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Abstract. This paper focuses on solving mathematical programs with complementarity con-5
straints (MPCCs) by assuming neither MPCC linear independence constraint qualification (MPCC-6
LICQ) nor lower/upper level strict complementarity at the solution. First, necessary conditions7
for MPCC local optimality and sufficient conditions for convergence to B-stationarity are investi-8
gated. Under MPCC-Abadie constraint qualification (MPCC-ACQ), a local minimizer of an MPCC9
is “piecewise M-stationary”; a weakly stationary point of an MPCC is B-stationary if the related10
linear program with equilibrium constraints (LPEC) is bounded below; furthermore, B-stationarity11
is equivalent to piecewise M-stationarity. Then convergence properties of the Bounding Algorithm12
proposed in [30] are analyzed. C- and M- stationarity of a limit point generated by the method are13
developed; an inequality variant of this method offers an alternative viewpoint to understand the14
behavior when approaching a limit point which is not S-stationary. In addition, a few practical issues15
related to convergence to a non-strongly stationary solution are discussed.16
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1. Introduction. We consider mathematical programs with complementarity18

constraints (MPCCs) of the form19

(1.1)

min f(z)

s.t. g(z) ≤ 0,

h(z) = 0,

0 ≤ Gi(z) ⊥ Hi(z) ≥ 0, i = 1 . . .m,

20

where (f, g, h,G,H) : Rn → R1+ng+nh+m+m are differentiable functions. At a feasible21

point z̄ of the MPCC, define the following index sets:22

(1.2)

Ig(z̄) = {i | gi(z̄) = 0},
α(z̄) = {i |Gi(z̄) = 0, Hi(z̄) > 0},
γ(z̄) = {i |Gi(z̄) > 0, Hi(z̄) = 0},
β(z̄) = {i |Gi(z̄) = 0, Hi(z̄) = 0}.

23

A feasible point z̄ is weakly stationary, if there exist multipliers λ̄ = (λ̄g, λ̄h, λ̄G, λ̄H)24

with λ̄g ≥ 0, such that25

(1.3)

0 = ∇f(z̄)+
∑

i∈Ig(z̄)

λ̄gi∇gi(z̄)+
nh∑
i=1

λ̄hi∇hi(z̄)−
∑

i∈α(z̄)∪β(z̄)

λ̄Gi ∇Gi(z̄)−
∑

i∈γ(z̄)∪β(z̄)

λ̄Hi ∇Hi(z̄).26

Further, a weakly stationary point z̄ is also27

• S-stationary (strongly stationary), if λ̄Gi , λ̄
H
i ≥ 0 for all i ∈ β(z̄);28

• M-stationary, if either λ̄Gi , λ̄
H
i ≥ 0 or λ̄Gi λ̄

H
i = 0 for all i ∈ β(z̄);29
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• C-stationary, if λ̄Gi λ̄
H
i ≥ 0 for all i ∈ β(z̄);30

• A-Stationary, if either λ̄Gi ≥ 0 or λ̄Hi ≥ 0 for all i ∈ β(z̄).31

1.1. Local optimality and geometry simplification. A local minimizer z̄ of32

MPCC (1.1) is a B-stationary point at which the following condition holds33

(1.4) ∇f(z̄)T d ≥ 0, ∀d ∈ T (z̄),34

where T (z̄) is the tangent cone of the MPCC at the point z̄. If the feasible region is35

regular at z̄ in the sense of Clarke (see [25, Definition 6.4][4, Section 1]), this condition36

is the same as37

(1.5) ∇f(z̄) ∈ T (z̄)∗,38

where T (z̄)∗ is the dual cone of T (z̄). Verifying these conditions directly is generally39

nontrivial. In practice, it is desirable to employ linearized cones to reconstruct the40

first-order optimality condition (1.4) or (1.5). Constraint qualifications (CQs) play41

an important role in this task.42

Standard linearization of T (z̄) can be carried out (see [8, Eqs. (10)-(11)]), by43

replacing the complementarity constraints 0 ≤ G(z) ⊥ H(z) ≥ 0 with44

G(z) ≥ 0, H(z) ≥ 0, G(z)TH(z) = 0.45

Then linearization of these constraints gives46

Gi(z̄) +∇Gi(z̄)T d ≥ 0, i = 1, . . . ,m,

Hi(z̄) +∇Hi(z̄)
T d ≥ 0, i = 1, . . . ,m,

Gi(z̄)Hi(z̄) +Hi(z̄)∇Gi(z̄)T d+Gi(z̄)∇Hi(z̄)
T d = 0, i = 1, . . . ,m.

47

Using the index sets defined by (1.2), we obtain the linearized tangent cone48

T lin(z̄) = {d |∇gi(z̄)T d ≤ 0, ∀i ∈ Ig(z̄),
∇hi(z̄)T d = 0, ∀i = 1, . . . , nh,

∇Gi(z̄)T d = 0, ∀i ∈ α(z̄),

∇Hi(z̄)
T d = 0, ∀i ∈ γ(z̄),

∇Gi(z̄)T d ≥ 0, ∇Hi(z̄)
T d ≥ 0, ∀i ∈ β(z̄)}.

49

Its dual cone is given by50

T lin(z̄)∗ = {w |wT d ≥ 0, ∀d ∈ T lin(z̄)}

= {w | 0 = w +
∑

i∈Ig(z̄)

λ̄gi∇gi(z̄) +

nh∑
i=1

λ̄hi∇hi(z̄)−
∑
i∈α(z̄)

λ̄Gi ∇Gi(z̄)−
∑
i∈γ(z̄)

λ̄Hi ∇Hi(z̄)

−
∑
i∈β(z̄)

λ̄Gi ∇Gi(z̄)−
∑
i∈β(z̄)

λ̄Hi ∇Hi(z̄);

λ̄gi ≥ 0, ∀i ∈ Ig(z̄); λ̄Gi ≥ 0, λ̄Hi ≥ 0, ∀i ∈ β(z̄)}.

51

By assuming T (z̄) = T lin(z̄) or T (z̄)∗ = T lin(z̄)∗, the condition (1.4) or (1.5) can be52

rebuilt based on the linearized cone. This converts first-order optimality of MPCC53
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(1.1) into that of the relaxed NLP54

(1.6)

RNLP : min f(z)

s.t. g(z) ≤ 0,

h(z) = 0,

Gi(z) = 0, i ∈ α(z̄),

Hi(z) = 0, i ∈ γ(z̄),

Gi(z) ≥ 0, Hi(z) ≥ 0, i ∈ β(z̄),

55

and thus justifies using the KKT conditions for RNLP, i.e., the S-stationarity condi-56

tions, as a necessary first-order condition (see also [9, Theorem 4.1]).57

Since NLP-CQs are usually too strong for MPCCs, several constraint qualifica-58

tions have been proposed that are customized for complementarity constraints. In59

particular, MPCC-ACQ and MPCC-GCQ, which are MPCC variants of the standard60

Abadie and Guignard constraint qualifications, are apparently helpful in reconstruct-61

ing the conditions (1.4) and (1.5) with a linearized tangent cone. MPCC-ACQ assumes62

T (z̄) = T linMPCC(z̄), where the latter is the MPCC-linearized tangent cone at z̄ and is63

defined in [8] as64

T linMPCC(z̄) = {d |∇gi(z̄)T d ≤ 0, ∀i ∈ Ig(z̄),
∇hi(z̄)T d = 0, ∀i = 1, . . . , nh,

∇Gi(z̄)T d = 0, ∀i ∈ α(z̄),

∇Hi(z̄)
T d = 0, ∀i ∈ γ(z̄),

∇Gi(z̄)T d ≥ 0, ∀i ∈ β(z̄),

∇Hi(z̄)
T d ≥ 0, ∀i ∈ β(z̄),

(∇Gi(z̄)T d) · (∇Hi(z̄)
T d) = 0, ∀i ∈ β(z̄)}.

65

Then the condition (1.4) can be expressed as:66

(1.7) ∇f(z̄)T d ≥ 0, ∀d ∈ T linMPCC(z̄).67

MPCC-GCQ assumes T (z̄)∗ = T linMPCC(z̄)∗ [10], where the latter is described by68

T linMPCC(z̄)∗ = {w |wT d ≥ 0, ∀d ∈ T linMPCC(z̄)}.69

Then the condition (1.5) can be expressed by70

(1.8) ∇f(z̄) ∈ T linMPCC(z̄)∗.71

Both reconstructions are implemented by simplifying the geometry of the MPCC72

problem while preserving the complementarity structure.73

Note that MPCC-GCQ is implied by MPCC-ACQ, but the converse is in general74

not true. Their relations are analogous to the relations between NLP-GCQ and NLP-75

ACQ. Examples showing that NLP-GCQ and MPCC-GCQ have a better chance to76

be satisfied, even if NLP-ACQ and MPCC-ACQ do not hold, can be found in [28,77

Example 1.3] and [10, Example 2.1], respectively. Intuitively, the property that a78

dual cone, such as T lin(z̄)∗ and T linMPCC(z̄)∗, is always convex, even if the tangent79

cone, such as T lin(z̄) and T linMPCC(z̄), is nonconvex, offers the opportunity for NLP-80

GCQ and MPCC-GCQ to hold more generally. Note that despite the fact that a81
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tangent cone is not necessarily equal to the closure of its convex hull, their dual cones82

are the same.83

Flegel and Kanzow have established that under MPCC-GCQ, M-stationarity is a84

necessary first-order condition [10, Theorem 3.1]. Kanzow and Schwartz have derived85

Fritz John type M-stationarity at a local minimizer [20, Theorem 3.1]. Related to this,86

in Section 2 we derive a property of “piecewise M-stationarity,” at a local minimizer87

of MPCC (1.1) at which MPCC-ACQ holds.88

1.2. Degeneracy. To seek a solution of MPCC (1.1), many NLP-based schemes89

have been proposed. The original intention is to avoid dealing with the complemen-90

tarity structure explicitly. In general, these schemes are designed to solve a sequence91

of regularized NLPs, yielding a sequence of stationary points zk which is hoped to92

approximate a solution of MPCC (1.1). An important ingredient is to characterize93

conditions under which, as the regularization factor vanishes or stabilizes, a limit point94

of {zk} is a stationary point of the MPCC in some sense. For some representative95

work see [27, 12, 23, 22, 18, 19, 29, 11, 1].96

A difficulty in establishing stationarity of a limit point arises as the point is degen-97

erate (on the lower level), namely, a sequence {zk} → z̄ at which β(z̄) 6= ∅. Fukushima98

and Pang studied the behavior of a sequence {zk} which is composed of KKT points of99

NLPs formulated by smoothing the MPCC with perturbed Fischer-Burmeister func-100

tions. The condition of asymptotic weak nondegeneracy was proposed, meaning that101

for every i ∈ β(z̄), Gi(z
k) and Hi(z

k) approach zero in the same order of magnitude.102

Under this condition and second-order necessary conditions at every zk, together with103

MPCC linear independence constraint qualification (MPCC-LICQ) at z̄, it has been104

proved that z̄ is a B-stationary point of the MPCC [12, Theorem 3.1]. However, the105

condition of asymptotic weak nondegeneracy is hard to enforce in practice. Replacing106

this condition with upper level strict complementarity (ULSC), namely, λ̄Gi λ̄
H
i 6= 0107

for all i ∈ β(z̄), Scholtes recovered B-stationarity of a limit point of a regularization108

scheme [27, Corollary 3.4]. Kadrani et al. developed a regularization method whose109

limit points were shown to be M-stationary under MPCC-LICQ, and S-stationary un-110

der additional assumption of asymptotic weak nondegeneracy (see [18]). The result111

on M-stationarity was later proved valid under weaker MPCC constant positive linear112

dependence (MPCC-CPLD) assumption (see [16]). Results under weaker assumptions113

also include, for example, that C-stationarity convergence of the method by Steffensen114

and Ulbrich under MPCC constant rank constraint qualification (MPCC-CRCQ) [29]115

and under MPCC-CPLD [15], and M-stationarity convergence of the method by Kan-116

zow and Schwartz under MPCC-CPLD [19]. Theoretical and numerical comparison117

of some of these methods can be found in [16].118

Besides diverse methods for reformulating complementarity constraints, many119

popular algorithmic frameworks in nonlinear programming have been exploited to deal120

with complementarity as well as the potential degeneracy. The sequential quadratic121

programming (SQP) method in its pure form applied to MPCCs was investigated in122

[11]. By introducing slack variables into the reformulation of general complementar-123

ity constraints, superlinear convergence to a S-stationary point was established under124

MPCC-LICQ and regularity conditions (Theorems 5.7 and 5.14 therein). An alter-125

native SQP method which retained the superlinear convergence while relaxing some126

of the assumptions was analyzed in [2], where an adaptive elastic mode was invoked127

to enforce either feasibility of the QP subproblems or complementarity at the iterates128

(Theorems 4.5 and 4.6 therein). Interior-penalty methods for MPCCs were studied129

in [22]; global convergence to a S-stationary point was proved under MPCC-LICQ130
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and a condition on the behavior of the penalty parameters (Theorem 3.4 and Corol-131

lary 3.5 therein); superlinear convergence to a S-stationary point was proved under132

certain regularity conditions (Theorem 4.5 therein); in particular, relations between133

interior-penalty and interior-relaxation methods were established, which allows to ex-134

tend some convergence results derived for one approach to the other. Convergence of135

augmented Lagrangian methods were investigated under MPCC-LICQ [17, Theorem136

3.2], where a limit point was proved to be S-stationary in the case of bounded mul-137

tiplier sequence, and C-stationary in the presence of unbounded multiplier sequence.138

The results were improved in [1] for a second-order method (Theorem 3.2 therein),139

where S-stationarity was established under a weaker MPCC-relaxed constant positive140

linear dependence (MPCC-RCPLD) condition, and convergence in the presence of un-141

bounded multipliers was proved to be M-stationary under MPCC-LICQ. Comparison142

of more augmented Lagrangian methods for MPCCs can be found in [14].143

In Section 2, we derive a property of “piecewise M-stationarity” at a local min-144

imizer of MPCC (1.1) at which MPCC-ACQ holds. In Section 3, we characterize145

conditions that guarantee a feasible point of MPCC (1.1) to be B-stationary un-146

der MPCC-ACQ. The discussions in Sections 2 and 3 are independent of particular147

MPCC methods/algorithms. On the other hand, in Section 4, we analyze convergence148

properties of the NCP-based bounding methods we proposed in [30]. In Section 5,149

we discuss some practical issues for MPCC methods, when approaching a solution150

of MPCC (1.1) which is not S-stationary. Section 6 summarizes main results of this151

paper.152

2. Characterization of MPCC local minimizers. This section discusses153

properties pertaining to a local minimizer of an MPCC. In this section we discuss154

from the point of view of the NLPs constituting the MPCC problem.155

2.1. Piecewise NLP-GCQ. Given a feasible point z̄ of MPCC (1.1), partitions156

of β(z̄) comprise the set P(β(z̄)) = {(β1, β2) |β1 ∩ β2 = ∅, β1 ∪ β2 = β(z̄)}. A NLP157

problem defined on every partition (β1, β2) ∈ P(β(z̄)) is158

(2.1)

NLP(β1,β2) : min f(z)

s.t. g(z) ≤ 0,

h(z) = 0,

Gi(z) = 0, i ∈ α(z̄),

Hi(z) = 0, i ∈ γ(z̄),

Gi(z) = 0, Hi(z) ≥ 0, i ∈ β1,

Gi(z) ≥ 0, Hi(z) = 0, i ∈ β2.

159

Lemma 2.1. Let z̄ be a local minimizer of MPCC (1.1) at which MPCC-ACQ160

holds. Then for every (β1, β2) ∈ P(β(z̄)), NLP-GCQ holds at z̄ for NLP(β1,β2).161

Proof. Since z̄ is a local minimizer of MPCC (1.1), we have from B-stationarity162

of z̄ that163

(2.2) ∇f(z̄)T d ≥ 0, ∀d ∈ T (z̄).164

MPCC-ACQ at z̄ and [8, Lemma 3.1] give that165

(2.3) T (z̄) =

T linMPCC(z̄) =
⋃

(β1,β2)∈P(β(z̄))

T lin(β1,β2)(z̄)

 ,166
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where T lin(β1,β2)(z̄) is the linearized tangent cone of NLP(β1,β2) at z̄ and is given by167

T lin(β1,β2)(z̄) = {d | ∇gi(z̄)T d ≤ 0, ∀i ∈ Ig(z̄),

∇hi(z̄)T d = 0, ∀i = 1, . . . , nh,

∇Gi(z̄)T d = 0, ∀i ∈ α(z̄),

∇Hi(z̄)
T d = 0, ∀i ∈ γ(z̄),

∇Gi(z̄)T d = 0, ∇Hi(z̄)
T d ≥ 0, ∀i ∈ β1,

∇Gi(z̄)T d ≥ 0, ∇Hi(z̄)
T d = 0, ∀i ∈ β2}.

168

Relations (2.2) and (2.3) together imply that for every partition (β1, β2) ∈ P(β(z̄)),169

∇f(z̄)T d ≥ 0, ∀d ∈ T lin(β1,β2)(z̄),170

namely, that171

(2.4) ∇f(z̄) ∈ T lin(β1,β2)(z̄)
∗, ∀(β1, β2) ∈ P(β(z̄)).172

On the other hand, z̄ is also a local minimizer of NLP(β1,β2) for every (β1, β2) ∈173

P(β(z̄)) (see [26, Eq.(3)]). Hence, we have [13, Lemma 4.3]174

(2.5) ∇f(z̄) ∈ T(β1,β2)(z̄)
∗, ∀(β1, β2) ∈ P(β(z̄)).175

Combining (2.4) and (2.5) yields176

(2.6) T(β1,β2)(z̄)
∗ = T lin(β1,β2)(z̄)

∗, ∀(β1, β2) ∈ P(β(z̄)),177

indicating that NLP-GCQ holds at z̄ for every NLP(β1,β2) with (β1, β2) ∈ P(β(z̄)).178

2.2. Piecewise M-stationarity.179

Theorem 2.2. Let z̄ be a local minimizer of MPCC (1.1) at which MPCC-ACQ180

holds. Then for every (β1, β2) ∈ P(β(z̄)), there exist NLP(β1,β2) suitable multipliers181

at z̄, that satisfy M-stationarity.182

Proof. Since z̄ is a local minimizer of the MPCC, there exist a scalar λ0 ≥ 0183

and multipliers λgI ≥ 0, λh, λGα , λ
H
γ , ζ, such that (λ0, λ

g
I , λ

h, λGα , λ
H
γ , ζ) 6= 0 and the184

following condition holds (see [6, Theorem 6.1.1][26, Lemma 1 and proof][28, Section185

2.2]):186

0 ∈ λ0∇f(z̄) +∇gI(z̄)λgI +∇h(z̄)λh −∇Gα(z̄)λGα −∇Hγ(z̄)λHγ

−
∑
i∈β(z̄)

ζi conv{∇Gi(z̄),∇Hi(z̄)},187

where gI denotes the constraints {gi | ∀i ∈ Ig(z̄)}, and, similarly, Gα, Hγ , Gβ , and188

Hβ denote the constraints related to the index sets α(z̄), γ(z̄), and β(z̄); the term189

conv{∇Gi(z̄),∇Hi(z̄)} represents the convex hull consisting of all convex combina-190

tions of ∇Gi(z̄) and ∇Hi(z̄). Note that for every i ∈ β(z̄), ∇Gi(z̄) and ∇Hi(z̄) do191

not act on the above condition independently; instead, they are associated with a192

common multiplier ζi. For every (β1, β2) ∈ P(β(z̄)), let θi∇Gi(z̄) + (1 − θi)∇Hi(z̄)193
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with θi ∈ [0, 1] be the needed element of the convex hull, then we have194

0 = λ0∇f(z̄) +∇gI(z̄)λgI +∇h(z̄)λh −∇Gα(z̄)λGα −∇Hγ(z̄)λHγ

−
∑
i∈β1

ζiθi︸︷︷︸
λGi

∇Gi(z̄)−
∑
i∈β1

ζi(1− θi)︸ ︷︷ ︸
λHi

∇Hi(z̄)

−
∑
i∈β2

ζiθi︸︷︷︸
λGi

∇Gi(z̄)−
∑
i∈β2

ζi(1− θi)︸ ︷︷ ︸
λHi

∇Hi(z̄).

195

This system has a solution with λ0 = 1 and λgI , λ
H
β1
, λGβ2

≥ 0, because for every196

NLP(β1,β2), z̄ is a local minimizer at which NLP-GCQ holds (see Lemma 2.1). It197

follows from λHβ1
, λGβ2

≥ 0 that198

i ∈ β1

{
ζi ≥ 0 =⇒ θi ∈ [0, 1], λGi ≥ 0, λHi ≥ 0;

ζi < 0 =⇒ θi = 1, λGi = ζi < 0, λHi = 0.

i ∈ β2

{
ζi ≥ 0 =⇒ θi ∈ [0, 1], λGi ≥ 0, λHi ≥ 0;

ζi < 0 =⇒ θi = 0, λGi = 0, λHi = ζi < 0.

199

Hence, for every partition (β1, β2) ∈ P(β(z̄)), there exist KKT multipliers for NLP(β1,β2)200

such that λGi , λ
H
i ≥ 0 or λGi λ

H
i = 0 for all i ∈ β(z̄). This completes the proof.201

According to Theorem 2.2, M-stationarity pertaining to a local minimizer z̄ of202

MPCC (1.1) is a piecewise property under MPCC-ACQ. Unless z̄ is S-stationary,203

there does not exist a set of MPCC multipliers which satisfies M-stationarity and is204

suitable for every NLP(β1,β2). As a consequence, unless z̄ is S-stationary, we have205

T linMPCC(z̄)∗ =
⋂

(β1,β2)∈P(β(z̄))

T lin(β1,β2)(z̄)
∗ = ∅,206

namely, the spaces of the Lagrange multipliers of programs NLP(β1,β2) are separated207

at z̄ (their intersection is an empty set). This may cause difficulties to characterize208

a local minimizer using the dual cone condition (1.5). Instead, the normal cone209

condition at a local minimizer z̄ gives that [25, Theorem 6.12]210

−∇f(z̄) ∈ N (z̄),211

where N (z̄) is the limiting normal cone, and it holds that −T (z̄)∗ ⊆ N (z̄). The dual212

and normal cone conditions are equivalent whenever the feasible region is regular at z̄213

in the sense of Clarke, namely, −T (z̄)∗ = N (z̄), and consequently, T (z̄) and N (z̄) are214

both convex and polar to each other [25, Corollary 6.30]. However, this is usually not215

the case when β(z̄) 6= ∅. A discussion on regularity in the sense of Clarke, Lagrange216

multipliers in “irregular” cases, and optimality conditions taking advantage of the217

limiting normal cone N can be found in [4, Section 2]. Stationarity characterization218

at a local minimizer of an MPCC implemented by usingN can be found in [28, Section219

2.3.2] and [10, Section 3].220

3. Sufficient conditions for B-stationarity. Suppose that MPCC-ACQ holds221

at a feasible point z̄ of MPCC (1.1). According to the condition (1.7), z̄ is a B-222

stationary point of the MPCC if and only if d = 0 solves the following linear program223
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with equilibrium constraints (LPEC):224

(3.1)

min ∇f(z̄)T d

s.t. ∇gI(z̄)T d ≤ 0,

∇h(z̄)T d = 0,

∇Gα(z̄)T d = 0,

∇Hγ(z̄)T d = 0,

0 ≤ ∇Gβ(z̄)T d ⊥ ∇Hβ(z̄)T d ≥ 0.

225

The LPEC is a combination of classic linear programs each defined on a partition226

(β1, β2) ∈ P(β(z̄)) as follows:227

(3.2)

LP(β1,β2) : min obj(d) = ∇f(z̄)T d

s.t. ∇gI(z̄)T d ≤ 0,

∇h(z̄)T d = 0,

∇Gα(z̄)T d = 0,

∇Hγ(z̄)T d = 0,

∇Gβ1
(z̄)T d = 0, ∇Hβ1

(z̄)T d ≥ 0,

∇Gβ2
(z̄)T d ≥ 0, ∇Hβ2

(z̄)T d = 0.

228

The dual problem of (3.2) is given by229

(3.3)

LPdual(β1,β2) : max objdual(η) = ηT · 0
s.t. ηgI ≥ 0,

ηh free,

ηGα free,

ηHγ free,

ηGβ1
free, ηHβ1

≥ 0,

ηGβ2
≥ 0, ηHβ2

free,

0 = ∇f(z̄) +∇gI(z̄)ηgI +∇h(z̄)ηh −∇Gα(z̄)ηGα −∇Hγ(z̄)ηHγ

−∇Gβ1(z̄)ηGβ1
−∇Hβ1(z̄)ηHβ1

−∇Gβ2(z̄)ηGβ2
−∇Hβ2(z̄)ηHβ2

.

230

Duality theory characterizes the relations between the primal and the dual problems231

as follows.232

(D1) If d is a feasible point of the primal problem (3.2) and η is a feasible point of233

the dual problem (3.3), then objdual(η) ≤ obj(d). [5, Theorem 4.3]234

(D2) If the dual problem is infeasible, then either the primal problem is infeasible,235

or the optimal cost of the primal problem is −∞. If the primal problem is236

infeasible, then either the dual problem is infeasible, or the optimal cost of237

the dual problem is ∞. [5, Corollary 4.1 and Table 4.2]238

(D3) Let d and η be feasible points of the primal (3.2) and the dual (3.3), re-239

spectively, and suppose that objdual(η) = obj(d). Then d and η are optimal240

solutions to the primal and the dual, respectively. [5, Corollary 4.2]241
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Theorem 3.1. Suppose that MPCC (1.1) is solvable (feasible and bounded below).242

If z̄ is a weakly stationary point at which MPCC-ACQ holds, then, either there exists243

a partition (β1, β2) ∈ P(β(z̄)) such that LP(β1,β2) is unbounded below, or z̄ is B-244

stationary.245

Proof. Recall that under MPCC-ACQ, z̄ is B-stationary if and only if d = 0246

solves LPEC (3.1). Consider the linear programs (3.2) that comprise the LPEC. For247

every partition (β1, β2) ∈ P(β(z̄)), the primal problem LP(β1,β2) has a feasible solution248

d = 0. Whether d = 0 is also optimal to each of the problems, depends on situations of249

the dual problems. In the case where there exists a partition (β̂1, β̂2) ∈ P(β(z̄)) such250

that the dual problem LPdual
(β̂1,β̂2)

is infeasible, it follows from the result (D2) of duality251

theory that the primal problem LP(β̂1,β̂2) is either infeasible or unbounded below.252

Since d = 0 is feasible to the primal problem, it follows that the primal problem is253

unbounded below. In this case, no feasible point of LP(β̂1,β̂2) can be optimal; z̄ cannot254

be optimal to LP(β̂1,β̂2) either and therefore cannot be B-stationary.255

In the other case, every dual problem LPdual(β1,β2) has a feasible solution. Since the256

feasible solution d = 0 to the primal and any feasible solution η to the dual yield257

obj(d) = objdual(η) = 0, we have from the result (D3) of duality theory that d = 0 is258

an optimal solution to the primal problem LP(β1,β2). Because this is the case for every259

partition (β1, β2) ∈ P(β(z̄)), then d = 0 solves LPEC (3.1) and z̄ is B-stationary.260

It is worth noting that whenever a dual problem LPdual(β1,β2) is feasible, its solution261

provides KKT multipliers for NLP(β1,β2). This provides a bridge between optimality of262

d = 0 for LP(β1,β2) and that z̄ is a KKT point of NLP(β1,β2). Based on this observation,263

we arrive at the following necessary and sufficient condition for B-stationarity.264

Theorem 3.2. Let z̄ be a feasible point of MPCC (1.1) at which MPCC-ACQ265

holds. Then z̄ is B-stationary if and only if z̄ is piecewise M-stationary.266

Proof. The necessary part is shown by Theorem 2.2. Now consider the sufficient267

part. If z̄ is piecewise M-stationary, then z̄ is a KKT point of every NLP(β1,β2) with268

(β1, β2) ∈ P(β(z̄)). On each of the partitions, the KKT multipliers form a feasible269

point of LPdual(β1,β2), and therefore d = 0 is optimal to LP(β1,β2). As a result, d = 0 is270

optimal to LPEC (3.1) and z̄ is a B-stationary point of the MPCC.271

3.1. Example: scholtes4 . This example illustrates that a weakly stationary272

point is also B-stationary under appropriate conditions, as stated by Theorems 3.1273

and 3.2.274

Problem scholtes4 from the MacMPEC collection [21] is given by275

min z1 + z2 − z3 multipliers

s.t. − 4z1 + z3 ≤ 0, λ1

− 4z2 + z3 ≤ 0, λ2

0 ≤ z1 ⊥ z2 ≥ 0. σ1, σ2

276

Since the functions in the constraints are linear, MPCC-ACQ holds at every feasible277

point of the problem. Consider a weakly stationary point z̄ = (z̄1, z̄2, z̄3) at which278

β(z̄) 6= ∅, which is the case of interest. This gives that z̄ = (0, 0, 0) and β(z̄) = {1}.279

To verify B-stationarity of z̄, we check whether z̄ is a KKT point of NLP(β1,β2)280
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for every (β1, β2) ∈ P(β(z̄)). Since z̄ is weakly stationary, we have281

0 =

 1
1
−1

+ λ1

−4
0
1

+ λ2

 0
−4
1

− σ1

1
0
0

− σ2

0
1
0

 ,282

which implies283

λ1 + λ2 = 1,

σ1 + σ2 = −2.
284

For the partitions (β1, β2) = ({1}, ∅) and (β1, β2) = (∅, {1}), since (σ1, σ2) = (−2, 0)285

and (σ1, σ2) = (0,−2), respectively, lead to suitable KKT multipliers for the cor-286

responding NLPs, the point z̄ is piecewise M-stationary and therefore B-stationary287

(Theorem 3.2). Also, existence of the KKT multipliers ensures feasibility of the dual288

problems, which implies that no primal problem is unbounded below at z̄, and again289

z̄ is B-stationary (Theorem 3.1).290

3.2. Example: Unboundedness. Even if an MPCC is bounded below, a com-291

ponent LP of the LPEC at a feasible point of the MPCC may be unbounded below.292

Consider the problem given by293

min f(z) = (z1 − 1)2 + z2
2 multipliers

s.t. 0 ≤ z1 ⊥ z2 ≥ 0. σ1, σ2

294

The unique minimizer is z∗ = (1, 0) (so that β(z∗) = ∅), which is also a minimizer of295

the RNLP and therefore is S-stationary. Now consider the point z̄ = (0, 0) and β(z̄) =296

{1}. MPCC-LICQ holds at z̄; the weak stationarity conditions give the multipliers297

(σ1, σ2) = (−2, 0) and therefore z̄ is M-stationary. However, z̄ is not B-stationary,298

because for (β1, β2) = (∅, {1}), LP(β1,β2) is unbounded below (the optimal cost is299

−∞), and every feasible direction d = (d1 > 0, d2 = 0) leads to ∇f(z̄)T d = −2d1 < 0.300

3.3. Unboundedness detection. When MPCC-LICQ holds at a feasible point301

z̄ of an MPCC, B-stationarity is equivalent to S-stationary, and it is evident whether302

or not z̄ is B-stationary. Otherwise, in the absence of MPCC-LICQ, if there exist n303

linearly independent active constraints at z̄, the following gives a method to decide304

whether z̄ is B-stationary.305

As discussed in Theorem 3.1 under MPCC-ACQ, z̄ is not B-stationary when306

there exists a primal problem LP(β1,β2) which is unbounded below. To detect whether307

unbounded primal problems exist, we design a LP problem based on each LP(β1,β2),308

such that the designed problem has an optimal solution which indicates whether the309

original LP(β1,β2) is unbounded below. To design such a problem, we introduce an310
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additional constraint into LP(β1,β2) as follows:311

(3.4)

L̃P(β1,β2) : min õbj(d) = ∇f(z̄)T d

s.t. ∇gI(z̄)T d ≤ 0,

∇h(z̄)T d = 0,

∇Gα(z̄)T d = 0,

∇Hγ(z̄)T d = 0,

∇Gβ1(z̄)T d = 0, ∇Hβ1(z̄)T d ≥ 0,

∇Gβ2
(z̄)T d ≥ 0, ∇Hβ2

(z̄)T d = 0,−∑
i∈Ig

∇gi(z̄) +

nh∑
i=1

∇hi(z̄) +
∑
i∈α∪β

∇Gi(z̄) +
∑
i∈γ∪β

∇Hi(z̄))

T d ≤ r,

312

where r > 0 is an arbitrary positive scalar. Note that the constraints of LP(β1,β2) can313

be restated in the form of AT d ≥ 0, while the additional constraint is in the form of314 ∑
ATi d ≤ r with Ai being the ith column of the coefficient matrix A. When n out315

of the columns of A are linearly independent, they span the space Rn and the set of316

all these constraints (AT d ≥ 0 and
∑
ATi d ≤ r) defines the lower and upper bounds317

of d ∈ Rn. As a consequence, the problem L̃P(β1,β2) is confined in a nonempty and318

bounded feasible region and thus has an optimal solution which is an extreme point.319

The corresponding dual problem is320

(3.5)

L̃P
dual

(β1,β2) : max õbj
dual

(η, µ) = [ηT , µ] ·
[

0
−r

]
s.t. ηgI ≥ 0,

ηh free,

ηGα free,

ηHγ free,

ηGβ1
free, ηHβ1

≥ 0,

ηGβ2
≥ 0, ηHβ2

free,

µ ≥ 0,

0 =∇f(z̄) +∇gI(z̄)(ηgI − µ) +∇h(z̄)(ηh + µ)

−∇Gα(z̄)(ηGα − µ)−∇Hγ(z̄)(ηHγ − µ)

−∇Gβ1
(z̄)(ηGβ1

− µ)−∇Hβ1
(z̄)(ηHβ1

− µ)

−∇Gβ2
(z̄)(ηGβ2

− µ)−∇Hβ2
(z̄)(ηHβ2

− µ).

321

Since the modified primal problem has a finite optimal solution, so does the modified322

dual problem (according to duality theory).323

To detect whether the original primal problem LP(β1,β2) is unbounded below, we324

solve the modified problem L̃P(β1,β2) with a scalar r > 0. If the solution gives that325

the multiplier of the additional constraint is µ = 0, then d = 0 is optimal to L̃P(β1,β2),326

because õbj(d) = õbj
dual

(η, µ) = 0. Obviously, in this case d = 0 is also optimal to327

the original problem LP(β1,β2). On the other hand, if the solution of the modified328

11



primal problem gives µ > 0, then the additional constraint is active and L̃P(β1,β2) is329

solved by some d 6= 0, with the optimal costs õbj(d) = õbj
dual

(η, µ) = −µr < 0. Since330

this nonzero d locates in T lin(β1,β2)(z̄) and obj(d) = õbj(d) = −µr, LP(β1,β2) cannot be331

optimal at d = 0, and is in fact unbounded below. To summarize, if every L̃P(β1,β2)332

has a solution with µ = 0, then none of the original primal problem LP(β1,β2) is333

unbounded below, and as a result, d = 0 solves LPEC (3.1) and z̄ is B-stationary.334

4. Convergence of NCP-based bounding methods. Sections 2 and 3 have335

investigated, respectively, necessary conditions satisfied by a local minimizer of an336

MPCC, and sufficient conditions which guarantee a feasible point of an MPCC to337

be B-stationary. These results are independent of methods/algorithms designed for338

solving MPCCs. In the sequel, we investigate convergence properties of the NCP-339

based bounding methods we proposed in [30].340

4.1. Brief review of a bounding scheme. In [30] we proposed an algorithm341

to seek a solution of MPCC (1.1) by solving a sequence of NLP problems of the form342

(4.1)

BA(ε) : min f(z) multipliers

s.t. g(z) ≤ 0, ug

h(z) = 0, uh

Φεi(z) + pi = 0, i = 1 . . .m, uΦ
i

343

where344

(4.2) Φεi(z) =
1

2

(
Gi(z) +Hi(z)−

√
(Gi(z)−Hi(z))2 + ε2

)
345

is a NCP function with a smoothing factor ε > 0, and the parameter pi is adjusted346

adaptively (to take a value of zero or ε/2). Define the Lagrangian for the program347

BA(ε) as348

L(z, u) = f(z) +
∑

i∈Ig(z)

ugi gi(z) +

nh∑
i=1

uhi hi(z)−
m∑
i=1

uΦ
i (Φεi(z) + pi).349

As ε→ 0, a sequence of KKT points of BA(ε) tends to a limit point. Main results of350

this method are summarized below, and more details can be found in [30].351

• Feasibility: The perturbed NCP function (4.2) is used to approximate the352

complementarity constraints in MPCC (1.1), and the largest difference be-353

tween them is ε/2 (see [30, Proposition 1.7]). When ε > 0, every feasible354

point z of BA(ε) satisfies355

(4.3)
Φεi(z) + pi = 0 ⇔
Gi(z) + pi > 0, Hi(z) + pi > 0, (Gi(z) + pi)(Hi(z) + pi) = ε2/4,

356

whose limit at ε = 0 (thus pi = 0) recovers the complementarity 0 ≤ Gi(z) ⊥357

Hi(z) ≥ 0. Therefore, Φ0
i (z) is a so-called NCP function, which represents a358

complementarity constraint with a suitable nonlinear and usually nondiffer-359

entiable equation.360

• Sensitivity and Bounding: At a KKT point z(p) of BA(ε), the sensitivities361
df(z(p))

dpi
are given by −uΦ

i for i = 1 . . .m, provided that NLP-LICQ and362
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second-order sufficient conditions hold at z(p). This observation throws some363

light on the design of the Bounding Algorithm. We take advantage of the364

sensitivities at z(p) to adjust the parameters pi, with the aim of improving the365

objective at the subsequent solution of BA(ε), and thus yielding an efficient366

isolation of a solution to the MPCC. When ε > 0 is sufficiently small, z(p) is367

an ε-approximate solution to the MPCC, which includes an O(ε2) correction368

arising from the adjustment of the parameters pi.369

• Convergence: The following convergence results have been established under370

MPCC-LICQ, for the Bounding Algorithm applied to equality constrained371

BA(ε).372

(i) Suppose that MPCC-LICQ holds at a feasible point of the MPCC, then373

in a neighborhood of this point, NLP-LICQ holds at every feasible point374

of BA(ε), whenever ε > 0 is sufficiently small.375

(ii) Suppose that a sequence of KKT points of programs BA(ε) tends to a376

limit point as ε→ 0, at which MPCC-LICQ holds, then the limit point377

is C-stationary.378

(iii) In addition, suppose that the reduced Hessian of the Lagrangian at each379

of the KKT points of programs BA(ε) is bounded below when ε > 0 is380

sufficiently small, then the limit point is M-stationary.381

A natural question is how does the Bounding Algorithm behave in the absence382

of MPCC-LICQ. In this section, we investigate stationarity of a limit point of this383

method without assuming MPCC-LICQ. Further, we explore more convergence fea-384

tures by taking advantage of an inequality variant of BA(ε). We note that this variant385

is a modification of the Lin-Fukushima algorithm [23], which we call MLF.386

4.2. Bounding Algorithm. Based on the formulation BA(ε), a Bounding Al-387

gorithm was proposed in [30] by noting that the sensitivities df(z(p))
dpi

are given by −uΦ
i388

for i = 1 . . .m. The sensitivities can be exploited to adjust the parameters pi so as389

to improve the objective f(z(p)). The main idea of the Bounding Algorithm is given390

below to facilitate the later analysis.391

For any parameters pi, p
′
i ∈ [0, ε/2] with ε > 0 for i = 1, . . . ,m, and the corre-392

sponding solutions z(p) and z(p′) to BA(ε), it is straightforward to show that393

f(z(p′)) = f(z(p)) +

[
df(z(p))

dp

]T
(p′ − p) +O(‖p′ − p‖2).394

Noting that the sensitivities df(z(p))
dp are given by −uΦ, we have that395

f(z(p))− ε

2

m∑
i=1

|uΦ
i (p)| − |O(ε2)| ≤ f(z(p′)) ≤ f(z(p)) +

ε

2

m∑
i=1

|uΦ
i (p)|+ |O(ε2)|.396

This relation explains the approximation to a solution of the MPCC by the following397

Bounding Algorithm.398

• Initialization: Specify initial smoothing factor ε0 > 0, reducing factor κ ∈399

(0, 1), initial point z0, solution tolerance εtol > 0. Set initial parameters400

p0 ← 0, counter k ← 0.401

• Main loop: While εk ≥ εtol, do the following.402

Step 1. Solve the program BA(εk) with parameters pk, to obtain a stationary403

point zk and multipliers uk = (ug,k, uh,k, uΦ,k).404
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Step 2. Approximate the upper bound of the MPCC with405

fup = f(zk) + εk
m∑
i=1

|uΦ,k
i |.406

Step 3. Approximate the lower bound of the MPCC as follows. Define the407

index sets408

P0 = {i | pki = 0 and uΦ,k
i > 0},

Pε = {i | pki = εk/2 and uΦ,k
i < 0}.

409

Then the following settings would reduce f(zk):410

pki ← εk/2, ∀i ∈ P0,

pki ← 0, ∀i ∈ Pε.
411

The objective with the adjustment of pk would approximately be412

f low = f(zk)− εk
∑

i∈P0∪Pε

|uΦ,k
i |.413

Step 4. Update the parameters ε and p. Set εk+1 ← κεk, and414

pk+1
i =


εk+1/2, i ∈ P0,

0, i ∈ Pε,
κpki , otherwise.

415

Step 5. Set k ← k + 1 and go to Step 1.416

4.3. Derivatives of smoothed NCP function. With ε > 0, the first and417

second derivatives of the function Φεi(z) in (4.2) are given by418

∇GΦεi(z) =
1

2
− Gi(z)−Hi(z)

2
√

(Gi(z)−Hi(z))2 + ε2
,

∇HΦεi(z) =
1

2
+

Gi(z)−Hi(z)

2
√

(Gi(z)−Hi(z))2 + ε2
,

∇GGΦεi(z) = ∇HHΦεi(z) =
−ε2

2[(Gi(z)−Hi(z))2 + ε2]3/2
,

∇GHΦεi(z) = ∇HGΦεi(z) =
ε2

2[(Gi(z)−Hi(z))2 + ε2]3/2
.

419

Let z satisfy Φεi(z) + pi = 0 with ε > 0. It follows from (4.3) that420

421 √
(Gi(z)−Hi(z))2 + ε2 =

√
((Gi(z) + pi)− (Hi(z) + pi))2 + ε2422

=
√

(Gi(z) + pi)2 + (Hi(z) + pi)2 + 2(Gi(z) + pi)(Hi(z) + pi)

= |Gi(z) +Hi(z) + 2pi| = Gi(z) +Hi(z) + 2pi.
423

424
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Using this and (Gi(z) + pi)(Hi(z) + pi) = ε2/4, we can rephrase the above derivatives425

as426

(4.4)

∇GΦεi(z) =
Hi(z) + pi

Gi(z) +Hi(z) + 2pi
,

∇HΦεi(z) =
Gi(z) + pi

Gi(z) +Hi(z) + 2pi
,

∇GGΦεi(z) = ∇HHΦεi(z) =
−2(Gi(z) + pi)(Hi(z) + pi)

(Gi(z) +Hi(z) + 2pi)3
,

∇GHΦεi(z) = ∇HGΦεi(z) =
2(Gi(z) + pi)(Hi(z) + pi)

(Gi(z) +Hi(z) + 2pi)3
.

427

4.4. C-stationarity. Let a sequence {zk} → z̄ as εk → 0, where every zk is428

a KKT point of BA(εk). Assuming a particular MPCC-CQ at z̄ usually amounts429

to assuming a certain NLP-CQ at z̄ or in its neighborhood. For example, MPCC-430

LICQ at z̄ usually implies the presence of NLP-LICQ in a neighborhood of z̄ for every431

feasible point of a regularized NLP problem (e.g., [12, Theorem 3.1][27, Lemma 2.1][30,432

Theorems 3.1 and 3.2]), and MPCC-MFCQ at z̄ implies the presence of NLP-MFCQ433

at z̄ for every NLP(β1,β2) with (β1, β2) ∈ P(β(z̄)) [8, Lemma 3.5].434

Instead of requiring a particular constraint qualification at z̄, the following estab-435

lishes C-stationarity of z̄ based on stationarity of zk for BA(εk) and boundedness of436

the Lagrange multipliers associated with zk. From a practical point of view, an ad-437

vantage of the analysis under such settings is that in the course of {zk} → z̄, whether438

or not the NLP solutions are successful, and whether or not the NLP multipliers at439

the solutions are bounded, are usually easy to detect in numerical experiments, then440

it follows whether or not the results developed under such circumstance are applica-441

ble. Note that such settings are weaker than requiring NLP-MFCQ at zk, because442

the whole set of Lagrange multipliers at zk need not be bounded.443

Theorem 4.1. For a sequence of positive scalars εk → 0, apply the Bounding444

Algorithm to BA(εk), such that the parameters pk are updated whenever εk is updated.445

Assume this generates a sequence {zk} → z̄, where every zk is a KKT point of BA(εk)446

and the associated multipliers are bounded. Then z̄ is a C-stationary point of MPCC447

(1.1).448

Proof. When εk > 0, at every KKT point zk of BA(εk), there exist multipliers449

uk = (ug,k, uh,k, uΦ,k) with ug,k ≥ 0, such that450

(4.5) 0 = ∇f(zk) +
∑

i∈Ig(zk)

ug,ki ∇gi(z
k) +

nh∑
i=1

uh,ki ∇hi(z
k)−

m∑
i=1

uΦ,k
i ∇Φεi(z

k),451

where the gradient of Φεi is given by452

∇Φεi(z
k) =∇GΦεi(z

k)∇Gi(zk) +∇HΦεi(z
k)∇Hi(z

k)

=
Hi(z

k) + pki
Gi(zk) +Hi(zk) + 2pki

∇Gi(zk) +
Gi(z

k) + pki
Gi(zk) +Hi(zk) + 2pki

∇Hi(z
k).

453

Derivatives in the limit. In the limit εk → 0, the function Φ0
i is in general not454

differentiable for i ∈ β(z̄). However, if Φ0
i (z) is locally Lipschitz [6, Section 1.2] near z̄,455

the generalized gradient ∂Φ0
i (z̄) is generated by a convex hull (see [6, Theorem 2.5.1]456
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[7, Eq.(3.1.5)])457

∂Φ0
i (z̄) = conv

{
lim
sK→z̄

∇Φ0
i (s

K) | ∇Φ0
i (s

K) exists

}
,458

where {sK} is any sequence that converges to z̄ while avoiding the points where Φ0
i459

is not differentiable. (Locally Lipschitz function is differentiable almost everywhere.460

Therefore, there are “plenty” of sequences which converge to z̄ and avoid the set of461

points where ∇Φ0
i is not differentiable, since the latter is of measure zero.) Noting462

that Φ0
i (z̄) = min{Gi(z̄), Hi(z̄)} = 0 for i = 1 . . .m, we have463

∂Φ0
i (z̄) = ∂min{Gi(z̄), Hi(z̄)} = conv{∇Gi(z̄),∇Hi(z̄)}.464

For δi ∈ ∂Φ0
i (z̄), it follows that (see [26, Lemma 1])465

δi = θi∇Gi(z̄) + (1− θi)∇Hi(z̄), θi ∈ [0, 1],

θiGi(z̄) = 0,

(1− θi)Hi(z̄) = 0.

466

Therefore, as εk → 0, the gradient of Φεi tends to467

(4.6) δi =


∇Gi(z̄), i ∈ α(z̄),

∇Hi(z̄), i ∈ γ(z̄),

θi∇Gi(z̄) + (1− θi)∇Hi(z̄), i ∈ β(z̄),

468

where θi ∈ [0, 1].469

Existence of multipliers in the limit. Without loss of generality, we have the vector470

of the multipliers uk 6= 0 (otherwise zk is an unconstrained local minimum). Let471

(4.7)

∆k =

√√√√1 +
∑

i∈Ig(zk)

(ug,ki )2 +

nh∑
i=1

(uh,ki )2 +

m∑
i=1

(uΦ,k
i )2,

µk =
1

∆k
, νg,ki =

ug,ki
∆k

, νh,ki =
uh,ki
∆k

, νΦ,k
i =

uΦ,k
i

∆k
.

472

Dividing (4.5) by ∆k, we obtain473

(4.8)

0 =µk∇f(zk) +
∑

i∈Ig(zk)

νg,ki ∇gi(z
k) +

nh∑
i=1

νh,ki ∇hi(z
k)

−
∑
i∈α(z̄)

νΦ,k
i ∇Φεi(z

k)−
∑
i∈γ(z̄)

νΦ,k
i ∇Φεi(z

k)−
∑
i∈β(z̄)

νΦ,k
i ∇Φεi(z

k).

474

Since we have475

(µk)2 +
∑

i∈Ig(zk)

(νg,ki )2 +

nh∑
i=1

(νh,ki )2 +
m∑
i=1

(νΦ,k
i )2 = 1,476

the sequence {(µk, νg,k, νh,k, νΦ,k)} is bounded and must converge to some limit477
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(µ̄, ν̄g, ν̄h, ν̄Φ). It follows from (4.8) that this limit must satisfy478

0 =µ̄∇f(z̄) +
∑

i∈Ig(z̄)

ν̄gi∇gi(z̄) +

nh∑
i=1

ν̄hi ∇hi(z̄)

−
∑
i∈α(z̄)

ν̄Φ
i ∇Gi(z̄)−

∑
i∈γ(z̄)

ν̄Φ
i ∇Hi(z̄)−

∑
i∈β(z̄)

ν̄Φ
i [θi∇Gi(z̄) + (1− θi)∇Hi(z̄)] ,

479

where (4.6) has been used to characterize the derivatives at z̄, and µ̄, ν̄g ≥ 0 because480

of (4.7).481

Now suppose that µk vanishes in the limit, namely, µ̄ = 0. Then for every small482

positive number σ > 0, there exists K > 0, such that µk = 1
∆k < σ for all k > K.483

This implies that {∆k} is unbounded above, in contradiction with the assumption484

of bounded KKT multipliers {(ug,k, uh,k, uΦ,k)}. Therefore, µ̄ > 0 and Lagrange485

multipliers exist at the limit point z̄.486

Weak and C- stationarity. Without loss of generality, letting µ̄ = 1 and ū =487

(ūg, ūh, ūΦ) with ūg ≥ 0 be the multipliers associated with z̄, we obtain488

0 =∇f(z̄) +
∑

i∈Ig(z̄)

ūgi∇gi(z̄) +

nh∑
i=1

ūhi∇hi(z̄)

−
∑
i∈α(z̄)

ūΦ
i ∇Gi(z̄)−

∑
i∈γ(z̄)

ūΦ
i ∇Hi(z̄)−

∑
i∈β(z̄)

ūΦ
i [θi∇Gi(z̄) + (1− θi)∇Hi(z̄)] ,

489

for some θi ∈ [0, 1]. Thus z̄ satisfies the weak stationarity conditions (1.3), with the490

MPCC multipliers given by491

(4.9)

λ̄g = ūg = lim
k→∞

ug,k,

λ̄h = ūh = lim
k→∞

uh,k,

λ̄Gi =

ū
Φ
i = lim

k→∞
uΦ,k
i , i ∈ α(z̄)

ūΦ
i θi, i ∈ β(z̄),

λ̄Hi =

ū
Φ
i = lim

k→∞
uΦ,k
i , i ∈ γ(z̄)

ūΦ
i (1− θi), i ∈ β(z̄).

492

Moreover, z̄ is C-stationary because493

(4.10) λ̄Gi · λ̄Hi = (ūΦ
i )2θi(1− θi) ≥ 0, ∀i ∈ β(z̄).494

4.5. M-stationarity. The property (4.10) allows for two possibilities. One is495

that ūΦ
i ≥ 0 for all i ∈ β(z̄). Then λ̄Gi , λ̄

H
i ≥ 0 for all i ∈ β(z̄), and z̄ is S-stationary496

and obviously a B-stationary point of the MPCC. It is also possible that there exist497

indices i ∈ β(z̄) such that ūΦ
i < 0. For these indices i, λ̄Gi , λ̄

H
i ≤ 0. In the following,498

we analyze stationarity of z̄ further under an additional assumption. The assumed is499

a special case for zk to be a strict local minimizer of BA(εk) and is not uncommon in500

MPCCs (see, for example, scholtes4 in Section 3.1 and ex9.2.2 in Section 5.1).501

Theorem 4.2. Suppose that z̄ is generated from the sequence described in The-502

orem 4.1. In addition to the assumptions of Theorem 4.1, suppose that for every503
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sufficiently large k, at zk the collection of vectors504

∇gi(zk), i ∈ {i ∈ Ig(zk) |ug,ki > 0},
∇hi(zk), i = 1, . . . , nh,

∇Φi(z
k), i = 1, . . . ,m,

505

contains a set of n linearly independent vectors. Then z̄ is an M-stationary point of506

MPCC (1.1).507

Proof. Denote Ck as the set at zk of n linearly independent vectors. For the508

gradient vectors in Ck coming from constraints g, h, and Φ, denote the sets of their509

indices as J+
g , Jh, and JΦ, respectively. Then, the limit of Ck can be expressed as:510

C̄ =



∇gj(z̄), j ∈ J+
g = {j ∈ Ig(z̄) | λ̄g > 0}

∇hj(z̄), j ∈ Jh
∇Gj(z̄), j ∈ JΦ ∩ α(z̄)

∇Hj(z̄), j ∈ JΦ ∩ γ(z̄)

ξj = θj∇Gj(z̄) + (1− θj)∇Hj(z̄), j ∈ JΦ ∩ β(z̄)


,511

where every θj ∈ [0, 1]. The vectors in C̄ are linearly independent, which is a conse-512

quence of linear independence of the vectors in Ck. The constraints whose gradients513

are involved in the set C̄ dominate all the other constraints at z̄, and Theorem 4.1514

ensures that based on these constraints z̄ is C-stationary.515

We show that there exists a partition (β1, β2) ∈ P(JΦ ∩ β(z̄)) such that the516

multipliers suitable for NLP(β1,β2) also satisfy M-stationarity. Consider partition of517

the set JΦ ∩ β(z̄). Let518

S1 = {j ∈ JΦ ∩ β(z̄) | θj = 1},
S2 = {j ∈ JΦ ∩ β(z̄) | θj = 0},
S3 = {j ∈ JΦ ∩ β(z̄) | 0 < θj < 1}.

519

For every j ∈ S3, since ξj is independent from all the vectors in C̄ \{ξj}, either ∇Gj(z̄)520

or ∇Hj(z̄) (or both) are linearly independent from all the vectors in C̄ \ {ξj}. Hence,521

there exist the following sets:522

S31 = {j ∈ S3 | ∇Gj is independent from C̄ \ {ξj}},
S32 = S3 \ S31,

523

such that524

rank





∇gj(z̄)T , ∀j ∈ J+
g

∇hj(z̄)T , ∀j ∈ Jh
∇Gj(z̄)T , ∀j ∈ JΦ ∩ α(z̄)

∇Hj(z̄)
T , ∀j ∈ JΦ ∩ γ(z̄)

∇Gj(z̄)T , ∀j ∈ S1

∇Hj(z̄)
T , ∀j ∈ S2

∇Gj(z̄)T , ∀j ∈ S31

∇Hj(z̄)
T , ∀j ∈ S32




= n,525
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and d = 0 is the only solution to the following problem:526

min ∇f(z̄)T d

s.t. ∇gJ+(z̄)T d ≤ 0,

∇hJh(z̄)T d = 0,

∇GJΦ∩α(z̄)T d = 0,

∇HJΦ∩γ(z̄)T d = 0,

∇GS1(z̄)T d = 0,

∇HS2
(z̄)T d = 0,

∇GS31(z̄)T d = 0, ∇HS31(z̄)T d ≥ 0,

∇GS32
(z̄)T d ≥ 0, ∇HS32

(z̄)T d = 0,

527

with ∇gJ+(z̄)T d ≤ 0 strongly active. It follows that z̄ is a strict local minimizer of528

NLP(β1,β2) [3, Corollary in Section 4.4.2] with (β1, β2) ∈ P(JΦ ∩ β(z̄)) given by529

β1 = S1 ∪ S31, β2 = S2 ∪ S32.530

Since the KKT multipliers of NLP(β1,β2) must satisfy A-stationarity, which together531

with C-stationarity shown by Theorem 4.1, implies that the multipliers satisfy M-532

stationarity (intersection of A- and C- stationarities).533

4.6. Inequality variant of BA. To further understand and explore conver-534

gence properties of the Bounding Algorithm, it is beneficial to take advantage of an535

inequality variant of the problem BA(ε), which is given by536

(4.11)

MLF(ε) : min f(z) multipliers

s.t. g(z) ≤ 0, ug

h(z) = 0, uh

− ε/2 ≤ Φεi(z) ≤ 0, i = 1 . . .m. uΦ
L,i, u

Φ
U,i

537

For a sequence of positive scalars εk → 0, solving problems MLF(εk) generates a538

sequence {zk} → z̄, where every zk is a KKT point of MLF(εk). At every point zk we539

have multipliers uk = (ug,k, uh,k, uΦ,k
L , uΦ,k

U ) with ug,k ≥ 0 and 0 ≤ uΦ,k
L,i ⊥ uΦ,k

U,i ≥ 0540

for i = 1 . . .m, such that541

(4.12) 0 = ∇f(zk)+
∑

i∈Ig(zk)

ug,ki ∇gi(z
k)+

nh∑
i=1

uh,ki ∇hi(z
k)−

m∑
i=1

(uΦ,k
L,i −u

Φ,k
U,i )∇Φεi(z

k).542

Under the assumption that the multipliers associated with every zk are bounded,543

the existence of the multipliers in the limit can be proved as before. Comparing the544

problem formulations (4.1) and (4.11), and the KKT conditions (4.5) and (4.12), gives545

the relations between BA(εk) and MLF(εk):546

(4.13)

pki = εk/2⇔ lower bound of Φεi(z
k) is active, and uΦ,k

L,i ≥ 0,

pki = 0⇔ upper bound of Φεi(z
k) is active, and uΦ,k

U,i ≥ 0,

uΦ,k = uΦ,k
L − uΦ,k

U .

547
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Substituting the last relation into (4.9) gives the MPCC multipliers at z̄:548

(4.14)

λ̄g = ūg = lim
k→∞

ug,k,

λ̄h = ūh = lim
k→∞

uh,k,

λ̄Gi =

ū
Φ
L,i − ūΦ

U,i = lim
k→∞

(uΦ,k
L,i − u

Φ,k
U,i ), i ∈ α(z̄)

(ūΦ
L,i − ūΦ

U,i)θi, i ∈ β(z̄),

λ̄Hi =

ū
Φ
L,i − ūΦ

U,i = lim
k→∞

(uΦ,k
L,i − u

Φ,k
U,i ), i ∈ γ(z̄)

(ūΦ
L,i − ūΦ

U,i)(1− θi), i ∈ β(z̄).

549

Stationarity of z̄ established in the previous subsections for BA can be extended550

directly to MLF.551

Numerical experience demonstrates the feature that when z̄ is not S-stationary,552

namely, there exists a subset553

(4.15) Ω ⊆ β(z̄), such that λ̄Gi , λ̄
H
i ≤ 0 for all i ∈ Ω,554

a sequence {zk} converges to z̄ from the upper bounds of the constraints −εk/2 ≤555

Φεi(z) ≤ 0, thus showing that uΦ,k
L,i = 0, uΦ,k

U,i > 0 for every k sufficiently large, and556

yielding in the limit (ūΦ
L,i − ūΦ

U,i) < 0 for all i ∈ Ω (as specified by (4.14)). In557

parallel with this observation, a sequence {zk} generated by the Bounding Algorithm558

converges to z̄ with the parameters for constraints Φεi(z) + pki = 0 being zero for all559

i ∈ Ω, thus the corresponding multipliers uΦ,k
i < 0 (as implied by (4.13)) as εk → 0560

and ūΦ
i < 0 in the limit. These observations have a theoretical reason which explains561

why MLF and BA identify a non-strongly stationary point in such a way, or why562

approaching to a non-strongly stationary point makes these methods behave like this.563

To be specific, at a feasible point z of MLF(εk), define the index sets564

IΦ
L (z) = {i |Φεi(z) = −εk/2},
IΦ
U (z) = {i |Φεi(z) = 0}.

565

The constraint −εk/2 ≤ Φεi(z) ≤ 0 requires that566

(Gi(z) + εk

2 )(Hi(z) + εk

2 ) ≥ (εk)2/4,

Gi(z)Hi(z) ≤ (εk)2/4,
567

and at the lower and upper bounds we have568

Gi(z) + εk

2 > 0, Hi(z) + εk

2 > 0, (Gi(z) + εk

2 )(Hi(z) + εk

2 ) = (εk)2/4, ∀i ∈ IΦ
L (z)

Gi(z) > 0, Hi(z) > 0, Gi(z)Hi(z) = (εk)2/4, ∀i ∈ IΦ
U (z).

569

Therefore, the feasible region of MLF(εk) includes the feasible region of MPCC (1.1),570

while it restricts the feasible region of RNLP (1.6) from above by enforcing Φεi(z) ≤ 0.571

For every εk > 0 suitably small, a local minimizer of MLF(εk) is also a local minimizer572

of the RNLP constrained additionally by Φεi(z) ≤ 0. Suppose that there exists a subset573

Ω ⊆ {1 . . .m}, such that RNLP is minimized at GΩ(z) > 0 and HΩ(z) > 0. In such574

circumstance, MLF(εk) achieves the minimal cost on the boundaries of ΦεΩ(z) ≤ 0575
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for every εk > 0 suitably small. This gives rise to the phenomenon that the upper576

bounds of the constraints −εk/2 ≤ ΦεΩ(z) ≤ 0 are active at every zk as εk → 0.577

Moreover, Ω ⊆ β(z̄) because the constantly active upper bounds as εk → 0 means578

GΩ(zk) > 0, HΩ(zk) > 0, and ∇GΩ(zk)∇HΩ(zk) = (εk)2/4 (componentwise product)579

for infinitely many k. Since the solutions of RNLP locate outside of the feasible region580

of the MPCC, no local minimizer of the MPCC can be S-stationary.581

Now we reconsider a limit point z̄ of BA or MLF, at which there exists a subset582

Ω ⊆ β(z̄), such that ūΦ
Ω < 0 (BA) or ūΦ

L,Ω − ūΦ
U,Ω < 0 (MLF).583

According to (4.9) and (4.14), the MPCC multipliers have non-positive components584

for the subset Ω, as shown by (4.15). We aim to verify whether such z̄ is B-stationary.585

Suppose that MPCC-ACQ holds at z̄. According to Theorem 3.2, B-stationarity586

of MPCC (1.1) is equivalent to piecewise M-stationarity under MPCC-ACQ. The587

above discussion has shown that the existence of the subset Ω usually signifies the588

absence of S-stationary solutions. So, for every partition (β1, β2) ∈ P(β(z̄)), piecewise589

M-stationarity can be satisfied by the MPCC multipliers (4.15) only if590

(4.16)
λ̄Gi < 0, λ̄Hi = 0, ∀i ∈ β1 ∩ Ω,

λ̄Gi = 0, λ̄Hi < 0, ∀i ∈ β2 ∩ Ω.
591

In this case, the LPs comprising LPEC (3.1) can be simplified to592

(4.17)

min obj(d) = ∇f(z̄)T d

s.t. ∇gI(z̄)T d ≤ 0,

∇h(z̄)T d = 0,

∇Gα(z̄)T d = 0,

∇Hγ(z̄)T d = 0,

∇Gβ1
(z̄)T d = 0, ∇Hβ1\Ω(z̄)T d ≥ 0,

∇Gβ2\Ω(z̄)T d ≥ 0, ∇Hβ2(z̄)T d = 0.

593

Here the constraints corresponding to the subset Ω are excluded from the inequality594

constraints, because (4.16) implies that for every partition (β1, β2) ∈ P(β(z̄)), the595

constraints corresponding to λ̄Hi for all i ∈ β1 ∩ Ω, and corresponding to λ̄Gi for all596

i ∈ β2 ∩ Ω, must be locally inactive. Provided that the problem (4.17) is bounded597

below for every (β1, β2) ∈ P(β(z̄)), z̄ is B-stationary.598

5. Practical issues. Numerical results of the NCP-based bounding methods599

(BA and MLF) applied to the MacMPEC collection [21] as well as large-scale MPCCs600

drawn from real-world chemical engineering examples can be found in [30]. In that601

study, we considered a selection of problems from the MacMPEC collection, which602

have solutions with biactive complementary components, as well as seven MPCC prob-603

lems constructed from distillation models with up to 1264 variables and 48 comple-604

mentarity constraints. The numerical comparison includes the typical regularization605

scheme proposed in [27], the regularization method proposed in [23] and closely related606

to MLF, and three NCP-based methods, namely, BA, MLF, and a standard NCP-607

based method (without bounding scheme). This demonstrates that the NCP-based608

methods are the most efficient of these methods, especially on examples without S-609

stationary solutions, and that, in general, the BA method performs well among these610

methods.611
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In this section, we take a closer look at the behaviors of MPCC methods, when612

converging to a limit point z̄ which is not S-stationary. By examples, we first show the613

course of convergence of multipliers produced by the NCP-based bounding methods614

with vanishing ε. Then we show that the Lagrange multipliers generated by these615

methods are bounded, as a benefit of the generalized gradients of the underlying NCP616

functions. This allows the convergence results in Section 4, which are developed under617

the assumption of the boundedness of the multipliers, to be applicable in practice.618

5.1. MPCC multipliers by NCP-based bounding methods. We observe619

convergence of the multipliers produced by the NCP-based bounding methods.620

Example: ex9.2.2 . This example shows that in the course of approaching a621

non-strongly stationary local minimizer, the solutions of the NCP-based bounding622

methods (BA and MLF) provide MPCC multipliers satisfying C-stationarity when623

the smoothing factor ε is not very small, and provide MPCC multipliers satisfying624

M-stationarity as ε vanishes.625

Problem ex9.2.2 from the MacMPEC collection [21] is given by626

min x2 + (y − 10)2 multipliers

s.t. x ≤ 15, (inactive)

− x+ y ≤ 0, λ1

− x ≤ 0, (inactive)

x+ y + s1 = 20, λ2

− y + s2 = 0, λ3

y + s3 = 20, λ4

2x+ 4y + l1 − l2 + l3 = 60, λ5

0 ≤ si ⊥ li ≥ 0, i = 1 . . . 3. σsi, σli

627

The NCP-based bounding methods converge to the point z̄ = (x̄, ȳ, s̄, l̄) with628

x̄ = 10, ȳ = 10, s̄ = (0, 10, 10), l̄ = (0, 0, 0).629

Since the constraint functions are linear, MPCC-ACQ holds at every feasible point of630

the problem. The weak stationarity conditions (1.3) at z̄ require that631

(5.1)

2x̄− λ1 + λ2 + 2λ5 = 0,

2(ȳ − 10) + λ1 + λ2 − λ3 + λ4 + 4λ5 = 0,

λ2 − σs1 = 0,

λ3 = 0,

λ4 = 0,

λ5 − σl1 = 0,

−λ5 − σl2 = 0,

λ5 − σl3 = 0,

632

which implies633

σs1 = −3λ5 − 10,

σl1 = λ5.
634
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The multipliers σs1, σl1 for the biactive complementary components s1, l1 cannot be635

both nonnegative, hence z̄ cannot be S-stationary. Let σs1 = 0 or σl1 = 0, then we636

obtain (σs1, σl1) = (0,−10/3) or (σs1, σl1) = (−10, 0), indicating that z̄ is piecewise637

M-stationary. These two sets of multipliers reflect stationarity of z̄ for NLPs on their638

respective partitions.639

Now we check the multipliers given by the NCP-based bounding methods. For the640

set β(z̄) = {1}, solutions of the NCP-based bounding methods give the corresponding641

NLP multipliers shown in Table 1. According to (4.9) and (4.14),642

(5.2) λ̄Gi + λ̄Hi = ūΦ
i = ūΦ

L,i − ūΦ
U,i, ∀i ∈ β(z̄).643

At ε = 10−6, by enforcing σs1 + σl1 = −5.74, we obtain from (5.1) the MPCC mul-644

tipliers at z̄, where (σs1, σl1) = (−3.61,−2.13) satisfies C-stationarity. With further645

decrease of ε, the multipliers in Table 1 reflect that they are converging to MPCC646

multipliers that satisfy M-stationarity at z̄. According to (4.9) and (4.14), the value647

of θ is 1 in BA and 0 in MLF, corresponding to different partitions of β(z̄).648

Table 1
NLP multipliers of NCP-based bounding methods.

ε 10−6 10−9 10−10 10−11 10−12 10−15

BA uΦ -5.74 -4.78 -5.23 -7.45 -9.94 -10.00

MLF
uΦ
L 0 0 0 0 0 0
uΦ
U 5.74 5.63 4.78 3.72 3.34 3.33

5.2. Unbounded NLP multipliers and inaccurate solution. In the course649

of seeking for a solution of an MPCC, NLP subproblems may encounter unbounded650

multipliers when approaching a limit point which is not S-stationary. Our numerical651

experience to date indicates that NCP-based reformulations BA(ε) and MLF(ε) avoid652

unbounded NLP multipliers. The following confirms this observation, by comparing653

BA(ε) and MLF(ε) with the typical regularization scheme proposed in [27]:654

REG(ε) : min f(z) multipliers

s.t. g(z) ≤ 0, vg

h(z) = 0, vh

G(z) ≥ 0, vG

H(z) ≥ 0, vH

Gi(z)Hi(z) ≤ ε, i = 1 . . .m. vREGi

655

Solving a sequence of programs REG(εk) with the positive scalars εk → 0, generates656

a sequence {zk} → z̄. Based on stationarity of zk for REG(εk), namely,657

0 = ∇f(zk) +
∑

i∈Ig(zk)

vg,ki ∇gi(z
k) +

nh∑
i=1

vh,ki ∇hi(z
k)

−
m∑
i=1

vG,ki ∇Gi(zk)−
m∑
i=1

vH,ki ∇Hi(z
k) +

m∑
i=1

vREG,ki

[
Hi(z

k)∇Gi(zk) +Gi(z
k)∇Hi(z

k)
]
,

658

the relations between the NLP multipliers vk = (vg,k, vh,k, vG,k, vH,k, vREG,k) at zk659

and the MPCC multipliers λ̄ = (λ̄g, λ̄h, λ̄G, λ̄H) at z̄ can be expressed by (see also660
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[27, Eq.(6) and Theorem 3.1])661

(5.3)

λ̄g = v̄g = lim
k→∞

vg,k,

λ̄h = v̄h = lim
k→∞

vh,k,

λ̄Gi = lim
k→∞

[
vG,ki − vREG,ki Hi(z

k)
]
, i = 1, . . . ,m,

λ̄Hi = lim
k→∞

[
vH,ki − vREG,ki Gi(z

k)
]
, i = 1, . . . ,m.

662

It has been proved that z̄ is a strongly stationary point of MPCC (1.1) if and only if663

it is a stationary point of REG(0) [11, Proposition 4.1].664

Consider the case where z̄ is not S-stationary. Then z̄ is not a stationary point of665

REG(0). In the case z̄ is no better than C-stationary, then there exist indices i ∈ β(z̄)666

such that λ̄Gi < 0, λ̄Hi < 0. According to (5.3), the NLP multipliers vG,ki and vH,ki667

have a tendency to be less than zero for k sufficiently large, which are not allowed in668

REG(εk). Since669

(5.4)
lim
k→∞

vG,ki = λ̄Gi + lim
k→∞

vREG,ki Hi(z
k),

lim
k→∞

vH,ki = λ̄Hi + lim
k→∞

vREG,ki Gi(z
k),

670

the multipliers vREG,ki become very large to enforce vG,ki and vH,ki nonnegative. At the671

same time, Gi(z
k) and Hi(z

k) are prevented from being very close to zero, otherwise672

vREG,ki Gi(z
k) and vREG,ki Hi(z

k) would be ineffective. As a consequence, it can be673

observed for k sufficiently large that vG,ki = 0, vH,ki = 0, vREG,ki → ∞, and Gi(z
k)674

and Hi(z
k) cannot converge accurately to zero.675

In the case z̄ is no better than M-stationary, there exist indices i ∈ β(z̄) such676

that λ̄Gi = 0, λ̄Hi < 0 (or the reverse). The relations (5.3) imply that for k sufficiently677

large vH,ki has a tendency to be less than zero, which is not a suitable NLP multiplier.678

We also use (5.4) to predict the behavior of the REG method. In order to enforce679

vH,ki nonnegative, the multipliers vREG,ki get to be very large, and at the same time,680

Gi(z
k) cannot be very close to zero. The components Hi(z

k) cannot approach zero681

quickly either, because the constraints Gi(z
k)Hi(z

k) ≤ εk must be kept active for682

every εk > 0. As a result, the observation for k sufficiently large should be the same683

as the above case.684

On the other hand, the multipliers for the programs BA(εk) and MLF(εk) do685

not have this difficulty. As indicated by the relations (4.9) and (4.14), there is no686

contradiction between the signs of the MPCC multipliers λ̄Gi , λ̄
H
i and of the NLP687

multipliers uΦ,k
i and uΦ,k

L,i − uΦ,k
U,i . In addition, the underlying relation (5.2) indi-688

cates that the NLP multipliers exist whenever the MPCC multipliers do. Therefore,689

whether z̄ is S-stationary or not has little influence on the performance of BA and690

MLF methods, which is an important difference from the REG method.691

Examples: Multiplier comparison. We review the examples in Sections 3.1692

and 5.1 to illustrate the difference in behavior between the NCP-based bounding693

methods (BA and MLF) and REG regularization method.694

As we showed in the previous sections, the examples scholtes4 and ex9.2.2 have695

non-strongly stationary local minimizers. Numerical results of these two examples696

are presented in Tables 2 and 3. The results indicate that REG method gives rise to697
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large NLP multipliers for the constraints corresponding to the biactive complementary698

components, and the multipliers get even larger when the regularization parameter ε699

becomes smaller. At the same time, the convergence is slow and inaccurate, compared700

to the magnitude of ε.701

On the other hand, the multipliers of the NCP-based bounding methods are702

well behaved. According to (5.2), their multipliers can be used to derive the MPCC703

multipliers at a limit point and vice versa. In addition, the accuracy of their solutions704

(to the program variables and multipliers) is comparable to ε.705

Table 2
Results of problem scholtes4.

ε scholtes4 BA MLF REG

p uΦ uΦ
L uΦ

U vz1 vz2 vREG

multipliers 0 -2 0 2 0 0 1.00E+3
10−6 z1 5E-7 5E-7 0.001000

z2 5E-7 5E-7 0.001000
z3 2E-6 2E-6 0.003999

p uΦ uΦ
L uΦ

U vz1 vz2 vREG

multipliers 0 -2 0 2 0 0 2.69E+4
10−9 z1 5E-10 5E-10 0.000037

z2 5E-10 5E-10 0.000037
z3 2E-9 2E-9 0.000149

p uΦ uΦ
L uΦ

U vz1 vz2 vREG

multipliers 0 -2 0 2 0 0 5.02E+4
10−12 z1 5E-11 5E-11 0.000020

z2 5E-11 5E-11 0.000020
z3 2E-10 2E-10 0.000080

Table 3
Results of problem ex9.2.2.

ε ex9.2.2 BA MLF REG

p uΦ uΦ
L uΦ

U vs1 vl1 vREG

multipliers 0 -5.74 0 5.74 0 0 2.89E+3
10−6 s1 3.8E-7 3.8E-7 0.000577

l1 6.5E-7 6.5E-7 0.001732

p uΦ uΦ
L uΦ

U vs1 vl1 vREG

multipliers 0 -4.78 0 5.63 0 0 7.85E+4
10−9 s1 2.04E-10 3.65E-10 0.000021

l1 1.11E-10 5.96E-10 0.000064

p uΦ uΦ
L uΦ

U vs1 vl1 vREG

multipliers 0 -9.94 0 3.34 0 0 1.46E+5
10−12 s1 2.94E-11 2.03E-11 0.000011

l1 3.81E-11 1.09E-11 0.000034

6. Conclusions. This study explores characteristics of local minimizers of MPCCs706

and their influence on convergence behavior of NLP-based MPCC algorithms. First,707

we derive M-stationarity of a local minimizer of an MPCC under MPCC-ACQ (The-708

orem 2.2). A key point is that the M-stationarity is a piecewise property. For a local709

minimizer z̄ which is not S-stationary, there exist multiple sets of MPCC multipli-710

ers, each corresponding to one partition of β(z̄) and satisfying M-stationarity on that711

partition.712

Second, we aim to capture conditions that guarantee a feasible point of an MPCC713

to be B-stationary. By applying the main results (D1), (D2), and (D3) of duality714
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theory to the LPEC at a weakly stationary point of an MPCC, we prove under715

MPCC-ACQ that either a weakly stationary point is B-stationary, or there exists716

a component LP of the LPEC, which is unbounded below (Theorem 3.1). The link717

between the optimality of the LPs comprising the LPEC and the first-order optimality718

of the NLPs comprising the MPCC, leads to the result that B-stationarity is equivalent719

to piecewise M-stationarity under MPCC-ACQ (Theorem 3.2). In addition, a method720

to detect unbounded LPs is proposed, which is applicable when n out of the active721

constraints are linearly independent (Section 3.3).722

To investigate convergence properties of the Bounding Algorithm we proposed723

in [30] in the absence of MPCC-LICQ, we consider stationarity of a limit point of724

this method, based on stationarity of a sequence of NLP solutions approaching to it.725

We establish C-stationarity of a limit point by using attributes of the NCP function726

involved (Theorem 4.1), and M-stationarity by introducing an additional assumption727

on active constraint gradients (Theorem 4.2). Further investigation from the perspec-728

tive of an inequality variant of this algorithm motivates a way to simplify the LPEC729

when verifying B-stationarity of a limit point.730

Finally, we discuss a few practical issues related to local minimizers of MPCCs731

which are not S-stationary. It is illustrated that the NCP-based bounding methods732

(BA and MLF) usually produce MPCC multipliers that satisfy C-stationarity at a733

non-strongly stationary solution when the smoothing factor ε is not sufficiently small,734

and satisfy M-stationarity as ε vanishes (Section 5.1). Moreover, the sequence of735

NLP multipliers is bounded, even if the methods are approaching a non-strongly sta-736

tionary MPCC solution. On the other hand, the REG method, which is a typical737

regularization method, usually encounters unbounded NLP multipliers and inaccu-738

rate convergence when approaching a non-strongly stationary solution (Section 5.2).739

This analysis shows an advantage of NCP-based reformulation of complementarity740

constraints. Namely, the structure of the generalized gradients of the NCP functions741

corresponding to the degenerate complementarity constraints, can prevent the NLP742

multipliers from blowing up, provided that the MPCC multipliers are well defined at743

a limit point.744
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