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Abstract

Liver transplantation has been a critical issue in the U.S. healthcare system
for decades, and the region redesign aims to ameliorate this issue. This
paper revisits two mixed integer programming (MIP) formulations of the
liver region redesign problem proposed by Akshat et al. [2]. We study their
first formulation considering two different modeling approaches: one compact
formulation and one with exponentially many constraints. We also propose
a set of variable fixing procedures and conduct a polyhedral study on their
second formulation. Our computational results show that multiple unsolved
instances are solved to optimality.

Keywords: liver transplant allocation, mixed integer programming,
polyhedral theory

1. Introduction

Chronic liver disease/cirrhosis is one of the leading causes of death in
the US, and transplantation is the only treatment. In 2022, there were over
50,000 deaths attributed to liver disease in the U.S. The demand for liver
transplants is rising due to various factors, including the increasing prevalence
of liver diseases, as well as an aging population. As of 2023, more than 10,000
people are on the waiting list for liver transplantation [11]. However, there
is a significant shortage of available donor livers. In 2022, only 9,528 liver
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transplants were performed in the U.S., leaving a considerable gap between
available livers and patients in need.

The United Network for Organ Sharing (UNOS) is responsible for over-
seeing organ allocation policies in the United States. For decades, the U.S.
transplant allocation policy divided the nation into 11 geographical regions,
which were further subdivided into 58 Donation Service Areas (DSAs). A
DSA is a geographic area containing one or more transplant centers and
donor hospitals. Each DSA is managed by an Organ Procurement Orga-
nization (OPO) responsible for recovering organs from deceased donors for
transplantation in the U.S. Currently, the U.S. has 56 OPOs. Figure 1 illus-
trates all the current DSAs of the U.S. and their corresponding OPOs.

Figure 1: 56 DSAs of the U.S. (Image credit: https://optn.transplant.hrsa.gov/

media/3104/kidney_publiccomment_201908.pdf)

Until recently, the Share 35 policy allocated livers to candidates based on
the Model for End-stage Liver Disease (MELD) score, and candidates with
MELD scores between 15 and 35 inside the DSA of an OPO were priori-
tized over those outside of the DSA. Because the Share 35 policy offered de-
ceased donor livers hierarchically by prioritizing the candidates in the OPO’s
DSA, it faced criticism for creating disparities. Each region contained specific
DSAs that share and receive livers reciprocally. In other words, sharing-and-
receiving occurs only between the DSAs of the same region.

There are multiple reciprocal-based MIP formulations for the liver region
redesign problem in the literature. Stahl et al. [10] introduce a bi-objective
(i.e., efficiency and geographical equity) MIP to find an optimal configura-
tion of liver transplant regions. Kong et al. [6] propose a branch-and-price
approach for region design of the liver allocation system in the U.S. Demirci
et al. [3] consider both objective functions of Stahl et al. [10] simultaneously
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and develop a branch-and-price approach to solve larger instances of the
problem. Gentry et al. [4] propose a MIP model to minimize the sum of ab-
solute differences between the number of deceased-donor livers recovered in
each district by partitioning the set of DSAs into a fixed number of districts.

Motivated by (i) reducing pre-transplant deaths, (ii) increasing pediatric
transplantation, and (iii) reducing geographic variation in medical urgency
scores at the time of transplant, UNOS currently implements an Acuity Circle
policy, which considers fixed distance from the donor hospitals [12]. In this
policy, the organs are shared incrementally in fixed-radius circles around
donation locations.

The reciprocal approach raises concerns about geographic equity because
the availability of and demand for donor livers can vary significantly from
one region to another. To improve geographic equity and allow broader
sharing, Kilambi and Mehrotra [5] introduced a neighborhood framework
that is a hypothetical case in which sharing is not reciprocal. Following
the neighborhood framework of Kilambi and Mehrotra [5], Akshat et al. [2]
propose two two-phase mixed integer programming (MIP) formulations based
on the neighborhood framework.

The neighborhood framework approach assigns, for each DSA, a sharing
neighborhood and a receiving neighborhood, where it can share livers with
the former and receive livers from the latter. Each neighborhood needs to
form a contiguous region. Crucially, sharing and receiving in a neighborhood
is not necessarily reciprocal, meaning that a DSA might share its livers with
another DSA but receive no livers in return. The resulting neighborhoods
may also overlap; in other words, a DSA might be in multiple other DSAs’
sharing (receiving) neighborhoods. According to Akshat et al. [2], their circu-
lar contiguity model results in neighborhoods that enjoy the narrowest range
of supply-demand ratios (≤ 0.15) in comparison with the models of Gentry
et al. [4] (0.17) and Kilambi and Mehrotra [5] (0.64). Figure 2 illustrates the
difference between a district/region-based and a neighborhood-based alloca-
tion solution on a 3× 3 grid graph.

In the first formulation of Akshat et al. [2], contiguity is defined by the
geographical connectivity of regions and is enforced using flow-based conti-
guity constraints. In the second formulation, circular contiguity is used to
construct neighborhoods. These MIP models determine optimal allocations
of livers from donor hospitals to transplant centers with respect to a fair-
ness criterion in different transplantation centers and DSAs by maximizing
the minimum supply-demand ratio among transplant centers. We refer the
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Figure 2: District-based and neighborhood-based strategies: (left) sharing-and-receiving
of organs is allowed only in a district and it is reciprocal; (right) sharing-and-receiving of
organs (not necessarily reciprocal) follows no specific rule.

reader to Akshat et al. [2] for more information about fairness in liver region
redesign.

Motivated by the importance of the liver region redesign problem and
computational challenges in solving the MIP formulations of Akshat et al.
[2], we revisit the MIP formulations and propose new formulations that are
at least as strong as the existing ones. Specifically, one of our proposed for-
mulations solves a real-world instance of the problem in a matter of seconds,
while a relaxation of an existing formulation of Akshat et al. [2] does not
solve the problem to optimality after two hours.

Our Contributions

1. We provide stronger alternate MIP formulations for the flow model
of Akshat et al. [2];

2. We propose stronger new MIP formulations for the circular model
of Akshat et al. [2];

3. We conduct a polyhedral study on the circular model; and

4. We conduct computational experiments on real-world datasets, which
results in solving multiple unsolved instances of the problem to opti-
mality.
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2. Preliminaries

2.1. Notation

For clarity, we employ the same notation used by Akshat et al. [2]. Let
I and J be the set of supply and demand locations with sizes Nsup and
Ndem, respectively. Depending on the context, a supply location can be a
DSA or a donor hospital. Furthermore, a demand location can be a DSA
or a transplant center. For every supply location i ∈ I, supply si denotes
the number of recovered livers from deceased donors. For every demand
location j ∈ J , demand dj denotes the number of patients on the waiting
list. For every supply location i ∈ I and every demand location j ∈ J ,
τij denotes the distance (in nautical miles) between them. Furthermore,
τmax represents the maximum allowable distance between supply and demand
locations. For every demand location j ∈ J , cj denotes the number of its
transplant centers. The minimum number of transplant centers that need
to be covered by a supply location is denoted by cmin. In both models, the
minimum and maximum supply-to-demand ratios are denoted by λ and β,
respectively.

2.2. Mathematical Models

Two mathematical models (phases) are discussed for each policy. Phase
1 maximizes the minimum ratio of total supplies supporting each demand
location over the total demand of the demand location. The intuition behind
the phase 1 model is provided below.

max λ∑
i∈I

supply of location i for demand location j

total demand satisfied by location i
≥ λ ∀j ∈ J

other constraints.

Phase 2 minimizes the maximum of the aforementioned ratio while the opti-
mal objective obtained in phase 1 is respected as a lower bound of the ratio.
In better words, the disparity between the best and the worst demand lo-
cations is minimized in phase 2 while the maximum supply-to-demand ratio
obtained by the MIP model of phase 1 is respected [2]. Let λ∗ be the best
objective value obtained by solving phase 1. The intuition behind phase 2
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model is provided below.

min β

λ∗ ≤
∑
i∈I

supply of location i for demand location j

total demand satisfied by location i
≤ β ∀j ∈ J

other constraints.

2.3. Computational Setup and Data

Our computational experiments are conducted on a PC with an Intel
Core i7-10750H CPU at 60GHz, using a 6-core with 16GB RAM. We em-
ploy Python 3.10.7 for coding and Gurobi 10.0.2 for solving the MIP models
with a time limit of 3,600 seconds. As we are dealing with fractional ob-
jective values (supply-to-demand ratios), a MIP gap of 1% yields optimal
objective values with two digits of precision that is acceptable in this con-
text. So, we set the MIP gap to 1% in our computational results. We
note that Akshat et al. [2] set the MIP gap to 0.01% (Gurobi’s default gap),
and we follow their MIP gap setting when we are comparing our results
with theirs in Sections 3.2 and 3.3. We consider two sets of liver trans-
plantation data for running our experiments: (i) data from July 2013 to
June 2017 (DATASET1), and (ii) data from January 2018 to December 2022
(DATASET2). DATASET1 is obtained by requesting the data from the
first author of Akshat et al. [2], and DATASET2 is obtained by request-
ing data from the Organ Procurement & Transplantation Network web-
site at https://optn.transplant.hrsa.gov/data/view-data-reports/

request-data/. We note that DATASET1 does not contain data needed for
running experiments with the Acuity Circle policy models. Code, data and
results for DATASET2 are available at https://github.com/Alpha-kun/

Stronger_MIP_Formulations_for_the_Liver_Region_Redesign_Problem.
We use the total number of registered patients on the waitlist to represent

the demand for a transplant center (DSA) and the number of cadaverous
livers provided by a donor hospital (DSA) to represent the supply of the
hospital (DSA). For the Acuity Circle policy, we used τmax that ranges from
450-750nm, with an increment of 50nm, while for the Share 35 policy, τmax

ranges from 500-700nm, with a step size of 100nm where nm stands for
Nautical Miles. For Acuity Circle models, we set cmin = 3 to ensure each
donor hospital will share organs with at least 3 different transplant centers.
This is consistent with the value of cmin in Akshat et al. [2]. Furthermore,
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we consider a new radius for any demand location around a supply location.
We consider two setups for our computational experiments: (i) a setup

with the supply and demand sets as the set of DSAs (SETUP1), and (ii) a
setup with the supply set of 3-digit zip codes2 and the demand set of trans-
plantation centers (SETUP2). For the 3-digit zip codes, we group donor
hospitals if their 5-digit zip codes share the same three-digit prefix (See Ak-
shat et al. [2] for a similar approach). We note that the numbers of DSAs and
3-digit zip codes are 58 and 677, respectively, and the number of transplant
centers is 149. The location of each hospital is denoted by its latitude and
longitude, and the location of a cluster of hospitals is determined by taking
the average of their locations. We employ the Vincenty method the GeoPy
package implements to compute the distance between a cluster and a trans-
plant center [1]. For the Acuity Circle policy, we exclude the supply and
demand locations of Hawaii, Puerto Rico, and the Virgin Islands, as even
the maximum value τmax (i.e., τmax = 700 nm) cannot cover any part of the
mainland U.S.

3. Liver Allocation Models with Flow-based Contiguity

In this section, we (i) provide the MIP models of Akshat et al. [2] with
flow-based contiguity, (ii) propose a stronger alternate MIP formulation, and
(iii) conduct a set of computational experiments. For every supply location
i ∈ I and every demand location j ∈ J , decision variable xij is one if location
i shares organs with location j and zero otherwise.

3.1. Flow Models of Akshat et al. [2]

The MIP model of the first phase is provided as follows. This model max-
imizes the minimum ratio of supply-to-demand among all demand locations.

2Due to the space limitation, our computational results for 4-digit zip codes are avail-
able on GitHub.
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max λ (1a)∑
i∈I

1∑
k∈J dkxik

sixij ≥ λ ∀j ∈ J (1b)∑
j∈J

cjxij ≥ cmin ∀i ∈ I (1c)

xii = 1 ∀i ∈ I (1d)

τijxij ≤ τmax ∀i ∈ I, j ∈ J (1e)

xij ∈ {0, 1} ∀i ∈ I, j ∈ J . (1f)

Objective function (1a) maximizes the minimum ratio of supply-to-demand
(see λ in constraints (1b)) among all demand locations. Constraints (1c)
enforce that every supply location must cover at least cmin transplant centers.
Constraints (1d) imply that a supply location satisfies its demand if it is
a demand location as well. Constraints (1e) imply that a supply location
cannot share its organs with a demand location if the distance between them
is more than τmax. We note that a linearized variant of constraints (1b) is
available in Appendix B of Akshat et al. [2].

As contiguity is not imposed by formulation (1), one needs to add con-
tiguity constraints because they capture a notion of compactness [2]. An
area is contiguous if one can move from one point of it to another point
without leaving the area. Akshat et al. [2] employ the flow-based contiguity
constraints of Shirabe [8, 9] for imposing contiguity. Let G = (V,E) be a
graph in which the vertex set V represents the set of locations and the edge
set E denotes the edges that connect adjacent pairs. We define A as the
bidirected variant of the edge set E (i.e., every edge {u, v} ∈ E corresponds
to arcs (u, v) and (v, u) in A.) Furthermore, m1 (m2) can be defined as the
maximum number of supply (demand) locations that can be assigned to a
demand (supply) location [2]. One can define m1 := |I| and m2 := |J |.
For every vertex v ∈ V , set N(v) denotes the open neighborhood of ver-
tex v. For every demand location j ∈ J (supply location i ∈ I) and every
arc (u, v) ∈ A, decision variable f j

uv (giuv) denotes the flow of type j (i) on
arc (u, v). Constraints (2) and (3) are the receiving and sharing contiguity
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constraints, respectively.∑
k∈N(i)

f j
ik −

∑
k∈N(i)

f j
ki = xij ∀i ∈ I \ {j}, ∀j ∈ J (2a)

(Receiving)
∑

k∈N(j)

f j
jk = 0 ∀j ∈ J (2b)

∑
k∈N(i)

f j
ki ≤ (m1 − 1)xij ∀i ∈ I, ∀j ∈ J . (2c)

∑
k∈N(j)

gijk −
∑

k∈N(j)

gikj = xij ∀i ∈ I \ {j}, ∀j ∈ J (3a)

(Sharing)
∑

k∈N(i)

giik = 0 ∀i ∈ I (3b)

∑
k∈N(j)

gikj ≤ (m2 − 1)xij ∀i ∈ I, ∀j ∈ J . (3c)

Constraints (2a) (constraints (3a)) imply that if supply location i ∈ I shares
organs with demand location j ∈ J , then a flow of type j (type i) must leave
supply location i (demand location j). Constraints (2b) (constraints (3b))
imply that no flow of type j (type i) is sent out from demand location j
(supply location i). Constraints (2c) (constraints (3c)) imply that if a supply
location i ∈ I shares no organ with a demand location j ∈ J , then Then no
flow of type j (type i) can pass the supply location i (demand location j).

An illustration of sharing and receiving contiguity is shown in Figure 3.
Let λ∗ be the best objective value of the first phase model (1) that maxi-

mizes the minimum ratio of supply-to-demand among all demand locations.
Now we provide Akshat et al. [2]’s second phase MIP model.

min β (4a)

λ∗ ≤
∑
i∈I

1∑
k∈J dkxik

sixij ≤ β ∀j ∈ J (4b)

constraints (1c)-(1f). (4c)

Objective function (4a) minimizes the difference between supply-to-demand
ratios by minimizing the maximum ratio of supply-to-demand (see constraints
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(a) Receiving contiguity (b) Sharing contiguity

Figure 3: An illustration of receiving and sharing contiguity: if a transplant center (donor
hospital) receives (shares) livers from (to) a non-neighbor donor hospital (transplant cen-
ter), then it should be able to receive (share) livers via a path containing donor hospitals
(transplant centers).

(4b)) among all demand locations.

3.2. New Models with Cut-based Contiguity

Due to the recent successful performance of contiguity cutting planes in
the districting context [13], we propose similar cutting planes for imposing
receiving and sharing contiguity constraints. While Akshat et al. [2] report
a MIP gap of 1.19% for the first phase of the flow model with only sharing
contiguity constraints (3) after two hours, we show that the contiguity cutting
planes provide optimal solutions in a matter of seconds when both sharing
and receiving contiguity constraints are imposed, and the MIP gap is set
to 0.01% (similar to the MIP gap of Akshat et al. [2]). We note that the
specifications of Akshat et al. [2]’s machine are superior to ours detailed in
Section 2.3.

Definition 1 (Validi et al. [13]). A subset C ⊆ V \{a, b} of vertices is an
a, b-separator for G = (V,E) if there is no path from a to b in G− C.

For every non-adjacent pair of vertices {a, b} ∈
(
V
2

)
and every a, b-separator

C, denoted by (a, b, C), the receiving and sharing contiguity constraints are
as follows.

xab ≤
∑
c∈C

xcb ∀(a, b, C) (5a)

xab ≤
∑
c∈C

xac ∀(a, b, C) (5b)
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Figure 4 shows an illustration of receiving and sharing a, b-separator inequal-
ities. Let P i

f and P i
c be the set of the continuous relaxations of models in

phase i (i ∈ {1, 2}) with flow-based and cut-based contiguity constraints,
respectively. Then, the following proposition provides a comparison between
these sets.

Proposition 1 (cf. Theorem 1 of Validi et al. [13]). For either phase
i ∈ {1, 2}, we have P i

c ⊆ P i
f and this can be strict.

(a) xab ≤ Σc∈Cxcb (b) xab ≤ Σc∈Cxac

Figure 4: An illustration of a, b-separator inequalities: (a) receiving a, b-separator inequal-
ities; (b) sharing a, b-separator inequalities.

As we have exponentially many constraints of types (5a) and (5b), we
need to add them on-the-fly; i.e., we need to find violated inequalities as we
proceed in the branch-and-cut tree. Fortunately, it is easy to find violated
inequalities when we encounter integral infeasible solutions. In better words,
the integer separation problems corresponding to inequalities (5a) and (5b)
are polynomially solvable. For more technical details of the integer separation
algorithm, interested readers are encouraged to see Algorithm 1 of Validi et al.
[13]. We note that lines 7-10 of their algorithm are unnecessary in our case.

3.3. Computational Results

We run our experiments as described in Section 2.3. We note that a best
solution of phase 1’s model is feasible for phase 2’s. So, we employ a best
solution of phase 1 as a heuristic to warm start the second phase model.
Our initial computational experiments showed that this problem gets more
challenging as the value of τmax increases. To alleviate this issue, we adopt
the following warm start strategy: any MIP formulation with τ̂max is warm
started with a solution of a MIP formulation with τ̄max, where τ̄max < τ̂max.
For example, a MIP formulation with τmax = 700 nm can be warm started by
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a solution of a MIP model with τmax = 600 nm, which can be further warm
started by a solution of a MIP model with τmax = 500. As the MIPs for both
phases are nonlinear, we linearized them based on Appendix B of Akshat
et al. [2].

Table 1 summarizes our computational results under DATASET1 and
SETUP1. In this table, column “τmax (contig.)” shows the τmax value and
contiguity constraint type (i.e., flow or cut). Columns “Best incumbent” and
“Best bound” denote the best feasible solution and best bounds obtained by
solving the MIP formulations after an hour. As we always warm start the
MIP of phase 2 with the best feasible solution of phase 1, we use “-” under
the column of “w/o heur.” (i.e., without heuristic) for any row of type phase
2. Furthermore, we set “NA” for any crossing of phase 1 for “τmax = 500
nm and column “w/heur.” (i.e., with heuristic) because τmax = 500 nm
is the smallest τmax for these models and no feasible solution is available
for its corresponding MIP model in phase 1. Column “B&B (#)” denotes
the number of explored branch-and-bound nodes in 3,600 seconds. Finally,
column “Gap in % (time in sec.)” denotes either an optimality gap or solving
time within the 1-hour time limit.

For τmax = 500 nm, Akshat et al. [2] report an optimality gap of 1.19%
after two hours of running their flow-based model with only sharing conti-
guity constraints, while we report an optimality gap of 0.18 % for our im-
plementation of the flow-based model with both sharing and receiving con-
tiguity constraints when the MIP gap is set to 0.01%, which is the Gurobi’s
MIP gap default. Our computational results show that our cut-based model
solves the problem in 35 seconds with the same default gap. Since we have
fractional objective values (supply-to-demand ratios), a MIP gap of 1% is
acceptable and yields optimal objectives with two digits of precision. Ta-
ble 1 shows the flow-based model can solve the problem when the MIP gap
is set to 1%. We observe that both phases of the MIP model are solved
when τmax ∈ {600, 700} nm while we struggle to solve the second phase of
the MIP model for τmax = 500 nm. Although the cut-based models are
at least as strong as the flow-based models, Table 1 shows the superiority
of the compact flow-based models in practice. This observation can be ex-
plained by the fact that the reduced cost fixing procedure is disabled when
the callback feature of Gurobi is active for adding contiguity cutting planes
on the fly. Figure 5 demonstrates a liver allocation map of the U.S. at the
DSA level when τmax = 700 nm. Due to the space limitation, the results
under DATASET2 and SETUP1 are reported in Appendix B.
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Table 1: Computational results for the MIP formulations with flow- and cut-based conti-
guity under DATASET1 and SETUP1 within a time limit of 3,600 seconds and MIP gap
of 1%

Best incumbent Best bound B&B (#) Time in sec. (gap in %)
τmax (contig.) Phase w/o heur. w/ heur. w/o heur. w/ heur. w/o heur. w/ heur. w/o heur. w/ heur.

500 (flow)
1 0.57 NA 0.57 NA 5,790 NA 10 NA
2 - 0.71 - 0.70 - 186,264 - (1.12)

500 (cut)
1 0.57 NA 0.58 NA 54,504 NA 30 NA
2 - 0.71 - 0.70 - 398,957 - (1.45)

600 (flow)
1 0.61 0.61 0.61 0.61 2,971 4,658 18 30
2 - 0.70 - 0.69 - 64,626 - 2,042

600 (cut)
1 0.61 0.61 0.61 0.61 57,336 122,222 64 145
2 - 0.70 - 0.69 - 259,961 - (1.28)

700 (flow)
1 0.61 0.61 0.61 0.61 6,102 0 78 1
2 - 0.70 - 0.69 - 25,903 - 1,707

700 (cut)
1 0.61 0.61 0.61 0.61 79,088 0 132 0
2 - 0.71 - 0.69 - 229,016 - (2.28)

Figure 5: A liver sharing network map of the U.S. with τmax = 700 nm

4. Liver Allocation Models with Circular Contiguity

Akshat et al. [2]’s models with circular contiguity are similar to a set
partitioning formulation in which (i) each supply location must be assigned
to exactly one coverage radius in a specific range and (ii) circular contiguity
is imposed. Mehrotra et al. [7] employed a similar radius-bounded strategy
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for designing compact political districts whose radius from a center is at most
three hops. Unlike the flow models (1) and (4), this is a linear model in both
phases one and two. For every supply location i ∈ I, we define Ri as the set of
radius values the supply location can cover. For every supply location i ∈ I
and every radius r ∈ Ri, (i) cri denotes the number of transplant centers
that are at most r units away from the supply location i, and (ii) binary
decision variable xir is one if supply location i covers demand locations in a
distance of at most r units from the supply location i. In our computational
experiments, we define a new radius for every demand location around a
supply location. This approach is similar to that of Akshat et al. [2].

4.1. Circular Models of Akshat et al. [2]

The model of the first phase, which maximizes the minimum supply-to-
demand ratio among all demand locations, is provided below.

max λ (6a)∑
i∈I

∑
r∈Ri:τij≤r

si∑
k:τik≤r dk

xir ≥ λ ∀j ∈ J (6b)

∑
r∈Ri

xir = 1 ∀i ∈ I (6c)∑
r∈Ri

crixir ≥ cmin ∀i ∈ I (6d)

xir ∈ {0, 1} ∀r ∈ Ri, i ∈ I. (6e)

Objective function (6a) maximizes the minimum supply-to-demand ratio (see
constraints (6b)) among all demand locations. Constraints (6c) imply that
every supply location i ∈ I must be assigned to exactly one covering radius
r ∈ Ri. Constraints (6d) imply that every supply location must cover at
least cmin transplant centers.

Let n′ be the number of x variables in model (6). We define the linear
programming (LP) relaxation set of formulation (6) as follows.

P1 := {(x, λ) ∈ Rn′

+ × R | (x, λ) satisfies constraints (6b)-(6d)}.

Let λ∗ be the best objective value of the first phase model (6). The
second phase model, which seeks to minimize the disparity between supply-
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to-demand ratios, is provided below.

min β (7a)

λ∗ ≤
∑
i∈I

∑
r∈Ri:τij≤r

si∑
k:τik≤r dk

xir ≤ β ∀j ∈ J (7b)

Constraints (6c)-(6e). (7c)

Objective function (7a) minimizes the difference between supply-to-demand
ratios (see constraints (7b)) among demand locations. We define the LP
relaxation set of formulation (7) as follows.

P2 := {(x, λ) ∈ Rn′

+ × R | (x, λ) satisfies constraints (7b) and (6c)-(6d)}.

4.2. New Models with Circular Contiguity and Polyhedral Studies

We propose a set of variable fixing for the model with circular contiguity.
For every supply location i ∈ I, we consider the following model in the first
phase. This model maximizes the supply-to-demand ratio for every supply
location such that (i) the supply location is assigned to exactly one radius,
and (ii) the supply location covers at least cmin transplant centers.

max zi =
∑
r∈Ri

si∑
k:τik≤r dk

xir (8a)∑
r∈Ri

xir = 1 (8b)∑
r∈Ri

crixir ≥ cmin (8c)

xir ∈ {0, 1} ∀r ∈ Ri. (8d)

As model (8) seeks to find the smallest r ∈ Ri such that (8c) holds, the
following remark shows that it is polynomially solvable.

Remark 1. For every supply location i ∈ I, MIP model (8) is solvable in
O(|Ri|) time.

For every supply location i ∈ I, let z∗i and r∗i ∈ Ri be the optimal
objective value and the optimal radius obtained by solving MIP model (8) to
optimality, respectively. For every supply location i ∈ I and every demand
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location j ∈ J , we define λ̂ij as follows.

λ̂ij =

{
z∗i if τij ≤ r∗i ,

0 otherwise.

For any demand location j ∈ J , we define λ̂j =
∑

i∈I λ̂ij. Furthermore, we
define R̄i as follows.

R̄i = {r ∈ Ri : r > r∗i }.

For every demand location j ∈ J , we define Ij as follows.

Ij = {i ∈ I : τij ≤ τmax}.

Now, we propose the reduced model of phase 1 as follows.

max λ (9a)

λ ≤
∑
i∈Ij

∑
r∈R̄i:τij≤r

si∑
k:τik≤r dk

xir +
∑
i∈Ij

λ̂ij

(
1−

∑
r∈R̄i:τij≤r

xir

)
∀j ∈ J (9b)

∑
r∈R̄i

xir ≤ 1 ∀i ∈ I (9c)

xir ∈ {0, 1} ∀r ∈ R̄i, i ∈ I. (9d)

We also note that a constraint of type (9c) is redundant for any supply
location i ∈ I with |R̄i| = 1. Furthermore, constraints (9b) can be simplified
as follows.

λ ≤ λ̂j +
∑
i∈Ij

∑
r∈R̄i:τij≤r

( si∑
k:τik≤r dk

− λ̂ij

)
xir ∀j ∈ J . (10)

Let n be the number of x variables in model (9). Now we define the LP
relaxation set of the reduced model in phase 1 as follows.

PR1 := {(x, λ) ∈ Rn
+ × R | (x, λ) satisfies constraints (9c) and (10)}.

Let λ∗ be the best objective value of model (9). Then the model of phase 2

16



can be written as follows.

min β (11a)∑
i∈Ij

∑
r∈R̄i:τij≤r

si∑
k:τik≤r dk

xir +
∑
i∈Ij

λ̂ij

(
1−

∑
r∈R̄i:τij≤r

xir

)
≤ β ∀j ∈ J (11b)

∑
i∈Ij

∑
r∈R̄i:τij≤r

si∑
k:τik≤r dk

xir +
∑
i∈Ij

λ̂ij

(
1−

∑
r∈R̄i:τij≤r

xir

)
≥ λ∗ ∀j ∈ J (11c)

∑
r∈R̄i

xir ≤ 1 ∀i ∈ I (11d)

xir ∈ {0, 1} ∀r ∈ R̄i, i ∈ I. (11e)

Now we define the LP relaxation set of the reduced model in phase 2 as
follows.

PR2 := {(x, β) ∈ Rn
+ × R | (x, β) satisfies constraints (11b)-(11d)}.

Now, we propose polyhedral results on the Acuity Circle policy models.

Lemma 1. Polyhedron PR1 is full-dimensional.

Proof. We note that points (i) (0, 0) ∈ PR1, (ii) unit vector (ev, 0) ∈ PR1 for
every v ∈ [n], and (iii) (0,minj∈J{λ̂j}) ∈ PR1. It is easy to see that these
points form n + 2 affinely independent points. So, PR1 is a full-dimensional
polyhedron.

Proposition 2. Packing constraints (9c) induce facets for polyhedron PR1.

Proof. As PR1 is full-dimensional by Lemma 1, it suffices to find n+1 affinely
independent points that satisfy constraints (9c) at equality. Let i ∈ I be a
supply location. For every radius r ∈ R̄i, let point (eir, 0) ∈ PR1 be the
unit vector with 1 for xir and 0 for other elements. Then, we define P1 =
{(eir, 0)|r ∈ R̄i}. Furthermore, we fix r′ as an arbitrary radius belonging to
R̄i. Then, we define P2 = {(ejr + eir′ , 0)|j ∈ I \ {i}, r ∈ R̄j}. Finally, we

define point q := (eir′ ,minj∈J {λ̂j +
si∑

k:τik≤r′ dk
− λ̂ij}) with r′ be a radius

that belongs to R̄i. We note that q ∈ PR1. Points of the set P1 ∪ P2 ∪ {q}
form n+1 affinely independent points and satisfy inequalities (9c) for supply
location i ∈ I at equality (see Table 2 in Appendix A).

We conclude this section by providing two results that show the reduced
circular MIP models are at least as strong as the existing ones.
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Theorem 1. PR1 ⊆ projP1 with projP1 be a projection of P1 after the
variable fixing procedure.

Proof. Let (x̄, λ̄) be a point that belongs to polyhedron PR1. We are to show
that there exists point (x̂, λ̄) that belongs to P1. For every binary variable
xir that exists in both models (6) and (9) (i.e., for every supply location i ∈ I
and every radius r ∈ R̄i), we set x̂ir := x̄ir. For every supply location i ∈ I,
let r∗i be the index for the largest radius in R\R̄i. We set x̂ir∗i

= 1−
∑

r∈R̄i
x̄ir.

For every supply location i ∈ I and every radius index r ∈ (R \ R̄i) \ {r∗i },
we set x̂ir = 0. This implies that (x̂, λ̄) satisfies constraints (6c).

Now, we show that (x̂, λ̄) satisfies constraints (6d).∑
r∈Ri

cri x̂ir =
∑
r∈R̄i

cri x̂ir + c
r∗i
i x̂ir∗i

≥ c
r∗i
i ≥ cmin.

Finally, we show that (x̂, λ̄) satisfies constraints (6b).∑
i∈Ij

∑
r∈Ri:τij≤r

si∑
k:τik≤r dk

x̂ir =
∑
i∈Ij

∑
r∈R̄i:τij≤r

si∑
k:τik≤r dk

x̂ir

+
∑
i∈Ij

λ̂ijx̂ir∗i

=
∑
i∈Ij

∑
r∈R̄i:τij≤r

si∑
k:τik≤r dk

x̄ir

+
∑
i∈Ij

λ̂ij(1−
∑

r∈R̄i:τij≤r

x̄ir)

≥ λ̄.

Here, the second equality holds by the definition of x̂ir∗i
for every supply

location i ∈ I. The last inequality holds by constraints (9b).

Theorem 2. PR2 ⊆ projP2 with projP2 be a projection of P2 after the
variable fixing procedure.

Proof. The proof is similar to that of Theorem 1.

We finally note that the number of fixed variables is exactly cmin|I| be-
cause we define a new radius for every demand location around a supply
location in our computational experiments. This approach of creating radii
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is consistent with that of Akshat et al. [2]. Depending on the τmax value, we
fix roughly 4-7 % of binary decision variables in our computational experi-
ments (the larger τmax, the smaller fix percentage). We discuss the effect of
the variable fixing procedure in Section 4.3.

4.3. Computational Results

In this set of experiments, we consider only SETUP2 as circular models
can solve the instances of SETUP1 in less than one second. In our compu-
tational experiments, we recall that the number of fixed variables is exactly
cmin|I|, equal to 3× 677 = 2, 031. Figure 6 shows the effect of variable fixing
for the first phase of circular MIP formulation (6). While the variable fixing
procedure improves the optimality gap for τmax ∈ {500, 600, 650} in a time
limit of one hour, it makes no/tiny difference for τmax ∈ {450, 550}. Coun-
terintuitively, the fixing procedure worsens the optimality gap for τmax = 700
nm in the one-hour time limit. A detailed report of our computational ex-
periments with the first and second phases of MIP formulations with circular
contiguity (6) and (7) is provided in Appendix C. Finally, we note that we
were not able to run our experiments under SETUP2 and DATASET1 as
DATASET1, which is provided by Akshat et al. [2], does not contain the
data needed for running computational experiments under SETUP2.

5. Conclusion and Future Work

This paper explores the existing MIP models of the liver region redesign
problem with flow-based and circular contiguity. For the first formulation,
we investigate a compact flow-based and a cut-based formulation with expo-
nentially many constraints. We propose a variable fixing procedure for the
formulation with circular contiguity that makes a set of constraints facet-
defining. Our implementations of the MIP models solve multiple instances
of the problem to optimality. As a future work, one may be interested in
new approaches for handling the nonlinearity of the first formulation. An-
other interesting direction might be the managerial insights that one can
provide for policymakers. Furthermore, our theoretical results can be em-
ployed in other applications like designing radius-bounded districting plans
and telecommunication networks.
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Figure 6: Effect of variable fixing on the optimality gap for the first phase of MIP formu-
lation with circular contiguity (6) during a time limit of 3,600 seconds.
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Appendix A

Table 2: n+1 affinely independent points that satisfy inequalities (9c) for supply location
i ∈ I at equality. For any j ∈ I \{i}, we define vector xj,Rj

:= (xj,1, · · · , xj,|R̄j |)
T because

of space limitation.

P1 P2 q

λ 0 0 0 0 0 0 0 0 minj∈J {λ̂j +
si∑

k:τik≤r′ dk
− λ̂ij}

x1,R1 0 I 0 0 0 0 0 0 0
x2,R2 0 0 I 0 0 0 0 0 0
...

...
...

. . . . . . . . .
...

...
...

...
xi−1,Ri−1

0 0 0 0 I 0 0 0 0
xi,r1 1 . . . 0 . . . 0 0 0 0 0 0 0 0 0
...

...
. . .

...
...

...
...

...
...

...
...

...
...

...
xi,r′ 0 . . . 1 . . . 0 1 1 1 1 1 1 1 1
...

...
...

...
. . .

...
...

...
...

...
...

...
...

...
xi,|R̄i| 0 . . . 0 . . . 1 0 0 0 0 0 0 0 0
xi+1,Ri+1

0 0 0 0 0 I 0 0 0
...

...
...

...
...

...
. . . . . .

...
...

x|I|,R|I| 0 0 0 0 0 0 0 I 0
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Appendix B

Table 3: Computational results for the MIP formulations with flow- and cut-based conti-
guity under DATASET2 and SETUP1 in 3,600 seconds

Best Incumbent Best Bound B&B (#) Time in sec (gap in %)
τmax Phase w/o heur. w/ heur. w/o heur. w/ heur. w/o heur w/ heur. w/o heur. w/ heur.

500 (flow)
1 0.67 NA 0.68 NA 356,142 NA 2,433 NA
2 - 0.76 - 0.74 - 352,562 - (2.86)

500 (cut)
1 0.67 NA 0.68 NA 910,800 NA (1.91) NA
2 - 0.75 - 0.74 - 1,989,333 - 1,709

600 (flow)
1 0.67 0.68 0.69 0.69 174,542 163,444 (2.02) (1.46)
2 - 0.72 - 0.72 - 260,488 - 3,534

600 (cut)
1 0.68 0.67 0.69 0.69 336,213 2,883,598 (1.31) (2.49)
2 - 0.75 - 0.72 - 2,505,677 - (3.31)

700 (flow)
1 0.68 0.68 0.69 0.69 96,894 112,982 (1.18) (1.46)
2 - 0.74 - 0.72 - 140,389 - (2.73)

700 (cut)
1 0.67 0.68 0.69 0.69 136,720 2,144,472 (2.32) (1.13)
2 - 1.20 - 0.72 - 2,134,625 - (39.56)
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Appendix C

Table 4: Computational results of the MIP formulations with circular contiguity under
DATASET2 and SETUP2 in 3,600 seconds

Best Incumbent Best Bound B&B (#) Time in sec (gap in %)
τmax Phase w/o fix w/ fix w/o fix w/ fix w/o fix w/ fix w/o fix w/ fix

450
1 0.60 0.60 0.61 0.61 0 0 36 23
2 0.64 0.64 0.63 0.63 143 667 85 97

500
1 0.61 0.61 0.61 0.61 0 375 47 54
2 0.65 0.65 0.63 0.63 27,201 26,507 (4.21) (3.56)

550
1 0.61 0.61 0.62 0.62 35 0 81 59
2 0.63 0.65 0.62 0.62 720 18,901 472 (3.86)

600
1 0.62 0.62 0.62 0.62 684 3,625 443 617
2 0.64 0.66 0.62 0.62 7,750 15,196 (2.96) (5.60)

650
1 0.62 0.62 0.62 0.62 166 32 230 143
2 0.65 0.68 0.62 0.62 7,366 14,150 (4.00) (8.32)

700
1 0.62 0.62 0.62 0.62 227 31 254 174
2 0.65 0.68 0.62 0.62 12,386 15,940 (3.76) (8.32)
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