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Abstract

This paper is concerned with a mean–variance portfolio optimization model
with cardinality constraint for generating high-quality lists of recommen-
dations. It is usually difficult to accurately estimate the rating covariance
matrix required for mean–variance portfolio optimization because of a short-
age of observed user ratings. To improve the accuracy of covariance ma-
trix estimation, we apply shrinkage estimation methods that compute the
weighted sum of the target and sample covariance matrices, and we propose
two types of target matrices that work well for shrinkage estimation of the
rating covariance matrix. Experimental results show that with appropriate
parameter tuning, our method can improve the quality of recommendation
lists produced by various collaborative filtering algorithms.

Keywords: recommendation, portfolio optimization, shrinkage estimation,
collaborative filtering, diversity

1. Introduction

1.1. Background

Dramatic advances in information and communication technology have
allowed us to browse and purchase a huge variety of items on e-commerce
websites, but users of those websites often find it very difficult to select an5
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appropriate item from the plethora of choices presented to them. Recom-
mender systems are aimed at resolving this problem of information overload
by providing a personalized list of items that are unknown but attractive to
each user (Adomavicius & Tuzhilin, 2005; Aggarwal et al., 2016; Bobadilla
et al., 2013). In fact, effective implementations of recommender systems can10

be found in various online services (Lu et al., 2015), such as Amazon (Linden
et al., 2003), Netflix (Bennett et al., 2007), Google News (Das et al., 2007),
and YouTube (Davidson et al., 2010).

One of the most successful technologies for recommender systems is col-
laborative filtering (Su & Khoshgoftaar, 2009), in which user-based neighbor-15

hood models give personalized recommendations to a target user by analyzing
the rating data of some other users whose preferences are similar to those
of the target user (Herlocker et al., 1999). Item-based neighborhood models
recommend items that are similar to a target item in terms of user rating
data (Sarwar et al., 2001), and matrix factorization techniques predict user20

ratings by calculating the inner product of user and item factor vectors (Ko-
ren et al., 2009). It has been shown that matrix factorization techniques
achieve good prediction accuracy in top-N recommendation tasks (Cremonesi
et al., 2010), and deep learning methods have also been applied recently in
research into recommender systems (Zhang et al., 2019).25

A major challenge in researching recommender systems is the difficulty
of evaluating the validity of recommendations (Herlocker et al., 2004). Al-
though most previous studies were focused on the prediction accuracy eval-
uated using observed rating data, the most accurate recommendations are
not always of the most use to users (McNee et al., 2006). More impor-30

tantly, recommender systems are required to generate a high-quality list
of recommendations (e.g., by top-N recommendation) rather than individ-
ual items, in consideration of various interaction effects among candidate
items (Adamopoulos, 2013). In the recommender-system community, rec-
ommendation diversity is recognized as a key evaluation metric (Vargas &35

Castells, 2011), and it has been shown that user satisfaction with recommen-
dation lists is positively correlated with the diversity of those recommenda-
tions (Ekstrand et al., 2014). In addition, some well-known recommender
algorithms that are likely to recommend items that are already popular can
lead to reduced sales diversity (Fleder & Hosanagar, 2009).40
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1.2. Related work
Several previous studies have considered the definition and evaluation

of diversity, its impact on recommendation quality, and the development
of diversification algorithms (Kaminskas & Bridge, 2016; Kunaver & Požrl,
2017; Logesh et al., 2020; Castells et al., 2022). Ziegler et al. (2005) dealt with45

decreasing the intra-list similarity of topics in recommendation lists. Lathia
et al. (2010) investigated temporal diversity of recommendations to avoid
repeatedly recommending the same items to a particular user. Kabutoya
et al. (2013) developed a probabilistic diversification model for increasing
the probability of recommending at least one relevant item to each user.50

Vargas et al. (2014) provided a binomial framework for defining the genre
diversity of recommendations.

Various diversification algorithms have been proposed for recommender
systems, including case-based reasoning systems (Smyth & McClave, 2001),
Markov chain models (Javari & Jalili, 2015), and matrix factorization tech-55

niques (Gogna & Majumdar, 2017). Adomavicius & Kwon (2012) considered
general-purpose item ranking algorithms that can generate diverse recom-
mendations while maintaining a comparable level of recommendation accu-
racy. Multi-objective optimization algorithms have also been used to account
for multiple objectives including diversity in recommender systems (Di Noia60

et al., 2017; Jambor & Wang, 2010; Ribeiro et al., 2015; Zheng & Wang,
2022).

Here, we address the application of financial portfolio theory (Elton et al.,
2009; Kolm et al., 2014) to recommender systems. This approach was intro-
duced into product portfolio decisions (Cardozo & Smith, 1983) and then65

applied to information retrieval (Wang & Zhu, 2009) and collaborative fil-
tering (Wang, 2009). Kwon (2008) focused on the variance of user ratings
for each item to increase the precision of top-N recommendation. Wang &
Zhu (2009) applied mean–variance portfolio analysis to document ranking
under uncertainty in information retrieval. Wang (2009) demonstrated that70

this ranking strategy based on mean–variance portfolio analysis can improve
the recommendation performance of collaborative filtering algorithms. Shi
et al. (2012) improved this ranking strategy by using the latent factor model
for user ratings. Zhang & Hurley (2008) and Hurley & Zhang (2011) for-
mulated several optimization models with cardinality constraint for selecting75

a list of diversified items, and they developed heuristic algorithms for the
resultant binary optimization problems. Xiao et al. (2020) used the portfo-
lio optimization model to recommend relevant services based on service risk
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facets.
As shown from the above, high-quality recommendation lists can be pro-80

duced by applying mean–variance portfolio optimization to recommender
systems. Indeed, previous studies (Wang, 2009; Zhang & Hurley, 2008; Hur-
ley & Zhang, 2011) have shown that the quality of recommendation lists (e.g.,
their accuracy, diversity, and novelty) can be improved by applying portfolio
optimization. However, the covariance matrix of user ratings is required for85

mean–variance portfolio optimization, but this is usually difficult to estimate
closely because of a shortage of observed user ratings, and inadequate accu-
racy of covariance matrix estimation is a barrier to improving the quality of
recommendation lists given by the associated portfolio optimization.

1.3. Our contribution90

The goal herein is to establish a computational framework for generat-
ing high-quality lists of recommendations based on cardinality-constrained
mean–variance portfolio optimization. To obtain a close estimate of the co-
variance matrix of user ratings, we make effective use of shrinkage estimation
techniques (Ledoit & Wolf, 2003, 2004; Chen et al., 2010), which allow us95

to improve the accuracy of covariance matrix estimation by computing the
weighted sum of the target and sample covariance matrices. We propose two
types of target matrices that work well for shrinkage estimation of the rating
covariance matrix: the first is a diagonal-entries-based target matrix given
by moderately shrinking off-diagonal entries of the sample covariance matrix100

to zero; the second is a matrix-completion-based target matrix defined by
computing a covariance matrix after imputing the missing ratings by means
of collaborative filtering algorithms.

To assess the efficacy of our method, we performed computational exper-
iments using two publicly available datasets of user ratings. We tested three105

collaborative filtering algorithms for rating prediction, namely, the user-based
neighborhood model, the item-based neighborhood model, and the nonneg-
ative matrix factorization model, then we evaluated the recommendation
quality in terms of the accuracy (F1 score), risk (variance), and diversity
of the recommendations. The experimental results for both datasets show110

that with appropriate parameter tuning, our portfolio optimization model
based on shrinkage estimation can enhance the quality of recommendation
lists produced by various collaborative filtering algorithms.
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2. Mean–variance portfolio optimization for recommendation

In this section, we present our mean–variance portfolio optimization model115

with cardinality constraint for selecting a list of recommendations for each
user. Our model is a combination of mean–variance portfolio analysis (Wang,
2009; Wang & Zhu, 2009) and the cardinality-constrained optimization model (Zhang
& Hurley, 2008; Hurley & Zhang, 2011) for recommendation.

2.1. User–item rating matrix120

Let U and I denote the sets of users and items, respectively. The user–
item rating matrix is defined as

R := (rui)(u,i)∈U×I ∈ R|U |×|I|,

where rui is the rating given by user u ∈ U to item i ∈ I. Note that this
matrix usually has a large number of missing entries. Let Q ⊆ U × I be the
set of user–item pairs with observed ratings, namely,

rui is

{
given if (u, i) ∈ Q,

missing otherwise.

A main purpose of recommender systems is to recommend items that
are undiscovered but preferred by each user. For this purpose, collaborative
filtering algorithms (e.g., user/item-based neighborhood models and matrix
factorization techniques) (Aggarwal et al., 2016) have been proposed for pre-
dicting unknown ratings rui for (u, i) ̸∈ Q. In the next subsection, we focus125

on the portfolio optimization problem for selecting a list of recommendations
for each user.

2.2. Objectives of portfolio optimization

Let x := (xi)i∈I ∈ {0, 1}|I| be a vector comprising binary decision vari-
ables for selecting recommendations; namely, xi = 1 if item i is recommended,
or xi = 0 otherwise. Following financial portfolio theory (Elton et al., 2009;
Kolm et al., 2014), we define Rui as a random variable representing an un-
known rating of user u ∈ U for item i ∈ I. We then define a user utility
function as the sum of user ratings for recommended items:

Ru(x) :=
∑
i∈I

Ruixi (u ∈ U).
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The first objective to be maximized in our portfolio optimization model
is the expectation of the user utility:

E[Ru(x)] = E

[∑
i∈I

Ruixi

]
=
∑
i∈I

µuixi (u ∈ U), (1)

where µui := E[Rui] is the expected rating of user u ∈ U for item i ∈ I. These
expected ratings can be predicted using collaborative filtering algorithms130

(i.e., µui ≈ r̂ui), where r̂ui is a rating predicted by a collaborative filtering
algorithm for (u, i) ̸∈ Q.

The second objective to be minimized for diversification of recommenda-
tions is the variance of the user utility:

Var[Ru(x)] = E
[
(Ru(x)− E[Ru(x)])

2]
= E

[(∑
i∈I

(Rui − µui)xi

)(∑
j∈I

(Ruj − µuj)xj

)]
=
∑
i∈I

∑
j∈I

σuijxixj (u ∈ U), (2)

where σuij := E[(Rui−µui)(Ruj−µuj)] is the covariance of the ratings of user
u ∈ U for a pair of items (i, j) ∈ I × I. However, it is virtually impossible
to estimate the rating covariance for each user u ∈ U because the number of
items rated by each user is limited. For this reason, we consider the rating
covariance matrix common to all users:

Σ := (σij)(i,j)∈I×I ∈ R|I|×|I|. (3)

2.3. Portfolio optimization model

Let Cu ⊆ {i ∈ I | (u, i) ̸∈ Q} be the set of candidate (unrated) items
to be recommended for a target user u ∈ U . We can now formulate our
cardinality-constrained mean–variance portfolio optimization model for se-
lecting N items for each user u ∈ U as

maximize (1− α)
∑
i∈Cu

r̂uixi − α
∑
i∈Cu

∑
j∈Cu

σijxixj (4)

subject to
∑
i∈Cu

xi = N, (5)

xi ∈ {0, 1} (i ∈ Cu), (6)

6



where α ∈ [0, 1] is a hyperparameter of the risk aversion. Eq. (4) is the
weighted sum for maximizing the expected utility (1) and minimizing the135

utility variance (2) based on the covariance matrix (3) for the target user
u ∈ U . Eq. (5) is the cardinality constraint for specifying the number of
recommended items. Eq. (6) lists binary decision variables for selecting rec-
ommendations.

This portfolio optimization model is a convex quadratic optimization140

problem with binary decision variables, which can be solved exactly using
optimization solvers. Note also that this optimization model with α = 0 is
consistent with the common top-N recommendation (Cremonesi et al., 2010),
which selects N items in descending order of predicted user ratings.

3. Shrinkage estimation of the rating covariance matrix145

In this section, we propose shrinkage estimation methods specialized for
estimating the rating covariance matrix (3).

3.1. Framework of shrinkage estimation

Let Uij be a set of users who rated both items i, j ∈ I. A sample estimate
of the covariance matrix (3) is then given by

S := (sij)(i,j)∈I×I ∈ R|I|×|I|, (7)

where

sij :=


1

|Uij|
∑
u∈Uij

(
rui − µ

(j)
i

)(
ruj − µ

(i)
j

)
if Uij ̸= ∅,

0 otherwise

((i, j) ∈ I × I),

µ
(j)
i :=

1

|Uij|
∑
u∈Uij

rui ((i, j) ∈ I × I).

However, because the rating matrix is usually very sparse, each sample size
(i.e., |Uij|) is often insufficient (or zero) for obtaining a close estimate of the150

covariance matrix.
To remedy this situation, we focus on the shrinkage estimation techniques

for covariance matrices (Ledoit &Wolf, 2003, 2004; Chen et al., 2010). Specif-
ically, we begin by defining a target covariance matrix:

F := (fij)(i,j)∈I×I ∈ R|I|×|I|.
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We then estimate the covariance matrix to be the weighted sum of the sample
and target covariance matrices:

Σ = (1− δ)S + δF , (8)

where δ ∈ [0, 1] is a hyperparameter of the shrinkage estimation. In what fol-
lows, we propose two types of target matrices that are effective for shrinkage
estimation of the rating covariance matrix.

3.2. Diagonal-entries-based target matrix155

Our first target matrix is given by moderately shrinking off-diagonal en-
tries of the sample covariance matrix to zero. This amounts to using the
target matrix defined by extracting diagonal entries from the sample covari-
ance matrix (7) as follows:

FDE := (fDE
ij )(i,j)∈I×I ∈ R|I|×|I|, (9)

where

fDE
ij :=

{
sij if i = j,

0 otherwise
((i, j) ∈ I × I).

The rating covariance matrix is then estimated by substituting the target
matrix F = FDE to the weighted sum (8).

3.3. Matrix-completion-based target matrix
Our second target matrix is defined by computing a covariance matrix

after completion of the rating matrix. Specifically, we first impute the miss-160

ing ratings rui for (u, i) ̸∈ Q by means of collaborative filtering algorithms,
thereby giving a complete version of the rating matrix without missing en-
tries.

By using this complete version of the rating matrix, we calculate the
target covariance matrix:

FMC := (fMC
ij )(i,j)∈I×I ∈ R|I|×|I|, (10)

where

fMC
ij :=

1

|U |
∑
u∈U

(rui − µi)(ruj − µj) ((i, j) ∈ I × I),

µi :=
1

|U |
∑
u∈U

rui (i ∈ I).

After that, the rating covariance matrix is estimated by substituting the
target matrix F = FMC to the weighted sum (8).165
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4. Experimental results

In this section, we report experimental results to assess the efficacy of our
method for generating a list of recommendations for each user.

4.1. Experimental design

We used two publicly available datasets of user ratings, namely, the170

MovieLens1 and BookCrossing2 datasets. The MovieLens 100K dataset con-
sists of 100 000 ratings (about 6.3% of all the user–item pairs) of 1682 movies
from 943 users on a scale of 1 to 5, with each user having rated 20 or more
movies. This dataset was randomly split into training (60%) and testing
(40%) datasets of observed ratings. The BookCrossing dataset consists of175

1 149 780 ratings of 271 379 books from 278 858 users on a scale of 0 to 10.
We deleted the implicit zero-valued ratings and then created 10 datasets by
randomly extracting 1000 users who had rated 20 or more books as in the
MovieLens dataset; each of those datasets (consisting on average of 56 206
ratings [about 0.20% of all the user–item pairs] of 28 701 books from 1000180

users) was then split randomly into training (60%) and testing (40%) datasets
of observed ratings. Note that the error bars in Figs. 4–6 represent the stan-
dard errors calculated in the 10 trials.

We used the following collaborative filtering algorithms for rating predic-
tion (Aggarwal et al., 2016):185

UserN: the user-based neighborhood model;

ItemN: the item-based neighborhood model;

NMF: the nonnegative matrix factorization model.

We implemented these algorithms using the Python Surprise library3 (Hug,
2020) for building and analyzing recommender systems. We used the Pearson190

correlation coefficient and the cosine similarity as similarity metrics for the
user- and item-based neighborhood models, respectively. For both neighbor-
hood models, we set the neighborhood size to five. For the matrix factoriza-
tion model, we set the number of factors to 100, the learning rate to 0.1, and
the regularization weight to 0.01.195

1https://grouplens.org/datasets/movielens/
2http://www2.informatik.uni-freiburg.de/~cziegler/BX/
3http://surpriselib.com/
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We evaluate the performance of the portfolio optimization model (4)–(6)
that uses the following methods for estimating the rating covariance matrix:

DiagEnt(α, δ): our shrinkage estimation method (8) using the diagonal-
entries-based target matrix (9);

MatComp(α, δ): our shrinkage estimation method (8) using the matrix-200

completion-based target matrix (10).

Here, α ∈ {−1.0,−0.8, . . . , 1.0} is the risk aversion parameter, and δ ∈
{0.00, 0.25, . . . , 1.00} is the matrix shrinkage parameter. Following previous
studies (Wang, 2009; Shi et al., 2012), we tested negative values of the risk
aversion parameter. Recall that α = 0 corresponds to the common top-N205

recommendation (Cremonesi et al., 2010), which selects N items in descend-
ing order of predicted user ratings. The binary optimization problem (4)–(6)
was solved using the optimization solver Gurobi Optimizer4. For the matrix-
completion-based method, missing ratings were imputed using the item-based
neighborhood model for collaborative filtering.210

In the experiments, we considered the task of top-N recommendation
with N = 5. To prevent a large increase in the computation time, we chose
the top 50 items in the predicted ratings for each user u ∈ U as a set of
candidate items (i.e., |Cu| = 50) from those that were not rated by user u in
the training dataset. Next, we solved the portfolio optimization model (4)–215

(6) to calculate INu := {i ∈ Cu | xi = 1}, a set of N items to be recommended
to user u.

Herein, we evaluate the recommendation quality in terms of the accuracy,
risk, and diversity of the recommendations. Let IRel

u be a set of relevant items
that are highly rated by each user u ∈ U in the testing dataset. Following220

Adomavicius & Kwon (2012), the relevant items are defined as those obtain-
ing ratings of not less than 3.5 and 7.0 in the MovieLens and BookCrossing
testing datasets, respectively.

The recommendation accuracy is evaluated by comparing the recom-
mended item set INu and the relevant item set IRel

u . We use the (average)
F1 score as a measure of recommendation accuracy:

F1 score :=
1

|U |
∑
u∈U

2 · Recallu · Precisionu

Recallu + Precisionu

, (11)

4https://www.gurobi.com/
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where the recall and precision for each user are defined as

Recallu :=
|INu ∩ IRel

u |
|IRel

u |
, Precisionu :=

|INu ∩ IRel
u |

|INu |
(u ∈ U).

We seek to maintain a certain level of recommendation accuracy for all users.
For this reason, we analyze the variance of the number of recommended
relevant items (i.e., |INu ∩ IRel

u |) as a risk measure of recommendations:

Variance :=
1

|U |
∑
u∈U

(|INu ∩ IRel
u | −m)2, (12)

where

m :=
1

|U |
∑
u∈U

|INu ∩ IRel
u |.

Finally, as did Adomavicius & Kwon (2012), we use the total number of
different recommended items across all users as a measure of recommendation
diversity:

Diversity :=

∣∣∣∣∣⋃
u∈U

INu

∣∣∣∣∣ . (13)

4.2. Results for the MovieLens dataset

Fig. 1 shows the F1 score (11) as a measure of recommendation accuracy225

for the MovieLens dataset. With both shrinkage estimation methods, the
F1 scores increased with the matrix shrinkage parameter δ, meaning that
our target covariance matrices were effective in improving the recommen-
dation accuracy. With δ = 1.0, the diagonal-entries-based method often
outperformed the matrix-completion-based method slightly in the F1 score.230

Moreover, the diagonal-entries-based method with δ = 1.0 for the risk aver-
sion parameter α ∈ {0.2, 0.4, 0.6, 0.8} often attained higher F1 scores than
those for the common top-N recommendation (α = 0).

Fig. 2 shows the variance (12) as a risk measure of recommendations
for the MovieLens dataset. With both shrinkage estimation methods, the235

variance tended to decrease with the risk aversion parameter α, and the as-
sociated decrease rate increased with decreasing matrix shrinkage parameter
δ. When α was positive, the matrix-completion-based method always at-
tained smaller variances than those for the common top-N recommendation
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(α = 0), whereas the diagonal-entries-based method with large δ sometimes240

failed to decrease the variance.
Fig. 3 shows the diversity (13) (i.e., the total number of different recom-

mended items) for the MovieLens dataset. With both shrinkage estimation
methods, the diversity increased sharply with decreasing matrix shrinkage
parameter δ.245

These results show that with appropriate parameter values (e.g., (α, δ) =
(0.4, 1.0)), our shrinkage estimation methods can improve both the F1 score
and variance simultaneously for the MovieLens dataset. Moreover, our meth-
ods can also improve the diversity with low values of the matrix shrinkage
parameter δ.250

4.3. Results for the BookCrossing dataset

Fig. 4 shows the F1 score (11) as a measure of recommendation accuracy
for the BookCrossing dataset. As in Fig. 1 for the MovieLens dataset, the
F1 scores with both shrinkage estimation methods increased with increasing
matrix shrinkage parameter δ. Notably, both methods with δ = 1.0 for pos-255

itive values of the risk aversion parameter α substantially outperformed the
common top-N recommendation (α = 0). Unlike in Fig. 1 for the Movie-
Lens dataset, the matrix-completion-based method slightly outperformed the
diagonal-entries-based method in the F1 score when δ = 1.0. Additionally,
the F1 score increased monotonically with the risk aversion parameter α only260

for the nonnegative matrix factorization model (NMF).
Fig. 5 shows the variance (12) as a risk measure of recommendations for

the BookCrossing dataset. As in Fig. 2 for the MovieLens dataset, both
shrinkage estimation methods with positive α often attained smaller vari-
ances than those for the common top-N recommendation (α = 0). When265

the risk aversion parameter α was positive, the variance decreased with de-
creasing δ for the diagonal-entries-based method and with increasing δ for the
matrix-completion-based method. The decrease in the variance was larger
with the matrix-completion-based method than with the diagonal-entries-
based method, and the variance decreased monotonically with the risk aver-270

sion parameter α only for the nonnegative matrix factorization model (NMF).
Fig. 6 shows the diversity (13) (i.e., the total number of different recom-

mended items) for the BookCrossing dataset. Unlike in Fig. 3 for the Movie-
Lens dataset, the diversity provided by both shrinkage estimation methods
increased monotonically with the risk aversion parameter α for the neighbor-275
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hood models (UserN and ItemN), whereas the increase in the diversity was
limited for the nonnegative matrix factorization model (NMF).

These results confirm that our shrinkage estimation methods with positive
values of the risk aversion parameter α can often improve the F1 score,
variance, and diversity simultaneously for the BookCrossing dataset.280

5. Conclusion

This paper presented a mean–variance portfolio optimization model with
cardinality constraint for generating a high-quality list of recommendations
for each user. This portfolio optimization model can be regarded as a combi-
nation of mean–variance portfolio analysis (Wang, 2009; Wang & Zhu, 2009)285

and the cardinality-constrained optimization model (Zhang & Hurley, 2008;
Hurley & Zhang, 2011) for recommendation. However, it is usually difficult to
accurately estimate the rating covariance matrix required for mean–variance
portfolio optimization because of a shortage of observed user ratings. To
improve the accuracy of covariance matrix estimation, we applied shrinkage290

estimation methods that compute the weighted sum of the target and sam-
ple covariance matrices. Moreover, we proposed two types of target matrices
that work well for shrinkage estimation of the rating covariance matrix.

We conducted computational experiments using the two publicly available
datasets of user ratings. For the MovieLens dataset, our method with appro-295

priate tuning of the risk aversion and matrix shrinkage parameters improved
both the F1 score and variance simultaneously, and it improved the diversity
with low values of the matrix shrinkage parameter. For the BookCrossing
dataset, our method with positive values of the risk aversion parameter often
improved the F1 score, variance, and diversity simultaneously. This study300

opens up new possibilities for applying financial portfolio theory to recom-
mender systems. Importantly, our method has the potential to improve the
recommendation quality of various collaborative filtering algorithms (e.g.,
user/item-based neighborhood models and matrix factorization techniques).

A future research direction will be to devise a method for estimating305

the rating covariance given that it differs from user to user. Other direc-
tions will be to design scalable algorithms (Bertsimas & Cory-Wright, 2022;
Kobayashi et al., 2021, 2023) for solving our cardinality-constrained portfolio
optimization problems for recommendation, and to improve the recommen-
dation quality further by exploiting implicit user feedback via clickstream310

data (Iwanaga et al., 2019).
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Kunaver, M., & Požrl, T. (2017). Diversity in recommender systems—A425

survey. Knowledge-Based Systems , 123 , 154–162. doi:10.1016/j.knosys.
2017.02.009.

Kwon, Y. (2008). Improving top-N recommendation techniques using rating
variance. In Proceedings of the 2008 ACM Conference on Recommender
Systems RecSys ’08 (p. 307–310). New York, NY, USA: Association for430

Computing Machinery. doi:10.1145/1454008.1454059.

Lathia, N., Hailes, S., Capra, L., & Amatriain, X. (2010). Temporal diversity
in recommender systems. In Proceedings of the 33rd International ACM
SIGIR Conference on Research and Development in Information Retrieval
(p. 210–217). New York, NY, USA: Association for Computing Machinery.435

doi:10.1145/1835449.1835486.

17

http://dx.doi.org/10.1007/978-3-642-37401-2_36
http://dx.doi.org/10.1145/2926720
http://dx.doi.org/10.1007/s10898-021-01048-5
http://dx.doi.org/10.1007/s10898-021-01048-5
http://dx.doi.org/10.1007/s10898-021-01048-5
http://dx.doi.org/10.1016/j.ejor.2023.01.037
http://dx.doi.org/10.1016/j.ejor.2013.10.060
http://dx.doi.org/10.1109/MC.2009.263
http://dx.doi.org/10.1016/j.knosys.2017.02.009
http://dx.doi.org/10.1016/j.knosys.2017.02.009
http://dx.doi.org/10.1016/j.knosys.2017.02.009
http://dx.doi.org/10.1145/1454008.1454059
http://dx.doi.org/10.1145/1835449.1835486


Ledoit, O., & Wolf, M. (2003). Improved estimation of the covariance matrix
of stock returns with an application to portfolio selection. Journal of
Empirical Finance, 10 , 603–621. doi:10.1016/S0927-5398(03)00007-0.

Ledoit, O., & Wolf, M. (2004). Honey, I shrunk the sample covariance matrix.440

The Journal of Portfolio Management , 30 , 110–119. doi:10.3905/jpm.
2004.110.

Linden, G., Smith, B., & York, J. (2003). Amazon.com recommendations:
Item-to-item collaborative filtering. IEEE Internet Computing , 7 , 76–80.
doi:10.1109/MIC.2003.1167344.445

Logesh, R., Subramaniyaswamy, V., Vijayakumar, V., Gao, X.-Z., & Wang,
G.-G. (2020). Hybrid bio-inspired user clustering for the generation of di-
versified recommendations. Neural Computing and Applications , 32 , 2487–
2506. doi:10.1007/s00521-019-04128-6.

Lu, J., Wu, D., Mao, M., Wang, W., & Zhang, G. (2015). Recommender450

system application developments: A survey. Decision Support Systems ,
74 , 12–32. doi:10.1016/j.dss.2015.03.008.

McNee, S. M., Riedl, J., & Konstan, J. A. (2006). Being accurate is not
enough: How accuracy metrics have hurt recommender systems. In CHI
’06 Extended Abstracts on Human Factors in Computing Systems CHI455

EA ’06 (p. 1097–1101). New York, NY, USA: Association for Computing
Machinery. doi:10.1145/1125451.1125659.

Ribeiro, M. T., Ziviani, N., Moura, E. S. D., Hata, I., Lacerda, A., & Veloso,
A. (2015). Multiobjective pareto-efficient approaches for recommender
systems. ACM Transactions on Intelligent Systems and Technology , 5 .460

doi:10.1145/2629350.

Sarwar, B., Karypis, G., Konstan, J., & Riedl, J. (2001). Item-based
collaborative filtering recommendation algorithms. In Proceedings of
the 10th International Conference on World Wide Web WWW ’01 (p.
285–295). New York, NY, USA: Association for Computing Machinery.465

doi:10.1145/371920.372071.

Shi, Y., Zhao, X., Wang, J., Larson, M., & Hanjalic, A. (2012). Adap-
tive diversification of recommendation results via latent factor portfo-
lio. In Proceedings of the 35th International ACM SIGIR Conference

18

http://dx.doi.org/10.1016/S0927-5398(03)00007-0
http://dx.doi.org/10.3905/jpm.2004.110
http://dx.doi.org/10.3905/jpm.2004.110
http://dx.doi.org/10.3905/jpm.2004.110
http://dx.doi.org/10.1109/MIC.2003.1167344
http://dx.doi.org/10.1007/s00521-019-04128-6
http://dx.doi.org/10.1016/j.dss.2015.03.008
http://dx.doi.org/10.1145/1125451.1125659
http://dx.doi.org/10.1145/2629350
http://dx.doi.org/10.1145/371920.372071


on Research and Development in Information Retrieval SIGIR ’12 (p.470

175–184). New York, NY, USA: Association for Computing Machinery.
doi:10.1145/2348283.2348310.

Smyth, B., & McClave, P. (2001). Similarity vs. diversity. In D. W. Aha, &
I. Watson (Eds.), Case-Based Reasoning Research and Development (pp.
347–361). Berlin, Heidelberg: Springer Berlin Heidelberg. doi:10.1007/475

3-540-44593-5_25.

Su, X., & Khoshgoftaar, T. M. (2009). A survey of collaborative filtering
techniques. Advances in Artificial Intelligence, 2009 . doi:10.1155/2009/
421425.

Vargas, S., Baltrunas, L., Karatzoglou, A., & Castells, P. (2014). Cover-480

age, redundancy and size-awareness in genre diversity for recommender
systems. In Proceedings of the 8th ACM Conference on Recommender
Systems RecSys ’14 (p. 209–216). New York, NY, USA: Association for
Computing Machinery. doi:10.1145/2645710.2645743.

Vargas, S., & Castells, P. (2011). Rank and relevance in novelty and diver-485

sity metrics for recommender systems. In Proceedings of the Fifth ACM
Conference on Recommender Systems RecSys ’11 (p. 109–116). New York,
NY, USA: Association for Computing Machinery. doi:10.1145/2043932.
2043955.

Wang, J. (2009). Mean-variance analysis: A new document ranking theory in490

information retrieval. In M. Boughanem, C. Berrut, J. Mothe, & C. Soule-
Dupuy (Eds.), Advances in Information Retrieval (pp. 4–16). Berlin, Hei-
delberg: Springer Berlin Heidelberg. doi:10.1007/978-3-642-00958-7_4.

Wang, J., & Zhu, J. (2009). Portfolio theory of information retrieval. In
Proceedings of the 32nd International ACM SIGIR Conference on Re-495

search and Development in Information Retrieval SIGIR ’09 (p. 115–122).
New York, NY, USA: Association for Computing Machinery. doi:10.1145/
1571941.1571963.

Xiao, Y., Pei, Q., Yao, L., & Wang, X. (2020). Recrisk: An enhanced
recommendation model with multi-facet risk control. Expert Systems with500

Applications , 158 , 113561. doi:10.1016/j.eswa.2020.113561.

19

http://dx.doi.org/10.1145/2348283.2348310
http://dx.doi.org/10.1007/3-540-44593-5_25
http://dx.doi.org/10.1007/3-540-44593-5_25
http://dx.doi.org/10.1007/3-540-44593-5_25
http://dx.doi.org/10.1155/2009/421425
http://dx.doi.org/10.1155/2009/421425
http://dx.doi.org/10.1155/2009/421425
http://dx.doi.org/10.1145/2645710.2645743
http://dx.doi.org/10.1145/2043932.2043955
http://dx.doi.org/10.1145/2043932.2043955
http://dx.doi.org/10.1145/2043932.2043955
http://dx.doi.org/10.1007/978-3-642-00958-7_4
http://dx.doi.org/10.1145/1571941.1571963
http://dx.doi.org/10.1145/1571941.1571963
http://dx.doi.org/10.1145/1571941.1571963
http://dx.doi.org/10.1016/j.eswa.2020.113561


Zhang, M., & Hurley, N. (2008). Avoiding monotony: Improving the diversity
of recommendation lists. In Proceedings of the 2008 ACM Conference on
Recommender Systems RecSys ’08 (p. 123–130). New York, NY, USA:
Association for Computing Machinery. doi:10.1145/1454008.1454030.505

Zhang, S., Yao, L., Sun, A., & Tay, Y. (2019). Deep learning based recom-
mender system: A survey and new perspectives. ACM Computing Surveys ,
52 . doi:10.1145/3285029.

Zheng, Y., & Wang, D. X. (2022). A survey of recommender systems
with multi-objective optimization. Neurocomputing , 474 , 141–153. doi:10.510

1016/j.neucom.2021.11.041.

Ziegler, C.-N., McNee, S. M., Konstan, J. A., & Lausen, G. (2005). Improving
recommendation lists through topic diversification. In Proceedings of the
14th International Conference on World Wide Web WWW ’05 (p. 22–32).
New York, NY, USA: Association for Computing Machinery. doi:10.1145/515

1060745.1060754.

20

http://dx.doi.org/10.1145/1454008.1454030
http://dx.doi.org/10.1145/3285029
http://dx.doi.org/10.1016/j.neucom.2021.11.041
http://dx.doi.org/10.1016/j.neucom.2021.11.041
http://dx.doi.org/10.1016/j.neucom.2021.11.041
http://dx.doi.org/10.1145/1060745.1060754
http://dx.doi.org/10.1145/1060745.1060754
http://dx.doi.org/10.1145/1060745.1060754


-1 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1

0.34

0.36

0.38

0.40

0.42

0.44

F1
 s

co
re

=0.00
=0.25
=0.50
=0.75
=1.00

(a) UserN, DiagEnt(α, δ)

-1 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1

0.34

0.36

0.38

0.40

0.42

0.44

F1
 s

co
re

=0.00
=0.25
=0.50
=0.75
=1.00

(b) UserN, MatComp(α, δ)

-1 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1

0.34

0.36

0.38

0.40

0.42

0.44

F1
 s

co
re

=0.00
=0.25
=0.50
=0.75
=1.00

(c) ItemN, DiagEnt(α, δ)

-1 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1

0.34

0.36

0.38

0.40

0.42

0.44

F1
 s

co
re

=0.00
=0.25
=0.50
=0.75
=1.00

(d) ItemN, MatComp(α, δ)

-1 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1

0.34

0.36

0.38

0.40

0.42

0.44

F1
 s

co
re

=0.00
=0.25
=0.50
=0.75
=1.00

(e) NMF, DiagEnt(α, δ)

-1 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1

0.34

0.36

0.38

0.40

0.42

0.44

F1
 s

co
re

=0.00
=0.25
=0.50
=0.75
=1.00

(f) NMF, MatComp(α, δ)

Figure 1: F1 score for the MovieLens dataset.
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Figure 2: Variance for the MovieLens dataset.
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Figure 3: Diversity for the MovieLens dataset.
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Figure 4: F1 score for the BookCrossing dataset.
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Figure 5: Variance for the BookCrossing dataset.
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Figure 6: Diversity for the BookCrossing dataset.
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