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Abstract: We propose a new approach based DC programming for finding a solution of the
partial facility interdiction problem that belongs to the class of bilevel programming. This
model was first considered in the work of Aksen et al. [1] with a heuristic algorithm named
multi-start simplex search (MSS). However, because of the big number of the subproblems
called during the search, the running time of MSS increases rapidly as the number of facilities
grows. To overcome this limitation, our new algorithm based DC programming is able to
shorten the computation time significantly, especially for the case of high number of nodes.
This efficiency is illustrated by numerical experiments for a lot of test instances up to 20 facil-
ities.
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1 Introduction

1.1 Network interdiction problem
Network interdiction problem was first considered in the early 1960s with the work of Wollmer
[4, 5]. This topic has been received a lot of attention up to now because of numerous applica-
tions for many disciplines in real life such as security, military, industry, service, etc. One can
see [17, 16, 2, 3] and references therein for more details.

The basic and simple interdiction problem involves a defender and an attacker who have
opposite targets with a system that usually described by a network. The defender wants to
protect the system and to optimize his objective related to the system. In contrast, the other
one emphasizes to ruin the structure of this system for his converse aim. In order to do that
he chooses suitable arcs (components) of the network to destroy fully or partially. These
actions are corresponding to full interdiction and partial interdiction problems, respectively.
Depending on the components or the design of the system, the attacker may interdict the
whole arc or a part of each arc, for example, a bridge or a pipe line may be full disrupted
but for goods or services supply line it can be blocked partially. Moreover, both defender and
attacker may be limited by some constraints of resources, e.g., budget constraints.
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Actually, the network interdiction problem described above is a special case of a Stackelberg
game [8] with two players corresponding to the defender and the attacker of the considered
interdiction model. And the mathematical model for this problem is a bilevel programming
min-max or max-min. The more complicate models of tri-level programming min-max-min
or max-min-max can be used as the defender and the attacker give actions sequentially three
times [16, 18].

Some well-known problems in this field can be mentioned, for example, the shortest path
interdiction, maximum flow interdiction, minimum cost flow interdiction, facility interdiction,
etc [16]. These kinds of problems can be helpful for warfare or anti-terror as finding impor-
tant civilian or military infrastructure to attack/protect and therefore can reduce the enemy’s
fighting power as much as possible. Some papers that concern about this problem such as
[6, 7]. The competition in industry or service are able to cast as interdiction models as well,
for instances, see [9, 10, 1, 11].

1.2 Problem formulation and motivation
In this paper, we consider one of important applications of network interdiction for services
that is the partial facility interdiction problem. Compared to previous studies in this research
line [12, 13, 14, 15], partial facility interdiction decisions proposed by Aksen et al [1] are
integrated for the first time into a median type network interdiction problem with capacitated
facilities and outsourcing option. Let us recall the description of the partial facility interdiction
problems given by Aksen et al. [1]. Considering the two agents that are in the position of the
attacker and the defender of a system involving capacitated facilities numbered from 1 to m
and customers indexed from 1 to n with the following data:

dij: the distance between customer i and facility j, i = 1, ..., n; j = 1, ..., m.

cd: the shipment fee per unit demand and per unit distance.

cp: the outsourcing cost per unit demand.

ai: the demand of customer i, i = 1, ..., n.

bj: the cost for interdicting facility j in full, j = 1, ..., m.

btot: the budget for interdiction.

qj: the capacity of facility j, j = 1, ..., m.

The attacker finds the facilities to destroy within a given budget btot. The defender then has to
control the remaining system with surviving facilities so that all customer’s demands are satis-
fied and minimize the cost simultaneously. The cost is composed by the shipment fee and the
outsourcing cost in case of some customer i does not receive enough as requirement ai. The rea-
son for outsourcing may be that some facilities are restricted by capacity or probably damaged
at some portion by the attacker and therefore cannot be able to achieve customer’s demands
fully. The outsourcing service is provided by the third party with the cost cp depending on
demand not distance.
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In the paper of Aksen et al. [1] the author first imposed the rule ”single sourcing” to
the system, i.e., ”a demand node is served either by one and only one facility with sufficient
capacity or by the external supplier-whichever is more cost-efficient”. This situation is realistic
for some circumstance like ”customer-centric service systems” [1] since ”without this restriction
optimal solutions might have a retailer receive many deliveries of the same product (each for,
conceivably, a very small amount of the product). Clearly, from a managerial point of view,
restricting deliveries to come from only one warehouse is a more appropriate delivery strategy”
[19]. However, according to the defender’s point of view, this assumption may waste unused
capacity of some facilities as well as increase the final cost. This phenomena is also studied in
[1] as the authors consider ”multi-sourcing” case of PFIP. The numerical results obtained by a
heuristic algorithm multi-start simplex search (MSS) proposed by [1] show that the defender
saves about 0.86% to 0.94% the total cost if he applies ”multi-sourcing” rule for the system.
Moreover, with this assumption the attacker also reduces the consuming time to find the
optimal solution about 248 times compared to the ”single-sourcing” case, [1]. The reason is
in the mathematical models corresponding to each case. In particular, the PFIP with ”single-
sourcing” rule belongs to the class of mixed integer bilevel linear programming:

max
S

Z(S) = min
U

cd

∑
i∈I

∑
j∈J

aidijUij + cp

∑
i∈I

ai(1−
∑
j∈J

Uij) (PFIPS)

s.t.
∑
i∈I

aiUij ≤ (1− Sj)qj j ∈ J, (1)
∑
j∈J

Uij ≤ 1 i ∈ I, (2)

Uij ∈ {0, 1} i ∈ I, j ∈ J. (3)
s.t.

∑
j∈J

bjSj ≤ btot, (4)

0 ≤ Sj ≤ 1, j ∈ J, (5)

while the formulation of PFIP ”multi-sourcing” is a simple bilevel linear programming

max
S

Z(S) = min
U

cd

∑
i∈I

∑
j∈J

aidijUij + cp

∑
i∈I

ai(1−
∑
j∈J

Uij) (PFIPM)

s.t.
∑
i∈I

aiUij ≤ (1− Sj)qj j ∈ J, (6)
∑
j∈J

Uij ≤ 1 i ∈ I, (7)

0 ≤ Uij ≤ 1 i ∈ I, j ∈ J. (8)
s.t.

∑
j∈J

bjSj ≤ btot, (9)

0 ≤ Sj ≤ 1, j ∈ J, (10)

In the above problems, variable Sj presents the portion of capacity at facility j interdicted
by the attacker while Uij is the percentage of capacity at facility j serving for customer i.

It is clear that (PEIPS) is more difficult than (PFIPM) since the binary variables in the
lower level. Therefore, by the above arguments, it is natural for the attacker choosing model
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(PFIPM) instead of (PFIPS). This choice is not only capable to reduce the solving time a lot
compared to (PFIPS) but also consistent to the popular operation ”multi-sourcing” between
the customers and facilities. For the defender, after knowing the interdiction solution (S) from
the attacker, he can solve the lower level problem to find his best solution matching with
”multi-sourcing” or ”single-sourcing” system.

Hence, in this paper, we first approach PFIP with (PFIPM) model and then consider
(PFIPS) if the defender wants to use ”single-sourcing” rule for operating.

We know that problem (PFIPM) is a linear bilevel programming (LBP) that has been
thoroughly studied in both theoretical and algorithmic aspects in literature. So, firstly, let us
review some main points for a general LBP. One can also see [27, 28, 26, 25] and the references
therein for more details. In qualitative research, the NP-hardness of (LBP) can be derived
from the results in the paper [21] (1985) for the first time. Not only that, in [22], the authors
prove that (LBP) is strongly NP-hard. Even the checking the locality of a given solution of
(LBP) is also an NP-hard problem, see [23]. Other important properties related to (LBP) are
nonconvex, nonsmooth that challenge us to find its global optimal solutions. Regarding the
algorithmic point of view, one of the first algorithms for solving (LBP) is the K-best algorithm
proposed by [30]. The idea is similar to simplex method for linear programming, the algorithm
searches over the vertices of the feasible set to find a solution. Nevertheless, at each step of
algorithm, this method requires computing all the adjacent extreme points and consequently
it costs expensive effort. An other popular approach for solving (LBP) is collapsing the two
levels to get a ”single-level” optimization problem by using KKT conditions[] for the lower
level. The obtained reformulation is a mathematical problem with complementary contraints
(MPCC) that is nonlinear and still difficult. To deal with the nonlinearity, the big-M technique
is suggested to transfer MPCC to be a mixed integer linear programming. However, finding
a corrected and large value big-M leads to other difficult problems as well because ”it is
not a free lunch” [31]. To avoid this obstacle the branch and bound scheme can be applied
to MPCC, see [29]. But this method is usually takes time a lot as the size of considered
problem increases. In such a situation, one should consider some heuristic methods that may
not be confirmed to achieve to global optimization but give a good enough solution in short
computation time. In [32], by using strong duality property, (LBP) is rewrited as a nonconvex
single-level optimization problem with nonlinear and nonconvex constraints. The authors then
use penalty technique to reformulate it to be a smooth optimization problem with nonconvex
quadratic objective and linear constraints. Finally, they apply penalty alternating direction
method to find a solution of (LBP). This approach, however, copes with or depends on the
choice of penalty coefficient during the search.

1.3 Contribution
To overcome the drawbacks of mentioned methods in literature, we propose new algorithms
based DC programming for solving (PFIPM) and (PFIPS) in this work. In fact, DC pro-
gramming plays an important role in theory of optimization. It concerns about nonconvex
optimization problems that have a lot of applications in real life [33, 34]. One of efficient
approaches for solving a DC programming is DCA by P.D. Tao [40]. This method has been
then extensively developed by Tao and An [37]. DCA can work with nonconvex and nons-
mooth optimization problems. The advantage of DCA has been showed by many studies for
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applicative problems, see [33] and references therein.
In summarize, our new algorithms based DC programming can solve (PFIP) model for

both multi-sourcing and single-sourcing cases and have the following points:

• Our algorithms can be easy implemented without guessing or computing any supported
coefficients like big-M or penalty coefficient.

• Our algorithm can work with large size (PFIP) in very short time. This efficiency is
illustrated by rich computational results for 170 instances compared to MSS algorithm [1]
with up to 20 facilities.

• The obtained numerical results show that our method provides better solution in shorter
computation time for both (PFIPM) and (PFIPS) compared to MMS algorithm [1].

The rest of the paper is organized as follows. In section 2 we review the DCA scheme for
solving a DC programming. Our new algorithms based DCA for finding a solution of (PFIPM)
and (PFIPS) are proposed in section 3. After that we report and analyse the numerical results
in section 4. Finally, the paper is closed with some conclusions in section 5.

2 DC programming and DCA
In this section, we recall some basic concepts used for DC programming and DCA scheme, see
e.g. [37, 36, 35, 33].

If the function u is defined in C ⊂ Rn then we can extend it to be a function that defined
in Rn by setting u(x) = +∞ for x /∈ C. Denoting

domu = {x ∈ Rn | f(x) < +∞}.

u : Rn → R ∪ {+∞} is call proper function if domu ̸= ∅ and u(x) > −∞ for all x ∈ Rn.
Γ0(Rn) denotes for the set of all lower semicontinuous, convex and proper functions over

Rn.
The indicator function of a nonempty convex set C is defined by

χC(x) =
0 if x ∈ C

+∞ otherwise
.

The function
θ(x) = max{

〈
ai, x

〉
− αi, i = 1, . . . , m}+ χC(x),

where ai ∈ Rn, αi ∈ R, i = 1, . . . , m; C is a convex set of Rn, is a convex function and called a
polyhedral function.

We define the conjugate function u∗ of u by

u∗(y) = sup{⟨x, y⟩ − u(x) | x ∈ Rn}, for y ∈ Rn.

p ∈ Rn is subgradient of a proper function u at x0 (x0 ∈ domf) if〈
p, x− x0

〉
≤ u(x)− u(x0) for all x ∈ Rn.
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The set of all subgradient of u at x0 is called subdifferential of u at x0 and denoted by ∂f(x0).
x∗ is called critical point of g − h if ∂g(x∗) ∩ ∂h(x∗) ̸= ∅.
The standard DC programming we consider can be stated as follows

α = inf{f(x) = g(x)− h(x) | x ∈ Rn}, (P)

where g, h : Rn → R ∪ {−∞, +∞} ∈ Γ0(Rn). In the sequel, we admit the convention
+∞− (+∞) = +∞ and assuming that

domg ⊂ domh domh∗ ⊂ domg∗

without loss of generality. This assumption helps to avoid the trivial case that α = −∞.
According to [36], any general DC programming can be transformed to be a standard DC

programming like (P) by using the indicator function or penalty technique. And problem (P)
can be rewrote as

α = inf{h∗(y)− g∗(y) | y ∈ Rn}. (D)
The main idea of DCA is constructing the two sequences {xk} {yk} satisfies

(i) The sequences {(g − h)(xk)} and {(h∗ − g∗)(yk)} are decreasing.

(ii) Each limit point x∗ (y∗, resp.) of {xk} ({yk}, resp.) is a critical point of g − h (h∗ − g∗,
resp.).

Below is DCA scheme for solving problem (P) (see [36, 37]).

DCA scheme for (P)

Initialization: choosing an initial point x0 ∈ domg, k ← 0.

Step 1: computing yk ∈ ∂h(xk)

Step 2: finding xk+1 ∈ ∂g∗(yk) = argmin{g(x)− ⟨x, yk⟩ | x ∈ Rn}

Step 3: k ← k + 1 and return Step 1 until convergence of {xk}

The convergent properties of DCA can be summarized in theorem below.

Theorem 2.1. (i) In DCA, the sequences {(g − h)(xk)} and {(h∗ − g∗)(yk)} are decreasing.

(ii) If α is finite then every limit point x∗ (y∗, resp.) of {xk} ({yk}, resp.) is a critical point
of g − h (h∗ − g∗, resp.).

(iii) DCA is finite convergent if g or h is a polyhedral function.

Proof. One can find the details of the proof in [37].
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3 New algorithms based DCA for solving (PFIPM) and (PFIPS)
Firstly, we consider problem (PFIPM) and reformulate it to be a standard form of DC pro-
gramming.

Let
C = {S ∈ Rm |

∑
j∈J

bjSj ≤ btot, 0 ≤ Sj ≤ 1, j ∈ J}.

Note that, for a fixed S ∈ C, Z(S) is the optimal value of the lower level:

Z(S) = min
U

cd

∑
i∈I

∑
j∈J

aidijUij + cp

∑
i∈I

ai(1−
∑
j∈J

Uij) (LVM)

s.t.
∑
i∈I

aiUij ≤ (1− Sj)qj j ∈ J, (11)
∑
j∈J

Uij ≤ 1 i ∈ I, (12)

Uij ≥ 0 i ∈ I, j ∈ J. (13)

It is easy to see that, for any S ∈ C, LVM is a linear programming with respect to (Uij)
and its feasible set is non-empty as well as bounded. Consequently, LVM always admits an
optimal solution and so do its duality

Z(S) = max
x,y

∑
j∈J

xj(1− Sj)qj +
∑
i∈I

yi (LVMD)

s.t. yi + xjai ≤ ai(cddij − cp) i ∈ I, j ∈ J, (14)
xj, yi ≤ 0 i ∈ I, j ∈ J. (15)

In (LVMD), xj (j ∈ J) and yi (i ∈ I) are dual variables for constraints (11) and (12),
respectively.

Setting
X = (x1, ..., xm, y1, ..., yn)T ∈ Rm+n,

and
r(S) = ((1− S1)q1, ..., (1− Sm)qm, 1, ..., 1)T ∈ Rm+n.

Denote the feasible set of problem (LVMD) by M then M is independent of S obviously.
We transfer (LVMD) to be in the compact form as follows

Z(S) = max
X∈M

r(S)T X. (16)

Problem (PFIPM) now becomes

max
S∈C

Z(S)⇔ min
S∈C
−Z(S). (17)

Setting

H(S) =
Z(S), if S ∈ C,

+∞, if S ∈ Rm \ C.

We have the following proposition.
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Proposition 3.1. H(S) is a polyhedral convex function on Rm.

Proof. Firstly, it is worth noting that for all S ∈ C the optimal value of problem (16) is finite
and achieve at some vertex of M or in other words,

H(S) = Z(S) = max
X∈V (M)

r(S)T X = max
v∈V (M)

r(S)T v,

where V (M) = {v1, ..., vh} is the set of all vertices ofM. By the linearity of r(S) with respect
to S, we get the desired conclusion lastly.

Back to problem (PFIPM), without difficulty we can rewrite (17) in the equivalent form of
a standard DC programming

min
S∈Rm

χC(S)−H(S), (PFIPM-DC)

From Proposition 3.1, problem (PFIPM-DC) is a polyhedral DC programming that has
finite convergent DCA. Below is DCA scheme for (PFIPM-DC)

Algorithm 1: DCA for (PFIPM-DC)

• Input: taking an initial point S0 ∈ C, k ← 0 and a tolerance ϵ ≥ 0.

• Output: a solution of (PFIPM).
Iteration k

Step 1: Computing T k ∈ ∂H(Sk) by

T k
l =

−qlη
k
l for 1 ≤ l ≤ m

0 if m < l ≤ m + n
,

where
ηk = arg max

η∈M
r(Sk)T η.

Step 2: Sk+1 ∈ arg min
S∈C

(−⟨S, T k⟩).

Step 3: If ∥Sk+1−Sk∥
max (∥Sk+1∥,1)

≤ ϵ then STOP and Sk+1 is a desired solution.
else k ← k + 1, return to Step 1

As a result of Theorem 2.1 we obtain the following convergent properties convergence of
Algorithm 1 as follows

Theorem 3.2. Algorithm 1 is finite convergent for all ϵ ≥ 0 and {−H(Sk)} is decreasing.
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Remark 1. (i) Actually, we are able to embed the formula of the function Z(S) from (LVMD)
into (PFIPM) to get a single-level optimization directly as follows

Z(S) = max
S,x,y

∑
j∈J

xj(1− Sj)qj +
∑
i∈I

yi (PFIPQ)

s.t. yi + xjai ≤ ai(cddij − cp) i ∈ I, j ∈ J, (18)
xj, yi ≤ 0 i ∈ I, j ∈ J. (19)∑
j∈J

bjSj ≤ btot, (20)

0 ≤ Sj ≤ 1, j ∈ J. (21)

We see that (PFIPQ) is a nonlinear and nonconvex optimization problem with indefinite
quadratic objective function. So finding a solution of (PFIPQ) is not easy. Moreover, the
number of variables of (PFIPQ) is n + 2m that is much more than m- the dimension of
problem (PFIPM-DC). This deviation is bigger and bigger if number of customers and
facilities grow. Hence, we choose (PFIPM-DC) to continue instead of (PFIPQ).

(ii) In Algorithm 1, one can choose S0 ∈ Rm arbitrary instead of adding the condition S0 ∈
C. Indeed, at iteration 0 we take T 0 = 0. From k = 1, Sk is a solution of problem
minS∈C⟨S,−T k⟩ and as a result Sk ∈ C for all k ≥ 1.

From practical point of view as argued in section 1, the attacker should find his solution by
solving (PFIPM) for both ”single-sourcing” and ”multi-sourcing” cases. So, after knowing the
attacker’s interdiction S∗ obtained from Algorithm 1, if the defender want to search ”single-
sourcing” operation for his system, he can just solve the lower level problem of (PFIPS).

Finally, a solution of (PFIPS) can be found by Algorithm 2 below.

Algorithm 2: to find a solution for (PFIPS)

• Input: S∗ obtained by Algorithm 1.

• Output: a solution of (PFIPS)

Step 1: solving the mixed integer linear programming

min
U

cd

∑
i∈I

∑
j∈J

aidijUij + cp

∑
i∈I

ai(1−
∑
j∈J

Uij) (PFIPS)

s.t.
∑
i∈I

aiUij ≤ (1− S∗j)qj j ∈ J, (22)
∑
j∈J

Uij ≤ 1 i ∈ I, (23)

Uij ∈ {0, 1} i ∈ I, j ∈ J (24)

to get (U∗
ij).

Step 2: (S∗, U∗) is a desired solution of (PFIPS).
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4 Computational results
We generate randomly tested instances for m ∈ {4, 5, 6, ..., 20} and n = 10m by using the same
rules in [1]. In particular,

• the location of n nodes are in a sphere of origin (0, 0) and radius 500.

• The location of facilities are settled on equidistant horizontal and vertical lines slicing a
square with side 1000 that is concentric with the sphere above.

• All coordinates are rounded to the nearest integer.

• cd = 0.1, cp = 100.

• ai is randomly chosen from the set {5, 10, ..., 100}.

• bj is randomly picked from {15000, 16000, ..., 30000}.

• calculating ω = ∑
j bj/

∑
i ai và q′

j = bj/ω then qj is obtained by taking q′
j as the nearest

integer multiples of 20 such that ∑
j qj ≥

∑
i ai.

• btot equals to 30% and 60% of the total full capacities interdiction costs that are corre-
sponding to low and high budget cases.

We generated randomly each size of (m, n) : 5 instances for low interdiction budget and 5
instances for the case of high budget. So the total number of our tested instances is 170.

We implemented Algorithm 1, Algorithm 2 and MSS algorithm for solving (PFIPM) and
(PFIPS) by coding in Matlab R2014a equipped with Gurobi [41] version 7.5.2.Our PC has the
configuration of chip Intel Core i5-3230M 2.60GHz (4 CPUs), 8GB DDR3 based Windows 10
64-bit.

As suggested in [1], the max iterations for three phases 1, 2, 3 of MSS are 100, 100 and
150, respectively . The tolerance ϵ = 10−7 for phase 1 and 2, and ϵ = 10−8 for phase 3. For our
algorithms, we limited 100 for max iteration and the tolerance ϵ = 10−8. The solution time
for all algorithms to solve one instance is limited in 7200s. The initial point used for MSS and
our method are the same, i.e., obtained by procedure Generat V1 in [1].

In Table 1, 2, 3 and 4 we reported the comparison between Algorithm 2, Algorithm 1 and
MSS for solving problem (PFIPS) and (PFIPM) for the two cases of low and high interdiction
budgets, respectively. Z(1), Z(2) and Z(MSS) are optimal values obtained by Algorithm 1,
Algorithm 2 and MSS algorithm. Gap gives the relative deviation between Z(1) and Z(MSS) or
Z(2) and Z(MSS) by the formula

Gap = Z(1) − Z(MSS)

Z(MSS) for Table 1, 2

and
Gap = Z(2) − Z(MSS)

Z(MSS) for Table 3, 4.

The running time for Algorithm 1, 2 and MSS are denoted by time(1), time(2) and time(MSS)

in all tables. Finally, in all tables, the notation ”-” means that the instance cannot be solved
within limited running time 7200s.

The numerical results for each size (m, n) are computed by taking the average on 5 randomly
instances.
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m Z(2) Z(MSS) Gap(%) time(2) (s) time(MSS) (s)
4 1.1700e+05 1.1876e+05 -1.48 2.31 107.21
5 1.4576e+05 1.4727e+05 -1.03 3.59 260.18
6 1.6075e+05 1.6277e+05 -1.24 4.38 432.04
7 1.7995e+05 1.8182e+05 -1.02 6.82 690.97
8 2.1447e+05 2.1420e+05 0.12 8.48 1515.92
9 2.1545e+05 2.1664e+05 -0.55 12.35 1872.61
10 2.5916e+05 2.5916e+05 0.00 16.33 4172.59
11 2.5583e+05 2.5458e+05 0.49 24.09 2856.28
12 2.7997e+05 2.7462e+05 1.95 23.75 4267.73
13 2.9700e+05 2.9092e+05 2.09 27.37 -
14 3.3682e+05 3.2818e+05 2.63 38.22 -
15 3.3357e+05 3.2229e+05 3.50 47.34 -
16 3.5534e+05 3.4528e+05 2.91 49.20 -
17 3.9052e+05 3.6204e+05 7.87 77.04 -
18 4.0507e+05 3.8342e+05 5.65 82.08 -
19 4.0778e+05 3.8807e+05 5.08 89.74 -
20 4.3802e+05 4.0979e+05 6.89 126.99 -

AVG 2.8191e+05 2.7411e+05 2.85 37.65 -
Table 1: Low budget for (PFIPS)

m Z(2) Z(MSS) Gap(%) time(2) (s) time(MSS) (s)
4 1.6616e+05 1.6650e+05 -0.21 3.49 157.13
5 1.8454e+05 1.8901e+05 -2.36 5.99 255.50
6 2.3855e+05 2.4078e+05 -0.93 8.54 372.73
7 2.6712e+05 2.6858e+05 -0.54 10.47 704.90
8 3.0559e+05 3.0855e+05 -0.96 11.80 1190.52
9 3.3364e+05 3.3346e+05 0.06 18.47 1493.36
10 3.6092e+05 3.6029e+05 0.18 25.37 2332.46
11 3.9906e+05 4.0013e+05 -0.27 31.39 3859.71
12 4.5757e+05 4.5555e+05 0.44 36.63 -
13 4.6595e+05 4.5809e+05 1.72 32.20 -
14 5.0391e+05 4.9932e+05 0.92 48.08 -
15 5.3740e+05 5.2662e+05 2.05 72.15 -
16 5.8452e+05 5.7426e+05 1.79 86.00 -
17 5.9729e+05 5.8489e+05 2.12 102.55 -
18 6.2670e+05 6.1441e+05 2.00 137.54 -
19 6.8972e+05 6.6765e+05 3.31 136.04 -
20 7.0769e+05 6.8316e+05 3.59 148.16 -

AVG 4.3684e+05 4.3125e+05 1.30 53.82 -
Table 2: High budget for (PFIPS)
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m Z(1) Z(MSS) Gap(%) time(1) (s) time(MSS) (s)
4 1.1570e+05 1.1704e+05 -1.15 3.37 39.23
5 1.4712e+05 1.4749e+05 -0.25 5.15 80.83
6 1.6212e+05 1.6188e+05 0.15 7.04 119.91
7 1.7998e+05 1.8058e+05 -0.33 10.62 173.72
8 2.1092e+05 2.1307e+05 -1.01 16.46 239.01
9 2.1668e+05 2.1788e+05 -0.55 20.45 305.82
10 2.5886e+05 2.5822e+05 0.25 31.46 389.43
11 2.5747e+05 2.5555e+05 0.75 40.65 451.43
12 2.7506e+05 2.7730e+05 -0.81 37.36 547.60
13 2.9353e+05 2.9455e+05 -0.35 49.66 840.38
14 3.3585e+05 3.3340e+05 0.74 71.98 971.68
15 3.3080e+05 3.2818e+05 0.80 59.41 1014.04
16 3.5593e+05 3.5330e+05 0.74 70.42 1153.75
17 3.8548e+05 3.8235e+05 0.82 82.73 1254.45
18 4.0342e+05 3.9912e+05 1.08 98.04 1403.90
19 4.0105e+05 3.9827e+05 0.70 87.33 1560.35
20 4.3877e+05 4.2633e+05 2.92 92.82 1750.89

AVG 2.8051e+05 2.7909e+05 0.51 46.17 723.32
Table 3: Low budget for (PFIPM)

m Z(1) Z(MSS) Gap(%) time(1) (s) time(MSS) (s)
4 1.6434e+05 1.6598e+05 -0.99 3.00 55.21
5 1.8422e+05 1.8551e+05 -0.69 5.24 79.54
6 2.3788e+05 2.3739e+05 0.20 7.00 149.72
7 2.6813e+05 2.6816e+05 -0.01 8.29 214.26
8 3.0774e+05 3.0681e+05 0.30 11.58 252.14
9 3.3307e+05 3.3386e+05 -0.24 16.77 335.16
10 3.6137e+05 3.5964e+05 0.48 25.96 468.76
11 3.9798e+05 3.9794e+05 0.01 25.81 602.45
12 4.5665e+05 4.5524e+05 0.31 33.63 818.90
13 4.6396e+05 4.5988e+05 0.89 40.53 1109.14
14 5.0086e+05 5.0091e+05 -0.01 45.86 1353.79
15 5.3762e+05 5.3141e+05 1.17 64.86 1282.98
16 5.8076e+05 5.7587e+05 0.85 78.08 1660.67
17 6.0014e+05 5.9108e+05 1.53 117.06 2079.76
18 6.2891e+05 6.2165e+05 1.17 119.52 1998.27
19 6.8722e+05 6.8079e+05 0.94 144.04 1605.18
20 7.0600e+05 6.8980e+05 2.35 229.25 1996.96

AVG 4.3629e+05 4.3305e+05 0.75 57.44 944.89
Table 4: High budget for (PFIPM)
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From the reported information we see that:

• The running time for solving low budget instances is shorter than high budget case for
both of methods. This is not difficult to explain since low budget case makes the feasible
set of (PIFP) is smaller than high budget case and hence it takes less time.

• MSS is more expensive than our method for both ”single-sourcing” and ”multi-sourcing”
cases. Especially for (PFIPS), the difference in running time between Algorithm 2 and
MSS is very huge. With more than 12 facilities MSS cannot stop in limited time 7200s since
it has to solve many binary linear subproblems during the search. Although the difference
in solution time between Algorithm 1 and MSS for (PFIPM) is less than (PFIPS) but it
still large. Specifically, our method is about 16 times faster than MSS.

• In all tables the optimal values of (PFIPS) and (PFIPM) obtained by our method are
better than MSS. For single-sourcing rule, the average gap for 85 instances of low budget
interdiction is 2.85% and of high budget is 1.3%. For multi-sourcing case these results are
0.5% and 0.75% corresponding.

• In general, our method can solve (PIFP) efficiently in very short time even for large
dimension of considered problem. The solution time is around 200s for the large sizes
up to 20 facilities and 200 customers. One of the reasons is that the simplicity of DCA
applied for (PIFP).

5 Conclusion
In this paper, we consider the partial interdiction facility problem (PIFP) proposed by Aksen et
al. [1]. By using an approach based DC programming we propose new algorithms based DCA
for solving this model for both cases of single-sourcing and multi-sourcing. The computational
results show that our method outperforms MSS algorithm [1] significantly in running time as
well as in the quality of obtained solution. The proposed method in this paper should be
developed for more general bilevel model in our future research.
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