.1 and §3.2, stock-
pile location problem §3.3, vaccine composition and produc-
tion planning §3.4.

3.1 Syndromic Surveillance: Statistical Methods, and Pre-
vious Experiences

3.1.1 Syndromic Surveillance
A pandemic can impose fundamental pressures on the host
population, healthcare, and non-healthcare services. The role
of healthcare systems is to provide the essential clinical ser-
vices during pandemic, such as treatments, isolation, and vac-
cination for patients. Non-healthcare sectors simultaneously
perform critical operations such as social, industrial, trans-
portation and supply chain activities to preserve the function-
ality of the society for containing pandemic’s impacts.
To better characterize an epidemic and its severity before it
turns into a pandemic and disrupts the above-mentioned pub-
lic services, the healthcare policymakers in each country or
the WHO at the global level engage in Syndromic Surveillance.
The syndromic surveillance aims at monitoring the real-time
observations of disease syndromes that are being reported by
patients arriving at hospitals, detected in laboratory tests, or
mentioned in social media. The collected data will be grouped
based on the symptoms and will be analyzed to determine the
infection source(s) (animal, human, etc.), quantify the trans-
mission rate, or basic reproduction number. It also helps to the
design suitable social interventions by measuring the severity
index of pandemic to further interrupt transmission chains,
and to provide vital recommendations for international trav-
elers (Barnett and Fleming, 2022) to curtail virus spread at the
global level. Therefore, any country’s failure to perform syn-
dromic surveillance, provide adequate capacities to properly
perform it, or carry out any other preparedness plan may eas-
ily threaten the globe with a pandemic (Heymann and Rodier,
2004).
The surveillance network consists of laboratory tests, tracking
syndromes in the web25,26 using data count, and change point
analysis, see Siettos and Russo (2013) for constant and piece-
wise linear signals, Poisson regression, time-series, inter-
event times, etc., and social media27, see also Lawson and
Kleinman (2005) for a comprehensive review of surveillance
methodologies for disease detection, and Agapiou et al. (2021)
for their applications in the COVID-19 era in Cyprus. These
sources can be used to monitor the syndrome variations by
detecting significant changes in the reported numbers or an
unusual outbreak that leads to identifying a known or new
emerging pandemic.

3.1.2 Statistical Methods To Declare A Pandemic
Sparks et al. (2010a) analyze patients’ small arrival counts

25https://www.healthmap.org/
26https://trends.google.com/trends/
27https://twitter.com/

with symptoms of the Ross-River virus in New South Wales
with day-to-day and intra-day nonstationary Poisson distri-
butions for day-ahead planning, when standardizing forecast
errors fails. A Poisson regression model, capturing daily pat-
terns, weekly and seasonal cycles, and arrival lags, is de-
signed to approximate the patient influx, see also Vicuña
et al. (2021) for a quasi-Poisson regression model with dis-
tinct weekday and holiday covariates to predict COVID-
19. To detect a potential outbreak, an adaptive Cumulative
Sum (CUSUM) and Exponentially Weighted Moving Aver-
age (EWMA) statistics are introduced that can identify any
unusual variation out of a predefined false-alarm threshold,
see Costagliola (1994) for a definition of a cut-off point (i.e., a
false-alarm threshold) in syndromic surveillance, Siettos and
Russo (2013) for a comprehensive review of statistical-based
methods for epidemic surveillance, and Sparks et al. (2010b)
for extending surveillance plans in Sparks et al. (2010a) by
modeling patient arrivals with negative binomial distribution
counts.
Alternatively, Sparks et al. (2019, 2020) analyze the inter-
detection times of patients with fever, head cold, and upset
stomach syndromes, expressed in the social media. These ar-
rival times or equivalently, their inter-arrival times are ap-
proximated by exponential, Gamma, and Weibull distribu-
tions. These surveillance plans extend plans proposed by
Sparks et al. (2010a,b) by explicitly considering public and
school holidays in the proposed regression models, see also
Zwetsloot et al. (2021) for bivariate events modeling (HIV in-
fection time and AIDS incubation time) of AIDS patients in
Atlanta.

3.1.3 Previous Experiences to Combat New Epidemics
Based on Google search statistics and stock market reactions,
Ru et al. (2021) present an empirical study of the 2003 SARS
epidemic imprints in multiple countries to examine their re-
sponse quality to COVID-19 and simultaneously population
compliance with social distancing. The proposed regression
model is fitted to the last two weeks of January 2020 in coun-
tries with SARS experiences, taking into account the number
of detected cases and deaths. Then, a Cox proportional haz-
ard model is developed to capture the effect of SARS imprints
in the government’s responses to COVID-19, considering the
following covariates: SARS confirmed cases, COVID-19 con-
firmed cases, and their multiplication. The numerical results
strongly validate a positive correlation between the number of
SARS and COVID-19 cases. It has also shown that countries
with fewer SARS imprints have responded to COVID-19 with
lengthier delays and less social distancing compliance.

3.2 Contact Tracing
A healthcare policymaker performs contact tracing in pan-
demics to identify and break infection transmission chains.
To do so, the close contacts of an infected individual should be
identified, classified, and finally shortened based on a suitable
scoring strategy for applying tests, isolation, or medical treat-
ments. It is evident that the list should be shortened because
the availability of contact tracing technology and available
pharmaceutical and nonpharmaceutical interventions are re-
stricted by a limited budget. Contact tracing approaches deal
with determining the volume of close contacts and the strat-
egy of prioritizing/shortening contacts to reduce its costs, see
also Firth et al. (2020) for the effectiveness of tracing multiple
contact layers, and the ineffectiveness of releasing close con-
tacts of an infected individual from quarantine only with a
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negative COVID-19 test-result.

3.2.1 Policies and Limitations in Simulation
Armbruster and Brandeau (2007) investigate the design of an
optimal budget assignment for contact tracing during a pan-
demic whose dynamic governed by a SIR model augmented
with two additional compartments such as the traced indi-
viduals who are either susceptible or infected. First, a cyclic
graph is established in which each individual is connected to
her priority list of contacts. The transition rate can be com-
puted by accounting the number of infected neighbors of each
individual, and incoming international travelers (Barnett and
Fleming, 2022) representing the endogenous and exogenous
sources of infections. A discrete-event simulation model pre-
scribes the treatment to an infected individual when she is de-
tected by a positive test-result, and then transfers her to the re-
covery compartment. Next, the simulation module chooses a
contact tracing policy e.g., contact scoring (scores are derived
by counting the number of visits and social engagements of
each close contact with the detected patient) to identify and
then shorten the primary contact list of the confirmed case.
A fixed cost is associated with each tracing action taken from
shortened list by entailing the technology for tracing and test
prescription costs. Finally, the simulation examines various
tracing strategies to reduce the total treatment/contact trac-
ing costs and number of new infections. Ubaru et al. (2020)
employ time-dependent contact-tracing graphs to optimize
performing both infection and recovery tests. In this model,
the authors take simultaneously into account the spread of
virus from contaminated surfaces and infected individuals.
To impose quarantine and hedge the spread of the SARS-CoV-
2 virus, Bicher et al. (2020) model both contact and location
tracings in a Monte Carlo simulation framework. First, the
contact list of each infected individual is extended by consid-
ering age, sex, and visited places such as households, work-
places, schools, or leisure places. To examine the efficacy of
interventions, three baseline scenarios are constructed by tak-
ing into account for population compliance, and their leisure-
time and social contact reductions. Then, the effects of impos-
ing quarantine and closure are compared with these baseline
policies. In this model, contact tracing ensures that as soon
as an individual is detected, all her primary contacts will be
informed and will be quarantined for 14 days. Moreover, lo-
cation tracing enforces a temporary-closure of a workplace or
school whenever a confirmed case reported, see also Yu and
Hua (2021) for applying contact tracing for enforcing isolation
and quarantine to control COVID-19 at Wuhan, and Maxmen
(2020) for successful stories of surveillance, isolation, test, and
quarantine policies. Pokharel et al. (2021) design an ABS mod-
ule to compare manual vs. bulletin contact-tracings. In the
former, any individual who was in a social contact with a de-
tected individual (with a positive test whether categorized as
asymptomatic or symptomatic) within a specific radius will be
listed in the primary close contacts. The latter focuses on the
locations visited by an infected person and contacting the in-
dividuals who were present at that location at the same time.
The experiments performed on the SEIR model show compa-
rable results for both types of tracing. However, by applying
the bulletin contact-tracing one can take the following advan-
tages such as being less resource intensive, easier to imple-
ment, and offering a wide range of privacy options.

3.2.2 Data-Driven Propagation
To handle pandemic propagation uncertainties, an alterna-
tive approach to restrictive epidemiological models is a data-
driven propagation model. By using electronic Healthcare Re-
imbursement Claims (eHRCs) in the United States’ HS, Zhang
et al. (2019) propose a unified data-driven surveillance and
contact tracing approach to break the transmission chains of
flu. In the eHRC system, the patients’ locational granular-
ity only refers to their zip codes. Therefore, the authors first
transform eHRCs to dynamic propagation logs, in which it is
specified how many individuals are infected by COVID-19 in
each zip code at each time step28. Then, these propagation
logs are combined with contact networks of visits between
different zip codes. Since several individuals live in each zip
code, to extract actual visits of infected individuals, one must
consider various cascades, each representing the selection of
a specific individual as an actual infected person who may
spread the virus with a known probability. The authors set up
an optimization framework to optimally select a set of opti-
mal cascades under a limited budget, thus deriving an opti-
mal contact tracing strategy to reduce flu transmission rate.

3.3 Stockpiles for Vaccine and Antiviral Drugs
To reduce the spread of recurring infectious diseases or even
new epidemics, the WHO strongly recommends establishing
stockpiles of vaccines, antivirals, PPEs, ventilators, and other
pharmaceuticals to all nations, aligned with the WHO’s pre-
paredness plans. In this part, we elaborate on the research
studies that investigate optimal stockpile locations and opti-
mal inventory levels at them. Here, we review a diverse set
of problems as stockpile assignment at the international level
(Sun et al., 2009), joint stockpile levels at several hospitals
(DeLaurentis et al., 2008, 2009; Adida et al., 2011), stockpile
levels for reserved customers (Harrington Jr. and Hsu, 2010),
and a comparison between central and local stockpile designs
(Huang et al., 2017).

3.3.1 Stockpiles: International Level, Hospitals and Central
vs. Local Locations

Sun et al. (2009) model a selfish assignment of antiviral stock-
piles at the international level during a pandemic event as
a two-period game-theoretic setting. It is assumed that the
source country, where the pandemic started does not keep
any stockpile. Antiviral drugs have two main benefits: re-
ducing the susceptibility of individuals to infection, and the
infectiousness of infected individuals. In this operational pol-
icy, when transmission rates between different countries are
low, all countries selfishly assign their drug stockpile only to
themselves or the source country. If a central coordinator like
the WHO tends to reduce the global effects of the pandemic,
the decisions obtained by the Nash equilibrium assign the
reserved stockpiles of each country to the source country as
much as possible. DeLaurentis et al. (2008, 2009) studied de-
termining the optimal stockpile levels at a set of hospitals that
aim to share their antiviral inventories in preparedness for flu
pandemics. The proposed game-theoretic model takes into
the account the antiviral purchasing- and holding-costs, and
penalties when the incoming demands remain unmet. In this
setup, an excessive stochastic demand can be redistributed
to those hospitals that are not participating in responding to
the underlying pandemic. The authors show that the best re-
sponse of each hospital is a piece-wise linear convex function

28Somehow increasing locational granularity to zip codes and then per-
forming patient arrival counts, see §3.1.2
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of its inventory-level and can be computed only when discon-
tinuity points of its slope (the gradient of response function)
change their sign. The Nash equilibrium is numerically ob-
tained when the best response functions of two hospitals in-
tersect.
Adida et al. (2011) compare a game-theoretic approach with
a centralized set up to tackle optimizing the joint-stockpile
levels of medical items entailing holding/shortage costs at
several hospitals under stochastic aggregated demands, see
DeLaurentis et al. (2008, 2009) for the disaggregated-demand
version of this problem. It is assumed that the aggregated
demands are associated with predefined regions and their
stochasticity is explicitly modeled by a set of scenarios. To
promote the design of stockpiles at hospitals, one must as-
sume that the marginal holding cost is less than the marginal
shortage cost. In the game-theoretic setting, when these hos-
pitals are ordered based on the ratio of their holding to their
shortage costs, at Nash equilibrium, only the hospital with the
smallest ratio can hold inventory. In the centralized version,
the decision-maker seeks to coordinate optimal stockpile lev-
els for minimizing the total costs. In this setting, however,
the authors suggest ordering hospitals based on their hold-
ing costs, with which Nash equilibrium implies that only the
hospital with the lowest holding cost establishes the stock-
pile. Huang et al. (2017) propose a unified forecasting and
optimization scheme to solve the mechanical-ventilator stock-
pile location-inventory problem during a flu pandemic in the
US. Using a multivariate Gaussian distribution, the forecast-
ing scheme employs a linear regression setup to estimate flu-
related hospitalizations to predict the ventilator’s demands
at the county level in multiple periods. Once the regional
ventilator demands are derived for three pandemic severity
scenarios (i.e., mild, moderate, and severe), the optimization
framework tackles the stockpile location and inventory prob-
lem, in which mechanical ventilators will be stored at central
or regional stockpiles. The numerical results conducted on
the CDC historical data for a flu epidemic in Texas recom-
mend establishing local stockpiles rather than central inven-
tories. This is due to the highly correlated regional demands
and higher-quality services guaranteed with local stockpiles,
mostly stemming from the reallocation distances and corre-
sponding delays.

3.3.2 Manufacturer Stockpiles for Reserved Contracts
Harrington Jr. and Hsu (2010) investigate establishing re-
served antiviral stockpiles at the manufacturing locations be-
ing envisioned based on pre-pandemic contracts with indi-
viduals. Such contracts enforce providing antivirals in a 24-
48h time-window during a flu outbreak in the United States.
In this inventory management problem, such contracts incur
an extra reservation fee, but proportionally much less than
the antiviral’s price, and bind manufacturers to fulfill them
with the highest priority compared with pandemic-time pur-
chases. Therefore, the individuals with these contracts always
will be served with the reserved inventory. The authors jus-
tify that without these contracts, manufacturers may propor-
tionally increase their inventory levels only if the pandemic-
time prices can be relatively increased with respect to pre-
pandemic prices. Further results show that holding inventory
does not make any notable advantages from the manufactur-
ers’ perspective when the expected profit and holding costs
are close29, while with a relatively low holding-cost, the opti-
mal inventory level is the stockpiles’ full-capacity.

29implying to a negligible marginal profit

3.4 Vaccine Composition and Production Planning
In this part, we review vaccine strain selection at international
and country levels in sections §3.4.1 and §3.4.2. We first note
that each year, the WHO starts planning for vaccine compo-
sition several months before the start of flu pandemic sea-
son, while the length of planning in the United States is about
seven weeks.
To recall related studies, we first discuss some comparisons
without accounting for the planning level. Özaltın et al.
(2011); Cho (2010) only consider the current vaccine cross-
effectiveness when facing future flu variants, however, Wu
et al. (2005) also investigate the effects of previous epidemics,
vaccinations, and immunities in terms of history to design
new vaccines. Özaltın et al. (2018) investigate the vaccine de-
sign problem when the manufacturer aims at optimizing mul-
tiple competing objectives other than vaccine efficacy.

3.4.1 The WHO Plans and Objectives

Özaltın et al. (2011) investigate the flu-shot design and pro-
duction of multiple strain combinations at the WHO for a
multi-period planning horizon. The goal of the WHO is to im-
prove its surveillance and decision-making process to hedge
vaccine shortages and its cost during the flu season. In the
proposed multi-stage stochastic program under demand un-
crtainty for vaccination, the flu shots are designed by select-
ing the following three strains H3N2, H1N1, and an influenza
B virus30, that can also provide cross-effectiveness. For ex-
ample, an individual vaccinated with H3N2 also obtains par-
tial immunity against H1N1. Considering the existing cross-
effectiveness, the goal is to maximize the expected utility of
the vaccine coverage to treat all three flu types by choosing
the best strain-combinations. In this setting, the flu season oc-
curs at the final stage, while all previous stages are the manu-
facturing periods. A Dantzig-Wolfe decomposition technique
is developed by establishing a master problem to construct
the flu-shots strain composition decisions. The subproblem in
turn evaluates strain composition decisions against produc-
tion yield uncertainty and cross-effectiveness. To perform the
numerical experiment, several instances with up to 512 sce-
narios are generated by considering low, moderate, and high
attack rates for a maximum six-week time-horizon. The nu-
merical experiments validate the benefits of flu shots when
the attack rate is high. Wu et al. (2005) examine the opti-
mal policy of repeated vaccinations for the WHO to control
flu epidemics with Normal drifts in consecutive periods in
a stochastic dynamic programming framework. In the first
policy, a vaccine will be composed based on the expected up-
coming strains. In the second policy, the history of vaccines
and previous epidemic strains, called antigenic history, i.e.,
one considers the cross-reactive antibodies released in the past
that decrease the effect of repeated vaccination in the next epi-
demic is used for vaccine selection. Each strain is mapped to
Euclidean space for evaluating the spatial quantity of the im-
mune system to determine the pre- and post-vaccine states,
and the effect of a conditional drift on the immune system as
a post-epidemic state. By precisely defining the underlying
immune state-space, one can compute Markovian transitions
between various states of the immune system. The objective
is to maximize the minimum cross-reactivity of the new vac-
cine against the current immune state. A history-clipping ap-
proximation scheme is devised to reduce the size of stored his-
tory to only one period. This heuristic approach significantly

30https://www.cdc.gov/flu/prevent/vaccine-selection.htm
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improves the computational complexity by resulting in near-
optimal repeated vaccination-policies.

3.4.2 Vaccine Compositions in the United States
In the United States, every year, an advisory committee de-
cides the seasonal flu composition during one of their con-
secutive meetings. The committee chooses one of these two
options (i) the cross-effectiveness of previous vaccines against
the new strain is sufficient, or (ii) defer the vaccine compo-
sition decision until the next meeting when new information
is observed. The required information to make this decision
evolves over time and will be updated when a new strain is
detected, or an epidemic is declared. The latter reason and
a lengthy period of 4-5 years for capacity expansion result in
stochastic production yields. Moreover, the flow of informa-
tion is a random process, and it depends on the syndromic
surveillance performance. Therefore, once new information
is observed, the committee can update its belief about the
new strain and its prevalence severity. Cho (2010) construct
an optimal dynamic policy that precisely quantifies the value
of real-time information. This approach alternatively evalu-
ates the future cost of choosing a wrong strain in vaccine com-
position. Such an optimal policy weighs the myopic choices
against dynamic actions. The myopic policies in vaccine
composition refer to producing the previous year’s vaccine.
Such policies lead to minimum production yield uncertain-
ties, however, they are less effective whenever a new strain
propagates. On the other hand, taking dynamic actions im-
plies making here-and-now decisions that increase the risk of
choosing the wrong strain. Nonetheless, this gives the vaccine
manufacturers enough time to fulfill forecasted demands. The
optimal production plan maximizes social welfare, although it
neither presents symmetric characteristics in making static or
dynamic decisions, nor monotonicity. The authors show that
retaining or updating a strain may change production yields
by more than ten million doses with four hundred million ex-
tra welfare expenditures during the early periods. However,
when production is depleting rapidly, both retaining and up-
dating policies result in the same production levels and wel-
fare costs. Finally, optimal timing decisions validate a strain
updating decision no later than 2-3 weeks after retaining pre-
vious strains. Özaltın et al. (2018) model the flu vaccine com-
position and production problem in a multistage stochastic
bilevel program. In this bilevel formulation, the vaccine de-
sign committee, representing the leader in a bilevel optimiza-
tion program, seeks the optimal strain selection to maximize
the expected vaccine efficacy while the manufacturer, as the
follower, aims at maximizing its expected profit under yield
uncertainty. There are two categories of flu, i.e., A and B, each
containing two different strains. The manufacturer produces
trivalent and quadrivalent shots. In this setting, the commit-
tee first chooses the vaccine design and its timing, while the
manufacturer selects production yields and remaining capac-
ities, which are the result of delays in decision-making tim-
ing. The authors apply Dantzig-Wolfe decomposition by tak-
ing the leader and follower problems as master and subprob-
lems. The numerical experiment performed during the 2014-
2015 flu season in the United States justifies that the selection
of strains with the least prevalence and drift should be carried
out earlier.

4. Response Plans

As mentioned in Heymann and Rodier (2004), each country’s
failure in the executing preparedness and response plans may

turn an epidemic into a pandemic, lengthen a pandemic out-
break, generate recurrent waves, or turn it into an endemic.
Based on the WHO’s guidelines (WHO, 2009), an infectious
disease in its third phase is already in the pandemic phase
and outbreak aftermath that requires a global coalition of the
public, states, and countries to prescribe an aligned response
plan to reduce and hedge its damages to the individuals’ life,
work, and economy.
These response decisions can be envisioned and then executed
locally in the hospital wards (Fogerty et al., 2021) or within
a state/province/country (Bertsimas et al., 2020; Mehrotra
et al., 2020; Basciftci et al., 2023; Ramachandran et al., 2020).
We start with intervention decisions taken by governments to
contain pandemics after its third phase in section §4.1. In sec-
tion §4.2, we recall studies in which pandemics are taken into
account of schools and universities day-to-day planning.
Furthermore, these response actions can be taken to optimize
the production and supply/inventory/reallocation of phar-
maceutical items such as antibiotics, test-kits, and vaccines
(Özaltın et al., 2011; Liu and Zhang, 2016; Du et al., 2021;
Basciftci et al., 2023; Thul and Powell, 2021) in section §4.3,
ventilators in section §4.4.1, allocation of ICU beds in section
§4.4.2, bed capacity estimation in section §4.4.3, and medical
staff planning and allocation (Bienstock and Zenteno, 2015;
Georgiadis and Georgiadis, 2021; Gao et al., 2021) in section
§4.4.4.

4.1 Interventions

In general, R0
31, the exposure or contagiousness rates vary

considerably in different populations with demographic and
sociobehavioral differences (Delamater et al., 2019), depend-
ing on the individuals’ age, sex, type of contact, job, work-
place, etc. To precisely capture the crucial effects of these fac-
tors in the spread of disease, researchers model them as so-
cial interactions. The healthcare policymakers can then ex-
amine imposing interventions such as the mandatory lock-
down, travel bans, face-mask, etc., by either removing or re-
stating the possibility of each social interaction in compart-
mental models §2.1, or simulation frameworks §2.2 for eval-
uating their response quality to contain pandemics (Chung
and Chew, 2021; Rǎdulescu et al., 2020), or how their com-
binations can be optimized under a limited budget to provide
a reasonable threshold of protection for the host population
(Gillis et al., 2021).

4.1.1 Modeling Social Dynamics
To decompose the transition of susceptible individuals to I
compartment, Chung and Chew (2021) exploit three types of
time-dependent, but age-independent social interactions32 us-
ing adjacency matrices with overlapping multiplex network
topologies. The authors simulate these interactions to investi-
gate the effect of different types of social interaction on the

31R0 is the most important parameter in epidemic modeling, whose
value determines whether an infectious disease may turn into an epidemic
(> 1) or not (< 1). The basic reproduction ratio R0 is an epidemiological
metric to quantify the contagiousness or transmissibility of infection from
infectious individuals during an outbreak. The biological, social contacts
and environmental factors may have effects on R0, but three main indica-
tors to describe this quantity are the duration of contagiousness, the likeli-
hood of transmitting the disease to a susceptible during a contact, and the
contact rate for an infected individual (Delamater et al., 2019).

32Including household, dormitory, and job interactions that are assumed
high-frequency deterministic contacts, temporary social gatherings as the
second type are considered low-frequency deterministic contacts, and the
crowd network as the third type provide low-frequency uncertain con-
tacts.
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size of I. To simulate the infection circuit breaking in Sin-
gapore, 85% of social contacts in workplaces (the remaining
15% represent essential workers), and 95% of visits between
households are removed, although social dynamics within
each household remain unchanged. Rǎdulescu et al. (2020)
simulate social dynamics in transmitting the COVID-19 infec-
tion by defining an age-based time-dependent mobility ma-
trix to resemble mobility and trips between various locations
in a generic college town. A set of predefined exposure rates
based on visited locations and age groups is defined. In this
way, each exposure rate corresponds to a specific type of so-
cial contacts to fully capture their individual and collective
effects on the transmission of infection. In this setting, vis-
iting a doctor is considered as a low-risk activity, while at-
tending school or workplace imposes moderate risk to each
individual. A hypothetical college town with 1000 individu-
als and two initial infections is modeled to perform the nu-
merical experiments. The authors numerically validate that
the closure of restaurants, bars, and entertainment venues had
negligible effects, and were localized to those age groups in-
volved when one enforces these closures separately. It is also
shown that community contamination mainly took place dur-
ing public gatherings and ceremonies. Li et al. (2021) define
a time-dependent multiplicative exposure rate for COVID-19
transmission applied in the DELPHI model (Bertsimas et al.,
2021a). In this approach, the government intervention and its
effects are defined through an arctangent function providing
three successive options such as no taken action, full closures,
and their diminishing effects. These interventions can be de-
picted by the arctangent’s successive concave, convex, and flat
graph behaviors.

4.1.2 The Closures, Travel-Ban and Isolation
Gillis et al. (2021) investigate the effect of weekly interventions
such as closure, isolation, and travel-ban policies in an inte-
grated epidemiological-optimization framework. The policy-
maker selects a severity-level for each intervention per week
that explicitly controls the dynamics of the epidemiological
model. For instance, each severity level of travel-ban fixes the
exposure rate to a specific value in the host population. These
nonpharmaceutical interventions are chosen to minimize the
total cumulative number of infections using a limited budget
in Nova Scotia, Canada.

4.1.3 Isolation, Ring and Mass Vaccinations
Ren et al. (2013) consider various control strategies to min-
imize the fatalities from both disease and vaccination in a
smallpox pandemic, governed by the SIR model dynamic.
The nonpharmaceutical and pharmaceutical interventions
tested by Ren et al. (2013) are the isolation, ring vaccination33,
and mass vaccination. One using the stronger intervention
can reduce the basic reproduction number monotonically; for
example, the ring vaccination also implies enforcing isolation.
In the same fashion, the mass vaccination implies enforcing
isolation and the prescription of ring vaccination. The base-
line is set to the total number of fatalities under no control
strategy. The authors compute the closed forms for the to-
tal number of fatalities under these three vaccination policies
and compare them with the baseline policy separately. They
also obtain the ranges associated to the SIR parameters under
which a policy outperforms the other policies in the form of
resulting in fewer fatalities, see also Kress (2005) for the effect
of social mixing to control the propagation of smallpox.

33Vaccination of close contacts of infected individuals.

4.1.4 Closures and Priority-Based Vaccination
Deng et al. (2013) investigate the quality of triage and inter-
vention decisions like prioritized vaccination schedules for
high-risk groups or closure of cinemas, restaurants, and bars
to prevent the spread of a synthetic pandemic in Portland,
Oregon, where more than 1,600,000 individuals visit 250,000
locations. Each person can only visit a set of predefined places
according to a preference probability distribution, and may
get infected at any location, whether vaccinated or not, but
with different rates. The population also represent compen-
satory behavior implying that if the first preferred location
is closed, the individual will visit the location with the sec-
ond highest desirability. The authors restrict the problem to
100 individuals and their 195 preferred locations, and design
a greedy and an alternative exact algorithm to solve the re-
stricted problem.

4.1.5 The Effects of Lockdown in Pandemic
Kaplan (2020) estimate the ICU-bed shortages in Connecticut
during the COVID-19 pandemic when the infected individu-
als are decomposed by their infection durations correspond-
ing to distinct transmission intensity-functions for each class
of infection duration. In this approach, the arrival of infected
individuals is modeled as known Poisson processes, provid-
ing an instantaneous intensity-function per transmission rate.
In such a way, the cumulative number of infected individu-
als is computed by this collection of duration-specific infec-
tion intensity-functions. At each time, the cumulative number
of infected individuals who can transmit the pathogen with
various infection durations including incubation time is com-
puted. Then, its multiplication to the susceptible population
results in an instantaneous intensity function of the newly in-
fected individuals. To reduce the instantaneous transmission
rates, the volume of the susceptible population for the lock-
down period, and the volume of new infections, the authors
suggest imposing the following interventions respectively, the
isolation/hospitalization of infected individuals, lockdown,
and social distancing. The authors validate that the lockdown
has only temporary effects as resetting the initial conditions
for the susceptible population and shifting pandemic peaks
forward through the time-horizon.

4.2 Pandemic in Universities and Colleges
Proano (2016) address the challenges the Rochester Institute of
Technology (RIT) faced during the H1N1 flu pandemic, as the
first global pandemic of the 21st century in the Spring of 2009.
Considering the uncertainty in the severity of the H1N1 flu,
part of these challenges were operational issues like match-
ing the supply and demand for vaccines34, and the lack of
integrated vaccine registration to collect historical data from
RIT faculty, student, and staff groups who have already re-
ceived vaccination outside of the campus. The aim of this
study was to investigate what would be the optimal vaccine
doses to provide full immunity within the RIT community.
Moreover, what decisions must be taken to avoid class disrup-
tions and suspensions that incur extra costs to the students
and RIT itself, or food-logistic decisions for the quarantined
students? The authors conclude that the pandemic’s uncer-
tainties or "lethality and infectiousness" have direct influence
on all RIT preparedness plans, therefore neglecting them will
result in major disruptions in RIT’s general activities.

34RIT ordered 13,000 doses but received 6,000, although 70 million pur-
chased H1N1 flu vaccines remained unused in the United States.
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Barnhart et al. (2021) investigate the in-person and on-
line course scheduling problem with scarce resources in the
COVID-19 era. The goal is to increase the number of students
who can take multiple courses without any conflicts, while
the mandatory social distancing policies reduce MIT’s effec-
tive class capacities. This scheduling problem includes fac-
ulty assignments, term planning, course timetabling, room as-
signment, and course enrollment. Each in-person course will
be constructed using 30-min lessons and will be distributed
based on the availability of these time blocks during work-
ing days, while following the precedence constraints of pre-
requisites, and avoiding concurrent assignments. To tackle
intractable instances whose complexity stems from the pro-
fusion of decision variables, various greedy procedures are
designed. These schemes perform the following consecutive
steps (i) restrict the course start-times to the beginning of time
blocks, (ii) break the joint room-and-time selection decisions
into a two-step procedure considering the online-course re-
placements to preserve the feasibility of schedules, and (iii)
run the symmetry-breaking aggregations for the subgroup of
students, presenting the same required courses.

4.3 Vaccine, Test-Kits, and Antiviral Allocation
In this section, we address the research conducted on the allo-
cation of vaccine, test-kits, and antiviral by considering triage
decision making §4.3.1, the tradeoff between prevention and
treatment §4.3.2, advanced uncertainty modeling techniques
§4.3.3, designing vaccination centers §4.3.4, and one vs. two
dose coverage §4.3.5.

4.3.1 Triage Decisions: Resource Scarcity, Optimality, and
Age Dependency

Cao and Huang (2012) investigate the tradeoff between life-
saving decision-making efficiency and ethical issues for al-
locating scarce pharmaceutical resources. A discrete-event
simulation framework is developed to examine the following
triage decisions: first come first served, random, most seri-
ous first, and least serious first. Overall, seven combinations
of experiments are conducted demonstrating that when the
scarcity of medical resources is high, the least serious first out-
performs all other policies. The authors note that the least se-
rious first triage-decision results in some ethical issues. How-
ever, when the level of pharmaceutical resource scarcity is
low, there is no major difference between these four policies.
Ayer et al. (2019) analyze optimal triage decisions to prior-
itize providing expensive treatment for the Hepatitis C epi-
demic in the US prisons, where the prevalence is ten times
more than outside prisons. A compartmental model with 14
compartments is established to capture five degrees of fibro-
sis severities for the inmates and new prisoners before and af-
ter prescribing treatments, which respectively represent pas-
sive and active transitions. This problem is classified as a
limited-resource allocation with prioritization among multi-
ple agents and is formulated as a weakly coupled MDP. The
reward function in this formulation considers the prerelease
accumulated quality-adjusted life-years (QALYs) of each pa-
tient, whether they are treated in prison or not. An optimal
policy designed to extract the optimal indexing triage deci-
sions to prioritize inmates and then choose to either apply
the expensive and limited treatment or not. The authors ad-
dress the sub-optimality of previously designed triage deci-
sions when made only based on inmates’ liver clinical status.
They show that due to disease transmission between prison-
ers, prescribing treatment to inmates with longer sentences is

more beneficial. As mentioned earlier, making allocation de-
cisions in a pandemic may turn into triage decisions when the
underlying resources are scarce. Lee et al. (2015) develop a
combined pandemic-queuing optimization framework to de-
rive an optimal prioritized H1N1 flu vaccination coverage at
the Point of Dispensing (POD) for high-risk individuals to
minimize the total attack rate35. In a prioritized vaccination
policy, a high-risk group or a portion of it receives the vac-
cine before other groups. Each POD consists of several queues
presenting the main waiting line outside each POD that will
be divided into multiple sub-queues leading to several vacci-
nation booths. Three compartmentalized models are consid-
ered to separately represent the population at PODs by indi-
viduals waiting outside of PODs, those waiting inside PODs,
and individuals whose vaccination fails to create immunity.
The authors numerically showed that a threshold-based pri-
oritized vaccination strategy for high-risk individuals outper-
forms both a myopic non-prioritized policy and a fully prior-
itized strategy in reducing the attack rate. Furthermore, the
devised solution framework significantly outperformed the
available ABS modules in terms of computational complexity
when the authors tackled the state of Georgia with more than
nine million population. Bertsimas et al. (2020) present an op-
timization framework to reduce the death toll by allocating
the COVID-19 vaccines subject to resolving real-time tradeoffs
between pandemic dynamics and risk levels mapped to each
age group in the United States. In this model, the dynamic
of the COVID-19 pandemic is governed by the DELPHI epi-
demiological model proposed by Li et al. (2021). The NYT36,
the US census37, and CDC38 data, and the governmental poli-
cies and their responses are simultaneously used to tune and
update the model’s parameters and estimate the risk levels
for various age groups successively. The proposed DELPHI-
V-OPT algorithm repeatedly simulates vaccination proposals
obtained by the original DELPHI model. Then, the infected
population will be fixed during the optimization phase to de-
termine the optimal vaccination allocation decisions.

4.3.2 Prevention vs. Treatment
To optimally allocate the limited budget for prevention and
treatment interventions envisioned for HIV patients, Coşgun
and Büyüktahtakın (2018) transform the traditional com-
partmentalized epidemic model SIAR39 to a nonstationary
Markov Decision Process (MDP). In this application, the pol-
icymaker is equipped with a set of intervention mixtures
placed in action space that can be prescribed to individuals
in S, I, and A. Each compartment is further repartitioned
into two subcompartments representing individuals who ei-
ther received a mixed intervention or did not. The state of
the dynamical system at each time step determines the size of
these three compartments and their sub-partitions. An ADP
framework is designed to solve the dynamical system over a
time period of six years, considering a limited budget for ap-
plying these interventions. The authors justify the resource
allocation decisions for preventing actions rather than treat-
ments. We refer the interested reader to Alistar et al. (2014)
for addressing such a tradeoff in the allocation of scarce HIV
resources in a multi-population model with distinct transmis-

35The ratio of newly infected individuals over susceptible populations
during each period.

36https://www.nytimes.com/interactive/2021/us/covid-cases.html
37https://www.census.gov/data/tables/time-series/demo/popest/2

010s-counties-detail.html
38https://www.cdc.gov/coronavirus/2019-ncov/science/forecasting/

forecasting-us.html
39 A: individuals diagnosed with AIDS.
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sion modes to reduce its reproduction number, Brandeau and
Zaric (2009) for investigating on the optimal amount of a lim-
ited expenditure that must be spent in HIV prevention pro-
grams, and Lasry et al. (2011) for the allocation of CDC pre-
vention resources.

4.3.3 Advance Propagation Uncertainties: Distributional
Constraints, and Belief

The most common approach to model uncertainty in a pan-
demic is to represent them as a set of scenarios40. Here, we
highlight new modeling approaches applied in the recently
published literature on the distributional constraints (Basciftci
et al., 2023), and the use of belief on epidemic propagation (Du
et al., 2021).
Basciftci et al. (2023) analyze the design of medical distribu-
tion centers (DCs) at various zones, each comprising several
states in the United States, to distribute test-kits and vaccines
at the demand points presenting spatiotemporal stochastic
demands. The authors examined the SP and DRO paradigms
against deterministic solutions to minimize unmet demands.
In such a way, designing/selecting demand points to fulfill
the stochastic demands can be assumed as the first-stage de-
cisions. In this problem, the uncertainty may result in both
excesses and shortages. Therefore, when a demand point is
selected the inventory and backlog decisions are taken as re-
course actions. These DCs can also be transformed into stock-
piles when they can keep inventory for future demand pe-
riods. To represent demand stochasticity, the SP setup em-
ploys the Monte Carlo sampling scheme, while in the DRO
paradigm, the distributional uncertainty is implicitly taken
into account by imposing various moment constraints. The
numerical results demonstrate that the DRO approach signif-
icantly outperforms SP and deterministic counterparts in re-
ducing unmet demands.
Du et al. (2021) study the optimal allocation of pharmaceuti-
cal interventions like oral vaccines and antibiotics in a rolling
horizon Approximate Dynamic Programming (ADP) setting
to alter Cholera’s spatial transmission through multiple com-
munities. During each time epoch, a set of observations from
infected individuals are combined with a single-period fore-
cast of compartment I, first, to determine the size/distribution
of the SIRB41 compartments, and then, to approximate the
state of Cholera propagation in the next period. In the op-
timization phase, the allocation decisions are determined for
the next period using an estimation of state-variables in the
future.
Thul and Powell (2021) model the stockpile location prob-
lem to distribute the COVID-19 test-kits and vaccines under
uncertain demands, stochastic propagation parameters in the
SIR model, and beliefs about the efficiency of test results and
vaccines. The authors develop an ADP framework to tackle
the problem. A two-step learning and vaccination scheme
embedded in a parameterized rolling horizon look-ahead pol-
icy is devised to optimize vaccine-stockpile locations. First,
the learning phase observes the environments, i.e., the size of
compartments in the SIR model as the current belief, which
further provides a forecast of infected individuals for the next
period. Then, a Bayesian process combines one-period fore-
casts and test samples drawn from population into an up-
dated belief for estimating the number of infected individuals

40https://www.reuters.com/business/healthcare-
pharmaceuticals/who-lays-out-plan-emerge-emergency-phase-
pandemic-2022-03-30/

41B is the compartment representing the contamination

in the following periods. The updated belief is then employed
in the vaccination decision-making phase. This look-ahead
vaccine policy outperforms other myopic policies by one per-
cent, and can serve half a million more vaccinated individuals.

4.3.4 Designing Vaccination Centers
Tanner et al. (2008) tackle generating the optimal vaccination
coverage for various household sizes in the SP framework.
In this problem, the sources of uncertainty are the contact
rate, number of susceptible or infected individuals, and effi-
cacy of vaccination. The optimal vaccination policies are ob-
tained such that the reproduction number remains less than
one. Since the vaccination can be expensive and its availabil-
ity is not unlimited, the chance constraints are employed to
bound the percentage of families whose reproduction num-
ber leads to a disease-free equilibrium. To solve the under-
lying CCP for real size instances, the commercial solvers are
employed, see also (Tanner and Ntaimo, 2010).
Dasaklis et al. (2017) highlight the role of an emergency sup-
ply chain for controlling the smallpox outbreak when phar-
maceutical items and vaccines must be supplied from several
emergency stockpiles to multiple regions and then to the point
of dispensing (POD) to provide full immunity. In the underly-
ing epidemiological model, the susceptible individuals are di-
vided into those who either can or cannot be vaccinated due to
medical reasons. Infected individuals with severe symptoms
will be moved to the death compartment. Also, infected indi-
viduals can receive vaccination during preliminary stages of
disease. The authors develop an integrated epidemiological-
optimization model to maximize vaccine coverage and min-
imize the shortage of medical items at the PODs during the
outbreak.
Yin and Büyüktahtakın (2022) formulate a multi-stage risk-
averse vaccination-logistics model for the Ebola pandemic in
Democratic Republic of Congo. In this approach, ring vac-
cination can be only performed at Ebola Treatment Centers
(ETCs). It should be noted that establishing these centers at
multiple regions is strongly constrained by available bed ca-
pacity and budget. The fluctuation in transmission rate be-
tween infected individuals and their close contacts is repre-
sented by a set of scenarios. The proposed model determines
the optimal location of ETCs in addition to the optimal vac-
cination strategy tailored to each region in each time period
to minimize the expected number of infected individuals42,
deaths and its conditional value at risk during the time hori-
zon. The problem is solved in its extensive form with 32 sce-
narios and five periods.
Bertsimas et al. (2021b) present a predictive-prescriptive
framework to optimize the effectiveness of the vaccination
sites in the overall vaccine allocation. The authors take into
account for various population centers, distances to vaccina-
tion centers and age-risk classes in the United States. The pre-
dictive model employs the DELPHI module (Bertsimas et al.,
2020) to improve the time-dependent allocations of vaccina-
tion for various age-ranges. This module takes the dynamics
of COVID-19, vaccine effectiveness budget, and zonal demo-
graphic information as input. The result of predictive module
is used as an input itself for the related vaccination-facility lo-
cation problem, in which one minimizes the death toll, num-
ber of exposed individuals, and distances to be traveled be-
tween vaccination centers and metropolitan areas. The coor-
dinate descent algorithm is employed to tackle the bilinearity
and nonconvexity in the location-allocation problem. To re-

42And the close-contacts compartment.
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duce average distances traveled43 from remote communities
to vaccination centers and resolve the vaccine assignment dis-
parity issues in the United States, Bravo et al. (2022) model
the COVID-19 vaccination facility-location problem by con-
sidering 58,00044 vaccination centers as a large-scale MIP. The
authors report a 62% reduction in average traveled distances.
The key observation is that the location of vaccine centers are
more critical than their capacity, specially when reducing dis-
parity matters.
Zhang et al. (2022) tackle the mass COVID-19 vaccination
scheduling of healthcare workers with an exact logic-based
benders decomposition approach and a metaheuristic solu-
tion algorithm. In this study, opening vaccination centers en-
tails a fixed cost, see Bravo et al. (2022) for vaccination centers
with no fixed costs. The aim is to schedule healthcare work-
ers in batch formats for vaccination at vaccination centers. A
vaccination center may assign an appointment to a group or
reject scheduling a batch. The proposed decision framework
seeks the optimal opening of a set of vaccination sites to al-
locate time slots to accepted batches. The objective is to mini-
mize the opening costs, traveled distances between scheduled
batches of healthcare workers and vaccination sites, appoint-
ment rejection costs, and vaccination tardiness costs.

4.3.5 One vs. Two Dose Coverage
Matrajt et al. (2021) analyze single- and two-dose vaccination
policies for 16 age groups in the state of Washington. Each
dose of vaccination may provide three types of partial protec-
tion to each vaccinee: (i) reduction in the probability of get-
ting infected when exposed to an infected person, (ii) reduc-
tion in the chance of developing symptoms, and (iii) reduc-
tion in the transmission rate of an infected individual. These
16 age-groups are integrated into a set of five vaccination
ranges. To examine vaccination policies with various num-
ber of doses, MADS, a derivative-free blackbox optimization
algorithm (Audet et al., 2021) performs a global search over all
feasible vaccine allocations to these five groups. The compart-
mentalized model then approximates the effect of each alloca-
tion on future compartment sizes to compute a desired objec-
tive. Five objective functions to minimize (1) the cumulative
number of infections, (2) symptomatic infections, (3) deaths,
(4) maximum number of ICU hospitalizations, and (5) non-
ICU hospitalizations are separately examined at each feasible
allocation. In various settings, including low, moderate, and
high transmission rates, the vaccine supplies for single and
double doses are tested, considering the limitations of supply-
ing the second dose vaccination for those who received only
the first dose. The authors justify that using a single-dose vac-
cine with high efficacy may reduce the mortality rate by 22%.
However, two-dose vaccination outperforms the single-dose
when the host population is facing an infectious virus with
high transmission rate.

4.4 The Allocation of Medical Resources and Personnel
As an infectious disease propagates through the host pop-
ulation and transforms from a few cases to an epidemic,
the preparedness plans will be replaced by response guide-
lines/decisions when shortages in medical resources and staff
emerge; then, triage decisions taken for individuals will be re-
placed by triage decisions for a group of individuals, city, or
state when capacity depletions, shortages and disruptions fre-
quently occur in healthcare systems.

43Without fixed cost of establishing the site.
44https://www.vaccines.gov/

In this section, we review research studies that address how
scarce medical resources, stored at national/regional stock-
piles or hospital inventories can be efficiently redistributed in
an equitable plan at the time of public-health emergencies (see
Melman et al. (2021) for a simulation framework to allocating
scare hospital resources during the COVID-19 pandemic).
Recent pandemics such as the flu and COVID-19 often attack
the respiratory system, imposing a need for mechanical venti-
lators for ill patients. Since these ventilators are of importance
for other patients too, shortfalls in the allocation of ventilators
can be easily envisioned (Mehrotra et al., 2020). All studies re-
viewed in section §4.4.1 investigate ventilator allocation at the
state level, except Zaza et al. (2016) who propose a decision
support system for the allocation of ventilators at the hospital
level. In the context of medical resource allocation problems,
hospital beds are accounted as scarce resources for admitting
distinct patients with various ranges of health issues. Due to
these differences, bed capacities mostly can not be shared be-
tween various wards of a hospital, see Ouyang et al. (2020)
for an allocation of beds in the general ward and ICU. In sec-
tion §4.4.2, we review research studies that investigate bed al-
location to control Ebola (Büyüktahtakın et al., 2018; Yin and
Büyüktahtakın, 2021; Long et al., 2018), seasonal flu (Liu et al.,
2020), or COVID-19 (Abdin et al., 2021). Yin and Büyüktah-
takın (2021); Abdin et al. (2021) address the equity in the bed
allocation problem.
In section §4.4.3, we recall the statistical forecasting applica-
tions for bed allocation in hospitals.

4.4.1 Ventilator Allocation
Zaza et al. (2016) investigate reallocating ventilators at the
hospital level, while the availability of space and experienced
staff are of paramount importance. The authors present a con-
ceptual model which considers a hierarchy for determining
demands from the finest to the highest locational granularity
including patients, hospitals, states, and federal levels. To re-
duce the disparity, a decision-making setting is devised to al-
locate/reallocate ventilators based on each state’s population,
the availability of experienced staff to utilize extra ventilators,
and the patients’ clinical statuses.
Mehrotra et al. (2020) propose a stochastic multi-period sup-
ply chain model for allocating ventilators to combat COVID-
19 in the United States. In the United States, the FEMA45

keeps an initial stockpile and also produces mechanical ven-
tilators. As demand for ventilators varies with time and loca-
tion, both shortfalls and excesses can be observed. The deci-
sions to be made at FEMA consist of determining ventilator
reallocation decisions to/from each state during each time-
period to retrieve shortfalls and excesses. A state-dependent
risk-averse parameter adjusts these reallocation decisions to
make reallocating ventilators ethically more permissible. The
FEMA’s ultimate goal is to minimize the expected shortfalls
of mechanical ventilators during a multi-period time-horizon.
The multi-period stochastic model is solved in its extensive
form.
Blanco et al. (2020) propose a robust reallocation model to re-
distribute the time-varying shortfalls/excesses of ventilators
and other medical resources at the demand points in a hub-
and-spoke model in Spain46. Various robust objectives such
as (i) minimizing the maximum unmet demand observed over

45Federal Emergency Management Agency
46With paths from the highest level, i.e., country, to a finer tier like re-

gions, provinces, and cities while only consecutive tiers are connected to
each other.
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periods or (ii) over the whole time-horizon are designed to de-
rive conservative decisions leading to the least unavailability
of medical items. The authors also construct a minimax regret
objective function, with which the decision-maker seeks a re-
distribution plan with the least total deviation from scenario-
based plans. A two-phase matheuristic algorithm first splits
the overall time horizon into single-period subproblems to be
solved efficiently, and then integrates the successive solutions
to construct a complete redeployment of medical resources.
Bertsimas et al. (2021a) devise a predictive-prescriptive frame-
work for ventilator reallocation in the United States. In the
predictive phase, using the DELPHI model, one can predict
new infections and then estimate the corresponding ventila-
tor demands for the next period. In the prescriptive module,
an assignment framework determines the optimal realloca-
tion decisions to fulfill such demands. To do so, the availabil-
ity of ventilators from previous period determines the excess
and shortfall points and accordingly the reallocation decisions
and their quantities.
Yin et al. (2021) investigate obtaining the optimal ventilator
allocations when the size of untested-asymptomatic infected
compartment and time-dependent transmission rates are un-
certain parameters. In this setting, the face-mask, social dis-
tancing, and lockdown can be imposed to contain COVID-
19. The underlying problem is modeled as a multi-stage risk-
averse Stochastic Programming (SP) to reduce the total num-
ber of infected individuals and death cases, see also Yin and
Büyüktahtakın (2022) for the same optimization framework
for the vaccine allocation problem. The uncertainty in the
actual number of untested-asymptomatic infected individu-
als is approximated by discretizing Normal distributions to
construct a set of discrete scenarios. To shorten the optimal-
ity gap and the running time, the authors develop various
lower/upper bounding schemes based on single-region re-
stricted problems. Ho et al. (2019) propose a dynamic re-
source allocation scheme to provide non-stationary policies
that impose prevention, screening, and treatment interven-
tions to maximize QALYs. The authors devise a static roll-
out policy to compute an approximated expected QALYs from
the current state of health of a the sub-population to the end
of time horizon. A backward scheme engages this static and
approximated policy to generate a dynamic sequential multi-
intervention policy.

4.4.2 Hospital Bed Allocation, Capacity Estimation, and Ex-
pansions

Büyüktahtakın et al. (2018) propose an epidemic-logistic opti-
mization model in which one establish treatment centers with
predefined bed capacities to provide treatment and control
the spread of Ebola in multiple regions. The Ebola’s com-
partmentalized dynamic is extended by repartitioning each
compartment into regions, where the migration of suscepti-
ble/infected individuals from/to the surrounding regions is
considered. The migration to other regions, epidemiological
dynamics, budget, and capacity constraints mutually govern
the spread of the Ebola virus and the associated facility loca-
tion subproblems. We note that more than two billion dol-
lars as a loan is given to three countries in Africa, which in
general represents the severity of a potential Ebola pandemic
and correspondingly the monetary value of the treatments.
The numerical results conducted on the 2014-2015 outbreak
in Guinea, Liberia, and Sierra Leone show a strong evidence
of a significant reduction in the total number of deaths and in-
fected individuals when the necessary budget is assigned for

setting up the ETCs.
Yin and Büyüktahtakın (2021) sought equity in the distribu-
tion of the ETCs and their bed capacities to control Ebola in
Guinea, Sierra Leone, and Liberia of West Africa in a multi-
stage SP framework under stochastic transmission rate. The
prevalence of Ebola can be in two ways, (i) person to person
or (ii) touching an Ebola patient dead-body before the funeral.
To characterize the uncertainty in the transmission rate of
Ebola, its lower and upper bounds are used to generate propa-
gation scenarios for an 8-stage time-horizon. First, the authors
justify the value of stochastic solutions in minimizing the in-
fected population and death cases under generated scenarios.
The number of infected individuals and ETC bed capacities
are defined as the target equity measures over multiple re-
gions. To preserve equity, the mean-absolute deviation mea-
sure restricts the deviation between the region-based fraction
of the infected individuals and the region-based proportional
population to a predefined value. Surprisingly, when no eq-
uity constraint is enforced newly infected individual/funeral
cases tend to decrease.
Abdin et al. (2021) establish a nonlinear program to exam-
ine the effect of testing and assigning treatment capacities at
hospitals to better control COVID-19 and simultaneously de-
rive equity over three major metropolitan regions in France.
This novel pandemic model including the asymptomatic,
mildly symptomatic, and severe symptomatic compartments
for infected individuals is constructed to precisely imitate the
COVID-19 dynamics. These compartments are further repar-
titioned into individuals whose infection is either confiremed
so they are in isolation or not. The COVID-19 tests will be per-
formed only on individuals who do not show severe symp-
toms. The individuals with severe symptoms will be admitted
to hospitals. The decisions are how one can optimally: assign
COVID-19 test capacities to individuals with asymptomatic or
mild symptoms, and design new test capacities at various re-
gions, while inter-regional mobilities and demographic corre-
lations are taken into account. To preserve equity between re-
gions, the Gini deviation measure to compute the weighted47

deviation of allocated resources between regions is employed
in the objective function. As expected, the treatment resources
are mostly allocated to more populated metropolitan areas,
except in the cases in which the incoming mobility flow to
these regions was more, see also Birge et al. (2022) for the im-
portance of mixing populations. To validate designing new
test capacities, it is shown that performing COVID-19 tests
can delay the admission-capacity depletion at hospitals by 2.5
months.
Liu et al. (2020) prescribe the optimal design of distant gen-
eral wards in a minimax optimization setting to control the
seasonal flu by providing treatment or isolation. A hospi-
talization compartment and a partially infectious compart-
ment are added to the SEIR model. Both opening and closing
of these temporary wards that provide hospitalization incur
fixed costs. These wards are necessary to perform treatments
at a unit variable cost for the infected or hospitalized patients.
The maximum unsatisfied demand among all regions and pe-
riods is minimized to precisely simulate the H1N1 low mor-
tality rate. The model is validated by conducting numerical
experiments on the 2009 H1N1 pandemic in China by chang-
ing the intervention start-dates and measuring its effects on
the number of isolated wards. Finally, it is numerically shown
that a two-month delay in building these wards will results in
a very steep increase in the necessary general wards from few

47based on the importance of regions
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thousand to more than 100,000, highlighting how insufficient
capacities may turn an infectious disease into an epidemic.
Long et al. (2018) compare four policies to plan for distribut-
ing medical interventions e.g., assigning ETU beds to patients
for controlling48 Ebola in highly dispersed sub-populations
in West Africa. In this problem, distance-based mixing con-
tacts49 and behavior dampening50 are taken into the account
of the SIR model. In the first policy, these resources are allo-
cated based on the cumulative number of infected individu-
als per region. The second policy works as follows: a sorting
scheme first computes an upper bound on R0 per region by
maximizing input/output mixing ratios to/from each region
and asymptotic dampening. Then, pharmaceutical resources
will be deployed according to the quantity of these upper-
bounds until they get exhausted. The third policy refers to
a one-step myopic policy with which one can estimate the pa-
rameters of the SIR model and apply forecasted demands to
allocate medical resources in a predictive-perspective fashion.
In the last approach, the authors model the problem as a finite-
horizon ADP in which, the state-space variables are the com-
partments’ size in the SIR model and action space includes all
eligible bed assignments to regions. Surprisingly, the one-step
myopic policy outperforms all other three algorithms.

4.4.3 Bed Capacity Estimation and Expansions
To address an increase in mortality rate of the non-ARIs pa-
tient, Gutierrez and Rubli (2021) examine hospital bed capac-
ity expansion and patient reallocation by estimating the pa-
tient composition at wards and inflow shocks to hospitals’ oc-
cupancy due to acute respiratory infections (ARIs) caused by
the 2009 H1N1 pandemic. A regression model is devised to
simulate the existing correlation between the number of ARI-
patients admissions, the death rate of the non-ARI patients,
the number of deaths, and their weekly effects. Only the local
effects of the outbreak collected at the surrounding hospitals
will be used in the regression model. By estimating the non-
ARI patients’ mortality rates, a policymaker can make precise
triage, patient reallocation, or capacity expansion decisions to
redirect patient congestion to reduce the mortality rate among
all admitted patients.
Yang et al. (2021) provide probabilistic forecasts in the form
of confidence intervals for bed demands for ARI and ICU pa-
tients at several hospitals, being prepared for the second wave
of COVID-19 at the county level in California. To perform
forecasting, the historical data for bed demands and a point
forecast for the total regional hospitalizations are in hand. To
estimate ward-specific forecast intervals, the authors equiva-
lently aimed to predict the fractions of regional hospitaliza-
tions entering into these two wards. A probabilistic guaran-
tee for the point estimate of quantities of interest is obtained
by performing a simulation technique that generates Poisson
hospitalization-arrivals, and bootstrapping the simulation re-
sults.
For predicting the bed occupancy of confirmed and suspected
COVID-19 cases in ICUs and general wards, Heins et al. (2022)
propose a forecasting model for three locational granularities
such as local, regional, and the Free State of Bavaria. In this
setting, the confirmed cases have a deterministic LOS51 in iso-
lation, but the uncertainty stems from those suspected cases,

48Reducing transmission from infected to susceptible
49Individuals from different sub-regions may have contact with suscep-

tible individuals in other regions
50Reduction in transmission rate, when individuals greatly restrict their

social visits during an outbreak.
51Length of stay.

i.e., undiagnosed (Gao et al., 2021), who must stay until a pos-
itive test result is obtained. The later uncertainty significantly
distorts the required bed capacity at hospitals. In a multi-step
regression scheme, bed occupancy is estimated based on the
historical cumulative occupancies, regressed newly infected
patients, and ratio of newly infected patients who will be hos-
pitalized subtracted by patients who stayed their regressed
LOS.

4.4.4 Medical-Staff Allocation
Bienstock and Zenteno (2015) investigate the effectiveness of
a robust optimization framework to preserve adequate staff
levels at multiple Emergency Departments (EDs) during lock-
down periods of a flu pandemic (the interested reader can
see Saghafian et al. (2022) for the effect of hospitals closures
amid the COVID-19 pandemic). A modified-SEIR model with
nonhomogeneous transmission rates, and social contacts fol-
lowing Poisson distributions in both host population and
EDs workforce is established to capture the flu dynamic. In
this approach, the uncertainty set is contagiousness probabil-
ity which is modeled as an interval. A robust multi-period
ED schedule consists of staff-level decisions that entail the
minimum total staff costs, when the worst contagiousness-
probability is governing the propagation of the flu pandemic.
To tackle the infinite-dimensional RO formulation, the au-
thors propose a decomposition approach. At each iteration,
when a staffing schedule represents an under-priced52 staffing
whose total costs does not correspond to the maximum re-
gret over the contagiousness interval, a cutting plane removes
such a staffing solution. Beeler et al. (2016) analyze the ef-
fect of staffing at the mass flu immunization clinics on the
vaccination volume, patients’ waiting time, operating costs,
and flu transmission inside these clinics in Toronto. A mass-
vaccination clinic consists of the following sections: an out-
door waiting line, indoor waiting line, registration, H1N1 flu
assessment counter, vaccination, and recovery wards where,
at each section, only one patient can be served. Except for the
flu assessment section, the reneging and bulking are assumed
in order to model realistic bounds on the waiting times and
queue lengths, while considering various family batch sizes.
The authors represent the uncertainty in the spread of flu,
throughput, and operational costs by one baseline scenario
and several hypothetical scenarios in an ABS package. The
simulation setting numerically validates the marginal bene-
fits of adding staff to these clinics to reduce transmission rate,
see also Mondschein et al. (2022) for investigating the wait-
ing times inside and outside of the voting centers during pan-
demic. When patient satisfaction is of paramount importance,
Gao et al. (2021) prescribe a robust optimization technique
to tackle an imbalance between the demand and supply of
medical staff in the presence of data contamination during the
COVID-19 pandemic. The authors highlight that demand un-
certainty stems from the uncertainty in undiagnosed patients
who are categorized into two groups: patients with either
mild or severe symptoms. Data contamination occurs when
staff demands in collected data are too small or too large,
caused by personal preferences or highly volatile operating
conditions. By observing the imbalance between demand and
supply, the authors first label the underlying hospitals with
constant shortages or surpluses, and balance points in their
medical staff. Based on these labels, each region entails a dis-
tinct utility function, estimating the staff transfers from sup-
ply points to demand points. The utility function will be max-

52entailing an incorrect estimation of the future costs.
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imized over all scenarios in the SP setting. To produce robust
solutions that are less sensitive to outlier demands, the au-
thors develop two robust-optimization models based on the
median and weighted median of the number of undiagnosed
patients.

5. Optimal Decisions for Policymakers

In this section, we review research studies in which one in-
vestigates the process of allocating scarce governmental re-
sources or deriving prioritized public-health policies to cope
with pandemics. These decision- or priority-making pro-
cesses strive for a high level of research attainments, not only
for all monetary and non-monetary expanses these decisions
entail, but also how they can be better translated into the
life-saving triage decisions. The competing players (the pan-
demic, WHO, governments, states, public, media, etc.) in the
pandemic, their interactions, and the lack of a blueprint of the
pandemic’s severity may easily hinder general welfare, from
policymaker’s perspective. Game theory is the fundamental
mathematical setup to make decisions for a group of players
who may not seek the same objectives, and their individual
and conflicting interests turn the decision making into a com-
peting environment (Fudenberg and Tirole, 1991).
Whether the problem fits in the game theory setting or math-
ematical programming, both settings lead to insights describ-
ing the life-saving policies with major contributions of OR&M
applications in this field for policymaking purposes. We cate-
gorize these studies first based on their decision types/usages
in the pandemic, and then who the players are.

5.1 The Pandemic Signals
In this part, we review optimal policies to generate alerts
with specific qualities to inform other players. The pandemic
signals in the consecutive periods between the WHO and a
member government (Alizamir et al., 2020), or to reduce eco-
nomic/welfare expenditures in a game between government
and public (de Véricourt et al., 2021).
Alizamir et al. (2020) design a Bayesian persuasion game in
which a sender agent, here, the WHO generates various (in
terms of quality and accuracy, e.g., high or low probable sig-
nals) signals by predicting recurring pandemics or natural
disasters to inform a receiver agent to earn reputation through
a history of sequential events. On the other hand, the signal
receiver, in anticipation of future events53 may take an early
action (i.e., before observing the disaster event or experienc-
ing a disease outbreak declared by a signal) as an interven-
tion to mitigate future excessive costs. It is assumed that pan-
demics entail fixed costs to both sender and receiver players.
In this setting, the sender’s signal is in the form of a proba-
bility distribution capturing the occurrence of an outbreak or
pandemic. The authors provide closed-form optimal policies
for both parties in this game. Surprisingly, the sender’s opti-
mal strategy implies that she will downplay/exaggerate the
risk of disaster occurrences when her reputation is improv-
ing/deteriorating.
de Véricourt et al. (2021) propose a game-theoretic approach
to investigate how government may inform the public about
a pandemic to reduce its effects on the economy and health-
care systems. In this setting, each individual independently
decides whether to comply with social distancing or not. In
this setup, both being infected54 and staying at home entail

53Follow independently a Bernoulli distribution
54Due to not complying with social distancing and the size of the in-

fected population.

their associated costs and economic expenditures. The gov-
ernment’s information policy is in the form of a probability
distribution i.e., a set of distinct messages representing the
support set, and a set of probabilities associated to these mes-
sages. Each message corresponds to a predefined severity of
the pandemic. Given the fact that the pandemic’s severity is
accounted as private information, four policies are defined to
treat it: full disclosure, no disclosure, exaggerate, or down-
play55. Each person in the society updates her belief about the
severity of the pandemic when she receives the government’s
message and then decides either to comply or not by employ-
ing the updated belief. The optimal individual choices at the
equilibrium is a threshold-based policy on their compliance
costs. Here, the government’s cost function is defined by a
convex combination of health and economic burdens entailed
by a pandemic, but prioritized based on government’s pref-
erences. The optimal policies for a government will be (i) full
disclosure when its preferences are balanced, (ii) exaggerating
the risk when healthcare cost matters, and (iii) downplaying
the risk when economic burdens of social distancing are high.

5.2 Robust Surveillance Policies
Tang et al. (2021) investigate devising a robust surveillance
strategy for monitoring the occurrence of pandemics in a zero-
sum game. This game is defined over a network of individu-
als. While policymaker tends to reduce the cost of performing
tests to detect a pandemic and its extent, pandemics are inter-
ested in creating large outbreaks. To infect the host popula-
tion, the pandemic must choose a set of agents to be initially
infected. The policymaker independently chooses (or maybe
not) a set of agents to monitor (syndromic surveillance §3.1.1),
perform tests and detect any potential infectious disease. Both
strategies are represented by probability distributions. In such
representation, each point in the discrete support distribution
represent a group of agents from the host population. The
success for the pandemic means increasing the number of in-
fected individuals before being detected and hedged by im-
posed interventions. Accordingly, the success for the policy-
maker is to prevent the pandemic to reach a high prevalence
resulted by infecting many agents.
The uncertainty lies in the imperfect knowledge of the uncer-
tain transmission probability in each contact that is implicitly
modeled as an interval. In this setting, the underlying pan-
demic propagating as a diffusion process seeks two conflict-
ing objectives: in the same time it plans to create a large out-
break, and simultaneously it wants to remain undetected. A
pair of primal-dual linear programs, respectively represent-
ing policymaker and disease problems, approximate the Nash
equilibrium by choosing agents to be tested and infected suc-
cessively that eventually results in an optimal utility for both
players.

5.3 Designing Intervention Policies
In this section, we review the role and quality of interventions
in distant communities (Brandeau et al., 2003), centralized and
decentralized interventions (Brandeau et al., 2003; Biswas and
Alfandari, 2022), the tradeoff between imposing closure and
the amount of resulted unemployment of non-teleworkable
subpopulation (Birge et al., 2022), individual social distancing
(Kordonis et al., 2022), and competing for limited resources at
international levels to perform interventions (Salarpour and
Nagurney, 2021).

55Bounded from above and below, respectively
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Brandeau et al. (2003) investigate the optimal pharmaceuti-
cal and nonpharmaceutical resource allocations to control an
infectious disease in multiple distant populations. These re-
sources will be translated into governmental interventions
and their corresponding severities. The policymaker chooses
each intervention and its level of performance which fixes the
transmission rate at a desired level. This in turn changes the
pandemic dynamic. Each level of resources to fix that trans-
mission level entails its distinct fixed and variable costs. The
decisions are determining the optimal investments or equiv-
alently optimal infection transmission rates for each popula-
tion to minimize the total number of infected individuals in all
regions by the end of the time horizon, under a limited bud-
get. Several analytical results on the convexity and concav-
ity56 of infected individuals’ graph are presented that relates
the infected population with the magnitude of the reproduc-
tion ratio and transmission rate.

Biswas and Alfandari (2022) also optimize sequential non-
pharmaceutical intervention decisions such as lockdown and
curfew periods in both centralized (national-level decisions)
and decentralized (region-based decisions), to control the
spread of COVID-19 in 13 regions in France. Imposing these
interventions aims aiming at minimizing the infected and
death cases. A wide variety of interventions including self-
isolation, travel bans, school closures, public gathering bans,
lockdown and their combinations can be enforced to control
the spread of COVID-19 when propagating under a modified-
SIR model equipped with hospitalization. As in Brandeau
et al. (2003), the available interventions are constrained by a
limited budget for execution. Different intervention levels fix
transmission rate to distinct levels that will reduce the num-
ber of infected individuals accordingly. The numerical results
show that the severity of interventions will be reduced over
time. Furthermore, the flexibility of decentralized decisions
results in up to 20% fewer infected individuals.

Leveraging pre-pandemic phone mobility data, Birge et al.
(2022) establish an optimization framework to control the
COVID-19 pandemic in multiple neighborhoods of New York
City (NYC) by restricting economic activities in predefined
regions. To present various levels of mobility, each neigh-
borhood is divided into three sub-groups corresponding to
teleworkable, nonteleworkable, and unemployed individu-
als. Each individual can travel to other neighborhoods due
to work or leisure, while the associated durations are given
beforehand (e.g., big data of pre-pandemic time)57. Then,
each susceptible person in this modified-SEIR model can be
infected when visiting other neighborhoods. The decisions
to make are determining the optimal allowable economic ac-
tivities or equivalently closure interventions in each region.
This corresponds to the fraction of work and leisure dura-
tions in that regions. Therefore, the fraction of region-based
economic restrictions maps the size of mixing populations
who are visiting each region, whether for working as a non-
teleworkable person or having leisure time. It is worth not-
ing that although the goal is to reduce infected and exposed
individuals by increasing closures, unemployment will tend
to increase which entails extra economic costs. The numer-
ical experiments show resuming nonteleworkable jobs up to
42.4%.

Kordonis et al. (2022) investigate optimal social distancing
strategies of infinitely many players grouped by a finite num-

56In general, the curvature.
57After the pandemic, teleworkable, and unemployed individuals only

visit other neighborhoods during leisure time.

ber of asymmetric infection cost functions. For each player, a
probability distribution determines her clinical status in a sep-
arate SIR model, where social distancing as an available inter-
vention may reduce the number of infected players. A cost
function comprising the cost of getting the infection, and tak-
ing social distancing actions in ordinary visits or public places
is associated with each player. The authors propose a piece-
wise constant action function during each period of time hori-
zon to characterize optimal policies. Further, it is shown that
these optimal policies are of threshold type during the time
horizon. In the decentralized version, a person with a high
infection cost function must impose a more severe social dis-
tancing action on herself. Finally, the variational inequalities
are used to validate the existence of the Nash equilibrium.
A stochastic generalized Nash equilibrium is introduced by
Salarpour and Nagurney (2021) to model the problem govern-
ments are facing when competing to provide N95 masks and
ventilators in the COVID-19 era. In a two-stage SPR setting
proposed to resemble the preparedness and response plans,
each government may take two sets of decisions before and
after the declaration of a pandemic, respectively. A Nash equi-
librium is then a point composed of the supply storage and
purchasing quantities before and after declaring pandemic.
At equilibrium it is evident that storage and purchase deci-
sions must entail the least expected unmet demands and pro-
curement costs as a disutility function for all countries, see
also Nagurney (2021).

5.4 Vaccination and Test Production Policies
In this section, we elaborate on research studies on the cost-
sharing and payback strategies (Chick et al., 2008), a menu of
contracts for unverifiable production promises (Chick et al.,
2017), optimal subsidies (Yamin and Gavious, 2013), interna-
tional levels (Mamani et al., 2013), production yield (Arifoğlu
et al., 2012; Arifoğlu and Tang, 2022), and multi-phase vacci-
nation (Yarmand et al., 2014).
Chick et al. (2008) investigate the manufacturing contracts for
flu-vaccine production to fulfill the government’s orders in
both game-theoretic and centralized SC frameworks, when
players or decision-maker are faced with various uncertain-
ties in the pandemic propagation. The government seeks
the minimization of the expected infected population and
the manufacturer production yield, while the manufacturer
aims to minimize the expected manufacturing costs. Both
manufacturer production and government ordering problems
are modeled as newsvendor models. It is shown that the
necessary condition with which the coordinated system out-
performs the game-theoretic formulation is establishing pro-
duction/order contracts that are cost-beneficial for both gov-
ernment and manufacturers such that prescribing vaccina-
tion monotonically reduces the infection. Furthermore, under
cost-sharing and payback contracts where the government
pays a fraction of production costs, both the game-theoretic
and coordinated settings result in the same pair of order-
production contracts, enabling manufacturers to mitigate the
excess production risks.
In a game-theoretic setup, Chick et al. (2017) study the flu vac-
cination contracts between a government and vaccine manu-
facturers facing probabilistic production yield and other un-
certain factors. Such uncertainties mostly lead to a two-stage
production process, including a late production period. The
price of fulfilling production shortfalls deferred to the late
production period is higher due to extra administration fees,
production/unit effort costs and moral hazards. The underly-
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ing problem is analyzed in two settings whether manufactur-
ers’ productivity factors are assumed to be private i.e., it is un-
verifiable information from the government’s perspective, or
alternatively, are public information. In the setting where un-
certain factors are public information, both selfish and coordi-
nated productions are examined. For the latter, it is shown
that mutual profits in wholesale contracts can be obtained
only if there is no extra administration penalty for delayed
productions. When manufacturers’ production factors are un-
verifiable, the government may establish an optimal contract
design problem to minimize the expected costs by setting up
a menu of transfer payment functions tailored for each level
of productivity. Interestingly, this menu of contracts imposes
manufacturers to either select contracts that match their actual
production efforts, or reveal their unknown production levels
to the government.

Yamin and Gavious (2013) assess the effect of paying subsi-
dies in designing vaccination policies in a game between the
healthcare policymaker seeking the maximization of vaccine
coverage, and the social planner interested in increasing so-
cial welfare. In this game, individual decisions in the host
population are negligible whenever the probability distribu-
tion of vaccination compliance for all individuals is the same.
In this setting, the social planner interest is to pay subsidies
that will determine vaccine compliance and coverage in the
host population. Both vaccination and not-getting vaccinated,
that probably leads to getting infected, entail their associated
utility/disutility costs. Given the probability distribution of
getting infected under SIR dynamics, the authors present the
closed form for compliance probability at the Nash equilib-
rium, whether the policymaker pays subsidy or not. The opti-
mal strategy turned out to be the higher subsidies for flu with
lower severity and low-risk age groups to preserve vaccina-
tion for the high-risk group ranging from 6-month-old chil-
dren to four years of age.

Mamani et al. (2013) investigate the optimal vaccination poli-
cies of several countries during a pandemic started from a
source country. Two types of prevalence are considered (i)
a star-shaped network where the flu only spreads from the
source country to the other countries, and (ii) a complete
graph model in which, the flu spreads from any country to an-
other. The authors examine three types of setups to derive op-
timal vaccination policies: (i) a game-theoretic setting, where
each country minimizes its total costs (vaccination costs and
welfare benefits) (ii) a centralized system to minimize the total
costs entailed to all countries, and (iii) coordinating contracts
in which the source country receives a subsidy from other
countries for performing vaccination. When the cost of vac-
cination for a fraction of population is more than its benefits,
the best response solution is strictly less than one, implying
the unavailability of vaccine for all risk groups in the first and
second approaches, see also Perez-Tirse and Gross (1992) for
a detailed exposition of flu vaccine pharmaceutical and so-
cioeconomic costs. It is shown that coordinating contracts re-
duce the centralized system costs in both prevalence models
because of the reduction in the total number of infections.

Arifoğlu et al. (2012) investigate a game between a manu-
facturer and a host population under production yield un-
certainty and selfishness of individuals who seek for extra
doses. Such selfishness leads to vaccine shortfalls for high-
risk groups. Here, a high-risk group is determined by a disu-
tility threshold i.e., when the total cost of not getting vacci-
nated including the cost for drugs, subsidies, lost wages, or
death of an infected individual is higher than a predefined

threshold. In this setting, searching for a vaccine as well as
receiving it impose their related and distinct costs, whenever
there is a chance to obtain a dose for the individual search-
ing for it. In this setup, the probability of getting infected
is based on the vaccinated fraction of the population58. The
authors first present the optimal vaccinated fraction and the
number of infected individuals at the Nash equilibrium us-
ing a threshold-based policy that can be characterized by the
level of infection disutilities. At equilibrium, each individual
compares her individual infection disutility function against
the overall expected disutility costs of searching for vaccine
doses to determine her chance for receiving a vaccine. Ar-
ifoğlu and Tang (2022) prescribe a two-sided incentive pro-
gram to resolve mismatches between supply and demand of
flu vaccine in an imperfect vaccine setting, where both vac-
cinated and unvaccinated individuals may transmit the infec-
tion. In this centralized incentive program, the timing is as fol-
lows: the social planner offers a transfer payment menu along
the wholesale price to the manufacturer that will determine
manufacturer’s production level; then the policymaker offers
incentives for vaccination; and finally, each individual decides
to seek for vaccine or not. Both offered incentives are based on
the manufacturer’s production level. It is worth mentioning
that the fraction of vaccinated individuals in the decentralized
setting may be fairly higher than in the two-sided incentive
program, which leads to more expected profit for the manu-
facturer. Thus, from the manufacturer’s point of view, even
receiving the transfer payments in an incentive program may
not lead in her favor. To retrieve this situation, the policy-
maker may derive an interval of fixed payments, under which
the expected profit of the manufacturer in the incentive pro-
gram is higher than the decentralized version, thus enticing
both manufacturer and individuals to behave socially opti-
mal.
While mass vaccination of a large population is the most ef-
fective way to control an epidemic in its early stages, even
for seasonal influenza, insufficient vaccine doses and stock-
pile capacity limits are the main reasons to decrease the via-
bility of a mass vaccination in action. Yarmand et al. (2014)
tackle the above issue by modeling a two-phase vaccination
plan for multiple regions with a two-stage SP constrained by
a limited budget. In this approach, each region should be vac-
cinated at a minimum level, while the second phase of vacci-
nation only assigned to those regions where the first vaccina-
tion phase has not completely controlled the disease yet. The
authors numerically verify that the optimal vaccine coverage
during the first phase in North Carolina has resulted in large
monetary savings, a moderate attack rate, and coverage eq-
uity between various counties.

6. Healthcare Supply Chain Management under Pan-
demics

The COVID-19 pandemic has drastically restrained the
healthcare supply chain and its main components. The high
demand for medical items and staff, pharmaceutical ingredi-
ents, ventilators, etc., have disclosed its key vulnerabilities59,
which further led to a fierce competition to buy pharmaceuti-
cal supplies and rising prices60.

58Hazard is the minimum portion of individuals whose vaccination im-
poses zero probability of getting infected to the host population.

59Ramachandran et al. (2020) state the fact that the best estimation of the
number of ventilators in the United States is based on a 2010 survey and
there are 15 states with > 50% deficit in ICU beds.

60https://www.mcknights.com/news/analysis-ppe-costs-increase-o
ver-1000-during-covid-19-crisis/
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In a supply chain network facing frequent disruptions and
shortages with ripple effects throughout its network, mak-
ing strategic decisions such as building new hospitals, roads/
railroads, fleet of vehicles, airplanes, cargo ships, manufac-
turers or even manufacturing lines are not the first viable cor-
rective actions, yet are considered extremely expensive ones.
Furthermore, the viability61 of such decisions cannot be pre-
cisely measured and justified over a long time horizon; e.g.,
post COVID-19 stockpiles of unused ventilators62. However,
tactical or operational corrective decisions are cheaper and
can be taken quickly after SC network failures. We may refer
the interested reader to the following examples: constructing
temporary camps, temporarily transforming stadiums and
schools into vaccination centers, appointing General Motors
and Ford manufacturers to build new ventilators63, relocating
extra ventilators between states at FEMA, reusing PPEs like
masks, producing PPEs at Ford and Honeywell companies,
restricting toilet papers each person can buy at retail stores,
and many more.
But the question still remains; What can we do beforehand?
One way to account for these failures and disruptions in SC
networks before they happen is to consider planning for re-
serve personnel and capacities, multi-usage spaces, and other
contingency protocols. Taking preparedness actions before
natural disasters happen also incur its own relative complex-
ity at the time of making strategic decisions as discussed
above, which may profoundly depend on the size and length
of disruptions, frequency of facing failures, correctly pricing
the extra design, fortification and capacity62 in anticipation of
disruptions.
In this section, we review the previous studies in which, re-
designing healthcare supply chain networks under pandemic
or other natural disasters to secure robustness and resilience
are addressed.

6.1 Facility Location Problem
Cui et al. (2010) propose a nonlinear reliability and reserved
facility location design under disruption risks in natural dis-
asters, where customers must be reassigned to other facilities
when the designated facility is no longer available to fulfill
its service. The layered SC network in this paper works as
follows: the demand will be served from the second-layer fa-
cility only if the first-layer facility has already failed to fulfill
the customers’ demand due to disruptions or disasters, e.g.,
hurricanes. In this setting, each customer may also receive
its demand from a set of DCs. Once all these DCs failed, an
adhoc warehouse will fulfill customers’ demand. Therefore,
both the set of DCs to be assigned to and the governing dis-
tribution of receiving the total demand from them should be
determined simultaneously. In such a way, the expected de-
sign costs turn into a nonlinear term which is tackled by a
linearization technique. A customized Lagrangian relaxation
algorithm is designed to tackle the problem at hand.
Liu et al. (2021) tackle the facility location problem to supply
emergency medical items, test-kits, and vaccination to con-
trol the COVID-19 pandemic, equipped with capacity expan-
sions to fulfill increasing demands. At each demand point, a
fraction of stochastic demand as a predetermined service level
must be satisfied with certainty. In the objective function, one
minimizes the total unmet demands, facility design costs, and

61the lack of precise pricing for them.
62https://www.washingtonpost.com/business/2020/08/18/ventilato

rs-coronavirus-stockpile/
63https://www.vox.com/recode/2020/4/10/21209709/tesla-gm-for

d-ventilators-coronavirus

capacity expansions. A two-step solution framework is de-
vised to seek near-optimal solutions. First, the optimal lo-
cation of facilities and their initial capacities are determined
such that the expected demands at given service levels are
satisfied. Once the initial capacities are set, a dynamic allo-
cation policy assigns capacity expansion decisions while only
enlarging capacity is allowed. The original two-stage SPR is
approximated by its sample average approximation counter-
part and formulated.
Liu and Zhang (2016) establish a joint SC supply chain de-
sign model to design temporary, coupled with an SEIR epi-
demic model. The supply chain incorporates a network com-
prising hospitals, distributors, and pharmaceutical manufac-
turers. In addition to hospital resource allocation and vac-
cine transportation, the authors also include the inventory
management of medical supplies in the proposed decision
framework. The proposed approach incorporates the follow-
ing phases: forecasting, planning, execution, and adjustment.
The forecasting step attempts to predict the infected popu-
lation to be treated at hospitals in the next cycle busing the
SEIR epidemic model. In the planning phase, a mixed-integer
programming model is formulated that determines the num-
ber of hospitals to be open, vaccine inventory management at
distribution sites, and the distribution of the vaccines in the
network. Since forecasted values of the infected population
may be different from the actual observations, the execution
of the planning phase may result in both shortages and sur-
pluses. These shortages, surpluses, and actual values can be
taken into account to further adjust the SEIR model’s param-
eters and repeat the forecasting phase.
Villicaña-Cervantes and Ibarra-Rojas (2022) investigate the
mobile test-labs locations problem to serve several demand
centroids, each representing a point of service. Each person
can move and choose her point of service from a predefined
centroids. Due to considering these movements, an accessi-
bility measure is computed to determine those locations than
can serve each individual. To each mobile test-lab are associ-
ated the lower and upper bounds for the radius it can oper-
ates. The authors then model the problem in a MILP and de-
sign a heuristic to solve it where, the commercial solvers are
unable to the underlying problems computational complex-
ity, see also Risanger et al. (2021) for selecting pharmacies to
ensure access for testing purposes.

6.2 Multiple Order Options
To preserve the resilience, agility, and viability of PPEs, N95
Masks, Gloves, and Gowns supplies in healthcare SCs facing
the COVID-19 pandemic, Ash (2021); Ash et al. (2022) present
a three-echelon (sourcing, warehouse, and hospitals) model
with competing strategies to fulfill such protective items in a
multi-period horizon. To better simulate real-life instances,
the long and short-term decisions, multiple types of suppli-
ers including long-term contracts, one-time purchases at the
open market, and federal emergency stockpiles with fixed
and quantity-based costs are envisioned. The objective is to
simultaneously minimize the maximum unmet demand and
operational costs under demand, supply, and price uncertain-
ties. The RO, SP, and DRO approaches combined with an ϵ-
constraint approach64 are examined to study the structure of
long and short-term decisions. The DRO model commonly se-
lects long-term contracts as insurance against excessive short-

64The ϵ-constraint approach first optimizes one objective and then op-
timizes the second objective while the first one is set to the first objective
value.
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term decisions.

Paul et al. (2022) propose a chance-constrained programming
(CCP) model to address major disruptions with multidimen-
sional impacts caused by COVID-19 in major services of the
commercial SC companies. The authors first consider a tradi-
tional single-item three-echelon supply chain model with a set
of suppliers, manufacturing plants, and retailers. The initial
plans change to recovery plans when disruptions happen, es-
pecially when both social distancing and lockdown reduce the
production capacity at suppliers and increase the demands by
staying at home. The authors address these disruptions by as-
sociating extra costs to both reduced/increased productions
as well as acquiring supplies from emergency suppliers. To
tackle demand uncertainty at the retailer level, the appropri-
ate chance constraints are imposed to enforce a predetermined
confidence level at the regular and emergency suppliers to
provide raw materials. An enhanced multi-operator differ-
ential evolution algorithm is devised to tackle the problem.

6.3 Inventory Levels, Transportation, and Plans with Confi-
dence Intervals

A four-echelon daily COVID-19 vaccination planning SC
problem is modeled by Georgiadis and Georgiadis (2021)
in a MILP formulation to determine the optimal transporta-
tion/inventory decisions, daily vaccination plans, and medi-
cal staff assignments. The inventory levels at central hubs and
vaccination centers, perishability of vaccines in refrigerators,
the fleet of trucks, and their transportation costs are aptly con-
sidered.

Hovav and Tsadikovich (2015) present a multi-period three-
echelon SC model in a MILP formulation for production, dis-
tribution, and administration of flu vaccines in Israel. The SC
network is comprised of (i) manufacturers with weekly pro-
duction and deliveries to distribution centers (DCs); (ii) DCs
that receive vaccines, store, package and then deliver them
to clinics; and (iii) clinics that receive the delivery from DCs,
store vaccines, and perform the vaccination. The cost func-
tion consists of manufacturer DC selection fixed costs, deliv-
ery costs to DCs, inventory holding costs at DCs, delivery to
clinics, inventory, and administration costs of each vaccine at
clinics.

Bala et al. (2021) model the PPEs donor-recipient matching
problem in a classic transportation problem to minimize the
traveled distances per unit of PPE. The median was 214.3
miles during the COVID-19 pandemic in the United States. To
balance surge demands which are typically larger than sup-
plies, a fill rate at each recipient site is defined which measures
the ratio of supply to demand. The transportation complexity
for small donors is resolved by precluding multiple orders.

Alcock et al. (2022) develop an online application, Shield-
Net65, to match surge requests for face shields in the United
States. The problem is formulated as a transportation prob-
lem by considering new suppliers in the market, the request’s
emergency level, size and type, supplier production capac-
ity and location. A transportation problem to minimize the
weighted traveled distances and unmet demand is estab-
lished. During six months, Shield-Net generated 390 request-
supplier matches, and a volume of 50,000 face shields, equiv-
alent to 65% successful matches delivered.

65http://shield-net.org

6.4 Supply/Demand Redistribution at Hospitals
Parker et al. (2020) propose various optimization models for
demand/resource redistributing and load balancing at mul-
tiple hospitals. The capacity expansion decisions are en-
visioned when patient overflow occurs. The authors first
present an optimization framework for minimizing surge ca-
pacity expansions that also allows transferring non-admitted
patients to other hospitals when the hospital’s capacity is de-
pleted. This model is further extended to specific groups of
patients who require specific bed types. A load balancing
formulation is also established to minimize the total absolute
load deviations at the hospitals from the average system load
to reduce stress at individual hospitals. An optimal resource
reallocation model to transfer PPEs and nurses is also pro-
posed.
Rottkemper et al. (2011) investigate a very similar problem,
the reallocation of resources, where overlapping disasters
may happen to harden an ongoing humanitarian intervention.
A central depot must fulfill the unmet demands at the regional
depots by sending a limited number of shipments. To tackle
demand uncertainty during a 14-day period, penalizing the
unmet demand is considered.

6.5 Food Distribution under Multi-Layer Network
Ekici et al. (2014) set up a capacitated multi-period food facil-
ity location and transportation problem for an influenza pan-
demic, spreading according to a modified-SEIR model. An
ABS module is devised to model the underlying pandemic
with rational compliance and voluntary quarantine, under
a fixed reproduction number. The simulation model esti-
mates the number of individuals who need food. The sup-
ply chain network consists of four echelons comprising the
food-supply warehouses, major facilities, POD, and demand
points. To tackle the real-size instances, the authors developed
a heuristic solution framework, with which in the first phase
the model attempts to satisfy the aggregated demand to make
major openings. Then, the disaggregated demand is used to
complete the design and flow decisions. Jia et al. (2022) devise
a predictive-prescriptive framework for food delivery in local
restaurants under rapid market nuances during COVID-19 in
Nuevo Leon, Mexico, with a population of 5,000,000. To deal
with such steep nuances in food demands, these restaurants
may employ the third-party online services to add food deliv-
ery when by default, restaurants only can serve customers in
a no-contact pickup. To capture highly volatile food demand,
first, the SIR model is employed to forecast infected individu-
als. Finally, the authors develop a two-stage SP model to make
partnership and fleet management decisions, consecutively.

7. Future Research and Conclusions

In this part, we elaborate research avenues that can be taken
into account for further investigation on the OR&M applica-
tions in the pandemic context.

7.1 Surveillance, Signals and Pandemic Statistics
In a recent development at the WHO, the number of deaths
due to COVID-19 and its aftermath between January 2020
and December 2021 is estimated to be about 14.91 million66,
see also Ludden et al. (2022) for the excess death cases cat-
egorized by sex and age-groups. The overwhelmed capaci-
ties prevent the recovery of patient waiting-lists for providing

66https://twitter.com/WHO/status/1522195970825535488
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elective treatments Wood (2022). The number of infected indi-
viduals, hospitalized, quarantined and deaths are vital factors
for the WHO and each country, especially in the early stages
of the pandemic. These statistics, if correctly analyzed, repre-
sent the severity of a pandemic that accordingly determines
the quality of pandemic signals, response plans and interven-
tions for the healthcare policymakers. There are studies that
investigate the role of the WHO signals at the time of the pan-
demic to governments.
Future studies can also investigate how in a dynamic-multi
period-setting, the member countries may pass their pan-
demic signals back to the WHO, so the WHO can modify
its signals and improve its resource and information manage-
ment. The member countries’ signals evidently consist of their
pandemic statistics and current capacities to tackle pandemic.
These signals will be sent to the WHO to receive potential sub-
sidies in the form of loans, vaccines and the priority in receiv-
ing it, specialists, private guidelines, etc. These subsidies may
be further assigned to better perform contact tracing in these
countries. At the WHO level, high-quality signals received
from member countries lead to better resource management
decisions.

7.2 Stockpiles
Localizing versus centralizing stockpiles is already investi-
gated by researchers who justify localization because of a
higher efficiency when the ventilators are redistributed over
shorter distances. Also, the ventilator shortages during the
COVID-19 era led to its redistribution at FEMA, although
when its outbreaks got contained many ventilator stockpiles
are remained unused62.
In general, one can study the role of a structured multi-layer
network of stockpiles throughout a country, comprising of lo-
calized and/or centralized stockpiles with various capacities
in disaster/pandemic management. It also can be examined
whether such layered structures improve the redistribution of
the pharmaceutical and non-pharmaceutical items in the mag-
nitude that can avoid unused ventilator productions or not.

7.3 Vaccine
We devoted this part for research opportunities related to the
vaccine composition, production, and assignment decisions,
see also Dai and Song (2021).

7.3.1 Vaccine Composition/Production Challenges
There is an evident relation between the type of virus creat-
ing a pandemic and how its vaccine as the most effective tool
for containing a pandemic should be produced. For flu vac-
cination, chicken eggs are being used since 1930s67 with 82%
overall contribution68. On the other hand, COVID-19 can not
be replicated inside eggs. Moreover, an Avian Influenza, e.g.,
the H5H1 pandemic, may deplete egg stockpiles. It takes 12-
18 months to refill an inventory enough to cope with a sea-
sonal flu in the United States. Hence, the preparedness plans
like stockpiles of eggs may not be an ultimate answer to pro-
duce vaccines for all types of virus that generate respiratory
infections. Therefore, there is a need to develop alternative
preparedness plans such as (i) non-egg based vaccines, and
(ii) stockpile of multi-purpose vaccine prototypes ready be-
fore a pandemic starts.

67https://www.cnn.com/2020/03/27/health/chicken-egg-flu-vaccine
-intl-hnk-scli/index.html

68https://www.cdc.gov/flu/prevent/vaxsupply.htm

What is the role of OR here? One can devise powerful tools
that can thoroughly quantify the risk of not producing a vac-
cine until a satisfactory level of knowledge from the ongoing
pandemic is obtained. To quantify such risk, one can precisely
measure the spread of a pandemic, its fatalities, and associ-
ated costs during a six-to-eight month production period for a
new vaccine to take production or stockpile design decisions
to provide access for previous vaccines. Since the latter can
be estimated by considering various levels of pandemic un-
certainties, the policymaker may prepare her plans for non-
pharmaceutical and pharmaceutical interventions to hedge
the estimated risks and corresponding fatalities, infected in-
dividuals, hospitalizations in both ICU and general wards.
Various stochastic optimization frameworks can be examined
which model various risk-averse objectives and specific con-
straints.

7.3.2 Vaccine Assignment Based on Triage Decisions
When a vaccine is produced, its assignments matters, and due
to its limited production capacity during the production pe-
riod it can turn into a triage decision. In section §4.3.1, we re-
viewed the role of triage decisions when expensive scarce re-
sources must be assigned to control a pandemic. These triage
decisions were based on the scarcity of resources, problem-
specific, and more importantly, were taken based on demo-
graphic specifications such as age, epidemic-specific risks (re-
fer to the definition of risk groups in each pandemic69; for ex-
ample, during the H1N1 flu pandemic, younger individuals
and children were the first risk group, while in the COVID-19
older adults were more threatened), sex, location-dependent
reproduction numbers, etc.
To design vaccination policies one must first consider demo-
graphic specifications and clustering70 of the individuals in
the host population based on their age, sex, predefined health
risk-indices to be replicated by the employed simulation mod-
ule. Then, by examining various vaccination policies and
priorities in such simulation frameworks, one can evaluate
the vaccination coverage and then score the obtained immu-
nity in the alternating scenarios of a pandemic’s propagation
for various risk groups. Finally, when triage assignments
are fixed by policymakers at the strategic level, operational
decisions can be taken to determine the assignment of vac-
cines in states/provinces, cities, its scheduling, and other re-
source/vendor management challenges, respectively.

7.3.3 Vaccine Emergency Suppliers
Those countries that do not produce vaccine during epi-
demic/pandemic events must envision multiple layers of
suppliers (Cui et al., 2010). In 1976, Canada was not able
to provide flu vaccine from Canadian vaccine manufacturers
that were banned to import supply from the United States
due to a mass vaccination policy at the time in the United
States71. This event led to the import the emergency sup-
plies from Australia and eventually vaccine manufacturing
contracts with shareholders of Canadian vaccine factories to
ensure adequate vaccine production capacities in Canada in
the early 1980s and afterwards.
This commonly concerns underdeveloped countries with a
lower financial power when the peak demand for scarce med-

69https://www.who.int/emergencies/disease-outbreak-news/item/2
022-DON376

70including the number of clusters and structure of members that mu-
tually result in a priority list of risk group in decreasing order

71https://archive.macleans.ca/article/1976/5/17/the-politics-of-swin
e-flu
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ical resources increases their price up to 1,000%72. For ex-
ample, during COVID-19, rich countries by paying excessive
prices got on the top of waiting lines to receive the COVID-19
vaccine sooner73.
In this part, we highlight two review studies (Salarpour and
Nagurney, 2021; Harrington Jr. and Hsu, 2010) that can be
used to retrieve the situation for underdeveloped countries
in their vaccine purchases. First, we promote studies such
as Salarpour and Nagurney (2021) who develop a specialized
formulation for policymakers at the international level when
competing with each other for scarce medical resources. The
game-theoretic setting proposed by Salarpour and Nagurney
(2021) decomposes the purchase decisions at each country
into those envisioned as part of the preparedness plans, and
those will be taken after the pandemic declaration during
the response period including the outbreak and its aftermath.
What could make a change in these two sets of decisions
for each government is how the medical resources are priced
before and after a pandemic declaration74. Future research
may investigate price uncertainties in such settings and us-
ing other stochastic optimization frameworks to better tackle
highly volatile demands and prices in pandemics.
In the second study, Harrington Jr. and Hsu (2010) pro-
pose reserved stockpiles for flu when customers can protect
their early75 purchases from the stockpile by paying a reason-
able extra holding price. These manufacturer-customer con-
tracts will enforce manufacturers to keep enough inventory
of antivirals to fulfill demands for these customers in 24-48
hours. The same subsidy or binding strategies can be em-
ployed by underdeveloped countries to make contracts with
vaccine manufacturers in advance to reserve vaccine supplies
at a specific time in a pandemic. These settings may help pol-
icymakers in underdeveloped countries to make better strate-
gic decisions such as how to invest a limited budget optimally
or make alliances with other countries e.g., COVAX76 for dis-
counted prices, although COVAX struggled in both predict-
ing highly volatile prices by paying almost five times more
for each vaccine, and fulfilling vaccine demands77.

7.4 Interventions
Whether interventions are of non-pharmaceutical type such
as imposing school closure, lockdown, quarantine, travel and
public gathering bans, or of pharmaceutical type such as pro-
viding vaccines, test-kits, or antiviral medicines, there is a lim-
ited budget and accordingly a specific time-horizon to per-
form them. To derive the optimal decisions for when, where,
and which one of these interventions should be imposed, and
to derive the best response from the population, the first step
is to simulate the host population and its demographic diver-
sity at its finest granularity, while considering computational
complexities. The existing demographic diversities in a host
population include but are not limited to the age, sex, ethnic-
ity (e.g., for various responses to pandemics and pharmaceu-
tical interventions), businesses, public places, organizations
especially emergency departments, schools, restaurants, bars,

72https://www.bloomberg.com/news/newsletters/2021-03-17/hard
-hit-countries-face-big-vaccine-bills

73https://www.oxfam.ca/news/vaccine-monopolies-make-cost-of-va
ccinating-the-world-against-covid-at-least-5-times-more-expensive-th
an-it-could-be/

74https://www.cbsnews.com/news/amazon-coronavirus-face-mask-
price-gouging-shortages/

75before a pandemic declaration or the start of the recurring flu season.
76https://www.who.int/docs/default-source/coronaviruse/covax-fac

ility-explainer.pdf
77https://www.theguardian.com/world/2021/aug/11/covid-19-vac

cines-the-contracts-prices-and-profits

shopping malls, and modeling social dynamics within private
and public places to be replicated as much as possible based
on the most recent census and mobility data. This gives us a
precise mapping or imitation of social contacts, visits, and in-
teractions by which an infectious disease spreads. Then, the
pandemic spread and the quality of necessary interventions
can be promptly modeled for various scenarios.
There are success stories from the past such as Das et al. (2008)
and Aleman et al. (2011) in developing such simulation mod-
ules for large cities. The propagation and severity of COVID-
19 may truly replicate a benchmark instance to design, de-
velop, and recalibrate new simulation tools to forecast the dy-
namic of future epidemics and pandemics, their secondary
waves, and the efficiency of interventions in every country.

7.5 Modeling Pandemic Uncertainty
As mentioned earlier in the section §4.3.3, the majority of re-
search studies that investigate pandemics under uncertainty
in its dynamics employ scenarios or predictive analytics. In
this review, we have highlighted three research studies that
tackle the pandemic’s uncertainty with more modern con-
cepts/contexts such as DRO framework and belief in POMDP.
In general, for an infectious disease that includes an incuba-
tion period, the precision in counting the number of new in-
fected individuals and those who are in incubation periods
may be difficult to estimate. In fact, the length of incubation
time which is inherently a stochastic parameter itself some-
how gives us a lower bound of latency to be able to observe
the new infections. These observations evidently are not even
close to perfect due to the size of a generic host population
and the limited number of test-kits. Therefore, these param-
eters distribution, or better called stochastic models remain
uncertain.
There are many rooms for future research in this area includ-
ing examining the quality of these new modeling setups ver-
sus traditional methods, or changing the portion of test-kits in
voluntary and mandatory tests.

7.6 Supply Chain
The lessons learned from the recent COVID-19 pandemic and
the disruptions it imposed on the supply chains of various
commodities are too many, but we recall some of them here
in their broadest picture. There are three sources of uncertain-
ties in a supply chain network, supply, demand, and flow and
inventory of goods. Most companies rely on single suppliers
from a single location which significantly limits responses to
disruptions in pandemics. Furthermore, supply chain man-
agers mostly have no knowledge of the secondary layers of
suppliers, raw material warehouses, manufacturers, trans-
portation modes, and beyond who have the main role in pre-
serving the inventory level at the first layer suppliers. This
lack of a twin digitized supply chain network78 leads to a dis-
torted flow of information for SC managers in the first place. It
then results in an excessive uncertainty in the lead-times and
a slow flow of goods from suppliers to their down-streams.
Therefore, a partnership in terms of contracts or reserved ca-
pacities with a set of different suppliers located in the various
regions may potentially prevent network failures when there
is a reduced chance of disaster/pandemic ripple effects at all
alternative suppliers, see Cui et al. (2010). In fact, placing part-
nerships with a diverse group of suppliers promotes resilience

78in which all components of the network with their operational capaci-
ties and current functionality states are transparently mapped for all stake-
holders
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in SCN by opening up the possibility of external suppliers.
There are many research studies on distorted information
about demand leading to bullwhip effects (Lee et al., 2000;
Leng and Parlar, 2009). Pandemics represent highly volatile
demands in medical items, cleaning goods, foods, etc., due to
their recurrent waves and seasonality, and in general, time-
dependent behavior. A fully-digitized and integrated supply
chain equipped with powerful forecasting tools may hedge
distorted information at upstream echelons.
In the middle stream, mostly inventory management and
transportation decisions are of paramount importance. Sup-
ply chain inventory strategies usually aim at cost minimiza-
tion and efficiency. These inventory policies focus on opti-
mal inventory levels in a normal situation which can not be
enough responsive during pandemics. Safety buffers, dy-
namic inventory management, and temporary capacity ex-
pansions can be studied as efficient alternatives when facing
pandemics. On the other hand, transportation decisions are
affected by pandemics because of medical examinations and
regulations. For instance, two drivers are not allowed to use
the same truck or a driver must pass the COVID-19 test to
start a shift. These disruptions can be corrected with extended
shifts (already carried out during COVID-19), although alter-
native operational plans can be envisioned in the future.
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