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Abstract: This paper focuses on solving mathematical programs with complementarity
constraints (MPCCs) without assuming MPCC-LICQ or lower level strict complementarity
at a solution. We show that a local minimizer of an MPCC is “piecewise M-stationary” un-
der MPCC-GCQ; furthermore, every weakly stationary point of an MPCC is B-stationary
if MPCC-ACQ holds. For the Bounding Algorithm proposed in [22], which solves MPCCs
via an NCP-based reformulation, we develop C- and M- stationarity of a limit point of the
method by assuming only MPCC-GCQ. In particular, an inequality variant of this method
offers an alternative viewpoint to understand the behavior of an algorithm when approach-
ing a local minimizer of an MPCC which is not S-stationary. In addition, a few practical
issues related to convergence to a non-strongly stationary solution are discussed, including a
comparison between the behaviors of the NCP-based methods and of a typical regularization
method, i.e., the REG method proposed in [19].
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1 Introduction

We consider MPCCs of the form

min f(z)

s.t. g(z) ≤ 0,

h(z) = 0,

0 ≤ Gi(z) ⊥ Hi(z) ≥ 0, i = 1 . . .m,

(1)
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where (f, g, h,G,H) : Rn → R1+ng+nh+m+m are differentiable functions. At a feasible point
z̄ of the MPCC, define the following index sets:

Ig(z̄) = {i | gi(z̄) = 0},
α(z̄) = {i |Gi(z̄) = 0, Hi(z̄) > 0},
γ(z̄) = {i |Gi(z̄) > 0, Hi(z̄) = 0},
β(z̄) = {i |Gi(z̄) = 0, Hi(z̄) = 0}.

(2)

A feasible point z̄ is weakly stationary, if there exist multipliers λ̄ = (λ̄g, λ̄h, λ̄G, λ̄H) with
λ̄g ≥ 0, such that

0 = ∇f(z̄)+
∑
i∈Ig(z̄)

λ̄gi∇gi(z̄)+

nh∑
i=1

λ̄hi∇hi(z̄)−
∑

i∈α(z̄)∪β(z̄)

λ̄Gi ∇Gi(z̄)−
∑

i∈γ(z̄)∪β(z̄)

λ̄Hi ∇Hi(z̄). (3)

Further, a weakly stationary point z̄ is also

• S-stationary (strongly stationary), if λ̄Gi , λ̄
H
i ≥ 0 for all i ∈ β(z̄);

• M-stationary, if either λ̄Gi , λ̄
H
i > 0 or λ̄Gi λ̄

H
i = 0 for all i ∈ β(z̄);

• C-stationary, if λ̄Gi λ̄
H
i ≥ 0 for all i ∈ β(z̄);

• A-Stationary, if either λ̄Gi ≥ 0 or λ̄Hi ≥ 0 for all i ∈ β(z̄).

1.1 Local optimality and geometry simplification

A local minimizer z̄ of MPCC (1) is called a B-stationary point, at which the following
equivalent conditions hold

∇f(z̄)Td ≥ 0, ∀d ∈ T (z̄) ⇔ ∇f(z̄) ∈ T (z̄)∗, (4)

where T (z̄) is the tangent cone of the MPCC at the point z̄, whose dual cone is denoted by
T (z̄)∗. Verifying these conditions directly is generally nontrivial. In practice, it is desirable
to employ linearized cones to reconstruct the local optimality (4); constraint qualifications
(CQs) play an important role in this task.

Standard linearization of T (z̄) can be carried out, by replacing the complementarity
constraints 0 ≤ G(z) ⊥ H(z) ≥ 0 with (see [4, Eqs. (10)-(11)])

G(z) ≥ 0, H(z) ≥ 0, G(z)TH(z) = 0.

Then linearization of the MPCC constraints gives

∇gi(z̄)Td ≤ 0, i = 1, . . . , ng,

∇hi(z̄)Td = 0, i = 1, . . . , nh,

∇Gi(z̄)Td ≥ 0, i = 1, . . . ,m,

∇Hi(z̄)Td ≥ 0, i = 1, . . . ,m,

Hi(z̄)∇Gi(z̄)Td+Gi(z̄)∇Hi(z̄)Td = 0, i = 1, . . . ,m.
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Using the definition (2) of the index sets, we obtain the linearized tangent cone

T lin(z̄) = {d |∇gi(z̄)Td ≤ 0, ∀i ∈ Ig(z̄),

∇hi(z̄)Td = 0, ∀i = 1, . . . , nh,

∇Gi(z̄)Td = 0, ∀i ∈ α(z̄),

∇Hi(z̄)Td = 0, ∀i ∈ γ(z̄),

∇Gi(z̄)Td ≥ 0, ∇Hi(z̄)Td ≥ 0, ∀i ∈ β(z̄)}.
Its dual cone is given by

T lin(z̄)∗ = {w |wTd ≥ 0, ∀d ∈ T lin(z̄)}

= {w | 0 = w +
∑
i∈Ig(z̄)

λ̄gi∇gi(z̄) +

nh∑
i=1

λ̄hi∇hi(z̄)−
∑
i∈α(z̄)

λ̄Gi ∇Gi(z̄)−
∑
i∈γ(z̄)

λ̄Hi ∇Hi(z̄)

−
∑
i∈β(z̄)

λ̄Gi ∇Gi(z̄)−
∑
i∈β(z̄)

λ̄Hi ∇Hi(z̄);

λ̄gi ≥ 0, ∀i ∈ Ig(z̄); λ̄Gi ≥ 0, λ̄Hi ≥ 0, ∀i ∈ β(z̄)}.

By assuming T (z̄) = T lin(z̄) or T (z̄)∗ = T lin(z̄)∗, i.e., assuming NLP-ACQ or NLP-GCQ at
z̄, respectively, the equivalence (4) can be rebuilt on the linearized cone. This converts the
local optimality of MPCC (1) into the local optimality of the relaxed NLP

RNLP : min f(z)

s.t. g(z) ≤ 0,

h(z) = 0,

Gi(z) = 0, i ∈ α(z̄),

Hi(z) = 0, i ∈ γ(z̄),

Gi(z) ≥ 0, Hi(z) ≥ 0, i ∈ β(z̄).

(5)

Therefore, the assumptions NLP-ACQ and NLP-GCQ justify the KKT conditions for RNLP,
i.e., the S-stationarity conditions, serving as the necessary conditions for z̄ to be a local
minimizer of the MPCC (see also [5, Theorem 4.1]).

Since NLP-CQs are usually too strong for MPCCs, several constraint qualifications have
been proposed that are customized for complementarity constraints. In particular, MPCC-
ACQ and MPCC-GCQ are apparently helpful in reconstructing the equivalence (4) with a
linearized tangent cone. To be specific, MPCC-ACQ assumes T (z̄) = T linMPCC(z̄), where the
latter is the MPCC-linearized tangent cone at z̄ and is defined by [4]

T linMPCC(z̄) = {d |∇gi(z̄)Td ≤ 0, ∀i ∈ Ig(z̄),

∇hi(z̄)Td = 0, ∀i = 1, . . . , nh,

∇Gi(z̄)Td = 0, ∀i ∈ α(z̄),

∇Hi(z̄)Td = 0, ∀i ∈ γ(z̄),

∇Gi(z̄)Td ≥ 0, ∀i ∈ β(z̄),

∇Hi(z̄)Td ≥ 0, ∀i ∈ β(z̄),

(∇Gi(z̄)Td) · (∇Hi(z̄)Td) = 0, ∀i ∈ β(z̄)}.
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Then the left side of (4) can be expressed as:

∇f(z̄)Td ≥ 0, ∀d ∈ T linMPCC(z̄), (6)

and the equivalent right side becomes

∇f(z̄) ∈ T linMPCC(z̄)∗. (7)

On the other hand, MPCC-GCQ assumes T (z̄)∗ = T linMPCC(z̄)∗ [6], where the latter is de-
scribed by

T linMPCC(z̄)∗ = {w |wTd ≥ 0, ∀d ∈ T linMPCC(z̄)}.

(Further specification of this dual cone based on a calmness assumption can be found in [20,
Section 2.3.2] and [6, Section 3].) Then the right side of (4) can be expressed by (7), and the
equivalent left side becomes (6). Both reconstructions of the equivalence are implemented
by simplifying the geometry of the problem while preserving the complementarity structure.

Note that the qualification by MPCC-GCQ is weaker and insures that the results built on
this qualification are more broadly valid. In particular, MPCC-GCQ is implied by MPCC-
ACQ, but the converse is in general not true. Their relations are analogous to the relations
between NLP-GCQ and NLP-ACQ. Examples showing that NLP-GCQ and MPCC-GCQ
have a better chance to be satisfied, even if NLP-ACQ and MPCC-ACQ do not hold, can be
found in [20, Example 1.3] and [6, Example 2.1], respectively. Intuitively, the property that
a dual cone, such as T lin(z̄)∗ or T linMPCC(z̄)∗, is always convex, even if the primal cone, such as
T lin(z̄) or T linMPCC(z̄), is nonconvex, offers the opportunity for NLP-GCQ and MPCC-GCQ
to hold more generally. Note that despite the fact that a primal cone is not necessarily equal
to the closure of its convex hull, their dual cones are the same.

Flegel and Kanzow have established that under MPCC-GCQ, M-stationarity is a neces-
sary first-order condition [6, Theorem 3.1]. In Section 2, we derive a property of “piecewise
M-stationarity” at a local minimizer of MPCC (1), under MPCC-GCQ.

1.2 Degeneracy

To seek for a local minimizer of MPCC (1), many NLP-based schemes have been proposed.
The original intention is to avoid dealing with the complementarity structure explicitly. In
general, these schemes are designed to solve a sequence of regularized NLPs, yielding a
sequence of stationary points {zk} which, hopefully, approximate solutions of MPCC (1).
An important ingredient is to characterize conditions under which, as the regularization
factor vanishes, a limit point of {zk} is a stationary point of the MPCC in one sense or
another. For some representative work see [8, 12, 13, 15, 16, 19, 21], and comparison of some
of the methods can be found in [11].

A difficulty in establishing stationarity of a limit point arises as the point is degenerate
(on the lower level), namely, a sequence {zk} → z̄ at which β(z̄) 6= ∅. Fukushima and
Pang studied the behavior of a sequence {zk} which is composed of KKT points of NLPs
formulated by smoothing the MPCC with perturbed Fischer-Burmeister functions. The
condition of asymptotic weak nondegeneracy is proposed, meaning that for every i ∈ β(z̄),
Gi(z

k) and Hi(z
k) approach zero in the same order of magnitude. Under this condition
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and the second-order necessary conditions at {zk} for the perturbed NLPs, together with
MPCC-LICQ at z̄, it has been proved that z̄ is a B-stationary point of the MPCC [8, Theorem
3.1]. However, the condition of asymptotic weak nondegeneracy is hard to enforce in practice.
Replacing this condition with upper level strict complementarity (ULSC), Scholtes recovered
B-stationary of a limit point of a regularization scheme [19, Corollary 3.4]. Kadrani et al
developed a regularization method whose limit points were shown to be M-stationary under
MPCC-LICQ, without requiring asymptotic weak nondegeneracy or second-order conditions
on {zk} (see [12]). The result was later proved valid under weaker assumption MPCC-CPLD
(see [11]). Results under weaker assumptions also include, for example, that C-stationarity
convergence of the method by Steffensen and Ulbrich under MPCC-CRCQ [21] and MPCC-
CPLD [10], and M-stationarity convergence of the method by Kanzow and Schwartz under
MPCC-CPLD [13].

In Section 3, we characterize conditions that guarantee a feasible point of MPCC (1) to
be B-stationary, under MPCC-ACQ and MPCC-GCQ, respectively. In Section 4, we analyze
convergence properties of the NCP-based methods we proposed in [22], without specifying
a particular MPCC-CQ. In Section 5, we discuss some practical issues when approaching a
solution of MPCC (1) which is not S-stationary.

2 M-stationarity of local minimizers of MPCCs

2.1 MPCC-GCQ and piecewise NLP-GCQ

Let z̄ be a local minimizer of MPCC (1). Denote the set of partitions of β(z̄) as P(β(z̄)) =
{(β1, β2) | β1∩β2 = ∅, β1∪β2 = β(z̄)}. A NLP problem defined on every partition (β1, β2) ∈
P(β(z̄)) is

NLP(β1,β2) : min f(z)

s.t. g(z) ≤ 0,

h(z) = 0,

Gi(z) = 0, i ∈ α(z̄),

Hi(z) = 0, i ∈ γ(z̄),

Gi(z) = 0, Hi(z) ≥ 0, i ∈ β1,

Gi(z) ≥ 0, Hi(z) = 0, i ∈ β2.

(8)

Lemma 2.1. Let z̄ be a local minimizer of MPCC (1). If MPCC-GCQ holds at z̄, then for
every (β1, β2) ∈ P(β(z̄)), NLP-GCQ holds at z̄ for NLP(β1,β2). The converse is also true.

Proof. Since z̄ is a local minimizer of MPCC (1), we have from B-stationarity of z̄ that

∇f(z̄) ∈ T (z̄)∗. (9)

Given MPCC-GCQ at z̄, we have

T (z̄)∗ = T linMPCC(z̄)∗ =
⋂

(β1,β2)∈β(z̄)

T lin(β1,β2)(z̄)∗, (10)
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where T lin(β1,β2)(z̄) is the linearized tangent of NLP(β1,β2) at z̄ and is given by

T lin(β1,β2)(z̄) = {d | ∇gi(z̄)Td ≤ 0, ∀i ∈ Ig(z̄),

∇hi(z̄)Td = 0, ∀i = 1, . . . , nh,

∇Gi(z̄)Td = 0, ∀i ∈ α(z̄),

∇Hi(z̄)Td = 0, ∀i ∈ γ(z̄),

∇Gi(z̄)Td = 0, ∇Hi(z̄)Td ≥ 0, ∀i ∈ β1,

∇Gi(z̄)Td ≥ 0, ∇Hi(z̄)Td = 0, ∀i ∈ β2}.

Then (9) and (10) together imply

∇f(z̄) ∈ T lin(β1,β2)(z̄)∗, ∀(β1, β2) ∈ P(β(z̄)). (11)

On the other hand, z̄ is also a local minimizer of NLP(β1,β2), for every (β1, β2) ∈ P(β(z̄)).
Hence, we have [9, Lemma 4.3]

∇f(z̄) ∈ T(β1,β2)(z̄)∗, ∀(β1, β2) ∈ P(β(z̄)), (12)

where T(β1,β2)(z̄)∗ is the dual cone of the tangent cone of NLP(β1,β2) at z̄. Combining (11)
and (12) yields

T(β1,β2)(z̄)∗ = T lin(β1,β2)(z̄)∗, ∀(β1, β2) ∈ P(β(z̄)), (13)

indicating that NLP-GCQ holds at z̄ for every NLP(β1,β2) with (β1, β2) ∈ P(β(z̄)).
Conversely, suppose (13) holds. Then

T (z̄)∗ =
⋂

(β1,β2)∈β(z̄)

T(β1,β2)(z̄)∗ =
⋂

(β1,β2)∈β(z̄)

T lin(β1,β2)(z̄)∗ = T linMPCC(z̄)∗,

indicating that MPCC-GCQ holds at z̄. (Note that this part does not need z̄ to be locally
optimal.) This completes the proof.

2.2 M-stationarity of local minimizers

Theorem 2.2. Let z̄ be a local minimizer of MPCC (1) at which MPCC-GCQ holds. Then
for every (β1, β2) ∈ P(β(z̄)), there exist NLP(β1,β2) suitable multipliers at z̄, that satisfy
M-stationarity.

Proof. Lemma 2.1 has shown that for every (β1, β2) ∈ P(β(z̄)), NLP-GCQ holds at z̄ for
NLP(β1,β2). This guarantees that KKT conditions are valid at the local minimizer z̄ for each
of these NLPs. Namely, for every (β1, β2) ∈ P(β(z̄)), the following system has solutions:

0 =∇f(z̄) +∇gI(z̄)λ̄gI +∇h(z̄)λ̄h −∇Gα(z̄)λ̄Gα −∇Hγ(z̄)λ̄Hγ

−∇Gβ1(z̄)λ̄Gβ1 −∇Hβ1(z̄)λ̄Hβ1 −∇Gβ2(z̄)λ̄Gβ2 −∇Hβ2(z̄)λ̄Hβ2 ,
(14a)

λ̄gI ≥ 0, λ̄Hβ1 ≥ 0, λ̄Gβ2 ≥ 0, (14b)
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where gI denotes the constraints {gi | ∀i ∈ Ig(z̄)}, and, similarly, Gα, Hγ, Gβ, and Hβ denote
the constraints related to the index sets α(z̄), γ(z̄), and β(z̄). Assume that there exists a
partition (β̂1, β̂2) ∈ P(β(z̄)), such that the KKT multipliers at z̄ for NLP(β̂1,β̂2) cannot satisfy

M-stationarity. Then, with the partition (β̂1, β̂2), all the solutions of (14) imply that λ̄Gj ≤ 0
or λ̄Hj ≤ 0, and at the same time λ̄Gj λ̄

H
j 6= 0, for some indices j ∈ β(z̄). The following derives

contradictions.
One case is that λ̄Gj , λ̄

H
j < 0 for some indices j ∈ β(z̄). This case contradicts (14b),

if either j ∈ β̂1 or j ∈ β̂2, indicating that z̄ is not a local minimizer of NLP(β̂1,β̂2). The

remaining case is that λ̄Gj λ̄
H
j < 0 for some indices j ∈ β(z̄). Without loss of generality,

assume λ̄Gj < 0, λ̄Hj > 0, and j ∈ β̂1. Now consider the partition (β̂1\{j}, β̂2∪{j}) ∈ P(β(z̄)).
For an arbitrary d ∈ T lin

(β̂1\{j},β̂2∪{j})
(z̄), we now have ∇Gj(z̄)Td ≥ 0, and it follows from (14a)

and λ̄Gj < 0 that

∇f(z̄)Td

=− (∇gI(z̄)λ̄gI)
Td− (∇h(z̄)λ̄h)Td+ (∇Gα(z̄)λ̄Gα )Td+ (∇Hγ(z̄)λ̄Hγ )Td

+ (∇Gβ̂1\{j}(z̄)λ̄G
β̂1\{j}

)Td+ (∇Hβ̂1\{j}(z̄)λ̄H
β̂1\{j}

)Td

+ (∇Gβ̂2
(z̄)λ̄G

β̂2
)Td+ (∇Hβ̂2

(z̄)λ̄H
β̂2

)Td

+ (∇Gj(z̄)λ̄Gj )Td+ (∇Hj(z̄)λ̄Hj )Td

=−(∇gI(z̄)λ̄gI)
Td︸ ︷︷ ︸

≥0

+ (∇Hβ̂1\{j}(z̄)λ̄H
β̂1\{j}

)Td︸ ︷︷ ︸
≥0

+ (∇Gβ̂2
(z̄)λ̄G

β̂2
)Td︸ ︷︷ ︸

≥0

+ (∇Gj(z̄)λ̄Gj )Td︸ ︷︷ ︸
≤0

,

(15)

which may not guarantee the nonnegativity of ∇f(z̄)Td, nor the optimality of z̄ as a local
minimizer of NLP(β̂1\{j},β̂2∪{j}).

Therefore, the assumption is false. In essence, because z̄ is a KKT point of NLP(β1,β2)

for every partition (β1, β2) ∈ P(β(z̄)), “piecewise M-stationarity” is guaranteed.

2.3 Example: GCQ failure

The following example illustrates that when MPCC-GCQ fails, a local minimizer of an
MPCC is not necessarily M-stationary.

Consider the problem

min f(z) = (z1 − 1)2 + (z2 + 1)2 multipliers

s.t. z2
2 ≤ 0, λ

0 ≥ z1 ⊥ z2 ≤ 0. σ1, σ2

It searches for the minimal distance between points (z1, z2) and (1,−1), along the negative
axis of z1. The solution is z̄ = (z̄1, z̄2) = (0, 0). The weak stationarity conditions at z̄ are

0 =

[
2(z̄1 − 1)
2(z̄2 + 1)

]
+ λ

[
0

2z̄2

]
+ σ1

[
1
0

]
+ σ2

[
0
1

]
=

[
−2
2

]
+ λ

[
0
0

]
+ σ1

[
1
0

]
+ σ2

[
0
1

]
,

(16)
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which give that
σ1 = 2, σ2 = −2,

so that z̄ is A- but not M- stationary.
In this example the biactive set β(z̄) = {1}. For the partition β̂1 = {1} and β̂2 = ∅, the

corresponding NLP(β̂1,β̂2) is given by

min f(z) = (z1 − 1)2 + (z2 + 1)2 multipliers

s.t. z2
2 ≤ 0, λ

z1 = 0, z2 ≤ 0. σ1, σ2

The KKT conditions at z̄ for this NLP are the same as (16); however, σ2 = −2 < 0 is not
a suitable multiplier for the constraint z2 ≤ 0. Hence, for NLP(β̂1,β̂2), the local minimizer z̄
is not a KKT point, indicating that NLP-GCQ fails at z̄. It follows from Lemma 2.1 that
MPCC-GCQ fails at z̄ as well. In fact, we have the following cones:

T (z̄) = {d ∈ R2 | d1 ≤ 0, d2 = 0},
T (z̄)∗ = {w ∈ R2 | wTd ≥ 0,∀d ∈ T (z̄)} = {w ∈ R2 | w1 ≤ 0, w2 = R},

T linMPCC(z̄) =

{
d ∈ R2 |

[
0

2z̄2

]T
d ≤ 0,

[
1
0

]T
d ≤ 0,

[
0
1

]T
d ≤ 0,

[
1
0

]T
d ·
[
0
1

]T
d = 0

}
= {d ∈ R2 | 0 ≥ d1 ⊥ d2 ≤ 0},

T linMPCC(z̄)∗ = {w ∈ R2 | wTd ≥ 0,∀d ∈ T linMPCC(z̄)}
= {w ∈ R2 | w1 ≤ 0 and w2 ≤ 0},

which validate that T (z̄)∗ 6= T linMPCC(z̄)∗, and MPCC-GCQ fails.

3 B-stationarity conditions

3.1 Conditions under MPCC-ACQ

Suppose that MPCC-ACQ holds at a feasible point z̄ of MPCC (1). According to the
condition (6), z̄ is a local minimizer of the MPCC if and only if d = 0 solves the following
linear program with equilibrium constraints (LPEC):

min ∇f(z̄)Td

s.t. ∇gI(z̄)Td ≤ 0,

∇h(z̄)Td = 0,

∇Gα(z̄)Td = 0,

∇Hγ(z̄)Td = 0,

0 ≤ ∇Gβ(z̄)Td ⊥ ∇Hβ(z̄)Td ≥ 0.

(17)
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The LPEC is a combination of classic linear programs each defined on a partition (β1, β2) ∈
P(β(z̄)) as follows:

LP(β1,β2) : min obj(d) = ∇f(z̄)Td

s.t. ∇gI(z̄)Td ≤ 0,

∇h(z̄)Td = 0,

∇Gα(z̄)Td = 0,

∇Hγ(z̄)Td = 0,

∇Gβ1(z̄)Td = 0, ∇Hβ1(z̄)Td ≥ 0,

∇Gβ2(z̄)Td ≥ 0, ∇Hβ2(z̄)Td = 0.

(18)

The dual problem of (18) is given by

LPdual
(β1,β2) : max objdual(η) = ηT · 0 (19a)

s.t. ηgI ≥ 0, (19b)

ηh free, (19c)

ηGα free, (19d)

ηHγ free, (19e)

ηGβ1 free, ηHβ1 ≥ 0,

ηGβ2 ≥ 0, ηHβ2 free,
(19f)

0 =∇f(z̄) + ηgI∇gI(z̄) + ηh∇h(z̄)− ηGα∇Gα(z̄)− ηHγ ∇Hγ(z̄)

− ηGβ1∇Gβ1(z̄)− ηHβ1∇Hβ1(z̄)− ηGβ2∇Gβ2(z̄)− ηHβ2∇Hβ2(z̄).
(19g)

The dual variables η = (ηgI , η
h, ηGα , η

H
γ , η

G
β , η

H
β ) essentially play the role of the MPCC mul-

tipliers at z̄. Duality theory characterizes the relations between the primal and the dual
problems as follows.

(D1) If d is a feasible point of the primal problem (18) and η is a feasible point of the dual
problem (19), then objdual(η) ≤ obj(d). [1, Theorem 4.3]

(D2) If the dual problem is infeasible, then either the primal problem is infeasible, or the
optimal cost of the primal problem is −∞. If the primal problem is infeasible, then
either the dual problem is infeasible, or the optimal cost of the dual problem is ∞. [1,
Corollary 4.1] [1, Table 4.2]

(D3) Let d and η be feasible points of the primal (18) and the dual (19), respectively, and
suppose that objdual(η) = obj(d). Then d and η are optimal solutions to the primal
and the dual, respectively. [1, Corollary 4.2]

Theorem 3.1. Suppose that MPCC (1) is solvable (namely, feasible and bounded below). If
a point z̄ is weakly stationary and MPCC-ACQ holds at z̄, then z̄ is B-stationary.
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Proof. Since z̄ satisfies weak stationarity (3), it is a local minimizer of the tightened NLP

TNLP : min f(z)

s.t. g(z) ≤ 0,

h(z) = 0,

Gi(z) = 0, i ∈ α(z̄),

Hi(z) = 0, i ∈ γ(z̄),

Gi(z) = 0, Hi(z) = 0, i ∈ β(z̄).

(20)

It follows from Tucker’s theorem of alternative (see also [17]) that the system

∇f(z̄)Td < 0,

∇g(z̄)Td ≤ 0,

∇h(z̄)Td = 0,

∇Gα∪β(z̄)Td = 0,

∇Hγ∪β(z̄)Td = 0,

has no solution. Hence, d = 0 solves the linear program

min ∇f(z̄)Td

s.t. ∇g(z̄)Td ≤ 0,

∇h(z̄)Td = 0,

∇Gα∪β(z̄)Td = 0,

∇Hγ∪β(z̄)Td = 0.

(21)

Recall that under MPCC-ACQ, z̄ is B-stationary if and only if d = 0 solves LPEC (17).
Consider the linear programs (18) that comprise the LPEC. We know from (21) that for
every (β1, β2) ∈ P(β(z̄)), the primal problem LP(β1,β2) has a feasible solution d = 0. In fact,
every dual problem LPdual

(β1,β2) also has feasible solutions. Assume, for the purpose of deriving

a contradiction, that there exists a partition (β̂1, β̂2) ∈ P(β(z̄)), such that the dual problem
LPdual

(β̂1,β̂2)
is infeasible. Then it follows from the result (D2) of duality theory that the primal

problem LP(β̂1,β̂2) is either infeasible or unbounded below. Since d = 0 is feasible to the
primal problem, it follows that the primal problem is unbounded below, namely,

∇f(z̄)Td→ −∞, ∃d ∈ T lin
(β̂1,β̂2)

(z̄). (22)

Since MPCC-ACQ holds at z̄, we have

T lin
(β̂1,β̂2)

(z̄) ⊆ T linMPCC(z̄) = T (z̄).

Hence,
∇f(z̄)Td→ −∞, ∃d ∈ T (z̄), (23)

namely, the MPCC is unbounded, which brings the desired contradiction.
Moreover, since the feasible solution d = 0 to the primal and any feasible solution η to

the dual yield obj(d) = objdual(η) = 0, we have from the result (D3) of duality theory that
d = 0 is an optimal solution to the primal problem LP(β1,β2), for every (β1, β2) ∈ P(β(z̄)).
As a consequence, d = 0 solves the LPEC (17) and z̄ is B-stationary.
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Example: scholtes4

This example illustrates that a weakly stationary point is also B-stationary, under the as-
sumptions of Theorem 3.1.

The problem scholtes4 from the MacMPEC collection [14] is given by

min z1 + z2 − z3 multipliers

s.t. − 4z1 + z3 ≤ 0, λ1

− 4z2 + z3 ≤ 0, λ2

0 ≤ z1 ⊥ z2 ≥ 0. σ1, σ2

Since the constraints are linear, MPCC-ACQ holds at every feasible point of the problem.
Consider a weakly stationary point z̄ = (z̄1, z̄2, z̄3) at which β(z̄) 6= ∅, which is the case of
interest. This gives that z̄ = (0, 0, 0) and β(z̄) = {1}.

To verify B-stationarity of z̄, we check whether z̄ is a local minimizer of NLP(β1,β2) for
every (β1, β2) ∈ P(β(z̄)). Since z̄ is weakly stationary, we have

0 =

 1
1
−1

+ λ1

−4
0
1

+ λ2

 0
−4
1

− σ1

1
0
0

− σ2

0
1
0

 ,
which implies

λ1 + λ2 = 1,

σ1 + σ2 = −2.

For the partitions (β1, β2) = ({1}, ∅) and (β1, β2) = (∅, {1}), since (σ1, σ2) = (−2, 0) and
(σ1, σ2) = (0,−2), respectively, lead to suitable KKT multipliers for the corresponding NLPs,
the point z̄ is both B- and M- stationary.

3.2 Conditions under MPCC-GCQ

At first sight, requiring d = 0 to solve LPEC (17), i.e., requiring condition (6), may seem
appropriate to solve MPCC (1) under MPCC-GCQ, in the sense that T (z̄) ⊆ T linmpcc(z̄)
always holds. Moreover, Lemma 2.1 shows that at a local minimizer z̄ of the MPCC at
which MPCC-GCQ holds, we have ∇f(z̄) ∈ T lin(β1,β2)(z̄)∗ for every (β1, β2) ∈ P(β(z̄)); in

other words, ∇f(z̄)Td ≥ 0 for all d ∈ T lin(β1,β2)(z̄), where (β1, β2) ∈ P(β(z̄)). Hence, given
MPCC-GCQ at z̄, z̄ is B-stationary if and only if d = 0 solves the LPEC.

On the other hand, with the MPCC-ACQ assumption is replaced by MPCC-GCQ, The-
orem 3.1 does not hold any more. Recall that d = 0 is feasible for every LP(β1,β2) where
(β1, β2) ∈ P(β(z̄)). To show that d = 0 is also optimal for every LP(β1,β2), every dual prob-
lem LPdual

(β1,β2) needs to be feasible. This is guaranteed under MPCC-ACQ by assuming that

MPCC (1) is bounded below. Instead, an infeasible dual problem LPdual
(β̂1,β̂2)

for a partition

(β̂1, β̂2) ∈ P(β(z̄)), implies that the corresponding primal problem LP(β̂1,β̂2) is unbounded,
thus contradicting the boundedness of the MPCC. However, we cannot exclude the possi-
bility of an unbounded LP(β̂1,β̂2) in the same way under MPCC-GCQ. Because (22) does

not imply (23) under MPCC-GCQ, the boundedness of the MPCC (1) does not imply the
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boundedness of LP(β̂1,β̂2). Thus, there might exist an infeasible LPdual
(β̂1,β̂2)

, so that d = 0 is not

optimal for LP(β̂1,β̂2). Therefore, the conditions of Theorem 3.1 are not sufficient to obtain
B-stationarity of z̄ under MPCC-GCQ.

Note that whenever the optimal cost of every LP(β1,β2) with (β1, β2) ∈ P(β(z̄)) is finite,
d = 0 solves LPEC (17). The following theorem gives a condition which verifies B-stationarity
and guarantees validity of MPCC-GCQ.

Theorem 3.2. Suppose that MPCC (1) is solvable (namely, feasible and bounded below).
Let z̄ be weakly stationary. Explore all partitions of LPEC (17); if every LP(β1,β2) with
(β1, β2) ∈ P(β(z̄)) is bounded below, then z̄ is B-stationary and, additionally, MPCC-GCQ
holds at z̄.

Proof. According to the above analysis, the primal problem LP(β1,β2) with (β1, β2) ∈ P(β(z̄))
being bounded, means that the dual problem LPdual

(β1,β2) is feasible. Since the objective of the
dual problem is zero and equal to the objective of the primal problem at its feasible solution
d = 0, it follows from the result (D3) of duality theory that d = 0 is optimal to LP(β1,β2).
Because this is the case for every partition (β1, β2) ∈ P(β(z̄)), then d = 0 is optimal to
LPEC (17) and z̄ is B-stationary.

In addition, the optimality of d = 0 for every partition indicates that ∇f(z̄) ∈ T lin(β1,β2)(z̄)∗

for every (β1, β2) ∈ P(β(z̄)). Since T linMPCC(z̄)∗ =
⋂

(β1,β2)∈β(z̄) T lin(β1,β2)(z̄)∗, we have that

∇f(z̄) ∈ T linMPCC(z̄)∗. On the other hand, it follows from B-stationarity of z̄ that ∇f(z̄) ∈
T (z̄)∗. Therefore, T (z̄)∗ = T linMPCC(z̄)∗, namely, MPCC-GCQ holds at z̄.

It is worth noting that whenever a dual problem LPdual
(β1,β2) is feasible, its solution provides

KKT multipliers for NLP(β1,β2). This provides a bridge between optimality of d = 0 for
LP(β1,β2) and that z̄ is a KKT point of NLP(β1,β2).

4 Convergence of NCP-based methods

4.1 Brief review of a bounding scheme

In [22] we proposed an algorithm to seek a solution of MPCC (1) by solving a sequence of
NLP problems of the form

BA(ε) : min f(z) multipliers

s.t. g(z) ≤ 0, ug

h(z) = 0, uh

Φε
i(z) + pi = 0, i = 1 . . .m, uΦ

i

(24)

where

Φε
i(z) =

1

2

(
Gi(z) +Hi(z)−

√
(Gi(z)−Hi(z))2 + ε2

)
(25)

is a NCP function with a smoothing factor ε > 0, and the parameter pi is adjusted adaptively
(to take a value of zero or ε/2). Define the Lagrangian for the program BA(ε) as

L(z, u) = f(z) + (ug)Tg(z) + (uh)Th(z)− (uΦ)T (Φε(z) + p). (26)
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As ε → 0, a sequence of KKT points of BA(ε) tends to a limit point. Main results of this
method are summarized below, and more details can be found in [22].

• Feasibility: The NCP function (25) is used to approximate the complementarity con-
straints in MPCC (1), and the largest difference between them is ε/2 (see [22, Propo-
sition 1.7]). When ε > 0, then at every feasible point z of BA(ε) we have

Φε
i(z)+pi = 0 ⇔ Gi(z)+pi ≥ 0, Hi(z)+pi ≥ 0, (Gi(z)+pi)(Hi(z)+pi) =

ε2

4
, (27)

whose limit at ε = 0 (thus pi = 0) recovers the complementarity 0 ≤ Gi(z) ⊥ Hi(z) ≥ 0.

• Sensitivity and Bounding: At a KKT point z(p) of BA(ε), the sensitivities df(z(p))
dpi

(i =

1 . . .m) are given by −uΦ
i , provided that NLP-LICQ and the second-order sufficient

conditions (SOSC) hold at z(p). This observation throws some light on the design
of the Bounding Algorithm. We take advantage of the sensitivities at z(p) to adjust
the parameters pi, with the aim of improving the objective at the subsequent solution
of BA(ε), and thus yielding an efficient isolation of a solution to the MPCC. When
ε > 0 is sufficiently small, every KKT point of BA(ε) is an ε-approximate solution
to the MPCC, which includes an O(ε2) correction arising from the adjustment of the
parameters pi.

• Convergence: The following convergence results have been established for the Bounding
Algorithm under MPCC-LICQ.

(i) Suppose that MPCC-LICQ holds at a feasible point of the MPCC, then in a
neighborhood of this point, NLP-LICQ holds at every feasible point of BA(ε),
whenever ε > 0 is sufficiently small.

(ii) Suppose that a sequence of KKT points of BA(ε) tends to a limit point as ε→ 0,
at which MPCC-LICQ holds, then the limit point is C-stationary.

(iii) In addition, suppose that the reduced Hessian of the Lagrangian at each of the
KKT points of BA(ε) is bounded below when ε > 0 is sufficiently small, then the
limit point is M-stationary.

A natural question is how does the Bounding Algorithm behave in the absence of MPCC-
LICQ. In this section, we develop C- and M- stationarity of a limit point of this method
without assuming MPCC-LICQ. Further, we explore more convergence features by taking
advantage of an inequality variant of BA(ε). We note that this variant is a modification of
the Lin-Fukushima algorithm [16], which we call MLF.

4.2 Bounding Algorithm

Based on the formulation BA(ε), a Bounding Algorithm was proposed in [22] by noting that

the sensitivities df(z(p))
dpi

(i = 1 . . .m) are given by −uΦ
i . These can be exploited to adjust the

parameters pi to improve the objective f(z(p)). The main idea of the Bounding Algorithm
is given below to facilitate the later analysis; more details of the algorithm can be found
in [22].
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Using ε > 0 and arbitrary parameters pi ∈ [0, ε/2] (i = 1, . . . ,m) leads to a solution
z(p) of BA(ε). Note that some parameters p∗i ∈ [0, ε/2] (i = 1, . . . ,m) may correspond
to a solution z(p∗) of BA(ε), which coincides with a feasible point of MPCC (1). It is
straightforward to show that

f(z(p∗)) = f(z(p)) +
df(z(p))

dp
(p∗ − p) +O(‖p∗ − p‖2).

Noting that the sensitivities df(z(p))
dp

are given by −uΦ from BA(ε), we have that

f(z(p))− ε

2

m∑
i=1

|uΦ
i (p)| − |O(ε2)| ≤ f(z∗) ≤ f(z(p)) +

ε

2

m∑
i=1

|uΦ
i (p)|+ |O(ε2)|.

where z∗ is the solution of MPCC (1). This relation interprets the approximation to a
solution of the MPCC by the Bounding Algorithm.

• Initialization: Specify initial smoothing factor ε0 > 0, reducing factor κ ∈ (0, 1), initial
point z0, solution tolerance εtol > 0. Set initial parameters p0 ← 0, counter k ← 0.

• Main loop: While εk ≥ εtol, do the following.

Step 1. Solve the program BA(εk) with parameters pk, to obtain a stationary point zk

and multipliers uk = (ug,k, uh,k, uΦ,k).

Step 2. Approximate the upper bound of the MPCC with

fup = f(zk) + εk
m∑
i=1

|uΦ,k
i |.

Step 3. Approximate the lower bound of the MPCC as follows. Define the index sets

P0 = {i | pki = 0 and uΦ,k
i > 0},

Pε = {i | pki = εk/2 and uΦ,k
i < 0}.

Then the following settings would reduce f(zk).

pki ← εk/2, ∀i ∈ P0,

pki ← 0, ∀i ∈ Pε.

Improvement of the objective by adjusting pi would approximately be

f low = f(zk)− εk
∑

i∈P0∪Pε

|uΦ,k
i |.

Step 4. Update the parameters ε and p. Set εk+1 ← κεk, and

pk+1
i =


εk+1/2, i ∈ P0;

0, i ∈ Pε;
κpki , otherwise.

Step 5. Set k ← k + 1 and go to Step 1.
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Suppose the Bounding Algorithm generates a sequence {zk} → z̄ as εk → 0. Without
MPCC-LICQ at the limit point z̄, NLP-LICQ is absent in a neighborhood of z̄ for feasible
points of BA(ε). However, the Bounding Algorithm is still helpful in seeking a solution of
MPCC (1). View the parameters −pi as the right-hand sides of the constraints Φε

i(z), then
the multipliers uΦ

i indicate what perturbations of the constraints are desired to improve the
objective. For example, if pi = 0 and uΦ

i < 0, further reduction of the objective requires
increasing the right-hand side of Φε

i(z), namely, requires pi to be negative; this makes no sense
because the difference between Φε

i(z) and the corresponding complementarity constraint is
within [0, ε/2]. In fact, this is usually an indication that S-stationary solutions (corresponding
to solutions of RNLP) do not locate in the feasible region of BA(ε), nor in the feasible region
of MPCC (1). This point will become clear later from the perspective of an inequality variant
of BA(ε).

4.3 Derivatives of NCP function

It follows from (27) that√
(Gi(z)−Hi(z))2 + ε2 =

√
((Gi(z) + pi)− (Hi(z) + pi))2 + ε2

=
√

(Gi(z) + pi)2 + (Hi(z) + pi)2 + 2(Gi(z) + pi)(Hi(z) + pi)

= |Gi(z) +Hi(z) + 2pi| = Gi(z) +Hi(z) + 2pi.

As shown in [22] the following derivatives can be derived at a point z satisfying Φε
i(z)+pi = 0:

∇GΦε
i(z) =

Hi(z) + pi
Gi(z) +Hi(z) + 2pi

,

∇HΦε
i(z) =

Gi(z) + pi
Gi(z) +Hi(z) + 2pi

,

∇GGΦε
i(z) = ∇HHΦε

i(z) =
−2(Gi(z) + pi)(Hi(z) + pi)

(Gi(z) +Hi(z) + 2pi)3
,

∇GHΦε
i(z) = ∇HGΦε

i(z) =
2(Gi(z) + pi)(Hi(z) + pi)

(Gi(z) +Hi(z) + 2pi)3
.

(28)

4.4 C-stationarity

Let a sequence {zk} → z̄ as εk → 0, where every zk is a KKT point of BA(εk). The
following proves C-stationarity of z̄, without explicitly specifying a constraint qualification
at z̄. The reason is that assuming a particular MPCC-CQ at z̄ amounts to enforcing a
certain NLP-CQ at z̄ or in its neighborhood. For example, MPCC-LICQ at z̄ implies the
presence of NLP-LICQ in a neighborhood of z̄ for every feasible point of the regularized NLP
problem [19, Lemma 2.1], and MPCC-MFCQ at z̄ implies the presence of NLP-MFCQ at z̄
for every NLP(β1,β2) with (β1, β2) ∈ P(β(z̄)) [4, Lemma 3.5]. Instead of requiring a particular
constraint qualification at z̄, we establish C-stationarity of z̄ based on the local optimality
of zk for BA(εk), which is guaranteed by KKT conditions combined with classic constraint
qualifications no weaker than NLP-GCQ at zk.
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Theorem 4.1. For a sequence of positive scalars εk → 0, apply the Bounding Algorithm
to BA(εk), such that the parameters pk are updated whenever εk is updated. Assume this
generates a sequence {zk} → z̄, where every zk is a KKT point of BA(εk). If NLP-GCQ
holds at all zk then z̄ is a C-stationary point of MPCC (1).

Proof. When εk > 0, at every KKT point zk of BA(εk), there exist multipliers uk =
(ug,k, uh,k, uΦ,k) with ug,k ≥ 0, such that

0 = ∇f(zk) +
∑

i∈Ig(zk)

ug,ki ∇gi(zk) +

nh∑
i=1

uh,ki ∇hi(zk)−
m∑
i=1

uΦ,k
i ∇Φε

i(z
k), (29)

where the gradient of Φε
i is given by

∇Φε
i(z) =∇GΦε

i(z)∇Gi(z) +∇HΦε
i(z)∇Hi(z)

=
Hi(z) + pi

Gi(z) +Hi(z) + 2pi
∇Gi(z) +

Gi(z) + pi
Gi(z) +Hi(z) + 2pi

∇Hi(z).

At the limit ε = 0, the function Φ0
i is in general not differentiable for i ∈ β(z̄). However, since

Φ0
i is locally Lipschitz [2, Section 1.2] near z̄, the generalized gradient ∂Φ0

i (z̄) is generated by
a convex hull (see [2, Theorem 2.5.1] [3, Eq.(3.1.5)] [18, Lemma 1])

∂Φ0
i (z̄) = conv

{
lim
sK→z̄

∇Φ0
i (s

K) | ∇Φ0
i (s

K) exists

}
= θi∇Gi(z̄) + (1− θi)∇Hi(z̄),

where θi ∈ [0, 1]. Therefore, as εk → 0, the gradients of functions Φε
i are as follows:

∇Φε
i(z

k)→ ∇Gi(z̄), i ∈ α(z̄),

∇Φε
i(z

k)→ ∇Hi(z̄), i ∈ γ(z̄),

∇Φε
i(z

k)→ θi∇Gi(z̄) + (1− θi)∇Hi(z̄), i ∈ β(z̄).

(30)

It follows from (29) and (30) that at a limit point z̄, the multipliers uk tend to ū = (ūg, ūh, ūΦ)
with ūg ≥ 0, such that

0 =∇f(z̄) +
∑

i∈Ig(zk)

ūgi∇gi(z̄) +

nh∑
i=1

ūhi∇hi(z̄)−
m∑
i=1

ūΦ
i ∇Φ0

i (z̄)

=∇f(z̄) +
∑

i∈Ig(zk)

ūgi∇gi(z̄) +

nh∑
i=1

ūhi∇hi(z̄)

−
∑
i∈α(z̄)

ūΦ
i ∇Gi(z̄)−

∑
i∈γ(z̄)

ūΦ
i ∇Hi(z̄)−

∑
i∈β(z̄)

ūΦ
i [θi∇Gi(z̄) + (1− θi)∇Hi(z̄)] ,

for some θi ∈ [0, 1]. Thus z̄ satisfies the weak stationarity conditions (3), with the MPCC
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multipliers given by

λ̄g = ūg = lim
k→∞

ug,k,

λ̄h = ūh = lim
k→∞

uh,k,

λ̄Gi =


ūΦ
i = lim

k→∞
uΦ,k
i , i ∈ α(z̄)

ūΦ
i θi = lim

k→∞
uΦ,k
i

[
Hi(z

k) + pki
Gi(zk) +Hi(zk) + 2pki

]
, i ∈ β(z̄),

λ̄Hi =


ūΦ
i = lim

k→∞
uΦ,k
i , i ∈ γ(z̄)

ūΦ
i (1− θi) = lim

k→∞
uΦ,k
i

[
Gi(z

k) + pki
Gi(zk) +Hi(zk) + 2pki

]
, i ∈ β(z̄).

(31)

Moreover, z̄ is C-stationary because

λ̄Gi · λ̄Hi = (ūΦ
i )2θi(1− θi) ≥ 0, ∀i ∈ β(z̄). (32)

4.5 M-stationarity

The property (32) allows for two possibilities. In the case ūΦ
i ≥ 0 for all i ∈ β(z̄), then

λ̄Gi , λ̄
H
i ≥ 0 for all i ∈ β(z̄), and the point z̄ is S-stationary and obviously a local minimizer

of the MPCC. In the other case, there exist indices i ∈ β(z̄) such that ūΦ
i < 0. For these

indices i, λ̄Gi , λ̄
H
i ≤ 0. If at the same time MPCC-LICQ fails at z̄, it is still possible for z̄ to be

a local minimizer of the MPCC. As discussed in Section 3.1, if MPCC-ACQ holds at z̄, then
z̄ is B-stationary. In the following, we establish M-stationarity of z̄, in the circumstance that
ūΦ
i < 0 for some indices i ∈ β(z̄). Instead of specifying an MPCC-CQ at z̄, the derivation is

based on local optimality of zk for BA(εk).
Let Ω ⊆ β(z̄) be a subset such that

Ω = {i | ūΦ
i < 0, i ∈ β(z̄)}.

We introduce two assumptions at a KKT point zk of BA(εk).

(A1) The set of gradients

G(zk) = {∇gi(zk), i ∈ Ig(z̄),

∇hi(zk), i = 1, . . . nh,

∇Gi(z
k), i ∈ α(z̄) ∪ β(z̄) \ Ω,

∇Hi(z
k), i ∈ γ(z̄) ∪ β(z̄) \ Ω}

satisfies rank(G(zk)) ≤ n− |Ω| (where |Ω| denotes cardinality of the set).
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(A2) The reduced Hessian of the Lagrangian (26) is bounded below in the sense that

dT∇zzL(zk, uk)d > −∞, ∀d ∈ T linBA (zk),

where
T linBA (zk) = {d | ∇gi(zk)Td ≤ 0, ∀i ∈ Ig(zk),

∇hi(zk)Td = 0, ∀i = 1, . . . , nh,

∇Φε
i(z

k)Td = 0, ∀i = 1, . . . ,m}.

Theorem 4.2. For a sequence of positive scalars εk → 0, apply the Bounding Algorithm
to BA(εk), such that the parameters pk are updated whenever εk is updated. Assume this
generates a sequence {zk} → z̄, where every zk is KKT point of BA(εk). In addition to the
assumptions of Theorem 4.1, suppose that the conditions (A1) and (A2) hold at every zk

when εk > 0 and suitably small. Then z̄ is an M-stationary point of MPCC (1).

Proof. For the purpose of deriving a contradiction, assume that z̄ is not M-stationary. Then,
without loss of generality, it holds for all j ∈ Ω that

λ̄Gj = ūΦ
j θj < 0,

λ̄Hj = ūΦ
j (1− θj) < 0.

This implies that 0 < θj < 1 for all j ∈ Ω.
Because of the assumption (A1), the vectors in G(zk) lie in a proper subspace of Rn, and

there exists some nonzero vector dk ∈ Rn such that

∇gi(zk)Tdk = 0, i ∈ Ig(z̄),

∇hi(zk)Tdk = 0, i = 1, . . . , nh,

∇Gi(z
k)Tdk = 0, i ∈ α(z̄) ∪ β(z̄) \ Ω,

∇Hi(z
k)Tdk = 0, i ∈ γ(z̄) ∪ β(z̄) \ Ω.

(33)

This system together with

∇Gj(z
k)Tdk = κG = ∇HΦε

j(z
k), j ∈ Ω,

∇Hj(z
k)Tdk = κH = −∇GΦε

j(z
k), j ∈ Ω,

(34)

defines a vector dk ∈ T linBA (zk). Note that the whole system (33)-(34) may have more than n
equations; however, these equations are consistent because the right-hand sides of (34) are
constructed to satisfy the linearized constraints

∇Φε
j(z

k)Tdk = ∇GΦε
j(z

k)∇Gj(z
k)Tdk +∇HΦε

j(z
k)∇Hj(z

k)Tdk = 0.

Also note that the right-hand sides of (34) are bounded, because (28) and (31) indicate that
they converge to 1− θj and −θj, respectively.
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For each j ∈ Ω, the contribution of the constraint Φε
j(z

k)+pkj = 0 to the reduced Hessian
(dk)T∇zzL(zk, uk)dk is that

−uΦ,k
j (dk)T∇zzΦ

ε
j0

(zk)dk

=− uΦ,k
j (dk)T

[
∇GΦε

j(z
k)∇zzGj(z

k) +∇HΦε
j(z

k)∇zzHj(z
k)

+∇GGΦε
j(z

k)∇Gj(z
k)∇Gj(z

k)T +∇GHΦε
j(z

k)∇Gj(z
k)∇Hj(z

k)T

+∇HGΦε
j(z

k)∇Hj(z
k)∇Gj(z

k)T +∇HHΦε
j(z

k)∇Hj(z
k)∇Hj(z

k)T
]
dk.

Combining the definition of dk and the derivatives of Φε
j in (28), we have

−uΦ,k
j (dk)T∇zzΦ

ε
j(z

k)dk

=− uΦ,k
j (dk)T∇GΦε

j(z
k)∇zzGj(z

k)dk − uΦ,k
j (dk)T∇HΦε

j(z
k)∇zzHj(z

k)dk

+
2(Gj(z

k) + pkj )(Hj(z
k) + pkj )

(Gj(zk) +Hj(zk) + 2pkj )
3
uΦ,k
j (κG − κH)2

=− uΦ,k
j (dk)T∇GΦε

j(z
k)∇zzGj(z

k)dk − uΦ,k
j (dk)T∇HΦε

j(z
k)∇zzHj(z

k)dk

+
2(Gj(z

k) + pkj )(Hj(z
k) + pkj )

(Gj(zk) +Hj(zk) + 2pkj )
3
uΦ,k
j

=− uΦ,k
j (dk)T∇GΦε

j(z
k)∇zzGj(z

k)dk − uΦ,k
j (dk)T∇HΦε

j(z
k)∇zzHj(z

k)dk

+
2

Gj(zk) +Hj(zk) + 2pkj
∇GΦε

j(z
k)∇HΦε

j(z
k)uΦ,k

j .

The first two terms are bounded. As for the last term, ∇GΦε
j(z

k),∇HΦε
j(z

k), and uΦ,k
j tend

to θj > 0, 1 − θj > 0, and ūΦ
j < 0, respectively, while Gj(z

k), Hj(z
k), and pkj tend to zero.

Therefore,
−uΦ,k

j (dk)T∇zzΦ
ε
j(z

k)dk → −∞. (35)

Since all other terms in the reduced Hessian (dk)T∇zzL(zk, uk)dk are bounded, the relation
(35) contradicts (A2). Hence, the assumption must be false and z̄ is M-stationary.

4.6 Inequality relaxation of BA

To further understand and explore the convergence properties of the Bounding Algorithm, it
is beneficial to take advantage of an inequality variant of the problem BA(ε), which is given
by

MLF(ε) : min f(z) multipliers

s.t. g(z) ≤ 0, ug

h(z) = 0, uh

− ε/2 ≤ Φε
i(z) ≤ 0, i = 1 . . .m. uΦ

L,i, u
Φ
U,i

(36)

For a sequence of positive scalars εk → 0, solving problems MLF(εk) generates a sequence
{zk} → z̄, where every zk is a KKT point of MLF(εk). At every point zk we have multipliers
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uk = (ug,k, uh,k, uΦ,k
L , uΦ,k

U ) with ug,k ≥ 0, such that

0 = ∇f(zk) +
∑

i∈Ig(zk)

ug,ki ∇gi(zk) +

nh∑
i=1

uh,ki ∇hi(zk)−
m∑
i=1

(uΦ,k
L,i − u

Φ,k
U,i )∇Φε

i(z
k), (37)

where 0 ≤ uΦ,k
L,i ⊥ uΦ,k

U,i ≥ 0, i = 1, . . . ,m. Comparing the program formulations (24) and
(36), and the KKT conditions (29) and (37), gives the relations between BA(ε) and MLF(ε):

pi = ε/2⇔ lower bound of Φi(ε) is active, and uΦ
L,i ≥ 0,

pi = 0⇔ upper bound of Φi(ε) is active, and uΦ
U,i ≥ 0,

uΦ = uΦ
L − uΦ

U .

(38)

Substituting the last relation into (31) gives the MPCC multipliers at a limit point z̄:

λ̄g = ūg = lim
k→∞

ug,k,

λ̄h = ūh = lim
k→∞

uh,k,

λ̄Gi =


ūΦ
L,i − ūΦ

U,i = lim
k→∞

(uΦ,k
L,i − u

Φ,k
U,i ), i ∈ α(z̄)

(ūΦ
L,i − ūΦ

U,i)θi = lim
k→∞

(uΦ,k
L,i − u

Φ,k
U,i )

[
Hi(z

k)

Gi(zk) +Hi(zk)

]
, i ∈ β(z̄),

λ̄Hi =


ūΦ
L,i − ūΦ

U,i = lim
k→∞

(uΦ,k
L,i − u

Φ,k
U,i ), i ∈ γ(z̄)

(ūΦ
L,i − ūΦ

U,i)(1− θi) = lim
k→∞

(uΦ,k
L,i − u

Φ,k
U,i )

[
Gi(z

k)

Gi(zk) +Hi(zk)

]
, i ∈ β(z̄).

(39)

Obviously, if (ūΦ
L,i − ūΦ

U,i) ≥ 0 for all i ∈ β(z̄), then λ̄Gi , λ̄
H
i ≥ 0 for all i ∈ β(z̄), and z̄ is

S-stationary; otherwise, if there exist indices i ∈ β(z̄) such that (ūΦ
L,i − ūΦ

U,i) < 0, then for

these indices i, λ̄Gi , λ̄
H
i ≤ 0. The C- and M- stationarity of the limit point established in the

previous subsections for BA can be extended to MLF.
In particular, numerical experience reveals the feature that a sequence {zk} converges

from the upper bounds of MLF(εk) to z̄, when z̄ is not S-stationary, paralleling the observa-
tion that the Bounding Algorithm sets the parameters pki which correspond to non-strongly
stationary complementarity constraints i ∈ β(z̄) to be zero and thus uΦ,k

i < 0 as εk → 0.
This feature also has a theoretical reason. At a feasible point z of MLF(εk), define the index
sets

IΦ
L (z) = {i |Φε

i(z) = −εk/2},
IΦ
U (z) = {i |Φε

i(z) = 0}.
Definition (25) of the NCP function implies the following at the boundaries of Φε

i(z):

i ∈ IΦ
L (z) =⇒ Gi(z) + εk

2
> 0, Hi(z) + εk

2
> 0, (Gi(z) + εk

2
)(Hi(z) + εk

2
) = (εk)2/4,

i ∈ IΦ
U (z) =⇒ Gi(z) > 0, Hi(z) > 0, Gi(z)Hi(z) = (εk)2/4.

The constraints −εk/2 ≤ Φε
i(z) ≤ 0 require that

(Gi(z) + εk

2
)(Hi(z) + εk

2
) ≥ (εk)2/4,

Gi(z)Hi(z) ≤ (εk)2/4.
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Therefore, the feasible region of MLF(εk) includes the feasible region of MPCC (1), while
it restricts the feasible region of RNLP (5) from above by enforcing Φε

i(z) ≤ 0. Thus,
for every εk > 0 suitably small, a local minimizer zk of MLF(εk) is also a local minimizer
of the RNLP constrained additionally by Φε

i(z) ≤ 0. Suppose that there exists a subset
Ω ⊆ {1 . . .m}, such that RNLP is minimized at GΩ(z) > 0 and HΩ(z) > 0. In such
circumstance, MLF(εk) achieves the minimal cost on the boundaries of Φε

Ω(z) ≤ 0 for every
εk > 0 suitably small. This gives rise to the phenomenon that the upper bounds of the
constraints −εk/2 ≤ Φε

Ω(z) ≤ 0 are active at every zk as εk → 0; moreover, Ω ⊆ β(z̄). Since
the solutions of RNLP locate outside of the feasible region of the MPCC, no local minimizer
of the MPCC can be S-stationary.

Now we reconsider a limit point z̄ of BA(ε) or MLF(ε), at which there exists a subset
Ω ⊆ β(z̄) such that ūΦ

Ω < 0 (BA), or ūΦ
L,Ω − ūΦ

U,Ω < 0 (MLF). This indicates that for k

sufficiently large, at their KKT points zk, the BA multipliers uΦ,k
Ω < 0, while the MLF

multipliers uΦ,k
L,Ω − uΦ,k

U,Ω < 0. According to the relations (38), it can be observed at zk for

k sufficiently large that the BA parameters pkΩ = 0, while the upper bounds of the MLF
constraints Φε

Ω are active. We aim to verify whether such z̄ is a B-stationary point of the
MPCC.

Theorem 2.2 states that a local minimizer of MPCC (1) at which MPCC-GCQ holds, is
“piecewise M-stationarity”. Since the above discussion has shown that such a limit point z̄
usually indicates the absence of S-stationary solutions, then, if z̄ is a local minimizer of the
MPCC, the MPCC multipliers at z̄ must satisfy that λ̄Gi λ̄

H
i = 0 for all i ∈ β(z̄). Therefore, for

every (β1, β2) ∈ P(β(z̄)), checking whether d = 0 solves LP(β1,β2), or equivalently, checking
whether LP(β1,β2) is bounded below (see Theorem 3.2), can be simplified to checking the
following problem:

min obj(d) = ∇f(z̄)Td

s.t. ∇gI(z̄)Td ≤ 0,

∇h(z̄)Td = 0,

∇Gα(z̄)Td = 0,

∇Hγ(z̄)Td = 0,

∇Gβ1(z̄)Td = 0,

∇Hβ2(z̄)Td = 0,

(40)

where the inequalities ∇Hβ1(z̄)Td ≥ 0 and ∇Gβ2(z̄)Td ≥ 0 can be removed because the
multipliers λHβ1 = λGβ2 = 0 indicate that the associated constraints are locally inactive. For
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every (β1, β2) ∈ P(β(z̄)), if the problem (40) is bounded, then its dual problem

max objdual(η) = ηT · 0
s.t. ηgI ≥ 0,

ηh free,

ηGα free,

ηHγ free,

ηGβ1 free,

ηHβ2 free,

0 =∇f(z̄) + ηgI∇gI(z̄) + ηh∇h(z̄)− ηGα∇Gα(z̄)− ηHγ ∇Hγ(z̄)

− ηGβ1∇Gβ1(z̄)− ηHβ2∇Hβ2(z̄)

(41)

is feasible; thus d = 0 is optimal for each partition because obj(d) = objdual(η) = 0. It follows
that z̄ solves LPEC (17) and is B-stationary, and MPCC-GCQ holds at z̄ because of Lemma
2.1. The equality constrained problems (40) offer convenience in verifying B-stationarity at z̄,
in contrast to problems (18) composing the LPEC, which have both equality and inequality
constraints.

5 Practical issues

This section discusses the behaviors of NCP-based algorithms, when converging to a limit
point which is not S-stationary.

5.1 MPCC multipliers by NCP-based methods

The M-stationarity pertaining to a local minimizer of MPCC (1) is essentially a piecewise
property. When approaching a local minimizer z̄ which is not S-stationary, an algorithm
should not converge to the multipliers satisfying the M-stationarity conditions for a particular
partition in P(β(z̄)). And, unless z̄ is S-stationary, there does not exist a set of MPCC
multipliers which is suitable for all the partitions in P(β(z̄)).

Example: ex9.2.2

This example shows that the solutions of the NCP-based methods (BA and MLF) provide
MPCC multipliers satisfying C-stationarity at a non-strongly stationary local minimizer, and
the multipliers satisfying M-stationarity can be easily derived.
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The problem ex9.2.2 from the MacMPEC collection [14] is given by

min x2 + (y − 10)2 multipliers

s.t. x ≤ 15, (inactive)

− x+ y ≤ 0, λ1

− x ≤ 0, (inactive)

x+ y + s1 = 20, λ2

− y + s2 = 0, λ3

y + s3 = 20, λ4

2x+ 4y + l1 − l2 + l3 = 60, λ5

0 ≤ si ⊥ li ≥ 0, i = 1 . . . 3. σsi, σli

The NCP-based methods converge to the solution z̄ = (x̄, ȳ, s̄, l̄):

x̄ = 10,

ȳ = 10,

s̄ = (0, 10, 10),

l̄ = (0, 0, 0).

Since the problem has linear constraints, MPCC-ACQ holds at every feasible point of the
problem, and Theorem 3.1 indicates that z̄ is B-stationary. The weak stationarity conditions
(3) at z̄ require that

2x̄− λ1 + λ2 + 2λ5 = 0,

2(ȳ − 10) + λ1 + λ2 − λ3 + λ4 + 4λ5 = 0,

λ2 − σs1 = 0,

λ3 = 0,

λ4 = 0,

λ5 − σl1 = 0,

−λ5 − σl2 = 0,

λ5 − σl3 = 0,

which implies
σs1 = −3λ5 − 10,

σl1 = λ5.

Thus the MPCC multipliers σs1, σl1 for the biactive complementary components s1, l1 cannot
be both nonnegative, and the local minimizer z̄ cannot be S-stationary.

Now we check the multipliers at z̄. For the set β(z̄) = {1}, solutions of the NCP-based
methods give the corresponding NLP multipliers (at ε = 10−6)

BA : uΦ = −5.74,

MLF : uΦ
L = 0, uΦ

U = 5.74.
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According to (31) and (39),

λ̄Gi + λ̄Hi = lim
k→∞

uΦ,k
i = lim

k→∞
(uΦ,k

L,i − u
Φ,k
U,i ), ∀i ∈ β(z̄). (42)

By enforcing σs1 +σl1 = −5.74, we obtain the MPCC multipliers (σs1, σl1) = (−3.61,−2.13),
which satisfies C-stationarity. This shows that the solutions of the NCP-based methods pro-
vide a set of MPCC multipliers that satisfy C-stationarity at z̄, which can be interpreted as
a balance/compromise between the partitions. As indicated by Theorem 2.2, a local min-
imizer is piecewise M-stationary provided that MPCC-GCQ holds. To find the multipliers
that satisfy M-stationarity, we let σs1 = 0 or σl1 = 0, then obtain the MPCC multipli-
ers (σs1, σl1) = (0,−10/3) or (σs1, σl1) = (−10, 0). These two sets of multipliers reflect
optimality of z̄ for their respective partitions.

5.2 Unbounded NLP multipliers and inaccurate solutions

NLP subproblems of MPCC algorithms may encounter unbounded multipliers when ap-
proaching a limit point which is not S-stationary for the MPCC. However, in view of numer-
ical experience to date NCP-based reformulations BA(ε) and MLF(ε) avoid these unbounded
NLP multipliers. The following confirms this observation, by comparing them with the typ-
ical regularization scheme proposed in [19]:

REG(ε) : min f(z) multipliers

s.t. g(z) ≤ 0, vg

h(z) = 0, vh

G(z) ≥ 0, vG

H(z) ≥ 0, vH

Gi(z)Hi(z) ≤ ε, i = 1 . . .m. vREGi

Solving a sequence of programs REG(εk) with the positive scalar εk → 0, generates a sequence
{zk} → z̄. Based on stationarity of zk for REG(εk), namely,

0 =∇f(zk) +
∑

i∈Ig(zk)

vg,ki ∇gi(zk) +

nh∑
i=1

vh,ki ∇hi(zk)

−
m∑
i=1

vG,ki ∇Gi(z
k)−

m∑
i=1

vH,ki ∇Hi(z
k) +

m∑
i=1

vREG,ki

[
Hi(z

k)∇Gi(z
k) +Gi(z

k)∇Hi(z
k)
]
,

the relations between the multipliers vk = (vg,k, vh,k, vG,k, vH,k, vREG,k) and the MPCC mul-
tipliers at z̄ can be expressed by (see also [19, Theorem 3.1]):

λ̄g = v̄g = lim
k→∞

vg,k,

λ̄h = v̄h = lim
k→∞

vh,k,

λ̄Gi = lim
k→∞

[
vG,ki − vREG,ki Hi(z

k)
]
, i = 1, . . . ,m,

λ̄Hi = lim
k→∞

[
vH,ki − vREG,ki Gi(z

k)
]
, i = 1, . . . ,m.

(43)
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It has been proved that z̄ is a strongly stationary point of MPCC (1) if and only if it is a
stationary point of REG(0) [7, Proposition 4.1].

Consider the case where z̄ is not S-stationary. Then z̄ is not a stationary point of REG(0).
When the algorithm converges to MPCC multipliers satisfying C-stationarity, then there
exist indices i ∈ β(z̄) such that λ̄Gi < 0, λ̄Hi < 0. According to (43), the NLP multipliers
vG,ki < 0, vH,ki < 0 for k sufficiently large, which are not allowed in REG(ε). Since

vG,ki = λ̄Gi + vREG,ki Hi(z
k),

vH,ki = λ̄Hi + vREG,ki Gi(z
k),

the multipliers vREG,ki become very large to enforce vG,ki and vH,ki nonnegative. At the same
time, Gi(z

k) and Hi(z
k) are prevented from being very close to zero, otherwise vREG,ki Gi(z

k)
and vREG,ki Hi(z

k) would be ineffective. As a consequence, it can be observed for k sufficiently
large that vG,ki = 0, vH,ki = 0, vREG,ki →∞, and Gi(z

k), Hi(z
k) cannot converge accurately to

zero.
On the other hand, the multipliers for the programs BA(εk) and MLF(εk) do not have

this difficulty. As indicated by the relations (31) and (39), there is no contradiction between
the signs of the MPCC multipliers λ̄Gi , λ̄

H
i and of the NLP multipliers uΦ,k

i and uΦ,k
L,i − u

Φ,k
U,i .

In addition, the underlying relation (42) indicates that the NLP multipliers exist whenever
the MPCC multipliers do. Therefore, whether z̄ is S-stationary or not has little influence
on the performance of BA and MLF methods, which is an important difference from the
behavior of the REG method.

Examples: Multiplier Comparisons

We review the examples in sections 3.1 and 5.1 to illustrate the difference in behavior between
the NCP-based methods and REG regularization method.

As we discussed in the previous sections, the examples scholtes4 and ex9.2.2 have non-
strongly stationary local minimizers. Numerical results of these two examples are presented
in Tables 1 and 2. The results indicate that REG method gives rise to large NLP multipliers
for the constraints corresponding to the biactive complementary components, and the mul-
tipliers get even larger when the regularization parameter ε becomes smaller; at the same
time, the convergence is slow and inaccurate, compared to the magnitude of ε.

On the other hand, the multipliers of the NCP-based methods (BA and MLF) are well
behaved. According to (42), their multipliers can be derived from the MPCC multipliers at
a limit point and vice versa. In addition, the accuracy of their solutions is about O(ε).
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ε scholtes4 BA MLF REG
p uΦ uΦ

L uΦ
U vz1 vz2 vREG

multipliers 0 -2 0 2 0 0 6.32E+2
10−6 z1 1.25E-6 1.25E-6 0.001581

z2 1.25E-6 1.25E-6 0.001581
z3 5E-6 5E-6 0.006324

p uΦ uΦ
L uΦ

U vz1 vz2 vREG

multipliers 0 -2 0 2 0 0 1.87E+4
10−9 z1 1.25E-9 1.25E-9 0.000054

z2 1.25E-9 1.25E-9 0.000054
z3 5E-9 5E-9 0.000214

Table 1: Results of scholtes4.

ε ex9.2.2 BA MLF REG
p uΦ uΦ

L uΦ
U vs1 vl1 vREG

multipliers 0 -5.74 0 5.74 0 0 1.83E+3
10−6 s1 9.6E-7 9.6E-7 0.000913

l1 1.63E-6 1.63E-6 0.002739
p uΦ uΦ

L uΦ
U vs1 vl1 vREG

multipliers 0 -5.63 0 5.63 0 0 5.71E+4
10−9 s1 9.12E-10 9.13E-10 0.000029

l1 1.48E-9 1.49E-9 0.000088

Table 2: Results of ex9.2.2.

6 Conclusions

This study explores characteristics of local minimizers of MPCCs and their influence on
convergence behavior for NLP-based MPCC algorithms. First, we develop conditions for
M-stationarity of a local minimizer of an MPCC, under the assumption of MPCC-GCQ
(Theorem 2.2). A key point is that the M-stationarity is a piecewise property. For a local
minimizer z̄ at which MPCC-LICQ fails, there exist multiple sets of MPCC multipliers, each
corresponding to one partition of β(z̄) and satisfying M-stationarity on that partition.

Second, we aim to capture conditions that guarantee B-stationarity convergence. By
applying the main results (D1), (D2), and (D3) of duality theory to the LPEC at a weakly
stationary point of an MPCC, we prove that every weakly stationary point of an MPCC
is B-stationary, provided that MPCC-ACQ holds at the point (Theorem 3.1). However,
under a weaker assumption MPCC-GCQ, combinatorial checking with respect to the LPEC
is generally required (Theorem 3.2).

To investigate convergence properties of the Bounding Algorithm we proposed in [22], in
the absence of MPCC-LICQ, we consider stationarity of a limit point of this method based
on local optimality of a sequence of NLP solutions approaching to it. We have established C-
stationarity of a limit point by using attributes of the NCP function involved (Theorem 4.1),
and M-stationarity by introducing additional assumptions on rank of the active gradients
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and on curvature of the reduced Hessian (Theorem 4.2). Further investigation from the
perspective of an inequality variant of this algorithm provides a reason to simplify the LPEC
when verifying B-stationarity of a limit point.

Finally, we discuss a few practical issues related to local minimizers of MPCCs which
are not S-stationary. It has been illustrated that the solutions of the NCP-based methods
(BA and MLF) usually provide MPCC multipliers that satisfy C-stationarity conditions at
a non-strongly stationary solution (Section 5.1). On the other hand, the REG method,
which is a typical regularization method, usually encounters unbounded NLP multipliers
and inaccurate convergence when approaching a non-strongly stationary solution (Section
5.2). This analysis shows some advantages of NCP-based methods to converge to MPCC
solutions that are not S-stationary.
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