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Abstract

We consider bilevel programs where a single leader interacts with multiple followers
who are coupled by a Nash equilibrium problem at the lower level. We generalize the
value function reformulation to include multiple followers. This allows us to propose a
convergent method based on the sequential convex approximation paradigm, and study
the (exact or inexact) iterative solution of the convex subproblems. Since some of our
convergence results require a constraint qualification, we give conditions under which it is
satisfied. Finally, we propose a novel ESG-oriented multi-portfolio selection model, and
test our numerical procedure confirming the theoretical insights.

Keywords: Nash equilibrium problem, bilevel problem, single-leader multi-follower game,
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1 Introduction

We deal with hierarchical programs where, at an upper level, the leader optimizes some crite-
rion taking into account the choices of multiple followers who, at a lower level, aim at selfishly
maximizing their utilities. Each follower’s objective function, in turn, depends parametrically
on both the leader’s and the other followers’ decisions: the collection of the followers’ problems
form a parametric (in the leader’s decisions) Nash Equilibrium Problem (NEP). We assume
the following conditions, which are standard in non-cooperative frameworks, to hold: the
followers behave rationally and act simultaneously, and each follower’s problem information
is shared with the others. Following a common path in the relevant literature, we take the
so-called (standard) optimistic point-of-view: we address a bilevel problem where the opti-
mization is carried out with respect to both the leader’s decision variables and the followers’
ones, which, in turn, are constrained to belong to the lower-level parametric (in the leader’s
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decisions) equilibrium set. We remark that the latter set is not assumed to be a singleton nor
do we assume it to be expressed in closed form in terms of the leader’s variables.

These structures are profitably used to describe real-world problems, for example in the
context of multi-portfolio selection (see Section 7, [5]), energy markets (see e.g. [1]) and
mobility-as-a-service (see e.g. [19] and the references therein). But, while the relevant liter-
ature has focused mostly on theoretical properties (see e.g. [4] and the references therein)
and modelistic aspects, as far as numerical procedures are concerned, to date, few provably
convergent approaches have been developed, essentially revolving around the classical Math-
ematical Program with Equilibrium Constraints (MPEC) formulation of the original problem
([6]). Note that, as highlighted in [7], local solutions of the MPEC formulation, which is what
one can hope to compute at best, might not lead to local solution of the original problem.

As a main departure from the MPEC paradigm, we propose a generalized (to account
for the presence of multiple followers) optimal-value function formulation, which has some
precursors (e.g. [16, 21]) in the simpler framework of single-follower problems: we deal with
the difficult-to-treat lower-level equilibrium constraint by introducing as many corresponding
value function constraints as the numbers of the followers. We study the properties of the
resulting problem under the assumption requiring the followers’ objectives to be convex: we
remark that convexity is to be intended with respect to both the leader’s and all the followers’
decision variables blocks. Such an assumption turns out to be not too restrictive, as we are
able, under mild conditions, to enforce it a posteriori, by suitably modifying the (possibly
nonconvex) followers’ objectives, resulting in a problem that is nonetheless equivalent to the
original one. We show that the followers’ optimal-value functions are convex and continuously
differentiable, so that we are able to devise a Sequential Convex Approximation (SCA)-like
procedure to address the problem at hand.

The algorithm essentially consists in the iterative solution of a sequence of ‘well-behaved’
convex solvable subproblems. For the procedure to work properly, one needs first to compute
a starting equilibrium for the lower-level problem, then one has to iteratively address each
follower’s individual convex and solvable optimization problem without the need to calculate
further equilibria; subsequently, a leader-related strongly convex subproblem has to be solved,
where inner convex (local) approximations of the value function constraints appear in lieu of
the difficult original ones. We study the convergence properties of the resulting scheme both
in the cases where some degree of inexactness is allowed for in the subproblems’ solution and
whenever they can be solved exactly. Finally, we equip our analysis with thorough numerical
tests on real-world data in the multi-portfolio selection context.

Summarizing, as for the main contribution of our work,

• we generalize the value function formulation to account for multiple followers in a lower-
level NEP framework. We extend the study on the value function’s differentiability
properties to account for inexactness in the solution of the followers’ problem (see Sec-
tion 2, and in particular Proposition 2.1);

• focusing on the convergence properties of a SCA-like algorithm tailored to the problem
at hand we distinguish two cases. When subproblems are solved inexactly, the procedure
is still guaranteed to produce feasible iterates and to achieve descent (see Section 4, and
Theorem 4.4 for the behavior of the procedure). We prove in Section 5 convergence to
stationary solutions of the original problem when subproblems are solved exactly (see
Theorem 5.5).
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We are not aware of other solution procedures that can guarantee similar outcomes
under the mild conditions we assume. We remark that our procedure requires the
computation of just a starting equilibrium, and as for the ensuing iterations, convex
solvable subproblems are addressed;

• we study the regularity properties of the constraints mapping of the bilevel problem
at hand. More precisely, we show that approaches, that are usually relied upon to
recover standard Constraints Qualifications (CQ) when a single follower is present, do
not ensure such CQs in the more general framework of multiple followers (see Section 6
for a thorough analysis);

• we present a genuine novel bilevel approach to deal with a nowadays highly sensitive
topic: ESG-oriented multi-portfolio selection. We test our numerical procedure using
real-world data in Section 7 and obtain results that confirm theoretical insights.

2 The multi-follower game: definitions and main properties

We consider the standard optimistic Multi-Follower ε-inexact Game

minimize
x,y

F px, yq

s.t. x P X

y P Eεpxq,

where ε P RN` and Eεpxq is the (lower level) set of ε-inexact equilibria of the parametric (in x)
Nash Equilibrium Problem (NEP), whose generic (follower) player ν, for ν “ 1, . . . , N , solves
the optimization problem

minimize
yν

θνpx, y
ν , y´νq

s.t. yν P Yν .
(1)

We assume that

• the sets X, Y1, . . . , YN are nonempty, compact and convex subsets of Rp,Rn1 , . . . ,RnN ,
respectively,

• with n “
řN
ν“1 nν the functions F, θ1, . . . , θN : Rp ˆ Rn Ñ R are continuously differen-

tiable and convex on Rp ˆ Rn (we say that θν is fully convex for every ν).

The notation y “ pyν , y´νq with y´ν “
`

y1, . . . , yν´1, yν`1, . . . , yN
˘

P Rn´nν emphasizes the
ν-th player’s decision variables, but does not reorder the entries of the vector

`

y1, . . . , yν , . . . , yN
˘

.
We remark that εν represents inexactness in terms of the optimal value of player ν’s

problem. In particular, leveraging an optimal-value function reformulation-type approach,
and observing that

Eεpxq fi
 

y P Rn | θνpx, yν , y´νq ´ ϕνpx, y´νq ď εν , y
ν P Yν , ν “ 1, . . . , N

(

,

where
ϕνpx, y

´νq fi min
yνPYν

θνpx, y
ν , y´νq,
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one can equivalently replace the constraint y P Eεpxq in the formulation of the standard
optimistic Multi-Follower ε-inexact Game with the functional expression in the formula above,
yielding the problem

minimize
x,y

F px, yq

s.t. x P X, yν P Yν , ν “ 1, . . . , N,

θνpx, y
ν , y´νq ´ ϕνpx, y

´νq ď εν , ν “ 1, . . . , N.

(MFGε)

We define Y fi
śN
ν“1 Yν , and we indicate with Wε the feasible set of (MFGε):

Wε fi tpx, yq P X ˆ Y | θνpx, y
ν , y´νq ´ ϕνpx, y

´νq ď εν , ν “ 1, . . . , Nu.

We also denote, for η ě 0 and for every ν, by

Sην px, y
´νq fi

 

yν P Yν | θνpx, y
ν , y´νq ´ ϕνpx, y

´νq ď η
(

the set of η-inexact optimal points for player ν’s (parametric) optimization problem (1).
Focusing on the solution of follower ν’s problem (1), we use η to denote an input level
of inexactness allowed for, whereas εν refers to the inexactness guaranteed after different
iterations of our proposed algorithmic framework.

For results where a positive level of inexactness is considered, the following further as-
sumptions are called for every ν.

A1

¨

˝

∇xθνpx, ‚, y
´νq

∇y´νθνpx, ‚, y
´νq

˛

‚ is uniformly Lipschitz continuous for every x and y´ν , with

modulus L independent of x, y´ν and ν;

A2 θνpx, ‚, y
´νq is uniformly strongly convex for every x and y´ν with constant c indepen-

dent of x, y´ν and ν.

Note that, while, under A2, S0
ν reduces to a single-valued mapping for every x and y´ν , this

may not be the case for E0, let alone for Eε with ε ą 0.
The following result gathers important properties of the optimal-value function ϕν .

Proposition 2.1 For every ν, ϕν is convex and continuously differentiable on Rp ˆ Rn´nν
and the following statements hold

(i)

∇ϕνpx, y´νq “

¨

˝

∇xϕνpx, y
´νq

∇y´νϕνpx, y
´νq

˛

‚“

¨

˝

∇xθνpx,w
ν , y´νq

∇y´νθνpx,w
ν , y´νq

˛

‚, @wν P S0
νpx, y

´νq;

(ii) assume A1 and A2 to hold and η ě 0:

›

›

›

›

›

›

¨

˝

∇xϕνpx, y
´νq

∇y´νϕνpx, y
´νq

˛

‚´

¨

˝

∇xθνpx, z
ν , y´νq

∇y´νθνpx, z
ν , y´νq

˛

‚

›

›

›

›

›

›

ď
L

a

c{2

?
η, @zν P Sην px, y

´νq.
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Proof. Problem (1) can be equivalently reformulated as an unconstrained program employ-
ing the so-called indicator function δY ν py

νq, where δY ν py
νq “ 0 if yν P Y ν and δY ν py

νq “ 8 if
yν R Y ν . Since, by our assumptions, the function δY ν turns out to be lower semicontinuous and
convex, then the convexity of ϕν follows from [17, Corollary 3.32], since θν is fully convex. In
order to show the continuous differentiability of ϕν and the expression of its gradient stated in
point (i), one can rely on, e.g., [6, 18]. However, to maintain the paper self-contained, we prove
that, for every px, y´νq and any wν P S0

νpx, y
´νq, ∇xθνpx,w

ν , y´νq “ u, ∇y´νθνpx,w
ν , y´νq “

v and, as a consequence, Bϕνpx, y
´νq “ tp∇xθνpx,w

ν , y´νq,∇y´νθνpx,w
ν , y´νqq : wν P

S0
νpx, y

´νqu “ tpu, vqu.
Let us consider a generic Rp ˆ Rn´nν Q pu, vq P Bϕνpx, y´νq. By the convexity of ϕν , we

have

θνpx, y
ν , y´νq ě ϕνpx, y

´νq ě ϕνpx, y
´νq ` uT px´ xq ` vT py´ν ´ y´νq

“ θνpx,w
ν , y´νq ` uT px´ xq ` vT py´ν ´ y´νq,

for every px, yν , y´νq P Rp ˆ Yν ˆ Rn´nν . It follows that

px,wν , y´νq P arg min
x,yν ,y´ν

θνpx, y
ν , y´νq ´ uTx´ vTy´ν s.t. yν P Yν ,

and, in turn, 0 “ ∇xθνpx,w
ν , y´νq ´ u and 0 “ ∇y´νθνpx,w

ν , y´νq ´ v. The claim is a
consequence of the arbitrariness of pu, vq. Finally, the thesis follows by [17, Theorem 9.18,
Corollary 9.20].

As for point (ii), for every px, y´νq and any wν P S0
νpx, y

´νq,

c

2
}zν´wν}2 ď ∇yνθνpx,w

ν , y´νqJpzν´wνq`
c

2
}zν´wν}2 ď θνpx, z

ν , y´νq´θνpx,w
ν , y´νq ď η,

where the first inequality is due to wν P Sνpx, y
´νq, the second relation follows from A2, while

the last one holds because zν P Sην px, y´νq. Thanks to point (i), in view of A1, we have
›

›

›

›

›

›

¨

˝

∇xϕνpx, y
´νq

∇y´νϕνpx, y
´νq

˛

‚´

¨

˝

∇xθνpx, z
ν , y´νq

∇y´νθνpx, z
ν , y´νq

˛

‚

›

›

›

›

›

›

“

›

›

›

›

›

›

¨

˝

∇xθνpx,w
ν , y´νq

∇y´νθνpx,w
ν , y´νq

˛

‚

´

¨

˝

∇xθνpx, z
ν , y´νq

∇y´νθνpx, z
ν , y´νq

˛

‚

›

›

›

›

›

›

ď L}wν ´ zν} ď L?
c{2

?
η.

l

Proposition 2.1 implies in particular that the left hand sides θνpx, y
ν , y´νq´ϕνpx, y

´νq of the
inequality constraints in (MFGε) constitute differences of convex (DC) functions, while the
objective function and the appearing sets are convex.

Moreover, Proposition 2.1 indicates that knowing (inexact) solutions to player ν’s problem
(1) is key to evaluate ∇ϕν . Clearly, if η ą 0, and thus solutions to (1) are computed inexactly,
nonetheless p∇xθνpx,w

ν , y´νq,∇y´νθνpx,w
ν , y´νqq gives an estimate of ∇ϕνpx, y´νq up to an

error depending on η and simple problem-related constants.
Note that under our assumptions not only each set Eεpxq, for every x P X, is nonempty

and compact [11, Corollary 2.2.5], but by the continuity of the functions ϕν , also the graph
of the set-valued mapping Eε on X is nonempty and compact.

We conclude the section with a technical result concerning the outer semicontinuity of the
set-valued mapping W‚, that is W : RN Ñ Rp ˆ Rn.
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Proposition 2.2 Wε, considered as a set-valued mapping with respect to ε, is outer semi-
continuous on Rn`, relative to Rn`.

Proof. See Proposition 2.1 and [2, Theorem 3.1.1]. l

In the forthcoming developements we assume that ∇F is Lipschitz continuous on the compact
set X ˆ Y with modulus L∇F , and we define the following quantities:

H fi max
px,yqPXˆY

}∇F px, yq}, D fi max
u, vPXˆY

}u´ v}.

3 An algorithmic procedure

We rely on the Sequential Convex Approximation (SCA) paradigm (see [13] and the references
therein for some context about this class of algorithmic procedures) to address (MFGε): given
a base point pxk, yk, zkq, where for every ν, zν,k P Sην pxk, y´ν,kq, the defining subproblem
for the algorithm’s inner iterations results from a regularization of the objective function,
linearizations of the concave parts of the DC constraint functions, and the introduction of
iteration dependent feasibility tolerances. It reads as follows:

minimize
x,y

F px, yq ` τ
2 }px, yq ´ px

k, ykq}22

s.t. x P X, yν P Yν , ν “ 1, . . . , N,

θνpx, y
ν , y´νq ´ θνpx

k, zν,k, y´ν,kq ´∇xθνpx
k, zν,k, y´ν,kqT px´ xkq

´∇y´νθνpx
k, zν,k, y´ν,kqT py´ν ´ y´ν,kq ´ pζkν ` ζνq ď 0, ν “ 1, . . . , N,

(Pζkpx
k, yk, zkq)

where ζ P RN` and ζk P RN are two vectors aiming at relaxing the convexified versions of the
N value function constraints θνpx, y

ν , y´νq ´ ϕνpx, y
´νq ď 0 such that

ζkν fi min

#

max
!

θνpx
k, ykq ´ θνpx

k, zν,k, y´ν,kq, 0
)

, k

˜

η `
LD
a

c{2

?
η ` ηζν

¸+

, ν “ 1, . . . , N.

(2)
The term pζkν ` ζνq is a given tolerance, at iteration k, for the fulfilment of the convexified
version of the ν-th value function constraint. In fact, ζkν is instrumental to compensate the
errors yielded by η in the evaluation of ϕνpx

k, y´ν,kq and ∇ϕνpxk, y´ν,kq (see Proposition 4.1
(i)). Clearly, if η “ 0, and thus the estimates of ϕνpx

k, y´ν,kq and ∇ϕνpxk, y´ν,kq are exact,
then ζkν “ 0 for every ν. As for ζν , it is related to the fulfilment of constraint qualifications,
that play an important role for numerical reasons (see Proposition 4.1 (ii) and the results in
Section 6). Notice that, under the initial assumptions, the sequence tζku is bounded since
the difference θνpx

k, ykq ´ θνpx
k, zν,k, y´ν,kq in (2) is bounded for every ν.

We denote by

Rp ˆ Rn Ě Cζkpx
k, yk, zkq

fi tx P X, yν P Yν , ν “ 1, . . . , N |

θνpx, y
ν , y´νq ´ θνpx

k, zν,k, y´ν,kq ´∇xθνpx
k, zν,k, y´ν,kqT px´ xkq

´∇y´νθνpx
k, zν,k, y´ν,kqT py´ν ´ y´ν,kq ´ pζkν ` ζνq ď 0, ν “ 1, . . . , N

(
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the convex feasible set of problem (Pζkpx
k, yk, zkq).

From now on, we assume computational solvability for

• Lower level NEP: equilibria can be computed up to a tolerance η̌ P RN` , that is, given
x0 P X, y0 P E

qηpx
0q can be calculated;

• Lower level problems: followers’ problems are solvable within a tolerance η ě 0, thus,
points zν,k in Sην pxk, y´ν,kq can be computed;

• Upper level subproblems: letting ηk ě pη ě 0, points pxk`1, yk`1q satisfying the ηk-
approximate minimum principle for (Pζkpx

k, yk, zkq) can be computed, i.e.

pxk`1, yk`1q P Cζkpx
k, yk, zkq,

„

∇F pxk`1, yk`1q ` τ

ˆ

xk`1 ´ xk

yk`1 ´ yk

˙Jˆ

x´ xk`1

y ´ yk`1

˙

ě ´ηk, @ px, yq P Cζkpx
k, yk, zkq.

(3)

From a practical point of view, it is reasonable to assume pη ě η.

The following scheme summarizes the SCA-like procedure described above.

Algorithm 1: Alternating optimization

Data: ζ ě 0, η ě 0, tηku ě pη ě 0, qη ě 0, τ ě 0, x0 P X;
(S.0) Compute y0 P E

qηpx
0q;

for k “ 0, 1, . . . do
(S.1) for ν “ 1, . . . , N do

Compute zν,k P Sην pxk, y´ν,kq;
end

(S.2) Update ζk according to (2) and compute pxk`1, yk`1q satisfying (3);

end

Step (S.0) requires the computation of an appoximate equilibrium of the lower level NEP,
given x0: one can rely on many provably convergent methods that are available in the relevant
literature. For example, whenever r∇yνθνpx

0, yqsNν“1 is monotone on Y , efficient solution
procedures are readily at hand [8, 9, 10, 12]. Performing this preliminary calculation is
instrumental to make px0, y0q feasible for (MFGε), where ε “ qη, and, in turn, to maintain
feasibility throughout the iterations (see Propositions 4.1 and 5.3).

Concerning (S.1), for each k, one has to solve, up to an accuracy η, N separate followers-
related optimization problems (1), where parameters px, y´νq “ pxk, y´ν,kq are fixed. Such N
optimization problems are solvable and convex: a host of approaches can be relied upon
to address them, possibly in a finite number of iterations when η ą 0. The computed
points zν,k are, then, employed to obtain the estimates θνpx

k, zν,k, y´ν,kq for ϕνpx
k, y´ν,kq

and p∇xθνpx
k, zν,k, y´ν,kq,∇y´νθνpx

k, zν,k, y´ν,kqq for ∇ϕνpxk, y´ν,kq, that are used to build
subproblem Pζkpx

k, yk, zkq.

Finally, in (S.2), pxk`1, yk`1q is calculated as an inexact solution to the approximate first
order necessary and sufficient optimality conditions (3) for the strongly convex subproblem
Pζkpx

k, yk, zkq. Under some assumptions, the latter problem is shown to satisfy the Slater
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constraint qualification. In order to have an insight on inexactness in variational contexts,
we refer the reader to [3].

In the forthcoming sections, we analyze the convergence properties of Algorithm 1 when
inexactness in the solution of followers’ problems is accounted for (η ą 0), and in the exact
case (η “ 0).

4 The case when the followers’ subproblems are solved inex-
actly pη ą 0q

With the following proposition, we state two important properties: in point (i) we show
that any feasible point for any subproblem is feasible for the original multi-follower game
considering a suitable inexactness value. Point (ii) states that the subproblems are feasible
and even more, they enjoy constraint qualifications, making them numerically tractable. For
this to be true, the initial point y0 must be in E

qηpx
0q.

Proposition 4.1 Let η ą 0. Under Assumptions A1 and A2:

(i) if a point px, yq is feasible for (Pζkpx
k, yk, zkq), with any arbitrarily chosen zν,k P

Sην pxk, y´ν,kq @ν, then px, yq is feasible also for (MFGεk), with εkν fi η ` LD?
c{2

?
η `

ζkν ` ζν , ν “ 1, . . . , N ;

(ii) if ζ ě qη, the pair pxk, ykq is feasible for (Pζkpx
k, yk, zkq) for any zν,k P Sην pxk, y´ν,kq @ν.

If ζ ą qη, the pair pxk, ykq P X ˆ Y is a Slater point for Cζkpx
k, yk, zkq.

Proof. (i) From the feasibility of px, yq for (Pζkpx
k, yk, zkq) we have

θνpx, y
ν , y´νq ď θνpx

k, zν,k, y´ν,kq `∇xθνpx
k, zν,k, y´ν,kqT px´ xkq

`∇y´νθνpx
k, zν,k, y´ν,kqT py´ν ´ y´ν,kq ` ζkν ` ζν , ν “ 1, . . . , N.

(4)

Proposition 2.1 entails with any wν,k P S0
νpx

k, y´ν,kq

θνpx
k, zν,k, y´ν,kq `∇xθνpx

k, zν,k, y´ν,kqT px´ xkq `∇y´νθνpx
k, zν,k, y´ν,kqT py´ν ´ y´ν,kq

“ θνpx
k, zν,k, y´ν,kq `∇xθνpx

k, wν,k, y´ν,kqT px´ xkq `∇y´νθνpx
k, wν,k, y´ν,kqT py´ν ´ y´ν,kq

` r∇xθνpx
k, zν,k, y´ν,kq ´∇xθνpx

k, wν,k, y´ν,kqsT px´ xkq

` r∇y´νθνpx
k, zν,k, y´ν,kq ´∇y´νθνpx

k, wν,k, y´ν,kqsT py´ν ´ y´ν,kq

ď θνpx
k, zν,k, y´ν,kq `∇xθνpx

k, wν,k, y´ν,kqT px´ xkq `∇y´νθνpx
k, wν,k, y´ν,kqT py´ν ´ y´ν,kq

`

›

›

›

›

ˆ

∇xθνpx
k, zν,k, y´ν,kq ´∇xθνpx

k, wν,k, y´ν,kq
∇y´νθνpx

k, zν,k, y´ν,kq ´∇y´νθνpx
k, wν,k, y´ν,kq

˙›

›

›

›

›

›

›

›

ˆ

x´ xk

y´ν ´ y´ν,k

˙
›

›

›

›

ď ϕνpx
k, y´ν,kq ` η `∇xϕνpx

k, y´ν,kqT px´ xkq `∇y´νϕνpx
k, y´ν,kqT py´ν ´ y´ν,kq `

LD
a

c{2

?
η

ď ϕνpx, y
´νq ` η `

LD
a

c{2

?
η.
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In turn, by (4) we obtain

θνpx, y
ν , y´νq ď ϕνpx, y

´νq ` η `
LD
a

c{2

?
η ` ζkν ` ζν , ν “ 1, . . . , N.

The claim follows observing that x P X and yν P Yν , @ν.
(ii) Let ζ ě qη. We distinguish two cases. If ζkν “ maxtθνpx

k, ykq ´ θνpx
k, zν,k, y´ν,kq, 0u,

then

θνpx
k, ykq ´ θνpx

k, zν,k, y´ν,kq ´∇xθνpx
k, zν,k, y´ν,kqT pxk ´ xkq

´∇y´νθνpx
k, zν,k, y´ν,kqT py´ν,k ´ y´ν,kq ď ζkν ď ζkν ` ζν .

Otherwise, if k “ 0

θνpx
k, ykq ´ θνpx

k, zν,k, y´ν,kq ´∇xθνpx
k, zν,k, y´ν,kqT pxk ´ xkq

´∇y´νθνpx
k, zν,k, y´ν,kqT py´ν,k ´ y´ν,kq

ď θνpx
k, ykq ´ ϕνpx

k, y´ν,kq ď qην ď ζν “ ζkν ` ζν

where the second relation is due to y0 P E
qηpx

0q, and the last equation to (2). If k ě 1

θνpx
k, ykq ´ θνpx

k, zν,k, y´ν,kq ´∇xθνpx
k, zν,k, y´ν,kqT pxk ´ xkq

´∇y´νθνpx
k, zν,k, y´ν,kqT py´ν,k ´ y´ν,kq

ď θνpx
k, ykq ´ ϕνpx

k, y´ν,kq ď η `
LD
a

c{2

?
η ` ζk´1

ν ` ζν

ď k

˜

η `
LD
a

c{2

?
η ` ηζν

¸

` p1´ ηqζν “ ζkν ` p1´ ηqζν ď ζkν ` ζν , (5)

where the second relation is due to point (i) and pxk, ykq P Cζk´1pxk´1, yk´1, zk´1q; the third

relation follows from (2) for ζk´1
ν , and we have the first claim.

If ζ ą qη, the last inequality in chains of point (ii) holds strictly. l

The following technical lemmas are instrumental to prove the results in the convergence
Theorem 4.4. The claim in Lemma 4.2 deals with the continuity properties of the point-to-set
mapping C: while the outer semicontinuity of C can be easily proven resorting to standard
reasonings, some clarifications are in order as for its inner semicontinuity.

Lemma 4.2 Let η ą 0 and ζ ą 0. Let pxk, yk, zk, ζkq be the sequence generated by Algorithm
1. The point-to-set mapping C : Rp ˆ Rn ˆ Rn ˆ RN Ñ Rp ˆ Rn is continuous at any limit
point ppx, py, pz, pζq of the sequence, relative to X ˆ Y ˆ Y ˆ R`.

Proof. The outer semicontinuity can be easily proven resorting to standard reasoning [2,
Theorem 3.1.1]. We only need to prove the inner semicontinuity. The following properties
that, by [2, Theorem 3.1.6], are sufficient for the claim to be true, hold:

• sets X and Y are nonempty and convex;

9



• Since η ą 0, (2) eventually yields ζkν “ maxtθνpx
k, ykq ´ θνpx

k, zν,k, y´ν,kq, 0u, and
therefore pζν “ maxtθνppx, pyq ´ θνppx, pz

ν , py´νq, 0u. Then, for all ν, we have

θνppx, pyq ´ θνppx, pz
ν , py´νq ´∇xθνppx, pz

ν , py´νqT ppx´ pxq ´∇y´νθνppx, pz
ν , py´νqT ppy´ν ´ py´νq

ď pζν ă pζν ` ζν ,

that is, ppx, py, pz, pζq is a Slater point for C
pζ
ppx, py, pzq;

• for every ν, the function θνpx, y
ν , y´νq ´ θνppx, pz

ν , py´νq ´ ∇xθνppx, pz
ν , py´νqT px ´ pxq ´

∇y´νθνppx, pz
ν , py´νqT py´ν ´ py´νq ´ ppζν ` ζνq is continuous with respect to px, y, px, py, pz, pζq

and convex with respect to px, yq.

l

Lemma 4.3 Let pxk, yk, zk, ζkq and ηk be the sequences generated by Algorithm 1. If

}pxk`1, yk`1q ´ pxk, ykq}2 ď σk, (6)

where σk ą 0, then

∇F pxk, ykqJ
ˆ

x´ xk

y ´ yk

˙

ě ´σkpτD `H ` L∇FDq ´ η
k, @px, yq P Cζkpx

k, yk, zkq. (7)
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Proof. In view of (6), the claim follows from the following chain of inequalities that holds
for every k and px, yq in Cζkpx

k, yk, zkq:

´σkpτD `H ` L∇FDq ´ η
k ď ´σkpτD `H ` L∇FDq

`

„

∇F pxk`1, yk`1q ` τ

ˆ

xk`1 ´ xk

yk`1 ´ yk

˙Jˆ

x´ xk`1

y ´ yk`1

˙

ď ´σkpτD `H ` L∇FDq `∇F pxk`1, yk`1qJ

ˆ

x´ xk`1

y ´ yk`1

˙

`τ

∥∥∥∥xk`1 ´ xk

yk`1 ´ yk

∥∥∥∥
2

∥∥∥∥x´ xk`1

y ´ yk`1

∥∥∥∥
2

ď ´σkpH ` L∇FDq `∇F pxk`1, yk`1qJ

ˆ

x´ xk`1

y ´ yk`1

˙

ď ´σkpH ` L∇FDq `∇F pxk`1, yk`1qJ

ˆ

x´ xk

y ´ yk

˙

`}∇F pxk`1, yk`1q}2

∥∥∥∥xk ´ xk`1

yk ´ yk`1

∥∥∥∥
2

ď ´σkL∇FD `∇F pxk`1, yk`1qJ

ˆ

x´ xk

y ´ yk

˙

ď ´σkL∇FD `∇F pxk, ykqJ
ˆ

x´ xk

y ´ yk

˙

`}∇F pxk`1, yk`1q ´∇F pxk, ykq}2
∥∥∥∥x´ xky ´ yk

∥∥∥∥
2

ď ∇F pxk, ykqJ
ˆ

x´ xk

y ´ yk

˙

,

where the first relation holds because pxk`1, yk`1q verifies the ηk-approximate minimum prin-
ciple (3) for problem (Pζkpx

k, yk, zkq) while the last inequality is due to the Lipschitz conti-
nuity of ∇F over X ˆ Y . l

In Theorem 4.4 we state the convergence properties of Algorithm 1 in the case of η ą 0.

Theorem 4.4 Let η ą 0 and ζ ě qη. Under Assumptions A1 and A2, let pxk, yk, zk, ζkq be
the sequence generated by Algorithm 1. The following statements hold.

(i) pxk, ykq is feasible for (MFGεk´1) where εk´1
ν fi η ` LD?

c{2

?
η ` ζk´1

ν ` ζν , ν “ 1, . . . , N ,

and any limit point prx, ry, rz, rζq is such that prx, ryq is feasible for (MFGε), where εν “
η ` LD?

c{2

?
η ` rζν ` ζν , ν “ 1, . . . , N . Moreover, for all k, we have:

F pxk`1, yk`1q ´ F pxk, ykq ď ηk ´ τ

∥∥∥∥xk ´ xk`1

yk ´ yk`1

∥∥∥∥2

2

. (8)

(ii) Assume ζ ą qη, τ ą 0 and ηk Ó pη ě 0.
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(a) A convergent subsequence K of pxk, yk, zk, ζkq exists such that

lim
kPK

´τ}pxk`1, yk`1q ´ pxk, ykq}22 ` η
k ě 0. (9)

(b) The limit point ppx, py, pz, pζq of the subsequence defined by K verifies ppx, pyq P C
pζ
ppx, py, pzq

and

∇F ppx, pyqJ
ˆ

x´ px
y ´ py

˙

ě ´

«

pη `

c

pη

τ
pτD `H ` L∇FDq

ff

, @px, yq P C
pζ
ppx, py, pzq.

(10)

Proof. (i) The claim follows observing that pxk, ykq is feasible for (Pζk´1pxk´1, yk´1, zk´1q)
and, in turn, it is also feasible for (MFGεk´1) in view of (i) in Proposition 4.1. Any limit point
turns out to be feasible for (MFGε), thanks to the outer semicontinuity of the point-to-set
mapping W‚ (see Proposition 2.2).

Since pxk`1, yk`1q satisfies the ηk-approximate minimum principle (3) for (Pζkpx
k, yk, zkq)

and pxk, ykq P Cζkpx
k, yk, zkq (see (ii) in Proposition 4.1), in view of the convexity of F , we

have

´ηk ď ∇F pxk`1, yk`1qJ
ˆ

xk ´ xk`1

yk ´ yk`1

˙

´ τ

∥∥∥∥xk ´ xk`1

yk ´ yk`1

∥∥∥∥2

2

ď F pxk, ykq ´ F pxk`1, yk`1q ´ τ

∥∥∥∥xk ´ xk`1

yk ´ yk`1

∥∥∥∥2

2

,

and, hence, (8) holds.
(ii) (a) From (8) we conclude that lim supk η

k ´ τ}pxk`1, yk`1q ´ pxk, ykq}22 ě 0, since
otherwise the sequence of values F pxk, ykq would tend to ´8, contradicting the boundedness
of F on X ˆ Y . Hence K exists such that (9) holds.

The convergence of the subsequence defined by K is due to the compactness of X and Y
and because the sequence tζku is bounded.

(ii) (b) Thanks to (ii) in Proposition 4.1 and Lemma 4.2, we have ppx, pyq P C
pζ
ppx, py, pzq.

For every k P K,

}pxk`1, yk`1q ´ pxk, ykq}22 ď
ηk

τ
` µk,

where µk Ó 0. Hence, in view of Lemma 4.3, relation (7) holds with k P K and

σk “

c

ηk

τ
` µk.

Taking the limit in (7) for k P K, in view of the continuity of C (see Lemma 4.2) we obtain
the claim. l

Relation (10) leads to the following inexact suboptimality-like condition that is true by the
convexity of F .
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Corollary 4.5 Let η ą 0, ζ ą qη and pxk, yk, zk, ζkq be the sequence generated by Algorithm
1. Under Assumptions A1 and A2, letting ηk Ó pη ě 0 and τ ą 0, a limit point ppx, py, pz, pζq
exists that verifies

ppx, pyq PWε, F ppx, pyq ď F px, yq `

«

pη `

c

pη

τ
pτD `H ` L∇FDq

ff

, @px, yq P C
pζ
ppx, py, pzq,

(11)
where εν “ η ` LD?

c{2

?
η ` pζν ` ζν for every ν.

Some comments are in order.

• Point (i) of Theorem 4.4 is the most practically relevant, since it states feasibility of each
iteration pxk, ykq with respect to the single-leader multi-follower problem, with a degree
of inexactness εk´1 depending on ζk´1. Moreover, relation (8) ensures decreasing values

for the leader’s objective F , whenever
∥∥pxk, ykq ´ pxk`1, yk`1q

∥∥2

2
ą

ηk

τ , and therefore
whenever the movement achieved by Step (S.2) is not too small. In this perspective, a

practical stopping criterion could be
∥∥pxk, ykq ´ pxk`1, yk`1q

∥∥2

2
ď

ηk

τ or directly checking
the decrease of F .

Notice that the parameter ζkν , which relaxes player ν’s convexified value function con-
straint, could also decrease for a given iteration. For example, assuming ζk´1

ν ą 0, if
pxk, ykq PWε with εν “ ζν , then ζkν “ 0.

• Relation (11) is a suboptimality-like condition that takes into account the value-function
constraints, as in general X ˆ Y Ę C

pζ
ppx, py, pzq, where pζ is the limit inexactness vector.

5 The case when the subproblems can be solved exactly pη “
0q

In the specific case of η “ 0, whenever one is able to solve exactly the followers’ problems (e.g.
in the quadratic box-constrained case), ζk “ 0 and lower-level inexactness-related assumptions
A1 and A2 are no more needed and sharper results can be obtained at the price of requiring
constraint qualifications to hold. On the other hand, Slater’s constraint qualifications are not
guaranteed to hold (see Proposition 4.1 (ii)) for the subproblems (P0px

k, yk, zkq). However,
requiring the Mangasarian-Fromovitz Constraint Qualification to hold for Wε, with ε “ ζ, at
a point, ensures constraint qualifications for the subproblems with the same base point.

Proposition 5.1 Let px, yq P Wε, with ε “ ζ. The Mangasarian-Fromovitz Constraint
Qualification (MFCQ) for Wε holds at px, yq if and only if the following relations imply
λν “ 0, ν “ 1, . . . , N :

0 P
řN
µ“1 λµp∇xθµpx, y

µ, y´µq ´∇xθµpx,w
µ, y´µqq `NXpxq

and, @ν “ 1, . . . , N,

0 P λν∇yν θνpx, y
ν , y´νq `

ÿ

µ‰ν

λµp∇yν θµpx, y
µ, y´µq ´∇yν θµpx,w

µ, y´µqq `NYν py
ν
q

λν P NR´
pθνpx, y

ν , y´νq ´ θνpx,w
ν , y´νq ´ ζνq,

(12)

where wν is any arbitrarily chosen point in S0
νpx, y

´νq, and NApaq denotes the normal cone
to the closed convex set A at a.
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Proof. Recalling the definition of MFCQ (see, e.g. [17, Statement of Theorem 6.14]), the
claim is a consequence of Proposition 2.1. l

We observe that a necessary condition for the MFCQ to hold for Wε, with ε “ ζ, at any
px, yq is ζ ą 0. If this is not the case, it is easy to prove that the MFCQ is not satisfied
at any feasible point. With the next result, we state the relation between the constraint
qualifications of the original problem (MFGε) and the subproblems (Pζkpx

k, yk, zkq), where

zk “ wk and every wν,k is any arbitrarily chosen point in S0
νpx

k, y´ν,kq.

Proposition 5.2 Let px, yq PWε, with ε “ ζ, and wν P S0
νpx, y

´νq for every ν. Then, px, yq
satisfies the MFCQ for Wε if and only if the Slater CQ holds for C0px, y, wq.

Proof. Suffice it to observe that the MFCQ for C0px, y, wq at px, yq is exactly the same as
conditions (12). The claim follows recalling that, in view of the convexity of C0px, y, wq, the
MFCQ at px, yq is equivalent to the Slater CQ for C0px, y, wq. l

The following results are similar to the ones in the inexact case (Section 4), and will lead to
the convergence Theorem 5.5.

Proposition 5.3 Letting η “ 0,

(i) if a point px, yq is feasible for (P0px
k, yk, zkq), with any arbitrarily chosen zν,k P S0

νpx
k, y´ν,kq

@ν, then px, yq is feasible also for (MFGε), with ε “ ζ;

(ii) if ζ ě qη, pxk, ykq for every k is feasible for (P0px
k, yk, zkq) for any zν,k P S0

νpx
k, y´ν,kq

@ν.

Proof. The claims can be shown similarly to the proof of Proposition 4.1. l

Lemma 5.4 Let η “ 0 and pxk, yk, zk, 0q be the sequence generated by Algorithm 1. The
point-to-set mapping C : Rp ˆ Rn ˆ Rn ˆ RN Ñ Rp ˆ Rn is, relative to X ˆ Y ˆ Y ˆ R`,

• outer semicontinuous at any limit point of the sequence;

• inner semicontinuous at any limit point prx, ry, rz, 0q of the sequence such that the MFCQ
holds for Wε, with ε “ ζ.

Proof. The outer semicontinuity can be easily proven resorting to standard reasoning [2,
Theorem 3.1.1]. The inner semicontinuity follows from the same line of reasoning as in the
proof of Lemma 4.2, by simply observing that the Slater CQ holds for C0prx, ry, rzq in view of
Proposition 5.2, due to the assumed MFCQ for Wε at prx, ryq. l

In Theorem 5.5 we state the convergence properties of Algorithm 1 in case of η “ 0.

Theorem 5.5 Let η “ 0, ζ ě qη and pxk, yk, zk, 0q be the sequence generated by Algorithm 1.
The following statements hold.

(i) pxk, ykq for any k, and all its limit points are feasible for (MFGε), with ε “ ζ, and (8)
holds for every k.
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(ii) Let ηk Ó pη ě 0 and τ ą 0.

(a) A convergent subsequence K of pxk, yk, zk, 0q exists such that (9) holds.

(b) The limit point ppx, py, pz, 0q of the subsequence defined by K verifies ppx, pyq P C0ppx, py, pzq Ď
Wε, with ε “ ζ, and

(1) if the MFCQ holds for Wε at ppx, pyq, then

∇F ppx, pyqJ
ˆ

x´ px
y ´ py

˙

ě ´

«

pη `

c

pη

τ
pτD `H ` L∇FDq

ff

, @px, yq P C0ppx, py, pzq;

(13)

(2) else, ppx, pyq satisfies the Fritz-John necessary conditions for (MFGε).

(iii) Let ηk “ 0 for all k and τ ą 0.

(a) We have
lim
k
}pxk`1, yk`1q ´ pxk, ykq}22 “ 0.

(b) For every limit point prx, ry, rz, 0q, it holds that prx, ryq P C0prx, ry, rzq ĎWε, with ε “ ζ,
and

(1) if the MFCQ holds for Wε at prx, ryq, then

∇F prx, ryqJd ě 0 @d P TWεprx, ryq, (14)

where TWεprx, ryq denotes the tangent cone to Wε at prx, ryq;

(2) else, prx, ryq satisfies the Fritz-John necessary conditions for (MFGε).

Proof. The proof follows the same line of reasoning as in the one of Theorem 4.4, along
with the following considerations:

• point (ii)(a) is the same as point (ii)(a) of Theorem 4.4. Point (iii)(a) comes from (8)
because ηk “ 0, by the same line of reasoning as point (ii)(a) of Theorem 4.4.

• the inner semicontinuity of C0 needed in points piiqpbqp1q and piiiqpbqp1q comes from
Lemma 5.4;

• relation (13) comes immediately from (10);

• Lemma 4.3 holds for every subsequence thanks to point (iii)(a), then (14) is due to (10),
recalling that the tangent cone TC0prx,ry,rzqprx, ryq to the convex set C0prx, ry, rzq at prx, ryq is
given by the closure of the set of feasible directions for C0prx, ry, rzq at prx, ryq. In turn,
the Slater CQ holds for C0prx, ry, rzq thanks to Proposition 5.2, thus, due to [17, Theorem
6.31] and in view of Proposition 2.1,

TC0prx,ry,rzqprx, ryq “

$

’

&

’

%

s P TXˆY prx, ryq
ˇ

ˇ

ˇ

»

–

∇xθνprx, ryq ´∇xϕνprx, ry
´νq

∇yνθνprx, ryq
∇y´νθνprx, ryq ´∇y´νϕνprx, ry

´νq

fi

fl

J

s ď 0, ν “ 1, . . . , N

,

/

.

/

-

,

which is easily seen to be nothing else but TWεprx, ryq, with ε “ ζ;
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• as for points piiqpbqp2q and piiiqpbqp2q, the Fritz-John conditions hold by definition when-
ever MFCQ fails.

l

Relations (13) and (14) lead to the following inexact suboptimality-like condition that is true
by the convexity of F .

Corollary 5.6 Let η “ 0, ε “ ζ and pxk, yk, zk, 0q be the sequence generated by Algorithm 1.
The following statements hold:

(i) letting ηk Ó pη ě 0 and τ ą 0, a limit point ppx, py, pz, 0q exists that verifies

ppx, pyq PWε, F ppx, pyq ď F px, yq`

«

pη `

c

pη

τ
pτD `H ` L∇FDq

ff

, @px, yq P C0ppx, py, pzq;

(ii) if ηk “ 0 for all k, any limit point prx, ry, rz, 0q is such that

prx, ryq PWε, F prx, ryq ď F px, yq, @px, yq P C0prx, ry, rzq.

Some comments are in order.

• The comments regarding the feasibility of the sequence pxk, ykq, and the decrease of
F pxk, ykq at the end of Section 4 apply also for this section, recalling that εk “ ζ.

• About the convergence analysis of Theorem 5.5, we remark that point (ii), where the
upper-level subproblems are solved inexactly (ηk ą 0), holds for a single limit point,
while point (iii), where ηk “ 0, holds for every limit point.

Whenever the limit pη “ 0, in both the frameworks described in points (ii) and (iii), we
are able to prove that Algorithm 1 either converges to a Fritz-John point, or to a point
satisfying standard stationarity conditions for (MFGε). We want to stress that such an
outcome is what one can hope to achieve when dealing with a nonconvex program such
as (MFGε), through a descent algorithm. Algorithm 1 is the first numerical method in
the literature to achieve convergence in the single-leader multi-follower game, under the
conditions of our framework, which cover many applications (see Section 7).

6 On constraint qualifications for the multi-follower game

As shown in the results of Section 5, the MFCQ turns out to be essential to prove that Algo-
rithm 1 enjoys enhanced convergence properties (see Theorem 5.5, Corollary 5.6). Therefore,
it is crucial to understand if it is sensible to assume the MFCQ for (MFGε), with ε “ ζ. From
now on, we assume η “ 0 and ε “ ζ in this section.

It is easy to show that, whenever ζ “ 0, at any point px, yq PWε, the MFCQ for (MFGε)
is violated: it suffices to consider yν “ wν for all ν in (12).

However, for every ζ ą 0, the MFCQ holds, e.g., at each px, yq P Wε with y P E
qηpxq and

qη ă ζ, since all inequality constraints in the description of Wε are inactive, and λν “ 0 follows
from the complementarity condition in (MFGε) for each ν P t1, . . . , Nu.

Also, the MFCQ holds at any point px, yq PWε at which exactly one inequality constraint
is active. In fact, if only player ν’s inequality is active, then the complementarity conditions
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in (12) yield λµ “ 0 for all µ ‰ ν, and the second line in (12) collapses to the condition
0 P λν∇yνθνpx, y

ν , y´νq `NYν py
νq. Assuming λν ą 0 thus results in 0 P ∇yνθνpx, y

ν , y´νq `
NYν py

νq and, by the convexity of player ν’s optimization problem, in the optimality of yν

for player ν. This, however, contradicts the activity of player ν’s inequality constraint, that
is, θνpx, y

ν , y´νq “ ϕνpx, y
´νq ` ζν . Hence also λν must vanish, and MFCQ holds at px, yq.

Clearly, the case of a single follower is an instance of this specific situation.
The following example shows that under an additional structural assumption, the MFCQ

even holds at every point of Wε.

Example 6.1 For each ν P t1, . . . , Nu let θν be a convex quadratic function on Rp ˆ Rn
that is strongly convex with respect to yν . This means that there exist a suitably partitioned
symmetric positive semidefinite block matrix Aν “ pAνijqi,jPt0,1,...,Nu with Aνν,ν ą 0, ν “
1, . . . , N , a corresponding vector bν “ pbνi qiPt0,1,...,Nu and a scalar cν such that

θνpx, yq “
1

2

ˆ

x
y

˙J

Aν
ˆ

x
y

˙

` pbνqJ
ˆ

x
y

˙

` cν .

Note that each player ν’s problem (1) then possesses a unique optimal point wν “ wνpx, y´νq
for all choices of px, y´νq P X ˆ Y´ν , where Y´ν fi

ś

µ‰ν Yµ.

Furthermore, let us assume that ´pAνν,νq
´1pAνν,0X ` Aνν,´νY´ν ` b

ν
νq Ď Yν holds for each

ν, where we put Aνν,´ν “ pA
ν
ν,µqµ‰ν . Player ν’s first order optimality condition then is

0 “ Aνν,0 x`A
ν
ν,νy

ν `Aνν,´νy
´ν ` bνν ,

and convexity of the optimization problem entails the explicit description of the unique opti-
mal point

wνpx, y´νq “ ´pAνν,νq
´1

`

Aνν,0 x`A
ν
ν,´νy

´ν ` bνν
˘

for any px, y´νq P X ˆ Y´ν .
Consequently, for each ν the corresponding inequality from the description of the set Wε

may be written as

ζν ě θνpx, y
ν , y´νq ´ ϕνpx, y

´νq “ θνpx, y
ν , y´νq ´ θνpx,w

νpx, y´νq, y´νq

“
1

2
pyνqJAνν,νy

ν ´
1

2
pwνqJAνν,νw

ν ` pAνν,0x`A
ν
ν,´νy

´ν ` bννq
Jpyν ´ wνq

“
1

2
pyν ´ wνqJAνν,νpy

ν ´ wνq.

Hence, although the function ´ϕν in general is concave, the linearity of the function yν ´
wνpx, y´νq in px, yν , y´νq implies that θνpx, y

ν , y´νq ´ ϕνpx, y
´νq is convex.

Finally choose some x̄ P X and some Nash equilibrium ȳ P Eη̌px̄q, with η̌ “ 0. Then px̄, ȳq
is a Slater point with regard to the inequalities describing Wε. Since all of these inequalities
are smooth and convex, MFCQ holds everywhere in Wε.

On the other hand, the next example shows that under our general assumptions MFCQ may
be violated in Wε at points with more than one active constraint, and, thus, whenever different
followers are present.
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Example 6.2 For a nonempty compact and convex set X Ď Rp, N “ 2, n1 “ n2 “ 1, and
continuously differentiable convex functions ψ1, ψ2 on X let

θ1px, y1, y2q “ ψ1pxq ` py
2
1 ` 5qe´2y2 ,

θ2px, y1, y2q “ ψ2pxq ` py
2
2 ` 5qe´2y1

as well as Y1 “ Y2 “ r´2, 2s. It is not hard to see that both θ1 and θ2 are continuously
differentiable and fully convex on X ˆ Y1 ˆ Y2, so that our general assumptions are satisfied.

As optimal points for player 1 and 2 one computes w1px, y2q “ w2px, y1q “ 0 for any
px, y1, y2q P X ˆ Y1 ˆ Y2, so that the corresponding optimal-value functions are

ϕ1px, y2q “ ψ1pxq ` 5e´2y2 ,

ϕ2px, y1q “ ψ2pxq ` 5e´2y1

and, in turn,

θ1px, y1, y2q ´ ϕ1px, y2q “ y2
1e
´2y2 ,

θ2px, y1, y2q ´ ϕ2px, y1q “ y2
2e
´2y1 .

Note that the latter two functions are not convex on X ˆY1ˆY2 and that for any ζ ą 0 they
describe the set

Wε “ tpx, y1, y2q P X ˆ Y1 ˆ Y2| y
2
1e
´2y2 ď ζ1, y

2
2e
´2y1 ď ζ2u.

For any x P X and the choice ζ1 “ ζ2 “ e´2 let us consider the point px, 1, 1q P Wε.
Then, both inequality constraints are active at px, 1, 1q with gradients 2e´2p0, 1,´1qJ and
2e´2p0,´1, 1qJ, respectively. Hence, MFCQ is violated at px, 1, 1q.

Note that ζ1 “ ζ2 “ e´2 is tailored to yield the degeneracy at px, 1, 1q. On the other
hand, MFCQ holds everywhere in Wε for any other choice of ζ.

7 Numerical analysis

7.1 The bilevel multi-portfolio selection model

Inspired by the ESG multi-portfolio selection model of [5], let us consider a model where
multiple account owners (followers) can invest in different financial assets, and the investment
firm (leader) can set monetary incentives to influence the financial choices of the followers.
Specifically, each account ν invests a given budget bν P R` in K financial assets with the aim
of optimizing multiple objectives. In this context, the variables yν P Rnν represent the fraction
of follower ν’s budget to be invested in each asset. We consider the measure of account ν’s
portfolio expected return

Iνpy
νq fi bνpµνqT yν ,

where µν are the expectations of the assets’ return, and account ν’s portfolio expected risk

Rνpy
νq fi

1

2
pbνq2pyνqTΣνyν ,
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where Σν is the symmetric and positive semidefinite covariance matrix. We also include in
our analysis the transaction cost term

TCνpy
1, . . . , yN q fi bνpyνqTΩν

N
ÿ

λ“1

bλpyλq,

where Ων P RKˆK is the positive semidefinite (not necessarily symmetric) market impact
matrix, whose entry at position pi, jq gives account ν’s expected impact of the liquidity of
asset i on the liquidity of asset j (for further information about Ων , see [15] and [20]). We
remark that this term takes into account the liquidity component of the transaction costs, and
since the trades are pooled and executed simultaneously, this term depends on the aggregated
trades of all accounts. Lastly, each account wants to optimize the following sustainability-
oriented criterion

ESGSνpy
νq fi bνESGT yν ,

where ESG P RK are the assets’ Environmental, Social and Governance (ESG) scores, that
provide a measure of the sustainability of each asset [5].

Overall, each account owner minimizes the objective function

θνpx, y
ν , y´νq fi ´Iνpy

νq ` ρνRνpy
νq ` TCνpy

1, . . . , yN q ´ xνESGSνpy
νq

“ ´bνpµνqT yν ` ρν 1
2pb

νq2pyνqTΣνyν

`bνpyνqTΩνrbνpyνq `
ř

λ‰ν b
λpyλqs

´xνbνESGT yν ,

where ρν P R` is account ν’s risk-aversion parameter and the positive parameter xν weights
the impact of the term ESGSν . As for the leader, the firm controls the variables x, with
x fi px1 . . . xN q P RN` , and therefore the monetary incentives to be given to each follower
in order to influence their investments towards ESG-oriented portfolios. Overall, the firm’s
objective is to maximize the ESG score of all portfolios, while limiting the monetary incentives
provided:

F px, yq fi ´ESGT

˜

N
ÿ

ν“1

bνyν

¸

` α ‖x‖2
2 ,

where α P R` weights the firms’ willingness to incentivise investors.
Note that, as the main departure from the model in [5], each follower’s estimation of

the transaction cost matrix Ων is different, and we do not assume the followers’ NEP to be
reduced to a simpler potential game. Therefore, the problem presented in this section needs
to be treated as a single-leader multi-follower bilevel game, and we treat it with this level of
generality for the first time in the literature.

As for the convexity assumptions, while F is clearly convex, the followers’ problems could
be nonconvex with respect to px, yν , y´νq. However, in the spirit of [16], adding to each θν a
sufficiently large artificial quadratic term (in x and y´ν) , the resulting modified function

θ
1

νpx, y
ν , y´νq fi θνpx, y

ν , y´νq `
βν
2
px

T
x` py´νq

T
y´νq

turns out to have the same minima with respect to yν , but it is convex for sufficiently large
values of βν , as described in the following proposition.
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Proposition 7.1 For each ν, let nullpΣνq X nullpΩνq “ t0u. Then, for any

βν ě
λmaxpESGESG

T
` ΩνpΩνq

T ř

λ‰νpb
λq2q

λminpρνΣν ` 2sympΩνqq
,

arg minyνPYν θ
1

νpx, y
ν , y´νq “ arg minyνPYν θνpx, y

ν , y´νq, and θ
1

ν is convex with respect to
px, yν , y´νq.

Proof. For the sake of notational simplicity, and without loss of generality, we prove this for
player ν “ N . The first assertion is due to the fact that θ

1

ν and θν only differ by an additive
term which is constant in yν .

To prove the second assertion, consider the Hessian matrix of θ
1

N :

∇2θ
1

N px, y
ν , y´νq “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

βNIN 0 ¨ ¨ ¨ bNESG
T

0 βNIn1 b1bN pΩN qT

. . .
...

...
βNInN´1 b1bN´1pΩN qT

bNESG b1bNΩN ¨ ¨ ¨ b1bN´1ΩN pbN q2pρNΣN ` 2sympΩN qq

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

By the Schur complement theorem, for any βN ą 0, ∇2θ
1

N px, y
ν , y´νq is positive semidefinite

if and only if the following matrix is positive semidefinite:

pbN q2pρNΣN ` 2sympΩN qq ´
1

βN

˜

pbN q2ESGESG
T
` pbN q2ΩN pΩN q

T
N´1
ÿ

λ“1

pbλq2

¸

,

that is, any unit vector z satisfies

βNz
T `

pρNΣN ` 2sympΩN qq
˘

z ě z
T

˜

pESGESG
T
` ΩN pΩN q

T
N´1
ÿ

λ“1

pbλq2q

¸

z.

Due to nullpΣN qX nullpΩN q “ t0u, λminpρ
NΣN ` 2sympΩN qq ď z

T
pρNΣN ` 2sympΩN qqz and

λmaxpESGESG
T
`ΩN pΩN q

T řN´1
λ“1 pb

λq2q ě z
T
´

pESGESG
T
` ΩN pΩN q

T řN´1
λ“1 pb

λq2q

¯

z, we

have the second assertion. l

The previous result ensures that the followers’ objectives, although not natively fully convex,
can be substituted with θ

1

ν without changing the original bilevel program’s solutions. The
resulting problem with θ

1

ν satisfies all the assumptions required for Algorithm 1 to achieve
the convergence results of the previous sections. In the following numerical tests, θ

1

ν is used
for all ν.

We consider two different datasets: KDIJA “ 28 assets from the Dow Jones Industrial
Average (DJIA), and KNDX “ 55 assets from the NASDAQ 100 (NDX), consisting in daily
prices, adjusted for dividends and stock splits, daily traded volumes and daily ESG scores
(from 01/01/2019 to 31/12/2020), see [5]. For both datasets we consider N “ 5 followers,
resulting in N ˆ pKDIJA ` 1q “ 145 and N ˆ pKNDX ` 1q “ 280 total variables. The market
impact matrices Ων were computed in the same fashion as [5, 15], and the values for bν and
ρν were uniformly randomly generated in the intervals p0, 200q and p0, 0.2q respectively. We
do not allow for shortselling, so that, for each ν, Yν is the standard K-simplex, moreover, we
set X “ r0, 2sN .
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7.2 Algorithmic choices and results

We use two different starting points x0 for the two datasets, resulting in four test scenarios.
The initial equilibrium y0 P E

qηpx0q is always computed starting from the equally weighted
portfolio via a projected gradient-like method (see [11]), which is convenient since the pro-
jection on Y , which is made up by N K-simplexes, can be achieved through a finite-steps
procedure (see [14]). Specifically, the stopping criterion used for the computation of the initial
equilibrium is }y´PY py´r∇θνpx0, yqs

N
ν“1q} ď 1e´05. Steps (S.1) and (S.2) of the algorithm

are done using the matlab built-in functions quadprog and fmincon, respectively, using the
default tolerances. The parameter β, used to compute the functions θ

1

ν is set to 4, to en-
sure the theoretical properties needed for convergence, and we set α “ τ “ 1e ´ 03. In our
experiments, the inexactness in solving the followers’problem (η) and the leader’s problem
(ηk) turn out to be negligible compared to the values we set for ζ “ 1e ´ 04. Therefore,
in the implementation of the algorithm we set ζk “ 0 for all k, and we will show that the
results are consistent with the analysis of Section 5. Moreover, the condition ζ ě qη required
in Theorem 5.5 is satisfied in all our test settings. As for the stopping criterion for Algorithm
1, we choose a minimum relative decrease of the leader’s function F , i.e. we stop whenever
F pxk, ykq ´ F pxk`1, yk`1q ă p1e´ 06qp1` |F pxk, ykq|q.

Figure 1 shows the values of F pxk, ykq through the iterations until the stopping criterion is
met for the DIJA and the NDX datasets, and for both staring points x0 considered. Note that,
in accordance with relation (8) with ηk “ 0, F pxk, ykq is monotone decreasing. Moreover, the
decrease of F pxk, ykq shows a desirable behaviour, since it is rather ’smooth’ while flattening.
Figure 2 shows the opposite of the value of the total ESG scores, i.e., the value of F px, yq ´
α ‖x‖2

2, in the same four test settings considered. This confirms that the leader’s objective of
maximizing the account owners’ total ESG score is overall successful, and also shows that the
term α ‖x‖2

2 does not interfere with the leader’s main goal. Tables 1-4 gather the values of the
components of the followers’ objectives and the approximation for inexact optimality of the
followers’ parametric problems. The results of these tables show that, for the final point, each
component of followers’ objectives is in the same order of magnitude, including the Transaction
Cost term, indicating that the followers actually influence one another through this component
of their objective function. Moreover, whenever the final value for x is higher, the followers
select investments with higher ESG scores, showing that the leader’s variables can actually
influence the followers’ choices. The values Eps Final = θνpx, y

ν , y´νq ´ θνpx, z
ν , y´νq, where

px, y, zq is the final point computed, indicate the degree of approximation with respect to the
optimal solution of each follower’s individual optimization problem and they are consistent
with the results of Theorem 5.5. We want to stress how these values are close to the value we
set for ζ, showing that the equilibrium constraint is, in fact, active at the solution computed.
Another proof of this is given by the fact that the minimum value for F , disregarding the value
function constraints, is ´7.328e-01 for the DIJA dataset (while the computed final values of
F are ´6.370e-01 and ´6.356e-01), and ´4.959e-01 for the NDX dataset (while the computed
final values of F are ´3.064e-01 and ´3.088e-01), showing that the followers’ game actually
impacts the choice of the leader. We can conclude that the test settings considered represent
complex bilevel multi-follower games, in which we can observe a concrete influence of the
followers on one another, as well as between the two levels (leader - followers) in both ways.

We want to stress that Algorithm 1 is quite efficient, only requiring the solution of
(strongly) convex problems, which is a simple task even using the built-in matlab optimiza-
tion functions employed. Meeting the stopping criterion only takes around 30 seconds for
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(a) x0 “ [0.6]5ν“1 for DIJA dataset (b) x0 “ [1.2]5ν“1 for DIJA dataset

(c) x0 “ [0.6]5ν“1 for NDX dataset (d) x0 “ [1.2]5ν“1 for NDX dataset

Figure 1: Values of F px, yq through the iterations for both datasets considered

the DIJA dataset, and around one minute for the NDX dataset. For this specific model, the
subproblems are particularly easy (being quadratic programs), and ζk is not needed due to
the high degree of precision in their solution. The inclusion of the additional inexactness term
ζk might be needed for subproblems which are computationally harder to solve, and we plan
on analysing this in future works.

8 Conclusions

We develop a novel sequential convex approximation method to address single-leader multi-
follower games under mild convexity assumptions. We analyze both the exact and inexact
iterative solution of the convex subproblems, and study the related convergence properties.
We also study the validity of standard constraint qualifications for the complicated framework
we deal with. Finally, we propose a novel bilevel ESG-oriented multi-portfolio selection model,
so that we are able to test our method numerically, confirming the theoretical insights.
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Accounts
1 2 3 4 5

Income 7.397e-02 1.667e-01 1.556e-01 2.323e-01 1.921e-01
Risk 6.519e-02 5.632e-01 5.141e-02 1.225e-01 2.364e-01

Transaction 4.210e-02 1.823e-01 2.198e-03 4.613e-02 2.336e-02
ESG 9.614e-02 1.493e-01 7.739e-02 1.507e-01 1.653e-01

Eps Final 9.984e-05 9.975e-05 9.986e-05 9.979e-05 9.979e-05
xν 6.029e-01 6.000e-01 5.981e-01 6.010e-01 6.011e-01

Table 1: Results for final point computed, for the DIJA dataset, with x0 “ r0.6s5ν“1, where:
Income = Iν , Risk = ρνRν , Transaction = TCν , ESG = Sν Eps final = θν ´ ϕν .

Accounts
1 2 3 4 5

Income 7.057e-02 1.662e-01 1.575e-01 2.311e-01 1.905e-01
Risk 6.590e-02 5.625e-01 5.555e-02 1.225e-01 2.378e-01

Transaction 3.992e-02 1.840e-01 1.711e-03 4.585e-02 2.186e-02
ESG 9.715e-02 1.496e-01 7.882e-02 1.513e-01 1.659e-01

Eps Final 9.983e-05 9.970e-05 9.525e-05 9.974e-05 9.975e-05
xν 1.199e+00 1.199e+00 1.198e+00 1.199e+00 1.199e+00

Table 2: Results for final point computed, for the DIJA dataset, with x0 “ r1.2s5ν“1, where:
Income = Iν , Risk = ρνRν , Transaction = TCν , ESG = Sν , Eps final = θν ´ ϕν .

Accounts
1 2 3 4 5

Income 7.635e-01 3.410e-01 1.595e-01 3.497e-01 2.659e-01
Risk 3.559e-01 3.316e-01 4.299e-02 3.327e-01 1.215e-01

Transaction 6.480e-02 2.611e-02 1.269e-02 4.184e-02 2.180e-02
ESG 1.087e-01 6.352e-02 1.733e-02 8.433e-02 3.308e-02

Eps Final 9.988e-05 9.987e-05 9.936e-05 9.989e-05 9.977e-05
xν 6.108e-01 6.091e-01 5.985e-01 6.153e-01 6.000e-01

Table 3: Results for final point computed, for the NDX dataset, with x0 “ r0.6s51, where:
Income = Iν , Risk = ρνRν , Transaction = TCν , ESG = Sν , Eps final = θν ´ ϕν .

Accounts
1 2 3 4 5

Income 7.640e-01 3.366e-01 1.586e-01 3.435e-01 2.639e-01
Risk 3.599e-01 3.290e-01 4.251e-02 3.294e-01 1.204e-01

Transaction 6.481e-02 2.727e-02 1.275e-02 4.169e-02 2.194e-02
ESG 1.117e-01 6.565e-02 1.755e-02 8.748e-02 3.365e-02

Eps Final 9.988e-05 9.987e-05 9.925e-05 9.985e-05 9.978e-05
xν 1.205e+00 1.204e+00 1.198e+00 1.203e+00 1.199e+00

Table 4: Results for final point computed, for the NDX dataset, with x0 “ r1.2s51, where:
Income = Iν , Risk = ρνRν , Transaction = TCν , ESG = Sν , Eps final = θν ´ ϕν .
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(a) x0 “ [0.6]5ν“1 for DIJA dataset (b) x0 “ [1.2]5ν“1 for DIJA dataset

(c) x0 “ [0.6]5ν“1 for NDX dataset (d) x0 “ [1.2]5ν“1 for NDX dataset

Figure 2: Values of total ESG score, i.e., F px, yq ´ α ‖x‖2
2, through the iterations for both

datasets considered
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