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5 Abstract. This paper focuses on solving mathematical programs with complementarity con-
6 straints (MPCCs) by assuming neither MPCC linear independence constraint qualification (MPCC-
7 LICQ) nor lower/upper level strict complementarity at the solution. First, necessary conditions
8 for MPCC local optimality and sufficient conditions for convergence to B-stationarity are investi-
9 gated. Under MPCC-Abadie constraint qualification (MPCC-ACQ), a local minimizer of an MPCC
10 is “piecewise M-stationary”; a weakly stationary point of an MPCC is B-stationary if the related
1 linear program with equilibrium constraints (LPEC) is bounded below; furthermore, B-stationarity
12 is equivalent to piecewise M-stationarity. Then convergence properties of the Bounding Algorithm
13 proposed in [30] are analyzed. C- and M- stationarity of a limit point generated by the method are
14 developed; an inequality variant of this method offers an alternative viewpoint to understand the
15 behavior when approaching a limit point which is not S-stationary. In addition, a few practical issues
16 related to convergence to a non-strongly stationary solution are discussed.

17 Key words. MPCC, B-stationarity, constraint qualification, duality, NCP
18 1. Introduction. We consider mathematical programs with complementarity
19 constraints (MPCCs) of the form
min  f(2)
s.t. z) <0,
20 (1.1) 9(z) <
h(z) =0,

0<Gi(z) L Hi(2) >0, i=1...m,

21 where (f,g,h,G, H) : R® — RIFfnatnatm+m are differentiable functions. At a feasible
22 point z of the MPCC, define the following index sets:

1,(2) = {i] g:(2) = 0},
a(z) = {i| Gi(2) = 0, Hy(2) > 0},
z (12) 2(2) = {i] Gi(2) > 0, Hy(2) = 0},
B(z) = {i] Gu(z) = 0, Hy(2) = 0)

24 A feasible point Z is weakly stationary, if there exist multipliers A= (A, N NG N
25 with A9 > 0, such that

(1.3)
np
26 0=VfE+ D MNVg(E)+Y MVh(2)- > AVG()- Y. MVH(3).
i€ly(2) i=1 i€a(2)UB(Z) i€v(2)UB(Z)
27 Further, a weakly stationary point z is also
28 e S-stationary (strongly stationary), if /&GLAZH >0 for all i € 5(2);
29 e M-stationary, if either A&, A > 0 or AS A7 =0 for all i € B(2);
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e C-stationary, if ACAH > 0 for all i € 3(Z);
e A-Stationary, if either A& > 0 or Af >0 for all i € B(2).

1.1. Local optimality and geometry simplification. A local minimizer z of
MPCC (1.1) is a B-stationary point at which the following condition holds
(1.4) ViE)Td>0, vdeT(z),

where T (Z) is the tangent cone of the MPCC at the point z. If the feasible region is
regular at Z in the sense of Clarke (see [25, Definition 6.4][4, Section 1]), this condition
is the same as

(1.5) VI(z) e T(2),

where T (2)* is the dual cone of T(Z). Verifying these conditions directly is generally
nontrivial. In practice, it is desirable to employ linearized cones to reconstruct the
first-order optimality condition (1.4) or (1.5). Constraint qualifications (CQs) play
an important role in this task.

Standard linearization of 7(Z) can be carried out (see [8, Egs. (10)-(11)]), by
replacing the complementarity constraints 0 < G(z) L H(z) > 0 with

G(z) >0, H(2)>0, G(2)TH(z)=0.
Then linearization of these constraints gives

Gi(2)+VGi()Td>0, i=1,...,m,
Hy(z2) + VH;(2)Td >0, i=1,...,m,
G:(2)Hi(2) + Hi(2)VG;(2)Td+ Gi(2)VH;(2)Td =0, i=1,....,m

Using the index sets defined by (1.2), we obtain the linearized tangent cone

Th(2) = {d|Vgi(2)Td <0, Vi € I,(%),
Vhi(z)Td =0, Vi=1,...,n,
VG (2)Td =0, Vi € a(2),
VH;(z2)Td =0, Vi € v(z),
VGi(z2)Td >0, VH(2)Td >0, Vi€ p(2)}

Its dual cone is given by
T ()" = {w|w'd >0, Vd € 7'””(’)}

={wl0=w+ Y MVg(2) —i—Z)\th — Y AVGi(2) - Y MIVH(z

i€ly(Z2) ica(z) 1€v(2)
— Z AEVG( Z MiVH,(z
i€B(2) i€f(2)

N >0, Vi€ I(2); A\ >0\ >0, viec ()}

By assuming 7 (2) = T""(2) or T(2)* = T'"(2)*, the condition (1.4) or (1.5) can be
rebuilt based on the linearized cone. This converts first-order optimality of MPCC
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(1.1) into that of the relaxed NLP

RNLP: min f(z)
s.t. g(2) <0,
(2) =0

h(z) =0,

(16) Gi(z) = 0, i€a(z),
Hy(z) =0, i e (2),
Gi(z) >0, Hi(z) 20, i€ B(z),

and thus justifies using the KKT conditions for RNLP, i.e., the S-stationarity condi-
tions, as a necessary first-order condition (see also [9, Theorem 4.1]).

Since NLP-CQs are usually too strong for MPCCs, several constraint qualifica-
tions have been proposed that are customized for complementarity constraints. In
particular, MPCC-ACQ and MPCC-GCQ, which are MPCC variants of the standard
Abadie and Guignard constraint qualifications, are apparently helpful in reconstruct-
ing the conditions (1.4) and (1.5) with a linearized tangent cone. MPCC-ACQ assumes
T(2) = Tinoc(2), where the latter is the MPCC-linearized tangent cone at z and is
defined in [8] as

TiPcc(z) = {d|Vai(2)Td <0, Vi € I,(z),
Vhi(z)Td =0, Vi=1,...,np,
VG;(2)Td =0, Vi € a(z),
VH;(2)Td =0, Vi € v(2),
VG;i(2)"d >0, Vi € B(2),
VH;(2)Td >0, Vi € B(2),
(VGi(2)Td) - (VH;(2)Td) =0, Vie p(2)}).

Then the condition (1.4) can be expressed as:
(1.7) Vi(z)Td>0, VdeTipoc(?)-
MPCC-GCQ assumes T (2)* = T{%.(2)* [10], where the latter is described by

Tipcc(2) = {ww'd >0, Vd € Tfcc(2)}-
Then the condition (1.5) can be expressed by

(1.8) Vf(z) € Taipoc(2)*

Both reconstructions are implemented by simplifying the geometry of the MPCC
problem while preserving the complementarity structure.

Note that MPCC-GCQ is implied by MPCC-ACQ, but the converse is in general
not true. Their relations are analogous to the relations between NLP-GCQ and NLP-
ACQ. Examples showing that NLP-GCQ and MPCC-GCQ have a better chance to
be satisfied, even if NLP-ACQ and MPCC-ACQ do not hold, can be found in [28,
Example 1.3] and [10, Example 2.1], respectively. Intuitively, the property that a
dual cone, such as T'"(2)* and TR (2)*, is always convex, even if the tangent
cone, such as T'"(2) and TiRoo(Z), is nonconvex, offers the opportunity for NLP-
GCQ and MPCC-GCQ to hold more generally. Note that despite the fact that a
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tangent cone is not necessarily equal to the closure of its convex hull, their dual cones
are the same.

Flegel and Kanzow have established that under MPCC-GCQ, M-stationarity is a
necessary first-order condition [10, Theorem 3.1]. Kanzow and Schwartz have derived
Fritz John type M-stationarity at a local minimizer [20, Theorem 3.1]. Related to this,
in Section 2 we derive a property of “piecewise M-stationarity,” at a local minimizer
of MPCC (1.1) at which MPCC-ACQ holds.

1.2. Degeneracy. To seek a solution of MPCC (1.1), many NLP-based schemes
have been proposed. The original intention is to avoid dealing with the complemen-
tarity structure explicitly. In general, these schemes are designed to solve a sequence
of regularized NLPs, yielding a sequence of stationary points z* which is hoped to
approximate a solution of MPCC (1.1). An important ingredient is to characterize
conditions under which, as the regularization factor vanishes or stabilizes, a limit point
of {z¥} is a stationary point of the MPCC in some sense. For some representative
work see [27, 12, 23, 22, 18, 19, 29, 11, 1].

A difficulty in establishing stationarity of a limit point arises as the point is degen-
erate (on the lower level), namely, a sequence {z*} — Z at which 3(z) # (). Fukushima
and Pang studied the behavior of a sequence {2*} which is composed of KKT points of
NLPs formulated by smoothing the MPCC with perturbed Fischer-Burmeister func-
tions. The condition of asymptotic weak nondegeneracy was proposed, meaning that
for every i € 3(%), G;(2*) and H;(z*) approach zero in the same order of magnitude.
Under this condition and second-order necessary conditions at every z¥, together with
MPCC linear independence constraint qualification (MPCC-LICQ) at z, it has been
proved that Z is a B-stationary point of the MPCC [12, Theorem 3.1]. However, the
condition of asymptotic weak nondegeneracy is hard to enforce in practice. Replacing
this condition with upper level strict complementarity (ULSC), namely, AéA\H £ 0
for all i € B(z), Scholtes recovered B-stationarity of a limit point of a regularization
scheme [27, Corollary 3.4]. Kadrani et al. developed a regularization method whose
limit points were shown to be M-stationary under MPCC-LICQ, and S-stationary un-
der additional assumption of asymptotic weak nondegeneracy (see [18]). The result
on M-stationarity was later proved valid under weaker MPCC constant positive linear
dependence (MPCC-CPLD) assumption (see [16]). Results under weaker assumptions
also include, for example, that C-stationarity convergence of the method by Steffensen
and Ulbrich under MPCC constant rank constraint qualification (MPCC-CRCQ) [29]
and under MPCC-CPLD [15], and M-stationarity convergence of the method by Kan-
zow and Schwartz under MPCC-CPLD [19]. Theoretical and numerical comparison
of some of these methods can be found in [16].

Besides diverse methods for reformulating complementarity constraints, many
popular algorithmic frameworks in nonlinear programming have been exploited to deal
with complementarity as well as the potential degeneracy. The sequential quadratic
programming (SQP) method in its pure form applied to MPCCs was investigated in
[11]. By introducing slack variables into the reformulation of general complementar-
ity constraints, superlinear convergence to a S-stationary point was established under
MPCC-LICQ and regularity conditions (Theorems 5.7 and 5.14 therein). An alter-
native SQP method which retained the superlinear convergence while relaxing some
of the assumptions was analyzed in [2], where an adaptive elastic mode was invoked
to enforce either feasibility of the QP subproblems or complementarity at the iterates
(Theorems 4.5 and 4.6 therein). Interior-penalty methods for MPCCs were studied
n [22]; global convergence to a S-stationary point was proved under MPCC-LICQ
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and a condition on the behavior of the penalty parameters (Theorem 3.4 and Corol-
lary 3.5 therein); superlinear convergence to a S-stationary point was proved under
certain regularity conditions (Theorem 4.5 therein); in particular, relations between
interior-penalty and interior-relaxation methods were established, which allows to ex-
tend some convergence results derived for one approach to the other. Convergence of
augmented Lagrangian methods were investigated under MPCC-LICQ [17, Theorem
3.2], where a limit point was proved to be S-stationary in the case of bounded mul-
tiplier sequence, and C-stationary in the presence of unbounded multiplier sequence.
The results were improved in [1] for a second-order method (Theorem 3.2 therein),
where S-stationarity was established under a weaker MPCC-relaxed constant positive
linear dependence (MPCC-RCPLD) condition, and convergence in the presence of un-
bounded multipliers was proved to be M-stationary under MPCC-LICQ. Comparison
of more augmented Lagrangian methods for MPCCs can be found in [14].

In Section 2, we derive a property of “piecewise M-stationarity” at a local min-
imizer of MPCC (1.1) at which MPCC-ACQ holds. In Section 3, we characterize
conditions that guarantee a feasible point of MPCC (1.1) to be B-stationary un-
der MPCC-ACQ. The discussions in Sections 2 and 3 are independent of particular
MPCC methods/algorithms. On the other hand, in Section 4, we analyze convergence
properties of the NCP-based bounding methods we proposed in [30]. In Section 5,
we discuss some practical issues for MPCC methods, when approaching a solution
of MPCC (1.1) which is not S-stationary. Section 6 summarizes main results of this
paper.

2. Characterization of MPCC local minimizers. This section discusses
properties pertaining to a local minimizer of an MPCC. In this section we discuss
from the point of view of the NLPs constituting the MPCC problem.

2.1. Piecewise NLP-GCQ. Given a feasible point zZ of MPCC (1.1), partitions

of 8(2) comprise the set P(5(2)) = {(B1,52) |1 N B2 = 0,6, UB2 = B(2)}. ANLP
problem defined on every partition (81, 32) € P(B(2)) is

NLP g, g,y : min f(2)

st. g(z) <0,
h(z) =0,
(2.1) Gi(2) =0, 1 € az),
H;(z) =0, i €7(2),
Gi(2) =0, Hi(z) 20, i€p,
Gi(2) >0, Hi(2) =0, i€ fs.

LEMMA 2.1. Let Z be a local minimizer of MPCC (1.1) at which MPCC-ACQ
holds. Then for every (1, B2) € P(B(z)), NLP-GCQ holds at z for NLPg, s,).

Proof. Since Z is a local minimizer of MPCC (1.1), we have from B-stationarity
of Z that

(2.2) Vfz)Td>0, VdeT(z).
MPCC-ACQ at z and [8, Lemma 3.1] give that

(2.3) T(2) = |Taipco(2) = U  7Ee e
(B1,82)€P(B(%))
5
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where (léf 5,)(Z) is the linearized tangent cone of NLP (g, 4,) at Z and is given by

T 5y (2) = {d| Vgi(2)"d <0, Vi € 1,(z),
Vhi(z)Td =0, Vi=1,...,np,
VGi(z)Td =0, Vi € a(z),
VH;(2)"d=0, Vi € (%),
VGi(z2)Td=0, VH;(2)Td >0, Viepi,
VG;i(2)Td >0, VH;(2)Td =0, Vie B}

Relations (2.2) and (2.3) together imply that for every partition (81, 82) € P(8(z2)),
Viz)Td>0, VdeTh s, (),
namely, that

(2.4) Vi) € Tl s (2)*, V(1. B2) € P(B(2))-

On the other hand, Z is also a local minimizer of NLP g, 5,y for every (81,052) €
P(B(2)) (see [26, Eq.(3)]). Hence, we have [13, Lemma 4.3]

(2.5) VI(Z) € Tip,p)(2)75 V(P1,B2) € P(B(Z))-

Combining (2.4) and (2.5) yields

indicating that NLP-GCQ holds at z for every NLP g, g,y with (31, 52) € P(6(%)). O

2.2. Piecewise M-stationarity.

THEOREM 2.2. Let Z be a local minimizer of MPCC (1.1) at which MPCC-ACQ
holds. Then for every (B1,B2) € P(B(Z)), there exist NLPg, g,) suitable multipliers
at Z, that satisfy M-stationarity.

Proof. Since z is a local minimizer of the MPCC, there exist a scalar A\g > 0
and multipliers A] > 0, A", A§, M ¢, such that (Ao, A, A", A, A () # 0 and the

following condition holds (see [6, Theorem 6.1.1][26, Lemma 1 and proof][28, Section
2.2)):

0€ XNVS(Z)+ Va(2)A) + VA(Z)A" — VG4 (2)AS — VH,(2)A

— Z Giconv{VG;(z), VH;(2)},
1€B(2)

where g; denotes the constraints {g; |Vi € I,(Z)}, and, similarly, Go, H,,Gg, and

Hpg denote the constraints related to the index sets a(Zz),v(Z), and §(Z); the term

conv{VG;(z), VH;(Z)} represents the convex hull consisting of all convex combina-

tions of VG;(Z) and VH;(z). Note that for every i € 5(z), VG;(z) and VH;(z) do

not act on the above condition independently; instead, they are associated with a

common multiplier ;. For every (51, 82) € P(8(%2)), let 6;VG;(2) + (1 — 0;)VH,(2)
6



194 with 6; € [0,1] be the needed element of the convex hull, then we have
0= MNVF(2)+Vgr(z )Ag + Vh(Z)A" = VGa(2)AS — VH, (2)A]]
—de VGi( Zgl— ) VH;(%)

195 i€ G \G i€k AH
-> it VGi( =3 G(1—6;) VH;(2).
1652 AG 1€82 \H

i

196 This system has a solution with \g = 1 and MY, )\H )\G > 0, because for every
197 NLP(g, g,), Z is a local minimizer at which NLP GCQ hOldb (see Lemma 2.1). It
198 follows from /\ﬂ ,)\G > 0 that
G20 = 0; €[0,1], AT > 0,A7 > 0;
(<0 =0;=1 A =G <0\ =
1 € B G I
Ci<0 :>92‘=0, /\i ZO,)\i :Ci<0-

199

200 Hence, for every partition (81, 82) € P(B(%)), there exist KKT multipliers for NLP g, 3,)|}
201 such that A¥, AH >0 or AYAH# = 0 for all i € §(2). This completes the proof. |
202 According to Theorem 2.2, M-stationarity pertaining to a local minimizer Z of

3 MPCC (1.1) is a piecewise property under MPCC-ACQ. Unless z is S-stationary,
4 there does not exist a set of MPCC multipliers which satisfies M-stationarity and is
5 suitable for every NLP g, 3,). As a consequence, unless 2 is S-stationary, we have

206 Trboc(2)* = N T gy ()" =0,
(B1,82)€P(B(2))

207 namely, the spaces of the Lagrange multipliers of programs NLP g, 3,) are separated
208 at Zz (their intersection is an empty set). This may cause difficulties to characterize
209 a local minimizer using the dual cone condition (1.5). Instead, the normal cone
210 condition at a local minimizer z gives that [25, Theorem 6.12]

211 —Vf(z) e N(2),

212 where N (Z) is the limiting normal cone, and it holds that —7(z)* C M (Z). The dual
213 and normal cone conditions are equivalent whenever the feasible region is regular at z
214 in the sense of Clarke, namely, —7(2)* = N(Z), and consequently, 7 (z) and N (Z) are
215 both convex and polar to each other [25, Corollary 6.30]. However, this is usually not
216 the case when 3(z) # 0. A discussion on regularity in the sense of Clarke, Lagrange
217 multipliers in “irregular” cases, and optimality conditions taking advantage of the
218  limiting normal cone N can be found in [4, Section 2]. Stationarity characterization
219  at a local minimizer of an MPCC implemented by using N can be found in [28, Section
220 2.3.2] and [10, Section 3].

221 3. Sufficient conditions for B-stationarity. Suppose that MPCC-ACQ holds
222 at a feasible point zZ of MPCC (1.1). According to the condition (1.7), z is a B-
223 stationary point of the MPCC if and only if d = 0 solves the following linear program

7
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with equilibrium constraints (LPEC):

min  Vf(z)Td
st. Vgr(z)Td <o,

Vh(z)Td =0,
(3.1) -
VG.(2)Td =0,
VH,(2)"d =0,
0 < VGs(2)'d L VHs(2)"d > 0.

The LPEC is a combination of classic linear programs each defined on a partition

(B1,B2) € P(B(%)) as follows:

LP, p,): min obj(d) = Vf(2)"d
st. Vgr(z Ta<o,

Vh(z)Td =0,
(3.2) VG, (2)Td =0,
VH,(2)"Td =0,
VGs (2)Td=0, VHgs (2)'d >0,
VGs,(2)'d >0, VHg,(2)"d=0.

The dual problem of (3.2) is given by

LP?gﬁ%g) : max obj¥(n) =77 -0
s.t.nf >0,
n" free,
nS free,
(3.3) il free,

77[(3;1 free, ng{ >0,

7752 >0, 77;13{2 free,

0= V/(2) + Vgr(2)n] + Vh(Z)n" = VGa(2)nS — VH,(2)n3
— VG, (2)n§, — VHg, (2)nf, — VG, (2)n§, — VHp, (2)1f,-

Duality theory characterizes the relations between the primal and the dual problems
as follows.

(D1) If d is a feasible point of the primal problem (3.2) and 7 is a feasible point of
the dual problem (3.3), then 0bj?“? (n) < obj(d). [5, Theorem 4.3]

(D2) If the dual problem is infeasible, then either the primal problem is infeasible,
or the optimal cost of the primal problem is —oo. If the primal problem is
infeasible, then either the dual problem is infeasible, or the optimal cost of
the dual problem is co. [5, Corollary 4.1 and Table 4.2]

(D3) Let d and n be feasible points of the primal (3.2) and the dual (3.3), re-
spectively, and suppose that obj?(n) = obj(d). Then d and 7 are optimal
solutions to the primal and the dual, respectively. [5, Corollary 4.2]

8
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THEOREM 3.1. Suppose that MPCC (1.1) is solvable (feasible and bounded below).
If Z is a weakly stationary point at which MPCC-ACQ holds, then, either there exists
a partition (B1,B2) € P(B(Z)) such that LP(g, g,y is unbounded below, or Z is B-
stationary.

Proof. Recall that under MPCC-ACQ), Z is B-stationary if and only if d = 0
solves LPEC (3.1). Consider the linear programs (3.2) that comprise the LPEC. For
every partition (31, f2) € P(B(Z)), the primal problem LP g, 5,y has a feasible solution
d = 0. Whether d = 0 is also optimal to each of the problems, depends on situations of
the dual problems. In the case where there exists a partition (31, 82) € P(B(z)) such

that the dual problem LP‘(igalﬁ ) is infeasible, it follows from the result (D2) of duality

theory that the primal problem LP( LBy 15 either infeasible or unbounded below.
Since d = 0 is feasible to the primal problem it follows that the primal problem is
unbounded below. In this case, no feasible point of LP( 4,,8,) CONL be optimal; Z cannot

be optimal to LP( 61.B2) either and therefore cannot be B-stationary.

In the other case, every dual problem LP{%, | has a feasible solution. Since the

feasible solution d = 0 to the primal and any feasible solution 1 to the dual yield
obj(d) = obj™!(n) = 0, we have from the result (D3) of duality theory that d = 0 is
an optimal solution to the primal problem LP g, 3,). Because this is the case for every
partition (51, 82) € P(B(Z)), then d = 0 solves LPEC (3.1) and Z is B-stationary. 0O

It is worth noting that whenever a dual problem LP‘(iul‘ll ) is feasible, its solution

provides KKT multipliers for NLP( 1,82)- This provides a brldge between optimality of
d = 0for LP g, s,y and that z is a KKT point of NLP g, 3,). Based on this observation,
we arrive at the following necessary and sufficient condition for B-stationarity.

THEOREM 3.2. Let Z be a feasible point of MPCC (1.1) at which MPCC-ACQ
holds. Then Z is B-stationary if and only if Z is piecewise M-stationary.

Proof. The necessary part is shown by Theorem 2.2. Now consider the sufficient
part. If z is piecewise M-stationary, then z is a KKT point of every NLP 4, 5,) with
(B1,P2) € P(B(2)). On each of the partitions, the KKT multipliers form a feasible

point of LPdg“lﬁ ) and therefore d = 0 is optimal to LP g, 5,). As a result, d = 0 is
optimal to LPEC (3.1) and z is a B-stationary point of the MPCC. d

3.1. Example: scholtesj. This example illustrates that a weakly stationary
point is also B-stationary under appropriate conditions, as stated by Theorems 3.1
and 3.2.

Problem scholtes4 from the MacMPEC collection [21] is given by

min 2z + 29 — 23 multipliers
s.t.  —4z1 +23<0, A1
—4z9 4+ 23 <0, Ao
0< 2 L2>0. 01,02

Since the functions in the constraints are linear, MPCC-ACQ holds at every feasible
point of the problem. Consider a weakly stationary point Z = (Z1, Z2, Z3) at which
B(2) # 0, which is the case of interest. This gives that z = (0,0,0) and 3(z) = {1}.
To verify B-stationarity of z, we check whether z is a KKT point of NLP g, 3,
9
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for every (1, 82) € P(B(2)). Since Z is weakly stationary, we have

1 —4 0 1 0
O=|1|4+X | 0| +X |4 —01]|0| —02]|1],
-1 1 1 0 0
which implies
A+ Ay = 1,
0'1+0'2:72.

For the partitions (51, 82) = ({1},0) and (81, B2) = (0,{1}), since (o1,02) = (—2,0)
and (o1,02) = (0,—2), respectively, lead to suitable KKT multipliers for the cor-
responding NLPs, the point Z is piecewise M-stationary and therefore B-stationary
(Theorem 3.2). Also, existence of the KKT multipliers ensures feasibility of the dual
problems, which implies that no primal problem is unbounded below at Z, and again
Z is B-stationary (Theorem 3.1).

3.2. Example: Unboundedness. Even if an MPCC is bounded below, a com-
ponent LP of the LPEC at a feasible point of the MPCC may be unbounded below.
Consider the problem given by

min  f(z) = (21 — 1)® + 22  multipliers
s.t. nglLZQZO 01,02

The unique minimizer is z* = (1,0) (so that 8(z*) = (), which is also a minimizer of
the RNLP and therefore is S-stationary. Now consider the point zZ = (0,0) and 5(Z) =
{1}. MPCC-LICQ holds at z; the weak stationarity conditions give the multipliers
(01,02) = (—2,0) and therefore z is M-stationary. However, Z is not B-stationary,
because for (f1,32) = (0,{1}), LP(g, s,) is unbounded below (the optimal cost is
—00), and every feasible direction d = (d; > 0,ds = 0) leads to V f(2)Td = —2d; < 0.

3.3. Unboundedness detection. When MPCC-LICQ holds at a feasible point
z of an MPCC, B-stationarity is equivalent to S-stationary, and it is evident whether
or not z is B-stationary. Otherwise, in the absence of MPCC-LICQ), if there exist n
linearly independent active constraints at z, the following gives a method to decide
whether Z is B-stationary.

As discussed in Theorem 3.1 under MPCC-ACQ, Z is not B-stationary when
there exists a primal problem LP g, 3,y which is unbounded below. To detect whether
unbounded primal problems exist, we design a LP problem based on each LP g, 3,),
such that the designed problem has an optimal solution which indicates whether the
original LP g, ,) is unbounded below. To design such a problem, we introduce an

10
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additional constraint into LP g, g,) as follows:

LP(s, 4, : min obj(d) = Vf(2)Td

Vh(z)Td =0,
VG.(2)Td =0,
(3.4) VH,(2)Td=0,
VGg, (2)Td=0, VHg (2)"d>0,
VGs,(2)Td >0, VHg,(2)"d=0,
n T
=Y Ve +) Vhi(z)+ Y VGi(z)+ Y VH(2)| d<r,

i€l i=1 icaUp ieyup

where r > 0 is an arbitrary positive scalar. Note that the constraints of LP g, 3,y can
be restated in the form of ATd > 0, while the additional constraint is in the form of
> ATd < r with A; being the ith column of the coefficient matrix A. When n out
of the columns of A are linearly independent, they span the space R™ and the set of
all these constraints (A7d > 0 and Y ATd < r) defines the lower and upper bounds
of d € R". As a consequence, the problem 11\13(51, 3,) is confined in a nonempty and
bounded feasible region and thus has an optimal solution which is an extreme point.
The corresponding dual problem is

—~ dual —~ dual

0
LP g 5,0 max obj (mu)Z[nT,u]-[_r]

st. nf >0,
n" free,
nS free,
775 free,
(3.5) g, free, 7 >0,
ng? >0, 77[]3{2 free,
w20,
0=Vf(2)+ Vg1(2)(n] )+Vh( 2)(n" + n)
~VGa(2)(ng — ) — VHy(2)(13 — p)
— VGp, (2)(n§, — 1) — VHﬁl(E)(n — 1)
~ VG, (2)(nf, — p) — VHg, (2)(nf, — p)-

Since the modified primal problem has a finite optimal solution, so does the modified
dual problem (according to duality theory).
To detect whether the original primal problem LP g, g,) is unbounded below, we

solve the modified problem ITP/’(BL 3,) with a scalar r > 0. If the solution gives that
the multiplier of the additional constraint is 4 = 0, then d = 0 is optimal to LP g, s,),
—~ —~ dual
because 0bj(d) = obj “ (n, ) = 0. Obviously, in this case d = 0 is also optimal to
the original problem LP g, g,). On the other hand, if the solution of the modified
11
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primal problem gives 1 > 0, then the additional constraint is active and I}(ﬁl,ﬁz) is

—~ —~ dual
solved by some d # 0, with the optimal costs obj(d) = obj " (n, ) = —pr < 0. Since

this nonzero d locates in 72%?7[,2)(2) and obj(d) = (;l\)/j(d) = —pur, LP g, 3, C%EnOt be
optimal at d = 0, and is in fact unbounded below. To summarize, if every LP s, g,
has a solution with p = 0, then none of the original primal problem LP g, g,) is
unbounded below, and as a result, d = 0 solves LPEC (3.1) and Z is B-stationary.

4. Convergence of NCP-based bounding methods. Sections 2 and 3 have
investigated, respectively, necessary conditions satisfied by a local minimizer of an
MPCC, and sufficient conditions which guarantee a feasible point of an MPCC to
be B-stationary. These results are independent of methods/algorithms designed for
solving MPCCs. In the sequel, we investigate convergence properties of the NCP-
based bounding methods we proposed in [30].

4.1. Brief review of a bounding scheme. In [30] we proposed an algorithm
to seek a solution of MPCC (1.1) by solving a sequence of NLP problems of the form

BA(e): min f(2) multipliers
s.t. z) <0, wd
(4.1) Z((z)) =0, ul
Oi(2)+pi =0, i= m, uf
where
(4.2) (=) = 5 (Gi(2) + Hil2) — V(G(2) — B2 + &)

is a NCP function with a smoothing factor ¢ > 0, and the parameter p; is adjusted

adaptively (to take a value of zero or €/2). Define the Lagrangian for the program
BA(e) as

L(zu) = f(2)+ Y ulgi(z)+ Zu?hi(z) - ZU?(‘I’g(z) + pi).

1€l4(z)

As € = 0, a sequence of KKT points of BA(¢) tends to a limit point. Main results of
this method are summarized below, and more details can be found in [30].

e [easibility: The perturbed NCP function (4.2) is used to approximate the
complementarity constraints in MPCC (1.1), and the largest difference be-
tween them is €/2 (see [30, Proposition 1.7]). When € > 0, every feasible
point z of BA(e) satisfies

(IDE(Z)eri:O =

(43) GZ(Z) +p; >0, Hl(Z) +p; > 0, (GZ(Z> —l—pz)(Hl(z) +pi> = 62/4,

whose limit at € = 0 (thus p; = 0) recovers the complementarity 0 < G;(z) L
H;(z) > 0. Therefore, ®Y(z) is a so-called NCP function, which represents a
complementarity constraint with a suitable nonlinear and usually nondiffer-
entiable equation.
e Sensitivity and Bounding: At a KKT point z(p) of BA(e), the sensitivities
%p(jp)) are given by —u? for i = 1...m, provided that NLP-LICQ and
12



second-order sufficient conditions hold at z(p). This observation throws some
light on the design of the Bounding Algorithm. We take advantage of the
sensitivities at z(p) to adjust the parameters p;, with the aim of improving the
objective at the subsequent solution of BA(e), and thus yielding an efficient
isolation of a solution to the MPCC. When € > 0 is sufficiently small, z(p) is
an e-approximate solution to the MPCC, which includes an O(e?) correction

arising from the adjustment of the parameters p;.

e Convergence: The following convergence results have been established under

MPCC-LICQ), for the Bounding Algorithm applied to equality constrained

BA(e).

(i) Suppose that MPCC-LICQ holds at a feasible point of the MPCC, then
in a neighborhood of this point, NLP-LICQ holds at every feasible point
of BA(e), whenever € > 0 is sufficiently small.

(ii) Suppose that a sequence of KKT points of programs BA(e) tends to a
limit point as € — 0, at which MPCC-LICQ holds, then the limit point
is C-stationary.

(iii) In addition, suppose that the reduced Hessian of the Lagrangian at each
of the KKT points of programs BA(e) is bounded below when € > 0 is
sufficiently small, then the limit point is M-stationary.

A natural question is how does the Bounding Algorithm behave in the absence
of MPCC-LICQ. In this section, we investigate stationarity of a limit point of this
method without assuming MPCC-LICQ. Further, we explore more convergence fea-
tures by taking advantage of an inequality variant of BA(e). We note that this variant
is a modification of the Lin-Fukushima algorithm [23], which we call MLF.

4.2. Bounding Algorithm. Based on the formulation BA(¢), a Bounding Al-
gorithm was proposed in [30] by noting that the sensitivities df (2(” D are given by —u?
for i = 1...m. The sensitivities can be exploited to adjust the parameters p; so as
to improve the objective f(z(p)). The main idea of the Bounding Algorithm is given
below to facilitate the later analysis.

For any parameters p;,p; € [0,€/2] with € > 0 for ¢ = 1,...,m, and the corre-
sponding solutions z(p) and z(p’) to BA(e), it is straightforward to show that

) = F(=(0)) + [df(dlfp”} W — )+ Ol — pl]®).

(i3]

are given by —u®, we have that

Noting that the sensitivities %}Em)

JZw ) - 10()] < f(=(p) < Zlu I+ 10

This relation explains the approximation to a solution of the MPCC by the following
Bounding Algorithm.
e Initialization: Specify initial smoothing factor ¢ > 0, reducing factor x €
(0,1), initial point 2°, solution tolerance ey, > 0. Set initial parameters
p° < 0, counter k + 0.
e Main loop: While €¥ > €1, do the following.
Step 1. Solve the program BA(e*) with parameters p¥, to obtain a stationary
point z* and multipliers u* = (u9*, uM* u®*).
13
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Step 2. Approximate the upper bound of the MPCC with
P ) 3
i=1

Step 8. Approximate the lower bound of the MPCC as follows. Define the
index sets

Py = {i|pF =0 and u}"* > 0},
P. = {i|pf = é*/2 and u}* < 0}.

Then the following settings would reduce f(z*):

pf +— ek/2, Vi € Py,
Pk o0, Vi€ P..

The objective with the adjustment of p* would approximately be

S (CORE D DI e

1€ PyUP,

k+1

Step 4. Update the parameters € and p. Set € — ke®, and

/2 ie Py,
kL= 20, ieP.,

7

Kkpk, otherwise.

Step 5. Set k < k+ 1 and go to Step 1.

4.3. Derivatives of smoothed NCP function. With ¢ > 0, the first and
second derivatives of the function ®¢(z) in (4.2) are given by

N Gi(z) — Hi(z)
VG(I)i (Z) B 2 2\/(GZ(Z) — HZ(Z))Q + 62,
ey 1 Gi(z) — Hi(z)
Vi) = St Gt AT e
Vaa®i(z) = Var®i(z) = 3Ca(2) = I;;(z))2 IWEIEE
2

Veu®i(z) = Vue®i(z) =

20(Gil2) — Hi(2))? + 272

Let z satisfy ®§(z) + p; = 0 with € > 0. It follows from (4.3) that

V(Gi(z) = Hi(2))2 + € = \/((Gi(2) + pi) — (Hi(2) + pi))? + €
=V(Gi(2) + pi)? + (Hi(2) + i) + 2(Gi(2) + pi) (Hi(2) + ps)
=|Gi(2) + Hi(2) + 2p;| = Gi(2) + Hi(2) + 2p;.

14
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Using this and (G;(z) 4+ p;)(H;(z) + p;) = €2/4, we can rephrase the above derivatives
as

o Hi(z) + pi
Ve®i(z) = Gi(z) + H;(2) +2p;’
Vi®(e) =

Gi(2) + Hi(2) + 2p;’
—2(Gi(2) + pi)(Hi(2) + pi)
(Gi(2) + Hi(2) +2pi)®
2(Gi(z) +pi) (Hi(2) + pi)
(Gi(2) + Hi(2) +2pi)*

(4.4)
Vee®i(2) = Vun®i(z) =

VGH(I)E(Z) = VHGCI)ZE-(Z) =

4.4. C-stationarity. Let a sequence {z*} — 2z as ¢¥ — 0, where every z* is
a KKT point of BA(e¥). Assuming a particular MPCC-CQ at z usually amounts
to assuming a certain NLP-CQ at Z or in its neighborhood. For example, MPCC-
LICQ at Zz usually implies the presence of NLP-LICQ in a neighborhood of z for every
feasible point of a regularized NLP problem (e.g., [12, Theorem 3.1][27, Lemma 2.1][30,
Theorems 3.1 and 3.2]), and MPCC-MFCQ at z implies the presence of NLP-MFCQ
at z for every NLP(B1 8,) With (81, B2) € P(B(%)) [8, Lemma 3.5].

Instead of requiring a particular constraint qualification at Z, the following estab-
lishes C-stationarity of z based on stationarity of z* for BA(e*) and boundedness of
the Lagrange multipliers associated with z*. From a practical point of view, an ad-
vantage of the analysis under such settings is that in the course of {z*} — Z, whether
or not the NLP solutions are successful, and whether or not the NLP multipliers at
the solutions are bounded, are usually easy to detect in numerical experiments, then
it follows whether or not the results developed under such circumstance are applica-
ble. Note that such settings are weaker than requiring NLP-MFCQ at z*, because
the whole set of Lagrange multipliers at z* need not be bounded.

THEOREM 4.1. For a sequence of positive scalars €* — 0, apply the Bounding

Algorithm to BA(€*), such that the parameters p* are updated whenever €* is updated.
Assume this generates a sequence {2z} — Z, where every 2* is a KKT point of BA (")
and the associated multipliers are bounded. Then Z is a C-stationary point of MPCC

(1.1).
Proof. When €¢* > 0, at every KKT point z* of BA(¢), there exist multipliers
uf = (u9* uPF u®F) with u9* > 0, such that

m

(45)  0=VfE+ DY uftVg(z +Zuthh() > uPtves(zh),

i€y (2F) i=1 i=1
where the gradient of ®f is given by

VO (2F) =V @S (27)VGi(2F) + Vi ®S (7)) VH;(25)
H;(2%) + pf Gi(z") +pff

_ Lk
B VG + Gi(zF) + H;(2%) + 2pk

(K
Gi(2F) + Hy(2F) + 2pF Hi(=).

Derivatives in the limit. In the limit ¢* — 0, the function ®? is in general not
differentiable for i € 3(2). However, if ®9(2) is locally Lipschitz [6, Section 1.2] near z,
the generalized gradient 0®Y(%) is generated by a convex hull (see [6, Theorem 2.5.1]
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7, Eq.(3.1.5)])

09 (z) = conv{ lim V&) (s5) | vl (sK) exists} ,

S —Z

where {s%} is any sequence that converges to z while avoiding the points where ®?
is not differentiable. (Locally Lipschitz function is differentiable almost everywhere.
Therefore, there are “plenty” of sequences which converge to zZ and avoid the set of
points where V®! is not differentiable, since the latter is of measure zero.) Noting
that ®%(z) = min{G;(2), H;(2)} = 0 for i = 1...m, we have

09?(2) = Omin{G; (%), H;(2)} = conv{VG;(z), VH;(2)}.
For §; € 09Y(z), it follows that (see [26, Lemma 1])

0; = QZVGZ(Z) + (1 - QZ)VH1(2>, 0; € [07 1],
0,6 (%) =
(1—0;)Hi(z) =0.

Therefore, as €¥ — 0, the gradient of ®¢ tends to

VG;i(2), i€ a(z),
(4.6) 6 =< VH,(2), i €7(2),
0, VG;(z) + (1 - 0;,)VH;(2), i€ pB(2),

I\

where 0; € [0,1].
Exzxistence of multipliers in the limit. Without loss of generality, we have the vector
of the multipliers u* # 0 (otherwise 2* is an unconstrained local minimum). Let

M h

dm 1 3 e S S

(4.7) i€l (z%) i=1

(48) i€ly(z )

Since we have

np m
k h.k k
W2+ D @D P ) =1,
€1, () i=1 i=1

the sequence {(u*,v9* vhF y®F)1 is bounded and must converge to some limit
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(i, 29, 0", v®). Tt follows from (4.8) that this limit must satisfy

0=aVf(Z)+ Y Vg2 + > v'Vhi(?)
i€ly(Z) i=1
— Z E?VGZ'(E) - Z D?VHZ‘(Z) — Z DZ-(I) [QZVGZ(Z) + (1 — 91>VH1(2)},
)

ica(z 1€y(2) 1€B(2)

where (4.6) has been used to characterize the derivatives at z, and f, 79 > 0 because
of (4.7).

Now suppose that p* vanishes in the limit, namely, i = 0. Then for every small
positive number o > 0, there exists K > 0, such that pu* = ﬁ < o for all k£ > K.
This implies that {A*} is unbounded above, in contradiction with the assumption
of bounded KKT multipliers {(u9*, u"* u®¥)}. Therefore, i > 0 and Lagrange
multipliers exist at the limit point z.

Weak and C- stationarity. Without loss of generality, letting 1 = 1 and @ =
(as, a, ﬂ‘i’) with 49 > 0 be the multipliers associated with z, we obtain

Nh
0=Vf(E) + > alVg(z)+> ul'Vhi(2)
1€ly(Z) i=1
— > aPvVGi(2) = Y afVH(2) - Y af [0;VGi(2) + (1 0;)VH;(2)],
i€a(z) i€v(2) 1€6(Z)

for some 6; € [0,1]. Thus Z satisfies the weak stationarity conditions (1.3), with the
MPCC multipliers given by

N = 3% = lim w9,

k—o0
A =4 = lim uh’k,
k—o0
_ a? = lim v, i€ a(z)
(4.9) )\iG — k—o0
ﬂ?az’ 1€ B(z)v
S af’ = klgr;ou , 1€v(2)

Moreover, z is C-stationary because

(4.10) AN = (@$)?0,(1 - 6;) >0, Viepz). 0

4.5. M-stationarity. The property (4.10) allows for two possibilities. One is
that af > 0 for all i € B(2). Then A{, AT > 0 for all i € (%), and Z is S-stationary
and obviously a B-stationary point of the MPCC. It is also possible that there exist
indices 7 € B(2) such that @® < 0. For these indices i, A%, A < 0. In the following,
we analyze stationarity of Z further under an additional assumption. The assumed is
a special case for z* to be a strict local minimizer of BA(e*) and is not uncommon in

MPCCs (see, for example, scholtes4 in Section 3.1 and ex9.2.2 in Section 5.1).

THEOREM 4.2. Suppose that Z is generated from the sequence described in The-
orem 4.1. In addition to the assumptions of Theorem 4.1, suppose that for every
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504 sufficiently large k, at 2* the collection of vectors

Vgi(z¥), e {ieL,(zF)|ud" >0},
505 Vhi(zF), i=1,... 0,

Vo, (2%, i=1,...,m,

506 contains a set of n linearly independent vectors. Then Z is an M-stationary point of
507 MPCC (1.1).

508 Proof. Denote C* as the set at z* of n linearly independent vectors. For the
509 gradient vectors in C* coming from constraints g, h, and ®, denote the sets of their
5

10 indices as J;‘ . Jn, and Jg, respectively. Then, the limit of C* can be expressed as:

Vg (2), je T ={ie,(z)]3 >0
Vh;(z), 7€ Jdn

511 C =1 VG,(2), j € JpNaz) ,
VH;(z), j € JaNv(2)

& =0,VG;(2)+ (1 —0;)VH;(2), j€ JonpB(z)

512 where every 0; € [0,1]. The vectors in C are linearly independent, which is a conse-
513 quence of linear independence of the vectors in C*. The constraints whose gradients
514 are involved in the set C dominate all the other constraints at z, and Theorem 4.1
515 ensures that based on these constraints z is C-stationary.

516 We show that there exists a partition (51,82) € P(Js N B(Z)) such that the
517 multipliers suitable for NLP g, s,y also satisfy M-stationarity. Consider partition of
518 the set Jp N B(Z). Let

Si={jeJanp(z)|0; =1},
519 So ={j € JonNp(2)|6; =0},
Ss={jeJonNp(z)|0<b; <1}.

520 For every j € Ss, since §; is independent, from all the vectors in C\ {§;}, either VG;(z)
521 or VH;(Z) (or both) are linearly independent from all the vectors in C \ {{;}. Hence,
522 there exist the following sets:
831 = {j € 83| VG; is independent from C \ {¢;}},
523
S32 = S35\ Sa1,
524 such that
(Vg (2)", VjeJf
Vh(2)T, VjeJ,
VG;(2)T, Vje Jsna(?)
VH;(2)", VjeJsnry(z)
525 rank =n,

T vjies,
VGJ' z T, Vj € S31
|VH;(2)", Vj€ Ss
18
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and d = 0 is the only solution to the following problem:

min  Vf(2)Td

st. Vg (2)Td <o,
Vhy, (2)Td =0,
VG iuna(2)Td =0,
VHj,ny(2)"d =0,
VGs, (2)Td =0,
VHs,(2)Td =0,
VGs,, (2)7d =0, VHs,, (2)"d > 0,
VGs,,(2)Td >0, VHs,,(2)"d =0,

with Vg+(2)Td < 0 strongly active. It follows that z is a strict local minimizer of
NLP g, 8,) [3, Corollary in Section 4.4.2] with (81, 82) € P(Js N B(Z)) given by

B1=81US31, fo=S82USs.

Since the KKT multipliers of NLP g, 5,y must satisfy A-stationarity, which together
with C-stationarity shown by Theorem 4.1, implies that the multipliers satisfy M-
stationarity (intersection of A- and C- stationarities). 0

4.6. Inequality variant of BA. To further understand and explore conver-
gence properties of the Bounding Algorithm, it is beneficial to take advantage of an
inequality variant of the problem BA(¢), which is given by

MLF(e) : min f(z) multipliers
st. g(z) <0, u?
(4.11) .
h(z) =0, u
—€/2<P5(2) <0,i=1...m. u%)i,ug’i
k

For a sequence of positive scalars €

— 0, solving problems MLF(e*

) generates a

sequence {z*} — Z, where every z* is a KKT point of MLF (e¥). At every point z¥ we

have multipliers ©* = (u9*,u
for i = 1...m, such that

>

1€14(2F)

T h

(4.12) 0= V(") + ud 7 gi(2F +Zuthh

Dk Dky . @k o
k" ug™) with ug’kEOandOSuL:i L oug,

k
w20

ZuLz_uUz vq)e( )
=1

Under the assumption that the multipliers associated with every z* are bounded,
the existence of the multipliers in the limit can be proved as before. Comparing the

problem formulations (4.1) and (4.11), and the KKT conditions (4.5

the relations between BA(€*) and MLF(e*):

) and (4.12), gives

p¥ = " /2 & lower bound of ®5(2*) is active, and uL k>0,

(4.13) p¥ = 0 < upper bound of ®5(2") is active, and qui >0,
3k _ Dk Dk
T
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Substituting the last relation into (4.9) gives the MPCC multipliers at z:

N =@ = lim u9*,
k—o0

N =@l = lim W,
k—o0

) k .k _

- Ur, i Ui = lim (U‘L)z - uU7i )7 (S Oé(Z)
(4.14) )\ZG = ' o ’

(’H’CII/) U’Uz)9 7’66(2)’

iy o : , .k -
SH up; —uy,; = klggo(“L, —ugy), 1 €7(2)

(a7, — ag,)(1 = 6y), i € B(2).

Stationarity of Z established in the previous subsections for BA can be extended
directly to MLF.

Numerical experience demonstrates the feature that when z is not S-stationary,
namely, there exists a subset

QC B(2),

a sequence {z*} converges to z from the upper bounds of the constraints —e*/2 <
®¢(z) < 0, thus showing that uff =0 uUz > 0 for every k sufficiently large, and
yielding in the limit (u%,Z uUﬂ) < 0 for all i € Q (as specified by (4.14)). In
parallel with this observation, a sequence {z*} generated by the Bounding Algorithm
converges to Z with the parameters for conbtraintb ®¢(z) + p¥ = 0 being zero for all
i€, thus the corresponding multipliers u ¥ < 0 (as implied by (4.13)) as ¥ — 0
and @ < 0 in the limit. These observatlons have a theoretical reason which explains
why MLF and BA identify a non-strongly stationary point in such a way, or why
approaching to a non-strongly stationary point makes these methods behave like this.
To be specific, at a feasible point z of MLF(e*), define the index sets

Iy (2) = {i| ®5(2) = —€"/2},
Ij(2) = {i] ®§(2) = 0}.

such that A& A\ <0 for alli € Q,

(2 7

(4.15)

The constraint —e* /2 < ®$(z) < 0 requires that

and at the lower and upper bounds we have

k k

Gi(2)+ 9 >0, Hi(z)+ 5 >0, (G (z)—i—%)( i(2) +9) = (M)%/4, VieIP(2)
Gi(2) >0, Hy(2) > 0, Gi(2)Hi(2) = (€)?/4, Vie Ij(2).

Therefore, the feasible region of MLF(e") includes the feasible region of MPCC (1.1),
while it restricts the feasible region of RNLP (1.6) from above by enforcing ®$(z) < 0.
For every ¢* > 0 suitably small, a local minimizer of MLF(¢*) is also a local minimizer
of the RNLP constrained additionally by ®¢(z) < 0. Suppose that there exists a subset
Q C {1...m}, such that RNLP is minimized at Go(z) > 0 and Hqg(z) > 0. In such
circumstance, MLF(€*) achieves the minimal cost on the boundaries of ®§(z) < 0
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for every €® > 0 suitably small. This gives rise to the phenomenon that the upper
bounds of the constraints —e*/2 < ®§(z) < 0 are active at every 2% as ¥ — 0.
Moreover, 2 C ((Z) because the constantly active upper bounds as ¢® — 0 means
Gq(2%) > 0, Ho(2%) > 0, and VGq(2*)VHq(2*) = (¢*)2/4 (componentwise product)
for infinitely many k. Since the solutions of RNLP locate outside of the feasible region
of the MPCC, no local minimizer of the MPCC can be S-stationary.

Now we reconsider a limit point zZ of BA or MLF, at which there exists a subset

Q C B(2), such that af, <0 (BA) or af o — ﬂf}@ < 0 (MLF).

According to (4.9) and (4.14), the MPCC multipliers have non-positive components
for the subset €2, as shown by (4.15). We aim to verify whether such Z is B-stationary.
Suppose that MPCC-ACQ holds at zZ. According to Theorem 3.2, B-stationarity
of MPCC (1.1) is equivalent to piecewise M-stationarity under MPCC-ACQ. The
above discussion has shown that the existence of the subset 2 usually signifies the
absence of S-stationary solutions. So, for every partition (81, f2) € P(5(Z)), piecewise
M-stationarity can be satisfied by the MPCC multipliers (4.15) only if

M <0, \FE =0, Viep nq,
(4.16) - -
NG =0, M <0, ViefBno.
In this case, the LPs comprising LPEC (3.1) can be simplified to
min  obj(d) = Vf(2)Td
st. Vgr(z)Td <o,

Vh(z)Td =0,
(4.17) VG.(2)Td =0,

VH,(2)'d =0,

VGg,(2)Td =0,

VHg\o(2)"d >0,
VGpna(2)'d >0, VHg,(2)"d=0.

Here the constraints corresponding to the subset 2 are excluded from the inequality
constraints, because (4.16) implies that for every partition (81,82) € P(B8(2)), the
constraints corresponding to A for all i € 3; N Q, and corresponding to A for all
i € B2 N Q, must be locally inactive. Provided that the problem (4.17) is bounded
below for every (f1, 52) € P(B(2)), Z is B-stationary.

5. Practical issues. Numerical results of the NCP-based bounding methods
(BA and MLF) applied to the MacMPEC collection [21] as well as large-scale MPCCs
drawn from real-world chemical engineering examples can be found in [30]. In that
study, we considered a selection of problems from the MacMPEC collection, which
have solutions with biactive complementary components, as well as seven MPCC prob-
lems constructed from distillation models with up to 1264 variables and 48 comple-
mentarity constraints. The numerical comparison includes the typical regularization
scheme proposed in [27], the regularization method proposed in [23] and closely related
to MLF, and three NCP-based methods, namely, BA, MLF, and a standard NCP-
based method (without bounding scheme). This demonstrates that the NCP-based
methods are the most efficient of these methods, especially on examples without S-
stationary solutions, and that, in general, the BA method performs well among these
methods.
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In this section, we take a closer look at the behaviors of MPCC methods, when
converging to a limit point Z which is not S-stationary. By examples, we first show the
course of convergence of multipliers produced by the NCP-based bounding methods
with vanishing e. Then we show that the Lagrange multipliers generated by these
methods are bounded, as a benefit of the generalized gradients of the underlying NCP
functions. This allows the convergence results in Section 4, which are developed under
the assumption of the boundedness of the multipliers, to be applicable in practice.

5.1. MPCC multipliers by NCP-based bounding methods. We observe
convergence of the multipliers produced by the NCP-based bounding methods.

Example: ex9.2.2. This example shows that in the course of approaching a
non-strongly stationary local minimizer, the solutions of the NCP-based bounding
methods (BA and MLF) provide MPCC multipliers satisfying C-stationarity when
the smoothing factor € is not very small, and provide MPCC multipliers satisfying
M-stationarity as € vanishes.

Problem ez9.2.2 from the MacMPEC collection [21] is given by

min 22 + (y — 10)? multipliers
s.t. x <15, (inactive)
—x+y <0, Al
-z <0, (inactive)
r+y+ s =20, A2
—y+s2=0, Az
y + s3 = 20, VI
20+ 4y + 11 — la + 13 = 60, As
0<s; L1;>0,i=1...3. o, ol

The NCP-based bounding methods converge to the point z = (Z, 7, §,1) with

=10, =10, 5= (0,10,10), [ = (0,0,0).

Since the constraint functions are linear, MPCC-ACQ holds at every feasible point of
the problem. The weak stationarity conditions (1.3) at z require that

2 — A1+ Ao+ 205 =0,
2 —10)+ A+ X2 — A3+ A+ 405 =0,

Ao — ol =0,

A3 =0,

(5.1) N =0,
A5 — ol =0,

—Xs — 0?2 =0,

A5 — o3 =0,

which implies

ol = —3)\; — 10,

0113: A5.
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635 The multipliers o', o' for the biactive complementary components s1,l; cannot be

636 both nonnegative, hence z cannot be S-stationary. Let o°' = 0 or o'! = 0, then we
637 obtain (o°!,0!) = (0,-10/3) or (0°!,0'!) = (-10,0), indicating that Z is piecewise
638  M-stationary. These two sets of multipliers reflect stationarity of zZ for NLPs on their
639 respective partitions.

640 Now we check the multipliers given by the NCP-based bounding methods. For the
641 set B(Z) = {1}, solutions of the NCP-based bounding methods give the corresponding
642  NLP multipliers shown in Table 1. According to (4.9) and (4.14),

613 (5.2) N+ M =af =at, —al,, Viep(?).

644 At e = 1079, by enforcing o*! + o!! = —5.74, we obtain from (5.1) the MPCC mul-
645 tipliers at z, where (0°!,0'!) = (=3.61, —2.13) satisfies C-stationarity. With further
646 decrease of €, the multipliers in Table 1 reflect that they are converging to MPCC
647 multipliers that satisfy M-stationarity at z. According to (4.9) and (4.14), the value
648 of 6 is 1 in BA and 0 in MLF, corresponding to different partitions of 5(Zz).

TABLE 1
NLP multipliers of NCP-based bounding methods.

€ 1010 °]10°W 10T 107 12] 1015
BA | u® | 574 | -478 | -5.23 | -7.45 | -9.94 | -10.00
3
u? 0 0 0 0 0 0
MLF ufy | 5.74 [ 563 | 4.78 3.72 3.34 3.33

649 5.2. Unbounded NLP multipliers and inaccurate solution. In the course
650 of seeking for a solution of an MPCC, NLP subproblems may encounter unbounded
651  multipliers when approaching a limit point which is not S-stationary. Our numerical
652  experience to date indicates that NCP-based reformulations BA(e) and MLF(e€) avoid
653 unbounded NLP multipliers. The following confirms this observation, by comparing
654 BA(e) and MLF(e) with the typical regularization scheme proposed in [27]:

REG(e) : min f(z) multipliers

st. g(z) <0, v?

h(z) =0, "

o G(z) >0, v
H(z) >0, vf

Gi(z)Hi(2) <e, i=1...m. vRPC

656 Solving a sequence of programs REG(e¥) with the positive scalars ¢ — 0, generates

657 asequence {zF} — z. Based on stationarity of z* for REG(e*), namely,

M h
0=Vf(" + Z vf’ngi(zk)—l—va’thi(zk)
i€ I, (zF) i=1
— va’kVG’i(zk) - val’kVHi(zk) + ZviREg’k [Hi(zk)VGi(zk) + Gi(zk)VHi(zk)] ,
i=1 i=1 i=1

659 the relations between the NLP multipliers v* = (v9F vF @k ok REGE) ot o
660 and the MPCC multipliers A = (A9, A", \¢, A\ at z can be expressed by (see also
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[27, Eq.(6) and Theorem 3.1])

N =99 = lim v9F,

k—o0
M= = lim o*,
k—o0
(5:3) 3G _ 1 G,k . REGk k .
A7 = lim |v,"" —v; H;(z%)|,i=1,...,m,
k—o0
YH : H}k _  REGk k o
A = lim [vi —v; Gi(= )},z—l,...,m.
k—o00

It has been proved that Z is a strongly stationary point of MPCC (1.1) if and only if
it is a stationary point of REG(0) [11, Proposition 4.1].

Consider the case where Z is not S-stationary. Then Z is not a stationary point of
REG(0). In the case Z is no better than C-stationary, then there exist indices i € 5(Z)
such that A% < 0, ¥ < 0. According to (5.3), the NLP multipliers v"* and v/*
have a tendency to be less than zero for k sufficiently large, which are not allowed in
REG(€*). Since

lim v7F = A¢ + lim PO, (24,
(5 4) k—oo ° k—oo °
: : k_ g : Gk
i v = A i oG

the multipliers sz EGF hecome very large to enforce viG * and vZH * nonnegative. At the
same time, G;(2*) and H;(z*) are prevented from being very close to zero, otherwise
viREG’kGi(zk) and leEG’kHi(zk) would be ineffective. As a consequence, it can be
observed for k sufficiently large that viG’k = O,vf’k = O,UZ.REG’I“ — o0, and G;(2%)
and H;(z*) cannot converge accurately to zero.

In the case Z is no better than M-stationary, there exist indices ¢ € B(Z) such
that A% = 0, A\ < 0 (or the reverse). The relations (5.3) imply that for k sufficiently
large vf{ * has a tendency to be less than zero, which is not a suitable NLP multiplier.
We also use (5.4) to predict the behavior of the REG method. In order to enforce
viH ok nonnegative, the multipliers viR EGk get to be very large, and at the same time,
G;(2*) cannot be very close to zero. The components H;(z*) cannot approach zero
quickly either, because the constraints G;(z*)H;(z*) < € must be kept active for
every €* > 0. As a result, the observation for k sufficiently large should be the same
as the above case.

On the other hand, the multipliers for the programs BA(e*) and MLF(e¥) do
not have this difficulty. As indicated by the relations (4.9) and (4.14), there is no
contradiction between the signs of the MPCC multipliers A%, A and of the NLP
multipliers u?’k and uff — ug}f In addition, the underlying relation (5.2) indi-
cates that the NLP multipliers exist whenever the MPCC multipliers do. Therefore,
whether z is S-stationary or not has little influence on the performance of BA and

MLF methods, which is an important difference from the REG method.

Examples: Multiplier comparison. We review the examples in Sections 3.1
and 5.1 to illustrate the difference in behavior between the NCP-based bounding
methods (BA and MLF) and REG regularization method.

As we showed in the previous sections, the examples scholtes/ and ez9.2.2 have
non-strongly stationary local minimizers. Numerical results of these two examples
are presented in Tables 2 and 3. The results indicate that REG method gives rise to
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large NLP multipliers for the constraints corresponding to the biactive complementary
components, and the multipliers get even larger when the regularization parameter e
becomes smaller. At the same time, the convergence is slow and inaccurate, compared
to the magnitude of e.

On the other hand, the multipliers of the NCP-based bounding methods are
well behaved. According to (5.2), their multipliers can be used to derive the MPCC
multipliers at a limit point and vice versa. In addition, the accuracy of their solutions
(to the program variables and multipliers) is comparable to e.

TABLE 2
Results of problem scholtes).

€ scholtes4 BA MLF REG
p u® u% u% v*1 v*2 vREG
multipliers | 0 -2 0 2 0 0 1.00E+3
10-6 z1 5E-7 5E-7 0.001000
22 5E-7 5E-7 0.001000
23 2E-6 2E-6 0.003999
p u® | u? uf | v v JREC
multipliers | 0 -2 0 2 0 0 2.69E+4
10—9 z1 5E-10 5E-10 0.000037
22 5E-10 5E-10 0.000037
23 2E-9 2E-9 0.000149
p  u® u%’ u% v*1 v*2 vEG
multipliers | 0 -2 0 2 0 0 5.02E4-4
1012 21 5E-11 5E-11 0.000020
22 5E-11 5E-11 0.000020
23 2E-10 2E-10 0.000080
TABLE 3
Results of problem ex9.2.2.
€ ex9.2.2 BA MLF REG
» u® W Wl [l o JREG
multipliers | 0 -5.74 0 5.74 0 0 2.89E+3
10-6 S1 3.8E-7 3.8E-7 0.000577
A 6.5E-7 6.5E-7 0.001732
p u® u% u?} vl ol vEEG
multipliers | 0 -4.78 0 5.63 0 0 7.85E+4
10—9 s1 2.04E-10 3.65E-10 0.000021
A 1.11E-10 5.96E-10 0.000064
p u® u% u?} v ol vEEG
multipliers | 0 -9.94 0 3.34 0 0 1.46E+5
10712 51 2.94E-11 | 2.03E-11 0.000011
A 3.81E-11 1.09E-11 0.000034

6. Conclusions. This study explores characteristics of local minimizers of MPCCsli

and their influence on convergence behavior of NLP-based MPCC algorithms. First,
we derive M-stationarity of a local minimizer of an MPCC under MPCC-ACQ (The-
orem 2.2). A key point is that the M-stationarity is a piecewise property. For a local
minimizer Z which is not S-stationary, there exist multiple sets of MPCC multipli-
ers, each corresponding to one partition of 3(Z) and satisfying M-stationarity on that
partition.

Second, we aim to capture conditions that guarantee a feasible point of an MPCC
to be B-stationary. By applying the main results (D1), (D2), and (D3) of duality
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theory to the LPEC at a weakly stationary point of an MPCC, we prove under
MPCC-ACQ that either a weakly stationary point is B-stationary, or there exists
a component LP of the LPEC, which is unbounded below (Theorem 3.1). The link
between the optimality of the LPs comprising the LPEC and the first-order optimality
of the NLPs comprising the MPCC, leads to the result that B-stationarity is equivalent
to piecewise M-stationarity under MPCC-ACQ (Theorem 3.2). In addition, a method
to detect unbounded LPs is proposed, which is applicable when n out of the active
constraints are linearly independent (Section 3.3).

To investigate convergence properties of the Bounding Algorithm we proposed
in [30] in the absence of MPCC-LICQ, we consider stationarity of a limit point of
this method, based on stationarity of a sequence of NLP solutions approaching to it.
We establish C-stationarity of a limit point by using attributes of the NCP function
involved (Theorem 4.1), and M-stationarity by introducing an additional assumption
on active constraint gradients (Theorem 4.2). Further investigation from the perspec-
tive of an inequality variant of this algorithm motivates a way to simplify the LPEC
when verifying B-stationarity of a limit point.

Finally, we discuss a few practical issues related to local minimizers of MPCCs
which are not S-stationary. It is illustrated that the NCP-based bounding methods
(BA and MLF) usually produce MPCC multipliers that satisfy C-stationarity at a
non-strongly stationary solution when the smoothing factor € is not sufficiently small,
and satisfy M-stationarity as e vanishes (Section 5.1). Moreover, the sequence of
NLP multipliers is bounded, even if the methods are approaching a non-strongly sta-
tionary MPCC solution. On the other hand, the REG method, which is a typical
regularization method, usually encounters unbounded NLP multipliers and inaccu-
rate convergence when approaching a non-strongly stationary solution (Section 5.2).
This analysis shows an advantage of NCP-based reformulation of complementarity
constraints. Namely, the structure of the generalized gradients of the NCP functions
corresponding to the degenerate complementarity constraints, can prevent the NLP
multipliers from blowing up, provided that the MPCC multipliers are well defined at
a limit point.
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