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The continuous-time service network design problem (CTSNDP) has wide applications in the field of

transportation, but it is complicated by travel time uncertainty resulting from unpredictable traffic

conditions. Incorporating uncertain travel times poses a significant challenge, as time-indexed mixed-integer

linear programming (MILP) formulations commonly used to solve the CTSNDP with deterministic travel

times become impractical. This is due to their inability to distinguish between decisions that rely on

travel times and those that do not. To tackle this challenge, we study a robust CTSNDP under travel

time uncertainty, aiming to design a transportation service network with reliable operational efficiency

even in the presence of travel time deviations. To incorporate the travel time uncertainty in a tractable

manner, we propose a novel consolidation-indexed MILP formulation for the deterministic CTSNDP,

eliminating the requirement for time indices. This enables us to derive MILP formulations for both a robust

optimization model and a robust satisficing model of the CTSNDP under travel time uncertainty. To solve

these formulations exactly, we have developed two tailored column-and-constraint generation methods. Our

computational results demonstrate the effectiveness of these solution methods and the tractability of the

proposed formulations. Furthermore, the robustness of the solutions obtained has also been verified, and the

trade-off between the robustness and its price has been highlighted.

Key words : service network design; continuous time; travel time uncertainty; robust optimization; robust

satisficing; exact algorithm; column-and-constraint generation

History : October 27, 2023

1. Introduction

In the transportation industry, a significant portion of the freight is moved by consolidation carriers,

including railroads, container shipping lines, less-than-truckload motor carriers, and regular and

express postal service providers. These consolidation carriers transport shipments that are small

compared to their vehicles’ capacities. As a result, they need to consolidate their shipments to

achieve cost-effectiveness, which poses a service network design problem (SNDP).
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The SNDP involves the routing of shipments of different quantities from their origins to their

destinations through a network of terminals, where shipments can be transferred from inbound

vehicles to outbound vehicles. Each shipment has an available time for departure from its origin

and a due time for arrival at its destination. To transport shipments between terminals, one or more

vehicles with limited capacities need to be used, incurring fixed costs on a per-vehicle basis and flow

costs on a per-shipment-quantity basis. At each terminal, when multiple shipments are consolidated,

the outbound vehicle carrying these shipments cannot be dispatched until all the inbound vehicles

bringing these shipments have arrived. Accordingly, a classic SNDP seeks to determine both the

routing and the consolidation plans of shipments, as well as the numbers and dispatch times of

vehicles on each terminal-to-terminal movement, so that the shipment available times and due times

are met. Its objective is to minimize the total operational cost, including both the fixed costs and

flow costs.

The classic SNDP and other variants of the SNDP have been extensively studied in the operations

research literature since the 1990s (Crainic and Rousseau 1986, Farvolden and Powell 1994), due to

their wide applications and theoretical significance. However, the existing studies primarily focus

on deterministic variants of the SNDP, assuming that all problem parameters, such as shipment

quantities and travel times, are known in advance. To model the deterministic variants of the

SNDP, a widely used technique is discretization, which involves discretizing the planning horizon

into a sufficient number of time points (see, for example, Pedersen et al. 2009, Andersen et al.

2009a,b, Wieberneit 2008, Andersen et al. 2011, Crainic et al. 2016). Using these time points, a

deterministic SNDP can be modeled on a time-expanded network, which consists of time-space

nodes and arcs connecting these nodes. Each time-space node represents a combination of a time

point and a terminal, while each arc between two time points represents a shipment’s movement

between terminals or its waiting at a terminal during a specific period.

The time-expanded network constructed from the discretization can be effectively used to

incorporate decisions involved in the SNDP. Specifically, one or more decision variables can be

defined for each shipment and for each arc between two time-space nodes, which can then be used

to represent shipments’ routing and consolidations, as well as to determine the numbers of vehicles,

their loads, and dispatch times for each terminal-to-terminal movement of the shipments. Based

on this approach, a mixed-integer linear programming (MILP) formulation can be established for

the SNDP. It is a time-indexed formulation, since the decision variables involved are indexed by

a pair of time points of the time-space nodes. The time-indexed MILP formulation can be solved

directly by commercial optimization solvers. It has received significant attention in the literature
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due to its potential extension to include additional management issues, such as asset repositioning,

multiple transportation modes, and transit time constraints (Andersen et al. 2009a, 2011, Crainic

et al. 2016, Scherr et al. 2019, Chouman and Crainic 2021, Zhu et al. 2014, Hellsten et al. 2021).

It is worth noting that the time-indexed MILP formulation is typically an approximation of

the SNDP, where the planning horizon is continuous and vehicles can be dispatched at any

time. The selection of an appropriate level of time discretization poses a challenge, as it directly

affects the quality of the obtained solutions. Achieving high-quality solutions often requires a

fine discretization, which, in turn, leads to a large and typically intractable time-indexed MILP

formulation of the SNDP.

To solve the continuous-time variant of the SNDP, or CTSNDP in short, Boland et al. (2017)

proposed a Dynamic Discretization Discovery (DDD) algorithm, which was further enhanced and

extended by Hewitt (2019), Marshall et al. (2021), and Shu et al. (2023). The DDD algorithm is

an exact solution algorithm for the CTSNDP that utilizes an iterative process to adjust the level

of discretization. Each iteration of this iterative process generates a new time-expanded network,

resulting in a different time-indexed MILP formulation being solved. It has been proven that the

solutions obtained through this iterative process converge to the optimal solution of the CTSNDP.

Note that the formulations and solution algorithms introduced above are applicable to only

deterministic variants of the SNDP. In contrast, the focus of our study is on the development

of an exact solution algorithm for a new variant of the CTSNDP that incorporates travel time

uncertainty. This is an under-explored and very challenging task that holds significant practical

value, as will be outlined in the following explanation.

1.1. Challenges to Incorporating Travel Time Uncertainty

The two primary sources of uncertainty encountered in practical applications of the SNDP are

travel times and shipment demands. The majority of existing studies that incorporate uncertainty

in the SNDP, however, focus solely on demand uncertainty. These studies typically use a stochastic

optimization approach (Lium et al. 2009, Hoff et al. 2010, Bai et al. 2014) or a robust optimization

approach (Wang and Qi 2020, Atamtürk and Zhang 2007, Koster et al. 2013) to optimize the service

network design for either the average performance or the worst-case performance, respectively.

When vehicles’ dispatch times are involved, all existing solution methods utilize the time-indexed

formulation of the deterministic SNDP to incorporate uncertain demands (Lium et al. 2009, Hoff

et al. 2010, Bai et al. 2014, Wang and Qi 2020). This is achievable because, even with the demand

uncertainty, all the decision variables to be optimized retain the same time indices as those in the

time-indexed formulation of the deterministic SNDP, although they need to be classified into two
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groups. The first group pertains to here-and-now decisions, such as the dispatch times of the vehicles,

which need to be decided on before having knowledge of the actual shipment demands. The second

group relates to wait-and-see decisions, such as the actual routing of the shipments, which are made

only after the actual shipment demands are known. Accordingly, the time-indexed formulation of the

deterministic SNDP can be directly extended to establish a two-stage optimization formulation for

the SNDP under demand uncertainty. At the first stage, the here-and-now decisions are optimized,

while at the second stage, which is also called the recourse stage, the wait-and-see decisions are

optimized based on the given here-and-now decisions and the revealed uncertain demands. Such

a two-stage optimization formulation is often computationally tractable, since there are several

known exact solution methods that can be applied, including the Benders decomposition method

(Thiele et al. 2009) and the column-and-constraint generation method (Zeng and Zhao 2013).

Despite its significance, travel time uncertainty has rarely been considered in the existing

literature on SNDP. Unlike uncertain demands, incorporating uncertain travel times poses a

significant challenge, since the time-indexed formulation of the deterministic SNDP becomes

impractical. In particular, here-and-now decisions that do not rely on travel times, such as the

numbers of vehicles required, should not be represented by time-indexed decision variables. For

wait-and-see decisions that rely on travel times, although they could be represented by time-indexed

decision variables, such variables would need to have different time indices for different realizations

of the uncertain travel times. For example, the actual departure times of the vehicles are among

such wait-and-see decisions, since no vehicle can depart until all its shipments arrive. As a result,

the time-indexed formulation of the deterministic SNDP cannot be directly utilized to establish a

tractable two-stage optimization formulation for the SNDP under travel time uncertainty. As we

will show in this paper, it is therefore advantageous to derive a new formulation of the deterministic

SNDP that does not involve time indices. By doing so, we can properly distinguish and represent

here-and-now decisions and wait-and-see decisions to establish a tractable two-stage optimization

formulation under travel time uncertainty.

In this paper, our focus is on studying the CTSNDP under travel time uncertainty, where

the planning horizon is continuous. Due to the impracticality of the time-indexed formulation

for the deterministic CTSNDP, exact solution methods like the DDD algorithm, which were

developed for the deterministic CTSNDP, cannot be applied to the CTSNDP under travel time

uncertainty. Moreover, while travel time uncertainty has been considered in many studies on other

transportation problems, such as the vehicle routing problem with time window (Hu et al. 2018,

Adulyasak and Jaillet 2016), shortest path problem (Chen et al. 2016, Hu et al. 2018), and traveling
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salesman problem (Chassein and Goerigk 2016, Zhang et al. 2021), the CTSNDP under travel time

uncertainty presents another unique challenge. Specifically, it must account for delays resulting

from the synchronization of multiple shipments that require consolidation for transportation. When

one of these shipments is delayed, it can cause delays for all the others waiting for consolidation

at a terminal. These delays can then propagate and cause additional delays for shipments at

other terminals. We refer to this phenomenon as consolidation delay propagation, which further

complicates the formulation and solution of the CTSNDP under travel time uncertainty.

1.2. Related Work

Despite its significant importance, travel time uncertainty has rarely been considered in existing

studies on the SNDP. Among the studies that do consider it, all have overlooked the consolidation

delay propagation caused by travel time uncertainty and consolidations (see, for example, Yao

et al. 2014, Zhao et al. 2018, Liang et al. 2019, Lanza et al. 2021), except for three studies (Demir

et al. 2016, Hrušovskỳ et al. 2018, Layeb et al. 2018). These three studies focus on a restricted

variant of the SNDP for intermodal transportation of energy-wares, in which transportation services

for shipment movements can only be selected from a small candidate set given in advance. In

these three studies, a stochastic optimization approach is adopted to incorporate travel time

uncertainty and optimize the average performance of the service network design. However, this

approach requires complete probability information about travel times, which is difficult to know in

advance. Furthermore, solving an optimum solution to a stochastic optimization model derived from

this approach can be very challenging, due to the vast number of decision variables and possible

realizations of uncertainty factors. As a result, the three aforementioned studies either apply an

approximation method based on limited samples of travel time realizations (Demir et al. 2016) or

some simulation-based heuristic methods (Hrušovskỳ et al. 2018, Layeb et al. 2018).

To the best of our knowledge, our study is the first to adopt a robust optimization approach to

study the CTSNDP under travel time uncertainty. Our goal is to design a transportation service

network that maintains reliable operational efficiency even under travel time deviations. The robust

optimization approach is known to only require a distribution-free uncertainty set that defines the

possible realizations of uncertainty factors (see, for example, Bertsimas and Sim 2004, Ben-Tal et al.

2009, and Bertsimas et al. 2011, for general theories and applications of robust optimization). It

relaxes the need for complete information about the probability of uncertain factors, and has an

optimization formulation that often has a tractable reformulation that can be efficiently solved to

an optimum. In the classic robust optimization approach, the objective is to optimize the worst-case

objective value of a solution over different realizations of uncertain factors. A recent study by Long
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et al. (2023) proposes a new approach, named the robust satisficing approach. This approach aims

to ensure a solution that best achieves a prescribed target of the objective value with the worst-case

normalized magnitude of the violation from the target being minimized. It has been demonstrated

to have the advantage of improving out-of-sample performance over the classic approach. Several

applications of the robust satisficing approach have been studied in operations management. Zhou

et al. (2022) propose a resource satisficing index that extends the criterion adopted in the robust

satisficing approach for the scheduling of patient admissions. Cui et al. (2023) apply the robust

satisficing approach in solving a two-stage resource pooling problem where the objective function

of the second-stage problem is supermodular and increasing. The robust CTSNDP studied in this

paper differs from these problems in the literature, as it is a two-stage optimization problem with

a second-stage objective function that is not necessarily supermodular. As a result, the solution

methods developed for the above problems are not applicable to the robust CTSNDP.

As demonstrated in the existing literature (see, for example, Ben-Tal et al. 2004, Bertsimas et al.

2011, Simchi-Levi et al. 2019), many robust optimization problems can be formulated as a two-stage

optimization model, including the SNDP with demand uncertainty (Wang and Qi 2020, Atamtürk

and Zhang 2007). In such a two-stage model, the first stage involves making here-and-now decisions

before uncertain factors are realized, while the second stage involves making wait-and-see decisions

after the uncertain factors are realized. It is known to be less conservative than a single-stage model

(Atamtürk and Zhang 2007).

To apply the robust optimization approach to the CTSNDP under travel time uncertainty,

we must first incorporate travel time uncertainty into the CTSNDP formulation. As discussed

in Section 1.1, this is a challenging task, as the time-indexed formulations commonly used for

the deterministic CTSNDP become impractical. The MILP formulations presented in Demir

et al. (2016) and Hrušovskỳ et al. (2018) for the SNDP in intermodal transportation of energy

commodities consist of decision variables with service indices, which are essentially time-indexed,

as services are defined by the departure and arrival terminals and times of the vehicles. In a recent

study, Hewitt and Lehuédé (2023) propose a new MILP formulation for the deterministic CTSNDP,

which eliminates the time indices in the decision variables. However, this new formulation requires a

set of all possible shipment combinations for consolidations. The number of decisions and constraints

is proportional to the number of shipment combinations, which can grow exponentially with the

number of shipments. As a result, this formulation can be very challenging to solve optimally for the

deterministic CTSNDP, let alone its extensions for problem variants with travel time uncertainty.

In contrast, this study presents a new compact formulation of the deterministic CTSNDP without

time indices, which can be extended to incorporate travel time uncertainties while ensuring the

tractability of the solution.
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1.3. Contributions of This Paper

In this study, we tackle the challenge of formulating and solving the robust CTSNDP under travel

time uncertainty. We first propose a novel MILP formulation for the deterministic CTSNDP that

eliminates the need for time indices. We then extend this formulation to derive a classic robust

optimization model and a robust satisficing model to incorporate travel time uncertainty. Both of

these two models involve two stages of optimization. In the first stage, here-and-now decisions,

including routing and consolidation of shipments, are optimized before actual travel times are

realized. In the second stage, wait-and-see decisions, including the actual departure schedules of the

vehicles, are optimized after the actual travel times are realized. Our models, being the first of their

kind in the literature, are based on polyhedral uncertainty sets. Their extensions to distributional

robustness and data-driven robustness will be explored in future research.

To solve the newly derived robust optimization model and robust satisficing model, we develop

two exact algorithms, respectively. Both algorithms follow a column-and-constraint generation

(C&CG) framework proposed by Zeng and Zhao (2013). This framework has been widely used to

solve two-stage robust optimization models for various problems (see, for example, Zeng and Zhao

2013, Wang and Qi 2020), but has rarely been applied to two-stage robust satisficing models. The

critical step in our C&CG algorithms is its solution to a subproblem that finds the worst-case

realized travel times for any given first-stage solution. For our robust optimization model, we can

formulate this subproblem as a mixed-integer linear program and solve it directly by an optimization

solver. However, for our robust satisficing model, the complexity of the subproblem increases,

necessitating our development of a novel bisection search procedure to solve it. Through extensive

computational experiments conducted on randomly generated instances of the CTSNDP under

travel time uncertainty, we have successfully demonstrated the tractability of our proposed models

and the effectiveness of our developed algorithms.

The major contributions of our study are summarized as follows:

• We have developed a new MILP formulation for the deterministic CTSNDP that does not

involve any time indices. Instead, this new formulation is defined by decision variables and

constraints with indices associated with shipment consolidations, being referred to as a

consolidation-indexed formulation. This not only enables us to derive tractable formulations

of the robust CTSNDP with travel time uncertainty, but also opens a new direction for future

study on the deterministic CTSNDP.

• We have derived a novel robust optimization model and a novel robust satisficing model for the

robust CTSNDP under travel time uncertainty, based on polyhedral uncertainty sets. To the
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best of our knowledge, these are the first such models of their kind. They have thus established

a strong modeling foundation for future research in this area.

• We have developed two tailored C&CG algorithms to solve the newly derived robust

optimization and robust satisficing models, respectively. To the best of our knowledge, these

are also the first such exact algorithms for the CTSNDP under travel time uncertainty.

Moreover, our paper is the first study that demonstrates the success of C&CG algorithms in

solving two-stage robust satisficing models with a polyhedral uncertainty set. The convergence

guarantee of this C&CG algorithm relies on a new bisection search procedure. These new

algorithms have great potential for future extensions to other optimization problems that

incorporate uncertainties.

• We have conducted extensive computational experiments over randomly generated instances

to access the proposed optimization models and solution algorithms for the robust CTSNDP

under travel time uncertainty, demonstrating their practical usefulness. The computational

results also confirm the robustness of the solutions obtained and highlight the trade-off between

such robustness and the price of robustness, providing useful insights for decision makers on

the utilization of our newly developed models and algorithms.

The remainder of this paper is organized as follows. In Section 2, we introduce problem statements

for the deterministic CTSNDP and the robust CTSNDP under travel time uncertainty. In Section 3,

we present our new MILP model for the deterministic CTSNDP, and extend it to derive the

robust optimization model and the robust satisficing model to incorporate travel time uncertainty.

In Section 4, we illustrate our tailored C&CG algorithms for the robust optimization model

and the robust satisficing model, respectively, and prove their correctness and convergence. The

computational results are discussed in Section 5, followed by our concluding remarks in Section 6.

All the proofs are presented in Appendix B.

2. Problem Statements

In this section, we first introduce the deterministic CTSNDP where travel times are given, and then

define two variants of the robust CTSNDP where travel times are uncertain. The notation used for

problem description and solution representation is summarized in Table A.1 in Appendix A.

2.1. Deterministic CTSNDP

The deterministic CTSNDP examined in this paper extends the problem setting in Boland et al.

(2017), with shipment holding costs being incorporated. Unlike Boland et al. (2017), we define its

feasible solutions over the physical network of the terminals, instead of the time-expanded network.
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Consider a network D = (N ,A) with a physical node set N and a directed arc set A, which is

referred to as the flat network. Each physical node represents a terminal, and each arc represents

a direct transport service from one terminal to another. Consider a commodity set K, where each

commodity k ∈K represents a shipment, with its origin denoted by ok ∈N , its destination denoted

by dk ∈N , and its shipping quantity denoted by qk ∈N>0. Each commodity k ∈K has an earliest

available time ek ∈ N for departure from its origin ok, and has a due time lk ∈ N>0 for arrival at

its destination dk. No commodity can be delivered separately, and thus each commodity can only

be assigned exactly one delivery path. As a result, each commodity must be picked up exactly

once from the origin after the earliest available time and delivered exactly once to the destination

before the due time. However, commodities can be temporarily stored at any nodes, waiting to be

consolidated for shipping together on different arcs of the network.

In the flat network D, each arc (i, j) ∈ A is associated with four attributes: (1) travel time

τij ∈N>0; (2) a per-unit-of-flow (travel) cost ckij ∈R>0 for each commodity k ∈ K; (3) a fixed cost

fij ∈ R>0 per vehicle for (shipping) service on the arc; and (4) a capacity uij ∈ N>0 per vehicle

for (shipping) service on the arc. Additionally, both in-transit and in-storage holding costs are

considered here for each commodity. In particular, the in-transit holding costs are incorporated

into the flow costs ckij for commodities k ∈ K and arcs (i, j) ∈ A. A per-unit-of-demand-and-time

in-storage holding cost hk ∈ R≥0 is incurred when a commodity k ∈ K is stored at any node. It is

worth noting that all the optimization models and solution methods derived in this paper can be

extended to cases where the per-unit-of-demand-and-time in-storage holding costs depend not only

on commodities k ∈ K but also on nodes i ∈ N , by replacing hk with hk
i . These cases include the

one where no holding cost is charged for each commodity at its destination.

The deterministic CTSNDP requires the deciding of delivery paths and consolidation plans for all

commodities, as well as the numbers and the dispatch times of the required vehicles. Its objective

is to satisfy all delivery requirements while keeping the total cost minimized.

A feasible solution to the deterministic CTSNDP consists of (i) a routing plan, (ii) a consolidation

plan, and (iii) a departure schedule, these being defined as follows. We call a directed path P in

the flat network D a flat path, which is represented by its node sequence (ν1, ν2, . . . , νm+1) and arc

sequence (a1, a2, . . . , am), with m∈N>0 denoting the total number of its arcs. As in actual practice,

the delivery path of each commodity cannot have repeated vertices or arcs, and thus must be an

elementary flat path from the origin to the destination of the commodity. Accordingly, a routing

plan P is defined as a collection of |K| elementary flat paths in the flat network D, with each

flat path P k ∈ P for k ∈ K representing the delivery path of commodity k from its origin ok to
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Figure 1 Examples of a flat network, a time-expanded network for 5 periods, and a consolidation-expanded

network for |K|= 2.
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destination dk, where the node and arc sequences of P k are denoted by (νk1 , ν
k
2 , . . . , ν

k
mk+1

) and

(ak1 , a
k
2 , . . . , a

k
mk), respectively, with ν

k
1 = ok and νk

mk+1
= dk, and with no repeated nodes or arcs.

Given a routing plan P as defined above, we need to specify how commodities are consolidated on

arcs of the flat network D. For each α∈A, let K(P, α) = {k ∈K | ∃akn = α,1≤ n≤mk} indicate the

subset of commodities whose flat paths in P pass through arc α. A consolidation on arc α for P can

then be represented by a subset of K(P, α), so that commodities in this subset are consolidated to be

shipped together on arc α, indicating how these commodities are transported on this arc for P. Since

each commodity cannot be delivered by separated paths of P, there are at most |K| consolidations
on each arc in any feasible solution of the deterministic CTSNDP. Accordingly, we can construct

a consolidation-expanded network that shares the same nodes with the flat network and duplicates

each arc in the flat network to create |K| consolidation traveling arcs. See Figure 1 for illustrative

examples of the flat network, the time-expanded network, and the consolidation-expanded network.

For each arc α ∈ A of the flat network D, consider each consolidation traveling arc α(r)

of the consolidation-expanded network that is duplicated from α, where r ∈ {1,2, . . . , |K|}. As

demonstrated in Figure 1(c), we associate each α(r) with Cα
r ⊆ K(P, α) to indicate the r-th

consolidation on arc α for the routing plan P, so that all the commodities in Cα
r are shipped through

arc α together. A consolidation plan C for P can thus be defined as a collection of consolidations

Cα
r ⊆ K(P, α) for α ∈ A and r ∈ {1,2, . . . , |K|}, where r is referred to as the consolidation index,

and each consolidation Cα
r can be empty. If the consolidations Cα

r for r= 1,2, . . . , |K| cover all the
commodities k ∈K(α) for each α ∈A, i.e.,

⋃|K|
r=1C

α
r =K(α) is satisfied for each α ∈A, then such a

routing-consolidation pair (P,C) forms a flat solution to the deterministic CTSNDP.
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Given a flat solution (P,C), we need to further specify the departure time of each commodity

from every node it passes through. Since each flat path in P is an elementary path, every commodity

can depart from the same node at most once. Accordingly, a departure schedule T is defined as

a collection of departure times tk
νkn

for k ∈K and n ∈ {1,2, . . . ,mk}, indicating when commodity k

departs from node νkn of its flat path P k. Thus, (P,C,T ) forms a feasible solution to the deterministic

CTSNDP if the departure schedule T satisfies that

tkνkn ≥ ek, for n= 1, (2.1)

tk
νkn+1

≥ tkνkn + τakn , for n∈ {1,2, . . . ,mk − 1}, (2.2)

tkνkn + τakn ≤ lk, for n=mk, (2.3)

tki = tk
′

i , for k ∈C(i,j)
r and k′ ∈C(i,j)

r with (i, j)∈A and r ∈ {1,2, · · · , |K|}. (2.4)

Here, for each commodity k ∈ K, constraints (2.1) and (2.3) together ensure that the departure

time from its origin and arrival time at its destination are both within the time window [ek, lk], and

constraints (2.2) are due to the travel times of arcs on its flat path. Constraints (2.4) ensure that

commodities consolidated on the same arc all pass the arc at the same time. A flat solution (P,C)
is timely-implementable, if there exists such a departure schedule T that satisfies (2.1)–(2.4).

From a feasible solution (P,C,T ), we can obtain holding times Hk
n for nodes νkn with n =

1,2, . . . ,mk +1 on the flat path P k of each commodity k ∈K:

Hk
n =


tk
νkn

− ek, for n= 1,

tk
νkn

− (tk
νkn−1

+ τakn−1
), for n∈ {2, . . . ,mk},

lk − (tk
νkn−1

+ τakn−1
), for n=mk +1.

Accordingly, the total cost of solution (P,C,T ) can be represented as follows:

∑
α∈A

|K|∑
r=1

fα⌈
∑

k∈Cα
r
qk

uα

⌉+
∑
k∈K

mk∑
n=1

ckaknq
k +

∑
k∈K

mk+1∑
n=1

hkqkHk
n,

where the first term is the total fixed cost of vehicles needed, the second term is the total flow cost,

and the third term is the total holding cost. It can be seen that the total fixed cost and flow cost

depend only on the flat solution (P,C), and the total holding cost depends only on the routing plan

P and the departure schedule T . Thus, we can define a function f(P,C) to represent the total fixed

cost and flow cost, and a function h(P,T ) to represent the total holding cost, where

f(P,C) =
∑
α∈A

|K|∑
r=1

fα⌈
∑

k∈Cα
r
qk

uα

⌉+
∑
k∈K

mk∑
n=1

ckaknq
k,

h(P,T ) =
∑
k∈K

mk+1∑
n=1

hkqkHk
n.
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Without loss of generality, we assume that for each commodity k ∈ K, the difference (lk − ek)

between its latest arrival time lk at the destination and available time ek at the origin is not

smaller than the length of the shortest-time path from ok to dk in the flat network D. This

assumption is sufficient to ensure the existence of a feasible solution to the deterministic CTSNDP.

The deterministic CTSNDP can thus be formulated as follows, where D indicates the domain of all

the feasible solutions.

(Deterministic CTSNDP) min
(P,C,T )∈D

[f(P,C)+h(P,T )].

2.2. Robust CTSNDP

We now introduce the robust CTSNDP under travel time uncertainty, which we refer to as the robust

CTSNDP for short. Suppose that for each arc α ∈ A, the actual travel time τ̃α for commodities

passing through α is determined by τ̃α = τα+ τ̂αδα. Here, τα ∈N>0 is the nominal value of τ̃α, and

τ̂α ∈ N0 with τ̂α < τα is the maximum deviation of τ̃α with respect to the nominal value τα. The

coefficient δα is a random variable (but with unknown distribution), and its value falls within the

range [−1,1]. Thus, τ̃α falls within the range [τα − τ̂α, τα + τ̂α].

For each α ∈ A, since there can be at most |K| consolidations on arc α, we use τ̃αr for r ∈

{1,2, . . . , |K|} to indicate the travel time of the r-th consolidation on arc α. Let U indicate the

support of the vector δ of random variables δαr for α∈A and r ∈ {1,2, ..., |K|}. We have that:

U=
{
δ : δαr ∈ [−1,1],∀α∈A, r ∈ {1,2, ..., |K|}

}
. (2.5)

Moreover, for each realized coefficient value δ ∈ U, we use τ̃ (δ) to indicate the vector of the

corresponding realized travel times (τα+ τ̂αδαr) for α∈A and r ∈ {1,2, ..., |K|}, which can be defined

as follows:

τ̃ (δ) =
{
τ̃ : τ̃αr = τα + τ̂αδαr,∀α∈A, r ∈ {1,2, ..., |K|}

}
. (2.6)

In the remainder of this paper, we will use the term scenario to refer to vector δ, and we will refer

to τ̃ (δ) as the realized travel time for scenario δ.

The decision process for the robust CTSNDP has two stages. In the first stage, which is before

actual values of the travel times are realized, the problem needs to determine a routing plan P and

a consolidation plan C that form a flat solution (P,C). Given (P,C), in the second stage, which is

after the actual values of the travel times are realized, the problem needs to determine an actual

departure schedule T . Accordingly, (P,C) is a here-and-now decision which is independent of the

realized travel times, and T is a wait-and-see decision which can adapt to the realized travel times.



13

Let us now consider the second stage of the robust CTSNDP. Given a flat solution (P,C)

determined in the first stage, and after actual travel times τ̃ (δ) with δ ∈U are realized, one needs to

determine an actual departure schedule T = (tk
νkn
)k∈K,1≤n≤mk , where each tk

νkn
indicates the departure

time of commodity k from node νkn on the flat path P k of P. For each commodity k ∈K and each

arc akn = (νkn, ν
k
n+1) of P k, since (P,C) is a flat solution, there exists r(k,n) ∈ {1,2, . . . , |K|} such

that the commodity k is contained in the consolidation C
akn
r(k,n) of C. This implies that the actual

travel time of commodity k on arc akn equals τ̃akn,r(k,n). Accordingly, the actual departure schedule

T needs to satisfy constraints (2.1) due to the earliest available time ek for k ∈K, constraints (2.4)

due to the consolidations, and constraints (2.7) below

tk
νkn+1

≥ tkνkn + τ̃akn,r(k,n), for k ∈K, n∈ {1,2, . . . ,mk − 1}, (2.7)

which are due to the actual travel times and are similar to the constraints (2.2) for k ∈K with τakn

replaced by τ̃akn,r(k,n). As a result, the domain of such actual departure schedules T is denoted by

T(P,C, τ̃ (δ)).

Moreover, due to the travel time uncertainty, it will be costly to satisfy the due time constraints

for every possible realization of the travel times. We therefore relax the due time constraints in the

second stage of the robust CTSNDP. However, to restrict the violations of the due time constraints,

we impose a penalty gk per unit of time for the delay of each commodity k’s arrival at its destination

dk. Let g(P,T ) indicate the total delay penalty for an actual departure schedule T with respect to

flat paths in P. We have that

g(P,T ) =
∑
k∈K

gk ·max{tk
νk
mk

+ τ̃ak
mk

,r(k,mk) − lk,0},

where (tk
νk
mk

+ τ̃ak
mk

,r(k,mk)) indicates the actual arrival time of commodity k at the destination

dk. Hence, under the realized travel times τ̃ (δ) with δ ∈ U, the corresponding second-stage cost,

including the holding costs and delay penalties, is determined by P and T and is equal to h(P,T )+

g(P,T ). Its minimum value, minT ∈T(P,C,τ̃ (δ)) [h(P,T )+g(P,T )]}, is referred to as the second-stage

cost of the robust CTSNDP under the scenario δ.

Remark 2.1 (Uncertainty Revelation) Drawing from the literature on two-stage robust

optimization problems (see, for example, Ben-Tal et al. 2004, Atamtürk and Zhang 2007, Yanıkoğlu

et al. 2019), our statement above for the second stage of the robust CTSNDP assumes that all

actual travel times are revealed before the departure schedule is determined. Nonetheless, in many

practical scenarios, the actual travel time of certain commodities’ transport through a particular
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arc cannot be revealed until the transport is completed. We refer to such an uncertainty revelation

mechanism as a dynamic uncertainty revelation. Later we will show that solutions derived from our

stated two-stage formulation of the robust CTSNDP can be adapted to situations under the dynamic

uncertainty revelation, without increasing the total cost.

Next, let us consider the first stage of the robust CTSNDP. Before the actual travel times are

realized, a flat solution (P,C) needs to be determined. As commonly required in practice, such a

flat solution (P,C) needs to form a feasible solution to the deterministic CTSNDP under a nominal

scenario, where travel times take their nominal values with no deviations. However, this cannot

be ensured by the constraints imposed in the second stage of the robust CTSNDP, where the due

time constraints are relaxed. As a result, we adopt a light robustness approach, originally proposed

by Fischetti and Monaci (2009) for robust optimization, to establish the first stage of the robust

CTSNDP. This approach requires that the first-stage decisions must be feasible to the deterministic

CTSNDP under the nominal travel times. Accordingly, the flat solution (P,C) to be determined in

the first stage of the robust CTSNDP must be timely-implementable under the nominal scenario. In

other words, there exists a departure schedule T̂ such that (P,C, T̂ ) forms a feasible solution to the

deterministic CTSNDP under the nominal travel times. We refer to such a flat solution (P,C) as a

nominal timely-implementable first-stage solution, and use F to indicate the domain of all nominal

timely-implementable first-stage solutions.

The robust CTSNDP aims to find a robust nominal timely-implementable first-stage solution

under the travel time uncertainty. In this study, we adopt two modeling frameworks, namely robust

optimization and robust sacrificing, to characterize the robustness of such solutions, which are

illustrated in Sections 2.2.1 and 2.2.2, respectively. In Section 2.2.3, we will explain how solutions

to our two-stage formulation of robust CTSNDP can be adapted to cases where uncertain travel

times are revealed dynamically.

2.2.1. Robust Optimization Variant of CTSNDP Given an integer Γ∈N, which is known

as the budget of uncertainty, we can use it to adjust the level of robustness as needed. To achieve

this, we define a budgeted uncertainty set U(Γ) as follows on the random scenario δ that determines

travel times:

U(Γ) =
{
δ : ∥δ∥1 ≤ Γ, δαr ∈ [−1,1],∀α∈A, r ∈ {1,2, ..., |K|}

}
. (2.8)

It contains all the possible realizations of δ such that ∥δ∥1, which equals
∑

α∈A,r∈{1,2,...,|K|} |δαr|

and represents the total relative deviation of the travel times τ̃ (δ) from their nominal values with

respect to their maximum deviations, does not exceed the given budget of uncertainty Γ.
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The robust optimization variant of the CTSNDP under travel time uncertainty (or RO-CTSNDP

in short) has an objective to minimize the worst-case total two-stage cost with respect to the

budgeted uncertainty set U(Γ) on δ. To achieve this, the RO-CTSNDP needs to determine a nominal

timely-implementable first-stage solution (P,C) ∈ F that minimizes the sum of the first-stage cost

(which is independent of the realization of δ) and the worst-case second-stage cost (which is over the

budgeted uncertainty set U(Γ) on δ). Accordingly, the RO-CTSNDP can be formulated as follows:

[RO-CTSNDP] min
(P,C)∈F

{f(P,C)+ max
δ∈U(Γ)

min
T ∈T(P,C,τ̃ (δ))

[h(P,T )+ g(P,T )]}.

2.2.2. Robust Satisficing Variant of CTSNDP We follow the modeling framework

proposed by Long et al. (2023) to establish the robust satisficing variant of the CTSNDP under

travel time uncertainty (or RS-CTSNDP in short). Let Z0 represent the optimal objective value of

the deterministic CTSNDP under nominal travel times. Given a prescribed target Z of the total

two-stage cost with Z ≥Z0, the RS-CTSNDP needs to determine a nominal timely-implementable

first-stage solution (P,C) ∈ F that best achieves the prescribed target Z, so that the worst-case

normalized magnitude of the deviation from the target of the total two-stage cost is minimized.

Accordingly, the RS-CTSNDP can be formulated as follows:

min
(P,C)∈F

{ρ∈R≥0 : f(P,C)+ min
T ∈T(P,C,τ̃ (δ))

[h(P,T )+ g(P,T )]−Z ≤ ρ∥δ∥1, ∀δ ∈U}.

Here, the constraints imposed on the first-stage solution (P,C) ∈ F restrict the deviation of the

total two-stage cost from the prescribed target Z to not exceed ρ∥δ∥1 for every possible scenario

δ in the uncertainty set U. As a result, ρ indicates the worst-case magnitude of the deviation from

the prescribed cost target, normalized by the total relative deviation ∥δ∥1 of the travel times. This

quantity measures the fragility of a given solution and needs to be minimized to attain robustness.

2.2.3. Adaption to Dynamic Uncertainty Revelation of Travel Times We will now

show that solutions to our two-stage formulation of the robust CTSNDP, where the second stage

assumes that all actual travel times are revealed before the actual departure schedule is determined,

can be adapted to cases under the dynamic uncertainty revelation.

Consider any first-stage solution (P,C) of a routing plan and a consolidation plan. Under dynamic

uncertainty revelation, the actual travel time of each consolidated shipment on an arc (i, j) ∈ A

is only revealed after its arrival at node j. One possible approach to determine the departure

schedule is to apply a reactive policy in which for each (i, j) ∈A, every consolidated shipment on

arc (i, j) departs from node i as soon as all the commodities for the shipment have arrived at node

i. Consequently, the departure times of consolidated shipments depend only on the actual travel
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times that have been realized in the previous part of their transport, and not on the future travel

times that are yet to be revealed.

Next, consider any possible scenario δ, which determines travel times τ̃ (δ). We are going to

show that the departure schedule obtained by the reactive policy introduced above achieves the

minimum second stage cost under δ. On the one hand, the reactive policy ensures that for each

arc (i, j) ∈ A, every consolidated shipment on arc (i, j) departs from node i as soon as all the

commodities for the shipment have arrived at node i, thus guaranteeing that all commodities

arrive at their destinations at the earliest possible time. Therefore, the total delay penalty must

be minimized. On the other hand, for each commodity k, let T̃k(P,C,δ) indicate the total travel

time of commodity k under (P,C) and δ. Under the reactive policy, it can be seen that the total

in-storage holding time equals max{lk − ek − T̃k(P,C,δ),0}, which achieves the minimum total

in-storage holding time. Thus, the reactive policy achieves a minimum total in-storage holding cost

that equals hkmax{lk − ek − T̃k(P,C,δ),0}.

Therefore, the departure schedule derived from the reactive policy achieves the minimum total

second-stage cost for each possible δ. Based on this, it is evident that solutions to the RO-CTSNDP

and the RS-CTSNDP can be adapted by the reactive policy to cases under the dynamic uncertainty

revelation without increasing their objective values.

Remark 2.2 (Node-Dependent Holding Costs) It is worth noting that when the

per-unit-of-demand-and-time in-storage holding costs depend not only on commodities k ∈ K but

also on nodes i∈N , the notation hk in h(P,T ) needs to be replaced with hk
i . As a result, although

optimization models and solution methods derived in this paper can be extended, the reactive

policy illustrated above may not guarantee to achieve the minimum total second-stage cost for each

possible δ. Nevertheless, by following the same argument above, the reactive policy still ensures

attainment of the minimum total second-stage cost for every possible δ, when the holding costs

hk
n for each commodity k ∈ K are equal to hk for all nodes n that are not the destination dk of

commodity k, and hk
n is less than or equal to hk if n= dk.

3. Optimization Models

In this section, we first propose a novel compact MILP model for the deterministic CTSNDP. It is

based on the consolidation-expanded network rather than the time-expanded network, and utilizes

consolidation indices rather than time indices. Leveraging this new model, we proceed to develop

two-stage mixed-integer nonlinear programming models (MINLP) for the two variants of the robust

CTSNDP, namely the RO-CTSNDP and the RS-CTSNDP. For both models, their second stage
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cost can be computed by solving a linear program (LP), enabling us to develop efficient solution

methods that will be presented later in Section 4. The notation used for various optimization models

is summarized in Table A.2 in Appendix A.

3.1. Consolidation-Indexed MILP Model for Deterministic CTSNDP

Our new MILP model for the deterministic CTSNDP utilizes consolidation indices instead of time

indices to define decision variables and formulate constraints related to consolidations.

According to the problem description in Section 2, a feasible solution to the deterministic

CTSNDP consists of a routing plan P, a consolidation plan C, and a departure schedule T . To

represent the routing plan P, we introduce a binary variable xk
ij for each (i, j) ∈ A and k ∈ K,

indicating whether commodity k ∈K passes through arc (i, j).

To represent the consolidation plan C, we first introduce a binary variable zkijr for each (i, j)∈A,

r ∈ {1,2, · · · , |K|}, and k ∈K, indicating whether the r-th consolidation C(i,j)
r on arc (i, j) contains

commodity k. We then introduce a non-negative integer variable yijr for each (i, j) ∈ A and r ∈
{1,2, · · · , |K|}, indicating the number of vehicles needed by consolidation C(i,j)

r of arc (i, j) to

accommodate the commodities in consolidation C(i,j)
r .

To represent the departure schedule T , we first introduce a non-negative continuous variable vkij

for each (i, j) ∈ A and k ∈ K, which indicates the time when commodity k departs from node i

when passing through arc (i, j). If commodity k does not pass through arc (i, j), then vkij equals 0.

We then introduce a non-negative continuous variable bijr for each (i, j)∈A and r ∈ {1,2, ..., |K|},
which represents the time when commodities of the r-th consolidation C(i,j)

r on arc (i, j) depart from

node i. We also introduce a non-negative continuous variable wk
i for i ∈N and k ∈K to represent

the holding time for commodity k at terminal i. It equals 0 if commodity k does not pass node i.

Accordingly, the deterministic CTSNDP can be represented by the following compact MILP

model, referred to as model DO, where M denotes a sufficiently large constant:

[DO] min
∑

(i,j)∈A

|K|∑
r=1

fij · yijr +
∑
k∈K

∑
(i,j)∈A

(ckijq
k) ·xk

ij +
∑
k∈K

∑
i∈N

(hkqk) ·wk
i (3.1)

s.t.
∑

(i,j)∈A

xk
ij −

∑
(j,i)∈A

xk
ji =

 1, i= ok,
−1, i= dk, ∀k ∈K, i∈N ,
0, otherwise,

(3.2)

∑
k∈K

qkzkijr ≤ uijyijr, ∀ (i, j)∈A, r ∈ {1,2, ..., |K|}, (3.3)∑
k∈K

qkzkijr ≥ uijyijr −uij +1, ∀ (i, j)∈A, r ∈ {1,2, ..., |K|}, (3.4)

|K|∑
r=1

zkijr = xk
ij, ∀ (i, j)∈A, k ∈K, (3.5)
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j:(j,i)∈A

(vkji + τjix
k
ji)≤

∑
j:(i,j)∈A

vkij, ∀ i∈N \{ok, dk}, k ∈K, (3.6)∑
j:(ok,j)∈A

vkokj ≥ ek, ∀ k ∈K, (3.7)

∑
j:(j,dk)∈A

(vkjdk + τjdkx
k
jdk)≤ lk, ∀ k ∈K, (3.8)

vkij ≤Mxk
ij, ∀ (i, j)∈A, k ∈K, (3.9)

vkij ≤ bijr +M(1− zkijr), ∀ (i, j)∈A, k ∈K, r ∈ {1,2, ..., |K|}, (3.10)

vkij ≥ bijr −M(1− zkijr), ∀ (i, j)∈A, k ∈K, r ∈ {1,2, ..., |K|}, (3.11)

wk
i =



∑
j:(i,j)∈A

vkij − ek, i= ok,

lk −
∑

j:(j,i)∈A
(vkji + τjix

k
ji), i= dk, ∀ i∈N ,∀ k ∈K,∑

j:(i,j)∈A
vkij −

∑
j:(j,i)∈A

(vkji + τjix
k
ji), otherwise,

(3.12)

xk
ij ∈ {0,1}, ∀ (i, j)∈A, k ∈K, (3.13)

yijr ∈N≥0, ∀ (i, j)∈A, r ∈ {1,2, ..., |K|}, (3.14)

zkijr ∈ {0,1}, ∀ (i, j)∈A, k ∈K, r ∈ {1,2, ..., |K|}, (3.15)

vkij ≥ 0, ∀ (i, j)∈A, k ∈K, (3.16)

bijr ≥ 0, ∀ (i, j)∈A, r ∈ {1,2, ..., |K|}, (3.17)

wk
i ≥ 0, ∀ i∈N , k ∈K. (3.18)

In model DO, the objective function (3.1) indicates the total cost to be minimized, which includes

three terms for the total fixed cost, total flow cost, and total holding cost, respectively. Constraints

(3.2)–(3.5) are imposed to define the routing and the consolidation plans. Specifically, constraints

(3.2) are flow balance constraints, ensuring that each commodity travels along one flat path from

its origin to its destination. Constraints (3.3) and (3.4) are capacity constraints. They ensure that

the total quantity of commodities in each consolidation of an arc does not exceed the total capacity

of the vehicles assigned to each consolidation of the arc, and restrict that yijr = ⌈(
∑

k∈K q
kzkijr)/uij⌉

for every (i, j) ∈A, r ∈ {1,2, ..., |K|}, which equals the number of vehicles needed by consolidation

C(i,j)
r of arc (i, j). Constraints (3.5) are consolidation coverage constraints, ensuring that for every

arc (i, j) on the flat path of commodity k ∈K, there exists a consolidation of arc (i, j) that contains

k. Constraints (3.6)–(3.11) are imposed to define the departure schedule. Specifically, constraints

(3.6)–(3.8) are imposed on commodities’ departure times with respect to the travel time of each arc,

as well as the earliest available time and the due time of each commodity. Constraints (3.9) ensure

that for each commodity, its departure time from each of its unvisited nodes is zero. Constraints
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(3.10) and (3.11) ensure that for each arc (i, j) ∈ A, the commodities that are consolidated to

be shipped together through (i, j) have the same departure time from node i. Constraints (3.12)

are imposed to define the holding time for each commodity k ∈ K and each node i ∈ N , based

on the departure schedule and the routing plan. The variables wk
i and constraints (3.12) clearly

show that the model DO can be extended to incorporate node-dependent holding costs. Constraints

(3.13)-(3.18) define the domains of all the decision variables.

For each feasible solution (x,y,z,v,b,w) of model DO, (x,y,z) corresponds to a flat solution

(P,C), and v corresponds to a departure schedule T that satisfies (2.1)–(2.4), which imply that

such (P,C,T ) forms a feasible solution to the deterministic CTSNDP. As far as we know, model DO

is the first compact MILP model of the deterministic CTSNDP that utilizes consolidation indices,

and thus, we refer to it as the consolidation-indexed MILP model of the deterministic CTSNDP.

3.2. Two-Stage MINLP Optimization Models for Robust CTSNDP

Our newly proposed model DO of the deterministic CTSNDP eliminates the need for time indices.

As a result, it can be extended to derive two-stage MINLP models for two variants of the robust

CTSNDP, namely the RO-CTSNDP and the RS-CTSNDP, so that the second stage cost can be

computed by solving a linear program.

According to the problem statements in Section 2, for both the two variants of the robust

CTSNDP, (x,z) of the first-stage decisions needs to ensure the existence of a departure schedule

that satisfies the constraints with respect to commodities’ earliest available times and due times

under the nominal scenario. For this, we need to introduce decision variables vkij and bijr to indicate

commodities’ departure times and consolidations’ departure times for the nominal scenario, similar

to the variables vkij and bijr of model DO. Moreover, in the second stage, constraints with respect

to the commodities’ due times are relaxed, but delay penalties are imposed. As a result, we need

to introduce an additional decision variable sk for each k ∈ K, indicating the delay of commodity

k’s arrival at its destination.

3.2.1. Robust Optimization Model According to the problem statement in Section 2.2.1,

the RO-CTSNDP can be formulated as the following two-stage MINLP, referred to as model RO,

where M denotes a sufficiently large constant:

[RO] min
∑

(i,j)∈A

|K|∑
r=1

fij · yijr +
∑
k∈K

∑
(i,j)∈A

(ckijq
k) ·xk

ij +FRP (x,z) (3.19)

s.t. (3.2)− (3.5), (3.13)− (3.15) (3.20)∑
j:(j,i)∈A

(vkji + τ jix
k
ji)≤

∑
j:(i,j)∈A

vkij, ∀ i∈N \{ok, dk}, k ∈K, (3.21)
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j:(ok,j)∈A

vkokj ≥ ek, ∀ k ∈K, (3.22)

∑
j:(j,dk)∈A

(vkjdk + τ jdkx
k
idk)≤ lk, ∀ k ∈K, (3.23)

vkij ≤Mxk
ij, ∀ (i, j)∈A, k ∈K, (3.24)

vkij ≤ bijr +M(1− zkijr), ∀ (i, j)∈A, k ∈K, r ∈ {1,2, ..., |K|}, (3.25)

vkij ≥ bijr −M(1− zkijr), ∀ (i, j)∈A, k ∈K, r ∈ {1,2, ..., |K|}, (3.26)

vkij ≥ 0, ∀ (i, j)∈A, k ∈K, (3.27)

bijr ≥ 0, ∀ (i, j)∈A, r ∈ {1,2, ..., |K|}. (3.28)

Here, FRP (x,z) indicates the worst-case second-stage cost and can be calculated by the following

max-min optimization model, which is referred to as model RP(x,z), where M1 denotes a

sufficiently large constant.

[RP(x,z)] FRP (x,z) = max
τ̃ (δ):δ∈U(Γ)

min
∑
k∈K

∑
i∈N

(hkqk) ·wk
i +

∑
k∈K

gk · sk (3.29)

s.t.
∑

j:(j,i)∈A

(vkji +

|K|∑
r=1

τ̃jirz
k
jir)≤

∑
j:(i,j)∈A

vkij, ∀ i∈N \{ok, dk}, k ∈K, (3.30)∑
j:(ok,j)∈A

vkokj ≥ ek, ∀ k ∈K, (3.31)

∑
j:(j,dk)∈A

(vkjdk +

|K|∑
r=1

τ̃jdkrz
k
jdkr)≤ lk + sk, ∀ k ∈K, (3.32)

vkij ≤M1x
k
ij, ∀ (i, j)∈A, k ∈K, (3.33)

vkij ≤ bijr +M1(1− zkijr), ∀ (i, j)∈A, k ∈K, r ∈ {1,2, ..., |K|}, (3.34)

vkij ≥ bijr −M1(1− zkijr), ∀ (i, j)∈A, k ∈K, r ∈ {1,2, ..., |K|}, (3.35)

wk
i ≥



∑
j:(i,j)∈A

vkij − ek, i= ok,

(lk + sk)−
∑

j:(j,i)∈A
(vkji +

|K|∑
r=1

τ̃jirz
k
jir), i= dk, ∀ i∈N ,∀ k ∈K,

∑
j:(i,j)∈A

vkij −
∑

j:(j,i)∈A
(vkji +

|K|∑
r=1

τ̃jirz
k
jir), otherwise,

(3.36)

vkij ≥ 0, ∀ (i, j)∈A, k ∈K, (3.37)

bijr ≥ 0, ∀ (i, j)∈A, r ∈ {1,2, ..., |K|}, (3.38)

wk
i ≥ 0, ∀i∈N , k ∈K, (3.39)

sk ≥ 0, ∀k ∈K. (3.40)
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The objective (3.19) of model RO is to minimize the sum of the deterministic first-stage cost and

the worst-case second-stage cost with respect to the uncertainty set U(Γ) on δ. The first-stage cost

includes the fixed costs and the flow costs shown in the first two terms of (3.19). The worst-case

second-stage cost is represented by FRP (x,z). In model RO, constraints in (3.20) are the same as

those of model DO imposed on (x,z). Constraints (3.21)–(3.28) are similar to (3.6)–(3.11), (3.16),

and (3.17) of model DO, with τji replaced by the nominal travel times τ ji. These constraints are

imposed to ensure the existence of a feasible departure schedule under the nominal scenario.

The max-min optimization model RP(x,z) is to compute the worst-case second-stage cost for

(x,z). Given any τ̃ (δ) with δ ∈ U(Γ), the inner minimization problem of RP(x,z) needs to

determine (v,b,w,s), with the objective of minimizing the second-stage cost that equals the sum

of the holding costs and delay penalties as shown in (3.29). Most of the constraints in the inner

minimization problem are the same as those of model DO imposed on (v,b,w), except (3.30), (3.32)

and (3.36). Compared with constraints (3.6), (3.8), and (3.12) of model DO, constraints (3.30),

(3.32), and (3.36) replace τjix
k
ji with

∑|K|
r=1 τ̃jirz

k
jir for each (j, i) ∈ A, as the latter indicates the

actual travel time of commodity k on arc (j, i) if k passes through (j, i). Moreover, the decision

variable sk for k ∈K is included in the right-hand sides of constraints (3.32) and (3.36), in order to

represent the delay in commodity k’s arrival at its destination.

Let FLP (x,z, τ̃ (δ)) denote the optimal objective value of the inner minimization problem of

model RP(x,z), which is the second-stage cost. This can be calculated by the following linear

program, which is referred to as model LP(x,z, τ̃ (δ)):

[LP(x,z, τ̃ (δ))] FLP (x,z, τ̃ (δ)) =min
∑
k∈K

∑
i∈N

(hkqk) ·wk
i +

∑
k∈K

gk · sk (3.41)

s.t. (3.30)− (3.40). (3.42)

3.2.2. Robust Satisficing Model According to the problem statement in Section 2.2.2, the

RS-CTSNDP can also be formulated as a two-stage MINLP, which is shown below and is referred

to as model RS:

[RS] min ρ (3.43)

s.t.
∑
k∈K

∑
(i,j)∈A

(ckijq
k) ·xk

ij +
∑

(i,j)∈A

|K|∑
r=1

fij · yijr +FLP (x,z, τ̃ (δ))−Z ≤ ρ∥δ∥1, ∀ δ ∈U, (3.44)

ρ≥ 0, (3.45)

(3.2)− (3.5), (3.13)− (3.15), (3.21)− (3.28). (3.46)
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Model RS aims to minimize ρ, which represents the worst-case magnitude of the deviation from

the prescribed cost target, normalized by the total relative deviation ∥δ∥1 of the travel times. Here,

FLP (x,z, τ̃ (δ)) is the optimal objective value of model LP(x,z, τ̃ (δ)) defined in (3.41) and (3.42),

indicating the second stage cost of (x,z) under any given τ̃ (δ) with δ in the uncertainty set U. In

model RS, constraints (3.44) specify that for every possible scenario δ, the deviation of the total

two-stage cost from the prescribed target Z cannot exceed ρ∥δ∥1. Constraint (3.45) defines the

domain of variable ρ. Other constraints in (3.46) are the same as those in model RO, as they are

imposed to ensure that (x,y,z) forms a nominal timely-implementable first-stage solution.

4. Exact Algorithms

In this section, we develop two solution algorithms to solve model RO and model RS, respectively.

They both follow a column-and-constraint generation (C&CG) framework proposed by Zeng and

Zhao (2013), which has been successfully utilized in solving two-stage robust optimization models

for diverse problem domains (see, for example, Zeng and Zhao 2013, Wang and Qi 2020).

For both model RO and model RS, we first reformulate them into a noncompact MILP,

incorporating variables and constraints for every possible scenario δ within their corresponding

uncertainty sets. This allows us to obtain a relaxation MILP for any subset of their uncertainty

sets. Our C&CG algorithms then solve such a relaxation MILP (referred to as a master problem)

in each iteration, with respect to a current subset of the uncertainty set. This provides both a lower

bound on the optimal objective value and a first-stage solution. From the first-stage solution, we can

further derive an upper bound on the optimal objective value. If the upper and lower bounds are

equal, the first-stage solution implies an optimal solution, and our C&CG algorithms terminate. If

not, we need to identify a new possible scenario δ and add it to the current subset of the uncertainty

set, so that the relaxation MILP is extended and strengthened with new decision variables and

constraints. Our C&CG algorithms then proceed to the next iteration.

The critical step of our C&CG algorithm is the solution to the subproblem. For model RO, as in

many existing studies, its subproblem can be formulated as an optimization model with a bi-linear

objective function. Accordingly, we can utilize an integral property of the budgeted uncertainty

set to reformulate the subproblem as an MILP model, and can then solve it directly using an

optimization solver.

For model RS, its subproblem requires fractional optimization and cannot be formulated either

as an optimization model with a bi-linear objective function or as an MILP model. To overcome

this challenge, we have developed an enhanced bisection search procedure. In each iteration of

the procedure, an MILP model is established and solved by an optimization solver. With this, we
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demonstrate for the first time in the literature that the C&CG solution framework can be applied

to solving a two-stage robust satisficing problem, which has promising potential for also solving

other similar problems.

In the remainder of this section, we are going to illustrate our C&CG algorithms for model RO

and model RS, respectively, and show their correctness and convergence. Additional information

regarding various acceleration strategies employed in our algorithm implementation is provided in

Appendix C.

4.1. C&CG Algorithm for Robust Optimization Model

Let X denote the domain of variables (x,y,z,v,b) defined by linear constraints (3.20)–(3.28). Let

Q(δ) denote the domain of variables (v,b,w,s) defined by linear constraints (3.30)–(3.40) under

the realized travel time τ̃ (δ) for scenario δ ∈ U(Γ). Accordingly, model RO proposed in Section

3.2.1 can be rewritten as the following noncompact MILP, referred to as model ROMILP:

[ROMILP] min
∑
k∈K

∑
(i,j)∈A

(ckijq
k) ·xk

ij +
∑

(i,j)∈A

|K|∑
r=1

fij · yijr +ϕ (4.1)

s.t. ϕ≥
∑
k∈K

∑
i∈N

(hkqk) ·wk(δ)
i +

∑
k∈K

gk · sk(δ), ∀ δ ∈U(Γ), (4.2)

(v(δ),b(δ),w(δ),s(δ))∈Q(δ), ∀ δ ∈U(Γ), (4.3)

(x,y,z,v,b)∈X . (4.4)

Here, ϕ is a newly introduced decision variable, and (v(δ),b(δ),w(δ),s(δ)) represents a vector of

second-stage decision variables associated with each possible scenario δ in U(Γ). Constraints (4.2)

and (4.3) ensure that ϕ equals the worst-case second-stage cost. As a result, solving the min-max-min

model RO is reduced to solving the above noncompact MILP model ROMILP.

Model ROMILP can be relaxed by replacing U(Γ) in constraints (4.2) and (4.3) with any of its

subsets Λ ⊆ U(Γ). The resulting relaxation is referred to as model ROMILP(Λ). The relaxation

can be strengthened by appending to Λ more possible scenarios δ in U(Γ). When Λ equals U(Γ),

model ROMILP(Λ) and model ROMILP are equivalent.

Accordingly, our C&CG algorithm for model RO, which is referred to as the RO-C&CG algorithm,

iteratively solves model ROMILP(Λ) to obtain a first-stage solution (x,y,z) and appends its

worst-case scenario δ to Λ, until (x,y,z) implies an optimal solution. With respect to model RO,

a scenario δ is a worst-case scenario, if under this value, the second-stage cost of (x,y,z) equals

the worst-case second-stage cost FRP (x,z).

We next illustrate our computation of the worst-case scenario δ for any first-stage solution

(x,y,z), and then provide details of our RO-C&CG algorithm for model RO.
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4.1.1. Computing the worst-case scenario δ For any first-stage solution (x,y,z), both

its worst-case second-stage cost FRP (x,z) and the corresponding worst-case scenario δ can be

determined by solving the max-min model defined by (3.29)–(3.40), which, however, is difficult

to solve directly. To overcome this difficulty, we need to reformulate the max-min model to an

equivalent maximization MILP model as illustrated below, which is much more tractable.

First, consider the inner minimization problem of the max-min model defined by (3.29)–(3.40)

under any given τ̃ (δ) with δ ∈U(Γ). It forms a linear program, as shown in model LP(x,z, τ̃ (δ)) in

(3.41)–(3.42). Lemma 4.1 below indicates that model LP(x,z, τ̃ (δ)) always has a feasible solution

for each (x,z) that satisfies constraints (3.20)–(3.28) of model RO and for each δ ∈ U(Γ), which

implies that the recourse of model RO is relatively complete.

Lemma 4.1 For any (x,z) that satisfies constraints (3.20)–(3.28) of model RO, and for any δ ∈

U(Γ), model LP(x,z, τ̃ (δ)) in (3.41)–(3.42) always has a feasible solution.

Next, for model LP(x,z, τ̃ ), let βk
i , γ

k, ψk, ηkij, θ
k
ijr, ξ

k
ijr, and λk

i denote the dual variables

associated with its constraints (3.30)–(3.36), respectively. By Lemma 4.1 and the strong duality

theorem, the optimal objective value of LP(x,z, τ̃ ) equals that of its dual linear program below,

which we refer to as model DLP(x,z, τ̃ ):

[DLP(x,z, τ̃ )] max
∑

(j,i)∈A

|K|∑
r=1

( ∑
k∈Ki

zkjir(β
k
i −λk

i )+
∑
k∈Kd

i

zkjir(ψ
k −λk

i )
)
· τ̃jir

−
∑
k∈K

∑
(i,j)∈A

(M1x
k
ij) · ηkij +

∑
k∈K

∑
(i,j)∈A

|K|∑
r=1

[M1(z
k
ijr − 1)] · (θkijr + ξkijr)

+
∑
k∈K

ek · (γk −λk
ok)+

∑
k∈K

lk · (λk
dk −ψk) (4.5)

s.t. βk
i −βk

j − ηkij −
|K|∑
r=1

θkijr +

|K|∑
r=1

ξkijr −λk
i +λk

j ≤ 0, ∀ k ∈K, (i, j)∈A, i ̸= ok, j ̸= dk, (4.6)

−βk
j + γk − ηkokj −

|K|∑
r=1

θkokjr +

|K|∑
r=1

ξkokjr −λk
ok +λk

j ≤ 0, ∀ k ∈K, (ok, j)∈A, j ̸= dk, (4.7)

βk
i −ψk − ηkidk −

|K|∑
r=1

θkidkr +

|K|∑
r=1

ξkidkr −λk
i +λk

dk ≤ 0, ∀ k ∈K, (i, dk)∈A, i ̸= ok, (4.8)

γk −ψk − ηkokdk −
|K|∑
r=1

θkokdkr +

|K|∑
r=1

ξkokdkr −λk
ok +λk

dk ≤ 0, ∀ k ∈K, (ok, dk)∈A, (4.9)∑
k∈K

θkijr −
∑
k∈K

ξkijr ≤ 0, ∀ (i, j)∈A, r ∈ {1,2, ..., |K|}, (4.10)



25

λk
i ≤ hkqk, ∀ i∈N , k ∈K, (4.11)

ψk −λk
dk ≤ gk, ∀ k ∈K, (4.12)

β≥ 0,γ ≥ 0,ψ≥ 0,η≥ 0,θ≥ 0,ξ≥ 0,λ≥ 0, (4.13)

where Ki = {k ∈K : i ̸= ok and i ̸= dk} and Kd
i = {k ∈K : i= dk}.

Accordingly, we can use model DLP(x,z, τ̃ ) to reformulate the inner minimization problem of the

max-min model RP(x,z) of FRP (x,z) defined by (3.29)–(3.40). This, together with the definitions

of τ̃ (δ) and U(Γ) in (2.6) and (2.8), implies that the max-min model RP(x,z) for FRP (x,z) can then

be reformulated to the following nonlinear optimization model with a bi-linear objective function:

FRP (x,z) =max
∑

(j,i)∈A

|K|∑
r=1

( ∑
k∈Ki

zkjir(β
k
i −λk

i )+
∑
k∈Kd

i

zkjir(ψ
k −λk

i )
)
· τ̃jir

−
∑
k∈K

∑
(i,j)∈A

(M1x
k
ij) · ηkij +

∑
k∈K

∑
(i,j)∈A

|K|∑
r=1

[M1(z
k
ijr − 1)] · (θkijr + ξkijr)

+
∑
k∈K

ek · (γk −λk
ok)+

∑
k∈K

lk · (λk
dk −ψk) (4.14)

s.t. (4.6)− (4.13), (4.15)

τ̃ijr = τ ij + τ̂ijδijr, ∀ (i, j)∈A, r ∈ {1,2, ..., |K|}, (4.16)

−1≤ δijr ≤ 1, ∀ (i, j)∈A, r ∈ {1,2, ..., |K|}, (4.17)∑
(i,j)∈A

|K|∑
r=1

|δijr| ≤ Γ. (4.18)

Proposition 4.1 below indicates that the domain of each variable δijr can be restricted to {−1,0,1}

without changing the optimal objective value of the nonlinear optimization model above.

Proposition 4.1 There exists an optimal solution to the nonlinear optimization model defined in

(4.14)–(4.18) such that δijr ∈ {−1,0,1} for each (i, j)∈A and r ∈ {1,2, ..., |K|}.

Based on Proposition 4.1, we can now derive an MILP reformulation for FRP (x,z), which is

presented as follows in Proposition 4.2.

Proposition 4.2 The max-min model RP(x,z) defined by (3.29)–(3.40) for FRP (x,z) can be

equivalently written as the following maximization MILP model:

FRP (x,z) =max
∑

(j,i)∈A

|K|∑
r=1

φjir −
∑
k∈K

∑
(i,j)∈A

(M1x
k
ij) · ηkij
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+
∑
k∈K

∑
(i,j)∈A

|K|∑
r=1

[M1(z
k
ijr − 1)] · (θkijr + ξkijr)

+
∑
k∈K

ek · (γk −λk
ok)+

∑
k∈K

lk · (λk
dk −ψk) (4.19)

s.t. (4.6) – (4.13), (4.20)

ζijr,−1 + ζijr,0 + ζijr,1 = 1, ∀ (i, j)∈A, r ∈ {1,2, ..., |K|}, (4.21)( ∑
k∈Ki

zkjir(β
k
i −λk

i )+
∑
k∈Kd

i

zkjir(ψ
k −λk

i )
)
τ̃jir,ℓ −M2(1− ζjir,ℓ)≤φjir

≤
( ∑

k∈Ki

zkjir(β
k
i −λk

i )+
∑
k∈Kd

i

zkjir(ψ
k −λk

i )
)
τ̃jir,ℓ +M2(1− ζjir,ℓ),

∀ (j, i)∈A, r ∈ {1,2, ..., |K|}, ℓ∈ {−1,0,1}, (4.22)∑
(i,j)∈A

|K|∑
r=1

(ζijr,−1 + ζijr,1)≤ Γ. (4.23)

ζijr,ℓ ∈ {0,1}, ∀ (i, j)∈A, r ∈ {1,2, ..., |K|}, ℓ∈ {−1,0,1}. (4.24)

An optimum solution to the maximization MILP model in Proposition 4.2 can be solved directly

by an optimization solver. The objective value of the optimal solution obtained provides the

worst-case second-stage cost FRP (x,z). The values of variables ζijr,−1 and ζijr,1 in the optimal

solution for (i, j) ∈ A and r ∈ {1, ..., |K|} can be used to compute the corresponding worst-case

scenario δ, as shown below:

δijr =−ζijr,−1 + ζijr,1, ∀ (i, j)∈A, r ∈ {1, ..., |K|}. (4.25)

4.1.2. Algorithm Details In each iteration n, where n= 1,2, · · · , our RO-C&CG algorithm

first solves model ROMILP(Λ), which is referred to as the master problem, for a particular subset Λ

of U(Γ). Let (x̂, ŷ, ẑ, ϕ) indicate the optimal solution obtained for the master problem. Accordingly,

(x̂, ŷ, ẑ) forms a nominal timely-implementable first-stage solution to model RO. For the first-stage

solution (x̂, ŷ, ẑ), our RO-C&CG algorithm then solves the corresponding maximization MILP

model defined by (4.19)–(4.24), which is referred to as the subproblem, to compute the worst-case

second stage cost FRP (x̂, ẑ) and to identify the corresponding worst-case scenario δ(n). Since

ROMILP(Λ) is a relaxation of model RO, its optimal objective value obtained is a lower bound

on the optimal objective value of model RO. Since (x,y,z) forms a nominal timely-implementable

first-stage solution to model RO, the sum of its first-stage total cost (
∑

k∈K
∑

(i,j)∈A(c
k
ijq

k) · x̂k
ij +∑

(i,j)∈A
∑|K|

r=1 fij · ŷijr) and its second stage total cost FRP (x̂, ẑ) provides an upper bound on the

optimal objective value of model RO.
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If the lower bound equals the upper bound, then model RO is solved to optimum, and our

RO-C&CG algorithm terminates with an optimal solution given by (x̂, ŷ, ẑ). Otherwise, it appends

the identified worst-case scenario δ(n) to the subset Λ. As a result, model ROMILP(Λ) of the master

problem is extended and strengthened with new decision variables (v(δ),b(δ),w(δ),s(δ)) and their

new constraints in (4.2)-(4.3). Our RO-C&CG algorithm then proceeds to the next iteration.

Here, we provide a summary of our RO-C&CG algorithm in Algorithm 1, along with its

correctness and convergence in Theorem 4.1.

Algorithm 1 RO-C&CG Algorithm for Solving Model RO

1. Initially, set n to 1, and set the subset Λ of U(Γ) to {0}.
2. Solve the master problem, i.e., model ROMILP(Λ), to obtain its optimal objective value

denoted by LB and its optimal solution denoted by (x̂, ŷ, ẑ, ϕ).

3. Solve the subproblem, i.e., the maximization MILP model defined by (4.19)–(4.24) for (x̂, ẑ),

to obtain its optimal objective value that equals FRP (x̂, ẑ), and to compute a worst-case

scenario δ(n) of δ according to (4.25). Let UB denote the sum of (
∑

k∈K
∑

(i,j)∈A(c
k
ijq

k) · x̂k
ij +∑

(i,j)∈A
∑|K|

r=1 fij · ŷijr) and FRP (x̂, ẑ).

4. If LB =UB, then the algorithm terminates and returns an optimal solution given by (x̂, ŷ, ẑ).

Otherwise, update Λ=Λ
⋃
{δ(n)}, update n= n+1, and go to Step 2 for the next iteration.

Theorem 4.1 Algorithm 1 terminates in a finite number of iterations and returns an optimal

solution for model RO.

4.2. C&CG Algorithm for Robust Satisficing Model

For the sake of clarity, for any given first-stage solution (x,y,z) we define F1(x,y) as follows to

represent its first-stage total cost:

F1(x,y) =
∑
k∈K

∑
(i,j)∈A

(ckijq
k) ·xk

ij +
∑

(i,j)∈A

|K|∑
r=1

fij · yijr (4.26)

For any possible scenario δ ∈U, FLP (x,z, τ̃ (δ)) defined in (3.41)-(3.42) represents the second-stage

cost of any first-stage solution (x,y,z) under δ. Accordingly, model RS proposed in Section 3.2.2

can be rewritten as the following noncompact MILP, referred to as model RSMILP:

[RSMILP] min ρ

s.t. F1(x,y)+
∑
k∈K

∑
i∈N

(hkqk) ·wk(δ)
i +

∑
k∈K

gk · sk(δ) −Z ≤ ρ∥δ∥1, ∀ δ ∈U, (4.27)

(v(δ),b(δ),w(δ),s(δ))∈Q(δ), ∀ δ ∈U, (4.28)

ρ≥ 0, (x,y,z,v,b)∈X .
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Here, (v(δ),b(δ),w(δ),s(δ)) represents a vector of second-stage decision variables associated with

each possible scenario δ in U, similar to those in model ROMILP. Constraints (4.27) and (4.28)

ensure that the deviation of the total two-stage cost from the prescribed target Z does not exceed

ρ∥δ∥1 for every possible scenario δ ∈ U. As a result, solving model RS is reduced to solving the

above noncompact MILP model RSMILP.

Model RSMILP can also be relaxed by replacing U in constraints (4.27) and (4.28) with any

of its subsets Λ⊆U. The resulting relaxation is referred to as model RSMILP(Λ). The relaxation

can also be strengthened by appending to Λ more possible scenarios δ in U. When Λ equals U,

model RSMILP(Λ) and model RSMILP are equivalent.

Accordingly, similar to the RO-C&CG algorithm for model RO, our C&CG algorithm for

model RS, which is referred to as the RS-C&CG algorithm, iteratively solves model RSMILP(Λ)

to obtain a first-stage solution (x,y,z) and append the corresponding worst-case scenario δ to Λ,

until (x,y,z) implies an optimal solution.

However, compared with the RO-C&CG algorithm for model RO, the RS-C&CG algorithm for

model RS faces a more significant challenge in computing a worst-case scenario δ in each iteration.

This is mainly because such a worst-case scenario δ with respect to model RS (to be defined later)

is different from that with respect to model RO, and computing it requires fractional optimization,

which is complicated. To tackle this challenge, we develop a bisection search procedure, which is

illustrated below and is followed by the details of our RS-C&CG algorithm for model RS.

4.2.1. Computing the worst-case scenario δ by enhanced bisection search Consider

any given first-stage solution (x,y,z). For any possible scenario δ ∈ U, the ratio (F1(x,y) +

FLP (x,z, τ̃ (δ))−Z)/∥δ∥1 represents a normalized cost deviation from the prescribed target under

scenario δ. For simplicity of the presentation, here we slightly abuse the notation to define that

σ/∥0∥1 = 0 for σ= 0, σ/∥0∥1 =+∞ for σ > 0, and σ/∥0∥1 =−∞ for σ < 0. Accordingly, constraints

(4.27) and (4.28) in model RSMILP imply that the normalized cost deviation with respect to the

prescribed target Z cannot exceed ρ for all δ ∈U.

The maximum value of the normalized cost deviation over all δ ∈U is defined as the worst-case

normalized cost deviation of (x,y,z), and the corresponding δ that leads to the ratio achieving the

maximum value is referred to as the worst-case scenario for (x,y,z), with respect to model RS.

Computing such a worst-case scenario δ can be formulated as the following fractional optimization

model, which is referred to as model FO(x,y,z):

[FO(x,y,z)] max
δ∈U

F1(x,y)+FLP (x,z, τ̃ (δ))−Z
∥δ∥1

. (4.29)
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To solve model FO(x,y,z), we develop an enhanced bisection search procedure as follows. Let

ρ∗(x,y,z) indicate the optimal objective value of model FO(x,y,z). Our enhanced bisection search

procedure starts with a lower bound ρl and an upper bound ρh on the value of ρ∗(x,y,z). In each

iteration, it first evaluates whether the middle point ρ̂ = (ρl + ρu)/2 is larger than ρ∗(x,y,z), or

not. If ρ̂ is larger than ρ∗(x,y,z), the upper bound ρh is decreased to ρ̂. Otherwise, the lower bound

ρl is increased to ρ̂. It then further enhances the lower bound ρl so that the enhanced ρl equals the

normalized cost deviation under some δ. The procedure terminates if ρl is proved to be equal to

ρ∗(x,y,z); otherwise, it proceeds to the next iteration.

Given any guessed value ρ̂, consider the following optimization model, which does not involve

fractional optimization and whose optimal objective value is denoted by G(x,y,z, ρ̂):

G(x,y,z, ρ̂) =max
δ∈U

F1(x,y)+FLP (x,z, τ̃ (δ))−Z − ρ̂∥δ∥1. (4.30)

Lemma 4.2 below indicates that one can determine whether ρ̂ is less than, greater than, or equal

to ρ∗(x,y,z) by evaluating the value of G(x,y,z, ρ̂). It also implies that ρ̂ is proved to be equal to

ρ∗(x,y,z) if G(x,y,z, ρ̂) = 0.

Lemma 4.2 If G(x,y,z, ρ̂) > 0, then ρ̂ < ρ∗(x,y,z). Otherwise, if G(x,y,z, ρ̂) ≤ 0, then ρ̂ ≥
ρ∗(x,y,z). If G(x,y,z, ρ̂) = 0, then ρ̂= ρ∗(x,y,z).

Recall that FLP (x,z, τ̃ (δ)) is defined by a linear program, which, according to Lemma 4.1 always

has a feasible solution. Similar to our reformulation of FRP(x,z), we can replace the LP formulation

of FLP (x,z, τ̃ (δ)) with its dual to reformulate the model defined in (4.30) for G(x,y,z, ρ̂) as the

following nonlinear optimization model in (4.31)–(4.34), and further reformulate it as an MILP.

G(x,y,z, ρ̂) = max F1(x,y)+
[ ∑
(j,i)∈A

|K|∑
r=1

(
∑
k∈Ki

zkjir(β
k
i −λk

i )+
∑
k∈Kd

i

zkjir(ψ
k −λk

i )) · τ̃jir

−
∑
k∈K

∑
(i,j)∈A

(M1x
k
ij) · ηkij +

∑
k∈K

∑
(i,j)∈A

|K|∑
r=1

[M1(z
k
ijr − 1)] · (θkijr + ξkijr)

+
∑
k∈K

ek · (γk −λk
ok)+

∑
k∈K

lk · (λk
dk −ψk)

]
−Z −

∑
(i,j)∈A

|K|∑
r=1

ρ̂|δijr| (4.31)

s.t. (4.6)− (4.13) (4.32)

τ̃ijr = τ ij + τ̂ijδijr, ∀ (i, j)∈A, r ∈ {1,2, ..., |K|}, (4.33)

−1≤ δijr ≤ 1, ∀ (i, j)∈A, r ∈ {1,2, ..., |K|}. (4.34)

To achieve this, we first need to establish Proposition 4.3 below, which states that the domain of

each variable δijr can be restricted to {−1,0,1} without changing the optimal objective value of



30

the nonlinear optimization model above. We can then establish Proposition 4.2 to obtain the MILP

reformulation for G(x,y,z, ρ̂).

Proposition 4.3 There exists an optimal solution to the nonlinear optimization model defined in

(4.31)–(4.34) such that δijr ∈ {−1,0,1} for each (i, j)∈A and r ∈ {1,2, ..., |K|}.

Proposition 4.4 The nonlinear model defined in (4.30) for G(x,y,z, ρ̂) can be equivalently written

as the following MILP:

max F1(x,y)−Z +
∑

(j,i)∈A

|K|∑
r=1

φ̂jir −
∑
k∈K

∑
(i,j)∈A

(M1x
k
ij) · ηkij +

∑
k∈K

∑
(i,j)∈A

|K|∑
r=1

[M1(z
k
ijr − 1)] · (θkijr + ξkijr)

+
∑
k∈K

ek · (γk −λk
ok)+

∑
k∈K

lk · (λk
dk −ψk) (4.35)

s.t. (4.6)− (4.13), (4.36)

ζ̂ijr,−1 + ζ̂ijr,1 + ζ̂ijr,0 = 1, ∀ (i, j)∈A, r ∈ {1,2, ..., |K|}, (4.37)( ∑
k∈Ki

zkjir(β
k
i −λk

i )+
∑
k∈Kd

i

zkjir(ψ
k −λk

i )
)
τ̃jir,ℓ − ρ̂|ℓ| −M3(1− ζ̂jir,ℓ)≤ φ̂jir

≤
( ∑

k∈Ki

zkjir(β
k
i −λk

i )+
∑
k∈Kd

i

zkjir(ψ
k −λk

i )
)
τ̃jir,ℓ − ρ̂|ℓ|+M3(1− ζ̂jir,ℓ),

∀ (j, i)∈A, r ∈ {1,2, ..., |K|}, ℓ∈ {−1,0,1}, (4.38)

ζ̂ijr,ℓ ∈ {0,1}, ∀ (i, j)∈A, r ∈ {1,2, ..., |K|}, ℓ∈ {−1,0,1}. (4.39)

As shown below, similar to our MILP reformulation of FRP (x,z) shown in Proposition 4.2, we

can also utilize the values of variables ζ̂ijr,−1 and ζ̂ijr,1, for (i, j) ∈ A and r ∈ {1, ..., |K|}, in the

optimal solution of the MILP formulation in Proposition 4.4, to further compute the corresponding

worst-case scenario δ:

δijr =−ζ̂ijr,−1 + ζ̂ijr,1, ∀ (i, j)∈A, r ∈ {1, ..., |K|}. (4.40)

Next, we can establish Lemma 4.3 below, which enables us to set the initial values for the lower

bound ρl and the upper bound ρh on ρ∗(x,y,z) in our enhanced bisection search procedure.

Lemma 4.3

1. If F1(x,y)+FLP (x,z, τ̃ (0))−Z > 0, then ρ∗(x,y,z) =+∞;

2. Otherwise, (F1(x,y) + FLP (x,z, τ̃ (δl)) − Z)/∥δl∥1 ≤ ρ∗(x,y,z) for each δl ∈ U \ {0}, and

ρ∗(x,y,z)≤max{0,F1(x,y)+maxδ∈U{FLP (x,z, τ̃ (δ))}−Z}.
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Since FLP (x,z, τ̃ (δ)) is defined by a linear program, it can be obtained directly by an optimization

solver. Model maxδ∈U{FLP (x,z, τ̃ (δ))} is equivalent to FRP (x,z) defined in (3.29)–(3.40) with

U(Γ) being relaxed to U (i.e., with Γ =+∞), which can be transformed to an MILP as shown in

(4.19)–(4.24). Thus, it can also be solved by an optimization solver.

According to Lemma 4.3, if (F1(x,y)+FLP (x,z, τ̃ (0))−Z)> 0, then the worst-case normalized

cost deviation ρ∗(x,y,z) = +∞ and 0 is the worst-case scenario for (x,y,z). Otherwise, we

know that (F1(x,y) + FLP (x,z, τ̃ (0)) − Z)/∥δ∥1 for any δ ∈ U \ {0} and max{0,F1(x,y) +

maxδ∈U{FLP (x,z, τ̃ (δ))} − Z} provide a lower bound and an upper bound on the worst-case

normalized cost deviation ρ∗(x,y,z), respectively.

Moreover, consider any given lower bound ρl, which is known to not exceed ρ∗(x,y,z). Let δ(ρl)

indicate the realization of δ, derived by (4.40) from the optimal solution to model G(x,y,z, ρl)

defined in (4.35)–(4.39). Define ρ′l below to indicate the normalized cost deviation under δ(ρl)

ρ′l =
F1(x,y)+FLP (x,z, τ̃ (δ(ρl)))−Z

∥δ(ρl)∥1
. (4.41)

Lemma 4.4 below indicates that if ρl is a lower bound on ρ∗(x,y,z), then ρ′l is a lower bound on

ρ∗(x,y,z) that is greater than or equal to ρl. As a result, in each iteration of our enhanced bisection

search procedure, the lower bound ρl is enhanced to ρ′l.

Lemma 4.4 If ρl ≤ ρ∗(x,y,z), then ρ′l defined in (4.41) satisfies that ρl ≤ ρ′l ≤ ρ∗(x,y,z).

Below, we provide a summary of our enhanced bisection search procedure for any given first-stage

solution (x,y,z) in Algorithm 2, along with its correctness and convergence in Theorem 4.2.

Algorithm 2 An Enhanced Bisection Search Procedure for Any Given (x,y,z)

1. If (F1(x,y) +FLP (x,z, τ̃ (0))−Z)> 0, return +∞ as the value of the worst-case normalized

cost deviation of ρ∗(x,y,z), and 0 as the worst-case scenario for (x,y,z).

2. Initially, choose any δl ∈ U \ {0}, set ρl = (F1(x,y) + FLP (x,z, τ̃ (δl)) − Z)/∥δl∥1, and set

ρh =max{0,F1(x,y)+maxδ∈U{FLP (x,z, τ̃ (δ))}−Z}.

3. Set ρ̂= (ρh + ρl)/2, solve the maximization MILP model defined in (4.35)–(4.39) to compute

G(x,y,z, ρ̂).

4. If G(x,y,z, ρ̂) > 0, increase ρl to ρ̂, and if G(x,y,z, ρ̂) < 0, decrease ρh to ρ̂. Then go to

Step 5. However, if G(x,y,z, ρ̂) = 0, increase ρl to ρ̂, derive the scenario δ(ρl) from the optimal

solution to the model by (4.40), and then go to Step 6.
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5. Enhancement: Solve the maximization MILP model defined in (4.35)–(4.39) to compute

G(x,y,z, ρl), derive the scenario δ(ρl) from the optimal solution to the model by (4.40), and

compute ρ′l from δ(ρl) by (4.41). If G(x,y,z, ρl) = 0, then go to Step 6. Otherwise, set ρl to

ρ′l, and go to Step 3 for the next iteration.

6. Return ρl as the worst-case normalized cost deviation ρ∗(x,y,z), and return δ(ρl) as the

worst-case scenario for (x,y,z).

Theorem 4.2 Consider any given feasible first-stage decisions (x,y,z).

1. Algorithm 2 is guaranteed to terminate within a finite number of iterations, with the value of

ρ∗(x,y,z) and a worst-case scenario δ for (x,y,z) returned.

2. Let ρ
(0)
l and ρ

(0)
h denote the initial values of ρl and ρh assigned in Step 3 of Algorithm 2. Then,

for any ϵ > 0, after ⌈log2((ρ
(0)
h − ρ

(0)
l )/ϵ)⌉ iterations of Steps 3–6, Algorithm 2 obtains a lower

bound ρl on ρ∗(x,y,z) and a scenario δ(ρl) ∈ U, satisfying that ρl ≤ ρ∗(x,y,z) ≤ ρl + ϵ and

that F1(x,y)+FLP (x,z, τ̃ (δ(ρl)))−Z ≥ ρl∥δ(ρl)∥1.

Theorem 4.2 indicates that the enhanced bisection search procedure in Algorithm 2 is an exact

algorithm that solves model FO(x,y,z) within a finite number of iterations. Theorem 4.2 also

implies that Algorithm 2 solves model FO(x,y,z) to an accuracy ϵ > 0 within ⌈log2((ρ
(0)
h −ρ(0)l )/ϵ)⌉

iterations. As a result, if one terminates Algorithm 2 after ⌈log2((ρ
(0)
h − ρ

(0)
l )/ϵ)⌉ iterations, the

latest values of ρl and δ(ρl) can be obtained as output. These values guarantee that ρl and ρl + ϵ

respectively provide a lower bound and an upper bound on the worst-case normalized cost deviation

ρ∗(x,y,z), and that constraint (4.27) is violated by (x,y,z) under δ(ρl) for all ρ< ρl.

It is also worth noting that Step 5 is essential to guarantee that Algorithm 2 solves model

FO(x,y,z) within a finite number of iterations. Without the enhancement in Step 5, Algorithm 2

functions as a standard bisection search procedure. In this standard procedure, valid lower and

upper bounds of ρ∗(x,y,z) can be obtained with their gap smaller than a given tolerance ϵ > 0

within a finite number of iterations. However, this standard bisection search procedure does not

guarantee to produce the exact value of ρ∗(x,y,z) within a finite number of iterations. Alternatively,

one can apply only Step 5 of Algorithm 2, but iteratively, to acquire the exact value of ρ∗(x,y,z)

within a finite number of iterations. However, this approach does not ensure producing a valid upper

bound on ρ∗(x,y,z) until the exact value of ρ∗(x,y,z) is reached. To overcome these limitations,

we introduce the utilization of Step 5 in Algorithm 2 to enhance the standard bisection search

procedure. As a result, our enhanced standard bisection search procedure guarantees to produce
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valid lower and upper bounds of ρ∗(x,y,z) in each iteration, as stated in the second statement

of Theorem 4.2. It also ensures producing the exact value of ρ∗(x,y,z) within a finite number of

iterations, as stated in the first statement of Theorem 4.2.

4.2.2. Algorithm Details Our RS-C&CG algorithm also follows the C&CG framework. In

each iteration n, where n = 1,2, · · · , it first solves model RSMILP(Λ) as the master problem

for a particular subset Λ of U. Let (x̂, ŷ, ẑ, ϕ) indicate the optimal solution obtained for the

master problem. Accordingly, (x̂, ŷ, ẑ) forms a nominal timely-implementable first-stage solution to

model RS. For the first-stage solution (x̂, ŷ, ẑ), our RS-C&CG algorithm then applies the enhanced

bisection search procedure in Algorithm 2 to solve the fractional optimization model FO(x,y,z) as

the subproblem, and obtain the worst-case normalized cost deviation ρ∗(x,y,z), denoted by ρ(n),

as well as the corresponding worst-case scenario, denoted by δ(n). Since RSMILP(Λ) is a relaxation

of model RS, its optimal objective value obtained is a lower bound on the optimal objective value of

model RS. Since (x,y,z) forms a nominal timely-implementable first-stage solution to model RS,

it can be seen that the positive part of the worst-case normalized cost deviation, denoted by

max{0, ρ(n)}, provides an upper bound on the optimal objective value of model RS.

If the lower bound equals the upper bound, then model RS is solved to optimum, and our

RS-C&CG algorithm terminates with an optimal solution given by (x̂, ŷ, ẑ). Otherwise, it appends

the identified scenario δ(n) to the subset Λ. As a result, model RSMILP(Λ) of the master problem

is extended and strengthened with new decision variables (v(δ),b(δ),w(δ),s(δ)) and their new

constraints in (4.27)- (4.28). Our RS-C&CG algorithm then proceeds to the next iteration.

Here, we provide a summary of our RS-C&CG algorithm in Algorithm 3, along with its correctness

and convergence in Theorem 4.3.

Algorithm 3 RS-C&CG Algorithm for Solving Model RS

1. Initially, set the iteration number n to 1, and set the subset Λ of U to {0}.

2. Solve the master problem, i.e., model RSMILP(Λ), to obtain its optimal objective value

denoted by LB and its optimal solution denoted by (x̂, ŷ, ẑ, ϕ).

3. Apply the enhanced bisection search procedure in Algorithm 2 to solve the subproblem

FO(x̂, ŷ, ẑ), so as to obtain the worst-case normalized cost deviation ρ∗(x̂, ŷ, ẑ), denoted by

ρ(n), and to obtain the corresponding worst-case scenario, denoted by δ(n). Let UB denote

max{0, ρ(n)}.

4. If LB =UB, then the algorithm terminates and returns an optimal solution given by (x̂, ŷ, ẑ).

Otherwise, update Λ=Λ
⋃
{δ(n)}, update n= n+1, and go to Step 2 for the next iteration.
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Theorem 4.3 Algorithm 3 terminates in a finite number of iterations and returns an optimal

solution to model RS.

5. Computational Experiments

We performed two sets of computational experiments using instances randomly generated in

accordance with the approach outlined in Section 5.1.

• The first set of experiments aimed to assess the performance of our exact algorithms in solving

model RO and model RS of the robust CTSNDP with uncertain travel times. Results of the

first set of experiments, reported in Section 5.2, demonstrate the effectiveness of our exact

algorithms and tractability of our proposed formulations.

• The second set of experiments aimed to evaluate the quality of the solutions obtained from

model RO and model RS with different parameters defining the uncertainty sets, by comparing

their total costs in the nominal scenario, as well as their total costs in the worst-case scenario

and on average over randomly generated scenarios. Results of the second set of experiments,

reported in Section 5.3, demonstrate the robustness of the solutions obtained from model RO

and model RS, along with their corresponding prices of robustness.

We implemented our RO-C&CG algorithm for model RO and RS-C&CG algorithm for model RS

in Java, utilizing the Gurobi solver (v.10.0.2) to solve the corresponding master problems and

subproblems. All experiments were conducted on a 64-bit Windows 10 operating system, using a

PC equipped with an Intel(R) Core(TM) i7-8700 CPU clocked at 3.20 GHz and 64 GB RAM.

5.1. Instance Generation and Parameter Setting

For our experiments, we generated test instances of the robust CTSNDP based on the 7 instance

classes (named R4-R10) of the fixed-charge capacitated multi-commodity network design (CMND)

problem available in the literature (Ghamlouche et al. 2003). These classes of CMND instances

have been utilized in previous studies to generate test instances for various stochastic capacitated

fixed charge network design problems (Crainic et al. 2011, Sarayloo et al. 2021a,b). As summarized

in columns |N |, |A|, and |K| of Table 5.1, the sizes of the node set N , arc set A, and commodity set

K vary from 10 to 20, from 60 to 120, and from 10 to 50, respectively, among instances belonging

to different classes.

For each CMND instance of the 7 classes, we first generated fixed costs and time attributes

(including nominal travel times, commodities’ earliest available times, and due times) of the

CTSNDP following an approach similar to that presented in Boland et al. (2017). We then generated
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Table 5.1 Computational Performance of RO-C&CG and RS-C&CG Algorithms.

Class |N | |A| |K|

RO-C&CG RS-C&CG

opt% g% T
Im%

opt% g% T
Im%

mean max mean max
R4 10 60 10 100.0 0.0 0.2 6.4 29.7 100.0 0.0 0.3 37.8 100.0
R5 10 60 25 100.0 0.0 7.3 7.2 28.1 100.0 0.0 8.1 46.7 100.0
R6 10 60 50 73.3 0.4 9672.7 6.5 21.5 66.7 13.7 11520.1 46.1 85.5
R7 10 82 10 100.0 0.0 0.4 9.7 25.8 100.0 0.0 0.4 22.2 100.0
R8 10 83 25 100.0 0.0 11.7 11.8 23.1 100.0 0.0 12.3 48.7 85.4
R9 10 83 50 86.7 0.1 7117.9 6.9 11.9 100.0 0.0 1530.5 37.4 82.2
R10 20 120 40 100.0 0.0 489.5 9.0 26.7 90.0 0.5 4402.3 52.1 91.9
Mean 94.3 0.1 2471.4 8.2 29.7 93.8 1.9 2486.3 41.6 100.0

maximum deviations of travel times for arcs, unit in-storage holding costs, and unit delay penalties

for commodities. Accordingly, we obtained in total 210 test instances for our experiments with 30

instances for each class (see Appendix D for their detailed parameter settings).

For our experiments, we set the parameters of our model RO and model RS as follows. The

uncertainty budget Γ of model RO was set to ⌈µΓ · |K|⌉. The cost target Z of model RS was set to

⌈(1+µz) ·Z0⌉. We chose different values of the coefficients µΓ and µz in different sets of experiments,

which will be explained in Section 5.2 and Section 5.3, respectively.

5.2. Performance of RO-C&CG and RS-C&CG Algorithms

In the first set of experiments, we evaluated the computational performance of the RO-C&CG

and the RS-C&CG algorithms over the 210 test instances of the robust CTSNDP. Each algorithm

terminates and returns the best upper and lower bounds found when its running time exceeds an

8-hour time limit or when the optimality gap between its best upper and lower bounds found is below

a 0.01% threshold. Moreover, as a benchmark, for each test instance we solved the deterministic

model DO directly by the Gurobi solver. The optimal objective value of the deterministic model

DO is used as the cost target Z0 in the RS-C&CG algorithm. Additionally, we set µΓ = µz = 0.05.

The computational results are presented in Table 5.1. For each class of the test instances and for

each algorithm, we report the percentage of the instances solved to optimality in column opt%, the

average optimality gap in column g% (defined as the percentage gap between the best upper and

lower bounds found), and the average computational time in CPU seconds in column T.

Let UBRO and UBRS indicate the best upper bound values obtained in the RO-C&CG

and RS-C&CG algorithms for model RO and model RS, respectively. For the optimal solution

(xd,yd,zd) obtained from the deterministic model DO, we can follow the approach in Section 4.1

to solve FRP (xd,zd) so as to compute the objective value of (xd,yd,zd) in model RO, denoted
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by UBRO
d . We can also follow the approach in Section 4.2 to solve ρ(xd,yd,zd) so as to compute

the objective value of (xd,yd,zd) in model RS, denoted by UBRS
d . To evaluate the improvements

made by UBRO and UBRS against the benchmark values UBRO
d and UBRS

d , we compute their

improvement percentages, which are defined as ratios
(UBRO

d −UBRO)

UBRO
d

× 100% and
(UBRS

d −UBRS)

UBRS
d

×

100%, respectively. Their mean and maximum values for each class of instances are shown in

columns Im% of Table 5.1.

The results in Table 5.1 confirm the effectiveness of our RO-C&CG and RS-C&CG algorithms

in solving model RO and model RS. Within the time limit, both algorithms can solve around

94% of all 210 instances to exact optimality, as well as achieve optimality gaps of 0.1% and 2.6%

on average, respectively. Moreover, as shown in columns Im%, compared with the deterministic

optimal solutions, the best upper bounds produced by our RO-C&CG and RS-C&CG algorithms

significantly improve the objective values with respect to model RO and model RS by 8.2% and

41.6% on average and by 29.7% and 100.0% at maximum, respectively.

Table 5.1 also demonstrates the comparable computational performance of the two C&CG-based

algorithms in solving model RO and model RS, respectively, as evidenced by the columns opt%,

g%, and T. These results confirm the computational tractability of both model RO and model RS

that we derive for the robust CTSNDP, underscoring their practical usefulness. Notably, our study

presents the first development of a C&CG-based algorithm for effectively solving a two-stage robust

satisficing model with a polyhedral uncertainty set. The encouraging outcomes motivate further

exploration of its potential extensions to other optimization problems that encompass uncertainties.

5.3. Solution Qualities of Models RO and RS

Models RO and RS have distinct objectives for achieving robustness. Following the approach in

Bertsimas and Sim (2004) and Atamtürk and Zhang (2007), our second set of experiments compares

the first-stage solutions obtained from each model under different criteria. Our aim is to evaluate

their robustness and the associated trade-offs, or price of robustness. Specifically, we compare their

total costs in the nominal scenario to that of the optimal nominal solutions, and then compare their

worst-case and average total costs over randomly generated scenarios to the solutions obtained from

a stochastic programming model (to be detailed in Section 5.3.2).

Our second set of experiments focuses on instances in class R7, as these instances were all solved

to optimality for models RO, RS, DO, and the stochastic programming model. For each instance

in R7, we used our RO-C&CG algorithm to solve model RO for each uncertainty budget U(Γ)

with Γ ∈ {1,2, ...,10}, applied our RS-C&CG algorithm to solve model RS for each cost target

Z = ⌈(1 + µz) · Z0⌉ with µz ∈ {0.02,0.04, ...,0.2}, and utilized the Gurobi solver to solve model
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Figure 2 Comparing the total costs of solutions obtained from models RO, RS, and DO in the nominal scenario.
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DO and the stochastic programming model. Recall that Z0 is the optimal objective value of the

deterministic model DO.

5.3.1. Nominal Scenario Under different parameters Γ and µz, we first compare the total

costs of the solutions obtained from models RO and RS in nominal scenarios to that of the optimal

nominal solution. These evaluations were conducted across 30 instances of class R7, and the results

are presented in Figure 2, where the total cost along the vertical axis is the mean across all instances.

As shown in Figure 2, the solutions obtained from model RS exhibit better overall performance

in the nominal scenario than those from model RO. Increasing the value of µz from 0.02 to 0.2,

which increases the cost target, the total nominal cost of the solutions from model RS gradually

increases, causing its gap from that of the optimal nominal solution to increase from 0.2% to 8.1%.

This suggests that µz is effective in controlling the price of robustness for solutions of model RS in

terms of performance in the nominal scenario.

In contrast, as the value of Γ increases and the budgeted uncertainty expands, only when Γ is

small, the total nominal cost of solutions obtained from model RO exhibits an increasing trend in

the gap from the optimal nominal solution, varying from 6.8% to 8.2% for Γ increasing from 1 to

2. When Γ is large, increasing its value only slightly changes the total nominal cost of solutions

obtained from model RO, and the change is not always positive. These results suggest that Γ

cannot be effectively used to control the price of robustness for solutions of model RO in terms of

performance in the nominal scenario.

Therefore, if the decision maker places a high value on nominal performance, model RS is a

suitable choice as its parameter µz allows the decision maker to adjust the trade-off between a

solution’s robustness and nominal performance. This provides the decision maker with greater
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control over the price of robustness and allows them to make more informed decisions based on

their priorities.

5.3.2. Randomly Generated Scenarios Under different parameters Γ and µz, we next

evaluate the worst-case and average total costs of solutions obtained from models RO and RS over

randomly generated scenarios for instances in class R7. We compare them to those of the optimal

solution of a stochastic programming (SP) model. The SP model aims to minimize the expected

total cost over all possible scenarios in a given scenario set Π. The probability of each scenario

δ ∈Π is represented by Prob(δ). Model SP can thus be formulated as follows:

[SP] min
∑
δ∈Π

Prob(δ)
(∑
k∈K

∑
(i,j)∈A

(ckijq
k)xk

ij +
∑

(i,j)∈A

|K|∑
r=1

fijyijr +FLP (x,z, τ̃ (δ))
)

s.t. (x,y,z,v,b)∈X .

Since the second-stage cost FLP (x,z, τ̃ (δ)) is defined by a minimization LP, it can be seen that

model SP is a minimization MILP, which can be directly solved by an optimization solver.

In class R7, we generated 200 scenarios at random to create the set Π for model SP for each

of the 30 instances. We then used the Gurobi solver to solve model SP over these scenarios. To

generate each scenario δ, we drew each of the realization of δijr for (i, j) ∈A and r ∈ {1,2, ..., |K|}

uniformly from the set {−1,−(τ̂ij−1)/τ̂ij,−(τ̂ij−2)/τ̂ij, · · · ,−1/τ̂ij,0,1/τ̂ij, · · · , (τ̂ij−1)/τ̂ij,1}. We

set Prob(δ) to 1/200 so that each possible scenario has equal probability. This ensures that each

travel time τ̃ijr(δ) ∈ N>0 for (i, j) ∈ A and r ∈ {1,2, ..., |K|} was uniformly distributed in interval

{τ ij − τ̂ij, τ ij − τ̂ij +1, τ ij − τ̂ij +2, · · · , τ ij + τ̂ij}.

Using the same approach, we generated 1000 random testing scenarios for each of the 30 instances

in class R7. For each instance, we compared the solutions obtained by models RO, RS, and

SP based on their worst-case performance and average performance over all testing scenarios.

For each solution (x,y,z) obtained from models RO, RS, and SP, we computed its total cost∑
k∈K

∑
(i,j)∈A(c

k
ijq

k)xk
ij +

∑
(i,j)∈A

∑|K|
r=1 fijyijr+FLP (x,z, τ̃ (δ)) for each testing scenario δ. Among

these costs of all the scenarios, we then computed their maximum and average values to measure

the worst-case and the average performances of the solution, respectively. The results are presented

in Figure 3, where the total cost along the vertical axis is the mean across all instances, and the

legends denote MAX and AVG for the worst-case and average costs, respectively.

From RO MAX, RS MAX, and SP MAX in Figure 3, we can observe that the solutions produced

by model RO demonstrate the highest level of robustness against travel time uncertainty. This is

reflected in their superior worst-case performance, which outperforms the solutions produced by
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Figure 3 Comparing the worst-case and the average total costs of solutions obtained from models RO, RS, and

SP over randomly generated scenarios.
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models RS and SP by approximately 1∼ 12%. Although the worst-case performance of solutions

obtained from model RS is worse than that of model SP when µz ≤ 0.06, as µz increases from 0.06,

the worst-case performance of model RS gradually approaches that of model RO and outperforms

that of model SP.

From RO AVG, RS AVG, and SP AVG in Figure 3, we can observe that solutions obtained

from model SP exhibit the best average performance. However, their advantage in the average

performance over solutions of models RO and RS is relatively small, with a gap of less than 4%.

This suggests that both models RO and RS are capable of producing solutions with good average

performance. Additionally, Figure 3 shows that solutions obtained from model RS exhibit better

average performance than that from model RO. By selecting appropriate values for parameter µz,

the average performance of solutions obtained from model RS can be close to that of model SP.

Figure 3 also highlights that although parameter Γ is designed to control the level of robustness for

the solutions of model RO, its effectiveness on the worst-case and average performances across the

randomly generated scenarios is nonmonotonic and insignificant. Conversely, increasing parameter

µz consistently and significantly improves both the worst-case and average performance of model

RS, before reaching a plateau. Therefore, the cost target is effective in controlling the level of

robustness for the solutions of model RS across the randomly generated scenarios.

Our above findings confirm the practical usefulness of the robust optimization model RO and

the robust satisficing model RS in solving the CTSNDP under travel time uncertainty. First,
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when compared to the stochastic programming model SP, both the RO and RS models are

computationally more tractable. In addition, they do not necessitate complete information about the

probability distribution of uncertain travel times, yet their average performances are comparable to

that of the SP model. Second, compared to other models, model RO is capable of producing solutions

that are more robust in worst-case performance and also have a good average performance. This

makes it particularly useful for conservative decision makers who prioritize worst-case scenarios.

However, as the price for robustness, decision makers who adopt model RO may incur higher costs

in nominal scenarios. Third, the RS model is capable of generating solutions with better average

performance than the RO model, and it can also closely approximate the average performance

of the SP model. Thus, model RS can be particularly useful for decision makers who prioritize

average performance but have limited distribution information. Furthermore, by setting its cost

target properly, model RS is more effective in adjusting the trade-off between robustness against

worst-case scenarios and costs in nominal scenarios. Although solutions obtained from model RS

under some cost targets may exhibit a risk of higher worst-case costs than those obtained from

model RO, their costs in nominal scenarios are typically lower. Therefore, model RS is useful for

accommodating decision makers’ different preferences towards robustness and its trade-offs.

6. Conclusions

This paper studies a robust continuous-time service network design problem (CTSNDP) under

travel time uncertainty, aiming to design a transportation service network with reliable operational

efficiency even under travel time deviation. Despite its importance, travel time uncertainty has

seldom been explored in existing literature on the CTSNDP. This is because the time-indexed

MILP models, which are commonly used to solve the CTSNDP with deterministic travel times,

become impractical. To tackle this challenge, we derive a novel consolidation-indexed MILP model

for the deterministic CTSNDP that eliminates the need for time indices. This enables us to derive a

robust optimization model and a robust satisficing model to incorporate travel time uncertainty for

the robust CTSNDP, based on polyhedral uncertainty sets. Both of these two models involve two

stages of optimization, where the first stage involves routing and consolidation of shipments prior to

actual travel times being realized, and the second stage involves departure schedules of vehicles after

actual travel times are realized. To solve these two-stage optimization models to exact optimum,

we derive several tractable reformulations for them, and based on these reformulations we develop

two tailored column-and-constraint generation (C&CG) algorithms, respectively. To the best of our

knowledge, this study stands out as the first to showcase the effectiveness of C&CG algorithms

in solving two-stage robust satisficing models with a polyhedral uncertainty set. Furthermore, our
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computational results provide compelling evidence regarding the tractability of the proposed models

and the effectiveness of the developed algorithms. The robustness of the solutions obtained has

been confirmed, and the trade-off between the robustness and its price has been highlighted.

This study has established a strong foundation for future research in several interesting and

promising directions. First, there is great interest in enhancing our solution algorithms or developing

new ones for the robust CTSNDP under travel time uncertainty. Our current C&CG algorithms

rely on a general optimization solver to directly solve the MILP models of both subproblems

and master problems. One possible enhancement is to develop tailored exact algorithms, such

as branch-and-bound algorithms, to solve these MILP models more efficiently. This may require

deriving tight and tractable relaxations of these MILP models. Moreover, our current C&CG

algorithms, which are exact algorithms, have been shown to be efficient for instances with up to

50 commodities. It would be highly advantageous to improve or develop new algorithms, including

heuristics, that can efficiently produce high-quality solutions for larger instances.

Second, as the first attempt at incorporating travel time uncertainty into robust service network

design, we have developed robust optimization and robust satisficing models based on a polyhedral

uncertainty set of the random variables that affect the actual travel times. Further exploration

of alternative robust optimization approaches to tackle the robust CTSNDP under travel time

uncertainty is an area of interest. For instance, the distributionally robust optimization approach

(Goh and Sim 2010, Delage and Ye 2010, Mohajerin Esfahani and Kuhn 2018) could be utilized to

identify robust service network designs that exhibit reliable performance for all possible probability

distributions of uncertain travel times. These probability distributions could form an ambiguity set,

satisfying certain conditions, such as moment conditions, that can be derived from historical travel

time data. Therefore, solutions produced by the distributionally robust optimization approach are

expected to perform better than those based on polyhedral uncertainty sets when historical data

is available. To apply the distributionally robust optimization approach, optimization formulations

with no time indices are still required, for which our newly proposed MILP formulation of the

deterministic CTSNDP provides a solid base.

Thirdly, there is also significant potential for exploring additional applications of our newly

proposed optimization models and solution algorithms. For instance, the MILP formulation of

the deterministic CTSNDP, which we have introduced, exhibits flexibility by not necessitating

time indices. In future studies, it could be further strengthened through the derivation of valid

inequalities. This formulation could also be leveraged to develop novel exact and heuristic algorithms

for the deterministic CTSNDP. Moreover, our robust optimization model and robust satisficing
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models, accompanied by their C&CG algorithms, provide a solid foundation that can be extended

and adapted to tackle travel time uncertainty in various other transportation problems. Examples

include but are not limited to liner service network design problems (Wang and Meng 2012a,b,

Lee et al. 2021) and aircraft routing and scheduling problems (Sohoni et al. 2011, Abdelghany and

Abdelghany 2018, Yan and Kung 2018).
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Demir, E., Burgholzer, W., Hrušovskỳ, M., Arıkan, E., Jammernegg, W., Van Woensel, T., 2016. A green

intermodal service network design problem with travel time uncertainty. Transportation Research Part

B: Methodological 93, 789–807.

Farvolden, J.M., Powell, W.B., 1994. Subgradient methods for the service network design problem.

Transportation Science 28, 256–272.

Fischetti, M., Monaci, M., 2009. Light robustness, in: Robust and online large-scale optimization. Springer,

pp. 61–84.

Ghamlouche, I., Crainic, T.G., Gendreau, M., 2003. Cycle-based neighbourhoods for fixed-charge capacitated

multicommodity network design. Operations Research 51, 655–667.

Goh, J., Sim, M., 2010. Distributionally robust optimization and its tractable approximations. Operations

Research 58, 902–917.

Hellsten, E., Koza, D.F., Contreras, I., Cordeau, J.F., Pisinger, D., 2021. The transit time constrained fixed

charge multi-commodity network design problem. Computers & Operations Research 136, 105511.

Hewitt, M., 2019. Enhanced dynamic discretization discovery for the continuous time load plan design

problem. Transportation Science 53, 1731–1750.
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Glossaries of Notation, Proofs of Statements, Acceleration
Strategies for C&CG Algorithms, and Details on Instance
Generation for Computational Experiments

Appendix A: Glossaries of Notation

We summarize the notation used for problem description and solution representation in Table A.1, and for

various optimization models in Table A.2.

Table A.1 Glossary of notation used: Problem description and solution representation

Notation Meaning

D (flat) network D= (N ,A)

N node set of network D
A arc set of network D
K set of commodities

ok origin of commodity k ∈K
dk destination of commodity k ∈K
qk demand of commodity k ∈K
τij travel time of arc (i, j)∈A
ckij per-unit-of-flow cost of arc (i, j)∈A and commodity k ∈K
fij fixed cost of arc (i, j)∈A
uij capacity of arc (i, j)∈A
ek earliest available time of commodity k ∈K
lk latest arrival time of commodity k ∈K
hk per-unit-of-demand-and-time (in-storage holding) cost of commodity k ∈K at a terminal

α(r) the r-th consolidation traveling arc duplicated from arc α of the flat network

P = {P k}k∈K a routing plan with P k representing a path for commodity k ∈K
C = {Cα

r }α∈A,r∈{1,2,...,|K|} a consolidation plan with each Cα
r being a subset of commodities and r denoting the

consolidation index

T a departure schedule

f(P,C) the total fixed cost and flow cost for a solution (P,C,T )

h(P,T ) the total holding cost for solution (P,C,T )

g(P,T ) the total delay penalty for solution (P,C,T )

δ a vector of random variables δαr for α∈A and r ∈ {1,2, ..., |K|}
τ̃ij uncertain travel time of arc (i, j)∈A
τ̃ a vector of uncertain travel times τ̃ij
τ̄ij nominal value of τ̃ij
τ̂ij maximum deviation of τ̃ij with respect to the nominal value τ̄ij
Z a prescribed target of the total two-stage cost

U the support of the vector δ

U(Γ) budgeted uncertainty set of vector δ with Γ denoting the budget of uncertainty

D the domain of all feasible solutions (P,C,T )

F the domain of all nominal timely-implementable first-stage solutions

T(P,C, τ̃ ) the domain of departure schedule T with respect to solution (P,C)



47

Table A.2 Glossary of notation used: Models

Notation Meaning

x routing decision variables

z consolidation decision variables

y service decision variables

v decision variables on departure times

Z, Q domains of specific variables

DO consolidation-indexed formulation for the deterministic CTSNDP

RO robust optimization model for the robust CTSNDP

RS robust satisficing model for the robust CTSNDP

RP(x,z) the max-min model defined by (3.29)–(3.40) for calculating the worst-case second-stage cost

LP(x,z, τ̃ ) the inner minimization problem of model RP(x,z)

DLP(x,z, τ̃ ) the dual linear problem of model LP(x,z, τ̃ )

ROMILP noncompact MILP defined in (4.1)-(4.4), a reformulation of model RO

RSMILP noncompact MILP reformulation of model RS, containing constraints (4.27)-(4.28)

FO(x,y,z) the model defined in (4.29) for calculating the worst-case normalized cost deviation of solution (x,y,z)

F1(x,y) the first-stage cost for solution (x,y,z)

FRP (x,z) the worst-case second-stage cost for solution (x,y,z)

FLP (x,z, τ̃ ) the optimal objective value of model LP(x,z, τ̃ ), indicating the minimum cost for solution (x,z) under τ̃

ρ∗(x,y,z) the optimal objective value of model FO(x,y,z)

G(x,y,z, ρ̂) the optimal objective value of the model defined in (4.30)

Appendix B: Proof of Statements

B.1. Proof of Lemma 4.1

For any given (x,z) that satisfies constraints (3.20)–(3.28) of model RO, it corresponds to a nominal

timely-implementable flat solution (P,C). Consider any δ ∈U(Γ) with the corresponding realized travel time

τ̃ (δ). For such (P,C) and τ̃ (δ), we first show as follows that there exists a departure schedule T such that

constraints (2.1)–(2.4) are satisfied, from which we can then obtain a feasible solution to model LP(x,z, τ̃ (δ)).

For the nominal timely-implementable flat solution (P,C), consider each commodity k ∈ K and its flat

path P k in P with an arc sequence denoted by (ak1, ..., a
k
mk). For each n ∈ {1,2, . . . ,mk}, there must exist a

consolidation C
ak
n

rkn
∈ C for arc akn with rkn ∈ {1,2, · · · , |K|} such that k ∈Cak

n

rkn
. We can now construct a network

GC = {NC,AC} where each non-empty consolidation Cα
r ∈ C corresponds to a node, denoted by ⟨α, r⟩, in the

node set NC, and each pair of consolidations C
ak
n

rkn
and C

ak
n+1

rk
n+1

for k ∈K and n∈ {1, ...,mk − 1} corresponds to

an arc (⟨akn, rkn⟩, ⟨akn+1, r
k
n+1⟩) in the arc set AC. See Figure 4 for an example of such a network GC.
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Figure 4 An example of network GC constructed from a given nominal timely-implementable flat solution (P,C).
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Since the flat solution (P,C) is a nominal timely-implementable first-stage solution, there exists a departure

schedule T which satisfies (2.1)–(2.4) with nominal travel times τ . According to T , for each consolidation

Cα
r ∈ C of arc α= (ν, ν′) ∈A we can obtain its corresponding departure time from node ν, which is denoted

by tα,r. For each pair of consolidations C
ak
n

rkn
and C

ak
n+1

rk
n+1

with k ∈K and n∈ {1, ...,mk −1}, the departure time

of C
ak
n

rkn
from node νk

n plus the nominal value τak
n
of travel time of arc akn must be less than or equal to the

departure time of C
ak
n+1

rk
n+1

from node νk
n+1. Thus, by the definition of GC = {NC,AC}, we obtain that

tα,r + τα ≤ tα′,r′ , ∀ (⟨α, r⟩, ⟨α′, r′⟩)∈AC.

This, together with τα > 0 for all α∈A, implies that GC must be an acyclic network, and thus has a topological

ordering of nodes in NC, denoted by (⟨α1, r1⟩, ⟨α2, r2⟩, . . . , ⟨α|NG |, r|NG |⟩).

Next, consider each possible realized travel time τ̃ (δ) with any δ ∈U(Γ). For n= 1,2, . . . , |NG|, we can set

the departure time of consolidation Cαn
rn

, denoted by t̂αn,rn , iteratively as follows:

t̂α1,r1 =max
k∈K

ek,

t̂αn,rn = t̂α1,r1 + max
(i,j)∈A

{τ ij + τ̂ij} for n= 2,3, . . . , |NC|.

Essentially, the departure schedule determined above follows a reactive policy in which for each (i, j) ∈ A,

every consolidation on arc (i, j) departs from node i as soon as all its commodities arrive at i. Thus, it can

be seen that for each commodity k ∈K,

t̂αk
1 ,r

k
1
≥ t̂α1,r1 =max

k∈K
ek ≥ ek,

t̂αk
n+1

,rk
n+1

≥ t̂αk
n,rkn

+ max
(i,j)∈A

{τ ij + τ̂ij} ≥ t̂αk
n,rkn

+ τ̃αk
n

for n= 1, . . . ,mk − 2.

Thus, by setting the departure time of commodity k for node νk
n to be equal to t̂αk

n,rkn
, for n= 1,2, . . . ,mk−1

and k ∈ K, we obtain a plan T̂ which satisfies the constraints (2.1), (2.2) and (2.4) under the travel time

τ̃ (δ). From such a departure schedule T̂ , we can obtain the values of variables vkij , bijr, w
k
i , and s

k according

to their definitions, which form a feasible solution to model LP(x,z, τ̃ (δ)). Hence, Lemma 4.1 is proved. □
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B.2. Proof of Proposition 4.1

Proof. For any given (x,z), consider any optimal solution (β∗,γ∗,ψ∗,η∗,θ∗,ξ∗,λ∗, τ̃ ∗,δ∗) of the nonlinear

optimization model defined in (4.14)–(4.18). By fixing (β,γ,ψ,η,θ,ξ,λ) = (β∗,γ∗,ψ∗,η∗,θ∗,ξ∗,λ∗), the

nonlinear optimization model defined in (4.14)–(4.18) reduces to the following nonlinear model on δ, denoted

as model R1.

[R1] max
∑

(j,i)∈A

|K|∑
r=1

{
τ̂jir

( ∑
k∈Ki

zkjir(β
k
i

∗ −λk
i

∗
)+

∑
k∈Kd

i

zkjir(ψ
k∗ −λk

i

∗
)
)
· δjir

}
s.t. − 1≤ δijr ≤ 1, ∀ (i, j)∈A, r ∈ {1,2, ..., |K|},∑

(i,j)∈A

|K|∑
r=1

|δijr| ≤ Γ.

It can be seen that δ∗ must be an optimal solution to model R1. Moreover, for any optimal solution δ̂ to

model R1, (β
∗,γ∗,ψ∗,η∗,θ∗,ξ∗,λ∗, τ̃ (δ̂), δ̂) forms a feasible solution to the nonlinear optimization model

defined in (4.14)–(4.18), and it has the same objective value as that of (β∗,γ∗,ψ∗,η∗,θ∗,ξ∗,λ∗, τ̃ ∗,δ∗). Thus,

(β∗,γ∗,ψ∗,η∗,θ∗,ξ∗,λ∗, τ̃ (δ̂), δ̂) is also an optimal solution to the nonlinear optimization model defined in

(4.14)–(4.18).

Consider any optimal solution δ̂ to model R1. Due to the optimality of δ̂, it can be seen that for any

(j, i) ∈A and r ∈ {1,2, ..., |K|}, if δ̂jir > 0, then τ̂jir

(∑
k∈Ki

zkjir(β
k
i

∗ − λk
i

∗
+
∑

k∈Kd
i
zkjir(ψ

k∗ − λk
i

∗
)
)
≥ 0, and

that if δ̂jir < 0, then τ̂jir

(∑
k∈Ki

zkjir(β
k
i

∗ − λk
i

∗
+
∑

k∈Kd
i
zkjir(ψ

k∗ − λk
i

∗
)
)
≤ 0. This is because otherwise, δ̂

cannot be an optimal solution to model S1, as we can increase its objective value by changing the sign of

each δ̂jir with τ̂jir

(∑
k∈Ki

zkjir(β
k
i

∗ −λk
i

∗
)+

∑
k∈Kd

i
zkjir(ψ

k∗ −λk
i

∗
)
)
· δ̂jir < 0 to its opposite. Thus, we obtain

that τ̂jir

(∑
k∈Ki

zkjir(β
k
i

∗ − λk
i

∗
) +

∑
k∈Kd

i
zkjir(ψ

k∗ − λk
i

∗
)
)
· δ̂jir ≥ 0 for all (j, i) ∈ A and r ∈ {1,2, ..., |K|}.

Accordingly, model R1 is equivalent to the following maximization LP, denoted as model R2:

[R2] max
∑

(j,i)∈A

|K|∑
r=1

{∣∣∣τ̂jir( ∑
k∈Ki

zkjir(β
k
i

∗ −λk
i

∗
+

∑
k∈Kd

i

zkjir(ψ
k∗ −λk

i

∗
)
)∣∣∣ · δ+jir}

s.t.
∑

(i,j)∈A

|K|∑
r=1

δ+ijr ≤ Γ,

0≤ δ+ijr ≤ 1, ∀ (i, j)∈A, r ∈ {1,2, ..., |K|}.

From any optimal solution δ+ to model R2, we can derive an optimal solution to model R1 by setting δjir =

δ+jir if τ̂jir

(∑
k∈Ki

zkjir(β
k
i

∗−λk
i

∗
+
∑

k∈Kd
i
zkjir(ψ

k∗−λk
i

∗
)
)
≥ 0, and setting δjir =−δ+jir if τ̂jir

(∑
k∈Ki

zkjir(β
k
i

∗−

λk
i

∗
+
∑

k∈Kd
i
zkjir(ψ

k∗ − λk
i

∗
)
)
< 0, for each (j, i) ∈A and r ∈ {1,2, ..., |K|}, so that their objective values are

the same.

For model R2, its constraint matrix associated with
∑

(i,j)∈A

∑|K|
r=1 δ

+
ijr ≤ Γ and δ+ijr ≤ 1 for all (i, j)∈A and

r ∈ {1,2, ..., |K|} is totally unimodular, as it contains two entries of 1 in each column. This implies that with

an integral Γ, the feasible solution region of model R2 is an integral polytope. Thus, there exists an integral

optimal solution to model R2 with δ+ijr ∈ {0,1} for each (i, j) ∈ A and r ∈ {1,2, ..., |K|}. This implies that
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there exists an optimal solution δ to model R1 with δijr ∈ {−1,0,1} for each (i, j)∈A and r ∈ {1,2, ..., |K|}.
Therefore, there exists an optimal solution to the nonlinear optimization model defined in (4.14)–(4.18) that

satisfies δijr ∈ {−1,0,1} for each (i, j)∈A and r ∈ {1,2, ..., |K|}. Hence, Proposition 4.1 is proved. □

B.3. Proof of Proposition 4.2

Proof. We first note that the max-min model RP(x,z) defined by (3.29)–(3.40) for FRP (x,z) can be

reformulated to the nonlinear optimization model defined in (4.14)–(4.18). We then prove Proposition 4.2 by

showing that the nonlinear optimization model defined in (4.14)–(4.18) can be linearized to the MILP model

defined by (4.19)–(4.24).

By Proposition 4.1, constraints (4.17) can be replaced with δijr ∈ {−1,0,1} for all (i, j) ∈ A and r ∈
{1,2, ..., |K|}. By (4.16) we have that τ̃ijr ∈ {τ ijr − τ̂ijr, τ ijr, τ ijr + τ̂ijr}, which, together with τ ijr ∈ N>0,

τ̂ijr ∈N0 and τ ijr > τ̂ijr, implies that τ̃ijr ∈N>0. Moreover, we introduce a new variable φjir to represent each

nonlinear term
(∑

k∈Ki
zkjir(β

k
i −λk

i )+
∑

k∈Kd
i
zkjir(ψ

k −λk
i )
)
· τ̃jir. We then replace each integer variable δjir

with three new binary variables ζjir,−1, ζjir,0 and ζjir,1, which are used to indicate whether δijr equals -1,

0 and 1, respectively. Let τ̃ijr,−1 = τ ijr − τ̂ijr, τ̃ijr,0 = τ ijr and τ̃ijr,1 = τ ijr + τ̂ijr. Accordingly, the following

linear constraints can be derived for the newly introduced variables, whereM2 is a sufficiently large constant.

ζijr,−1 + ζijr,0 + ζijr,1 = 1, ∀ (i, j)∈A, r ∈ {1,2, ..., |K|}, (B.1)( ∑
k∈Ki

zkjir(β
k
i −λk

i )+
∑
k∈Kd

i

zkjir(ψ
k −λk

i )
)
τ̃jir,ℓ −M2(1− ζjir,ℓ)≤φjir

≤
( ∑

k∈Ki

zkjir(β
k
i −λk

i )+
∑
k∈Kd

i

zkjir(ψ
k −λk

i )
)
τ̃jir,ℓ +M2(1− ζjir,ℓ),

∀ (j, i)∈A, r ∈ {1,2, ..., |K|}, ℓ= {−1,0,1}, (B.2)

ζijr,ℓ ∈ {0,1}, ∀ (i, j)∈A, r ∈ {1,2, ..., |K|}, ℓ= {−1,0,1}. (B.3)

Here, constraints (B.1) ensure that exactly one of the three variables ζjir,−1, ζjir,0 and ζjir,1 equals 1,

constraints (B.2) ensure that each variable φjir equals
(∑

k∈Ki
zkjir(β

k
i − λk

i ) +
∑

k∈Kd
i
zkjir(ψ

k − λk
i )
)
· τ̃jir,

and constraints (B.3) define the domain of the variables ζijr,−1, and ζijr,0, and ζijr,1. As a result, constraints

(4.18) can be replaced with the following linear constraint:∑
(i,j)∈A

|K|∑
r=1

(ζijr,−1 + ζijr,1)≤ Γ. (B.4)

Therefore, the nonlinear optimization model defined by (4.14)–(4.18) for FRP (x,z) can be further

reformulated to the following maximization MILP model:

FRP (x,z) =max
∑

(j,i)∈A

|K|∑
r=1

φjir −
∑
k∈K

∑
(i,j)∈A

(M1x
k
ij) · ηkij

+
∑
k∈K

∑
(i,j)∈A

|K|∑
r=1

[M1(z
k
ijr − 1)] · (θkijr + ξkijr)

+
∑
k∈K

ek · (γk −λk
ok)+

∑
k∈K

lk · (λk
dk −ψk)

s.t. (4.6) – (4.13), (B.1) – (B.3) and (B.4).
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Hence, Proposition 4.2 is proved. □

B.4. Proof of Theorem 4.1

At each iteration of Algorithm 1, UB and LB are updated by solving the corresponding master problem

and subproblem, while a new worst-case scenario δ in U(Γ) is obtained and added to the scenario subset

Λ. Algorithm 1 stops when UB =LB. As model ROMILP(Λ) is a relaxation of the reformulation ROMILP

of model RO, the value of LB, which equals the optimal objective value of model ROMILP(Λ), is a valid

lower bound on the optimal objective value of model RO. As UB is the worst-case total cost of the first-stage

solution (x̂, ŷ, ẑ) obtained from the master problem, it provides a valid upper bound on the optimal objective

value of model RO. Thus, when UB =LB, (x̂, ŷ, ẑ) must be an optimal solution to model RO. This implies

that when Algorithm 1 terminates with UB =LB, it returns an optimal solution to model RO.

We next show as follows that Algorithm 1 terminates with UB = LB in a finite number of iterations. To

show this, we note that, at each iteration n, if the worst-case scenario δ(n) identified in Step 3 of Algorithm 1

is not in the current scenario subset Λ, it will be added to Λ. According to Proposition 4.1, δ(n) satisfies that

δnijr ∈ {−1,0,1} for all (i, j)∈A and r ∈ {1,2, · · · , |K|}, and has a finite number of possible values. Therefore,

in a finite number of iterations, δ(n) identified in Step 3 of Algorithm 1 must be included in the current

scenario subset Λ. In such a situation, both LB and UB must be equal to the optimal objective value of the

current master problem, implying that LB =UB and (x̂, ŷ, ẑ) forms an optimal solution to model RO. This

completes the proof of Theorem 4.1. □

B.5. Proof of Lemma 4.2

Recall that we slightly abuse the notation to define that σ/∥0∥1 = 0 for σ = 0, σ/∥0∥1 =+∞ for σ > 0, and

σ/∥0∥1 =−∞ for σ < 0. Consider any (x,y,z)∈X and any given ρ̂.

First, if G(x,y,z, ρ̂)> 0, then according to (4.30), we have that

max
δ∈U

{F1(x,y)+FLP (x,z, τ̃ (δ))−Z − ρ̂∥δ∥1}> 0,

which implies that there exists a δ∗ ∈U with

F1(x,y)+FLP (x,z, τ̃ (δ
∗))−Z − ρ̂∥δ∗∥1 > 0.

Thus, we obtain that

ρ∗(x,y,z) =max
δ∈U

F1(x,y)+FLP (x,z, τ̃ (δ))−Z
∥δ∥1

≥ F1(x,y)+FLP (x,z, τ̃ (δ
∗))−Z

∥δ∗∥1
> ρ̂

Second, if G(x,y,z, ρ̂)< 0, then we have that

max
δ∈U

{F1(x,y)+FLP (x,z, τ̃ (δ))−Z − ρ̂∥δ∥1}< 0,

which implies that

F1(x,y)+FLP (x,z, τ̃ (δ))−Z − ρ̂∥δ∥1 < 0, ∀δ ∈U.
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Thus,

F1(x,y)+FLP (x,z, τ̃ (δ))−Z
∥δ∥1

< ρ̂, ∀δ ∈U.

Therefore, we obtain that

ρ∗(x,y,z) =max
δ∈U

F1(x,y)+FLP (x,z, τ̃ (δ))−Z
∥δ∥1

< ρ̂.

Third, if G(x,y,z, ρ̂) = 0, then we obtain that

max
δ∈U

{F1(x,y)+FLP (x,z, τ̃ (δ))−Z − ρ̂∥δ∥1}= 0,

which implies that there exists a δ∗ ∈U such that

F1(x,y)+FLP (x,z, τ̃ (δ
∗))−Z − ρ̂∥δ∗∥1 = 0, and

F1(x,y)+FLP (x,z, τ̃ (δ))−Z − ρ̂∥δ∥1 ≤ 0, ∀δ ∈U \ {δ∗}.

Thus, we have that

F1(x,y)+FLP (x,z, τ̃ (δ
∗))−Z

∥δ∗∥1
= ρ̂, and

F1(x,y)+FLP (x,z, τ̃ (δ))−Z
∥δ∥1

≤ ρ̂, ∀δ ∈U \ {δ∗},

which implies that

ρ̂∗(x,y,z) =max
δ∈U

F1(x,y)+FLP (x,z, τ̃ (δ))−Z
∥δ∥1

= ρ̂.

Hence, Lemma 4.2 is proved. □

B.6. Proof of Proposition 4.3

Proof. Our proof of Proposition 4.3 follows an argument similar to that of Proposition 4.1. For any given

(x,z) and ρ̂, consider any optimal solution (β∗,γ∗,ψ∗,η∗,θ∗,ξ∗,λ∗, τ̃ ∗,δ∗) of the optimization model defined

in (4.31)–(4.34). By fixing (β,γ,ψ,η,θ,ξ,λ) = (β∗,γ∗,ψ∗,η∗,θ∗,ξ∗,λ∗), the nonlinear optimization model

defined in (4.31)–(4.34) reduces to the following nonlinear model on δ, denoted as model S1.

[S1] max
∑

(j,i)∈A

|K|∑
r=1

{
τ̂jir

( ∑
k∈Ki

zkjir(β
k
i

∗ −λk
i

∗
)+

∑
k∈Kd

i

zkjir(ψ
k∗ −λk

i

∗
)
)
· δjir − ρ̂ · |δjir|

}
s.t. − 1≤ δijr ≤ 1, ∀ (i, j)∈A, r ∈ {1,2, ..., |K|}

It can be seen that δ∗ is an optimal solution of model S1. For any optimal solution δ̂ of

model S1, (β∗,γ∗,ψ∗,η∗,θ∗,ξ∗,λ∗, τ̃ (δ̂), δ̂) forms a feasible solution of the optimization model defined

in (4.31)–(4.34), and it has the same objective value as that of (β∗,γ∗,ψ∗,η∗,θ∗,ξ∗,λ∗, τ̃ ∗,δ∗). Thus,

(β∗,γ∗,ψ∗,η∗,θ∗,ξ∗,λ∗, τ̃ (δ̂), δ̂) is also an optimal solution to the optimization model defined in

(4.31)–(4.34).

Consider any optimal solution δ̂ to model S1. Due to the optimality of δ̂, it can be seen that for any

(j, i) ∈A and r ∈ {1,2, ..., |K|}, if δ̂jir > 0, then τ̂jir

(∑
k∈Ki

zkjir(β
k
i

∗ − λk
i

∗
+
∑

k∈Kd
i
zkjir(ψ

k∗ − λk
i

∗
)
)
≥ 0, and
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that if δ̂jir < 0, then τ̂jir

(∑
k∈Ki

zkjir(β
k
i

∗ − λk
i

∗
+
∑

k∈Kd
i
zkjir(ψ

k∗ − λk
i

∗
)
)
≤ 0. This is because otherwise, δ̂

cannot be an optimal solution to model S1, as we can increase its objective value by changing the sign of

each δ̂jir with τ̂jir

(∑
k∈Ki

zkjir(β
k
i

∗ −λk
i

∗
)+

∑
k∈Kd

i
zkjir(ψ

k∗ −λk
i

∗
)
)
· δ̂jir < 0 to its opposite. Thus, we obtain

that τ̂jir

(∑
k∈Ki

zkjir(β
k
i

∗ − λk
i

∗
) +

∑
k∈Kd

i
zkjir(ψ

k∗ − λk
i

∗
)
)
· δ̂jir ≥ 0 for all (j, i) ∈ A and r ∈ {1,2, ..., |K|}.

Accordingly, model S1 is equivalent to the following maximization LP, denoted as model S2:

[S2] max
∑

(j,i)∈A

|K|∑
r=1

{[∣∣∣τ̂jir( ∑
k∈Ki

zkjir(β
k
i

∗ −λk
i

∗
)+

∑
k∈Kd

i

zkjir(ψ
k∗ −λk

i

∗
)
)∣∣∣− ρ̂

]
· δ+jir

}
s.t. 0≤ δ+ijr ≤ 1, ∀ (i, j)∈A, r ∈ {1,2, ..., |K|}

From any optimal solution δ+ of model S2, we can derive an optimal solution of model S1 by setting δjir = δ+jir

if τ̂jir

(∑
k∈Ki

zkjir(β
k
i

∗ − λk
i

∗
+
∑

k∈Kd
i
zkjir(ψ

k∗ − λk
i

∗
)
)
≥ 0, and setting δjir =−δ+jir if τ̂jir

(∑
k∈Ki

zkjir(β
k
i

∗ −

λk
i

∗
+
∑

k∈Kd
i
zkjir(ψ

k∗ − λk
i

∗
)
)
< 0, for each (j, i) ∈ A and r ∈ {1,2, ..., |K|}, so that their objective function

values are the same.

For model S2, its constraint matrix associated with δ+ijr ≤ 1 for all (i, j)∈A and r ∈ {1,2, ..., |K|} is totally

unimodular, as it contains only one entry of 1 in each column. This implies that the feasible solution region of

model S2 is an integral polytope. Thus, there exists an integral optimal solution to model S2 with δ+ijr ∈ {0,1}
for each (i, j) ∈ A and r ∈ {1,2, ..., |K|}. This implies that there exists an optimal solution δ to model S1

with δijr ∈ {−1,0,1} for each (i, j) ∈A and r ∈ {1,2, ..., |K|}. Hence, there exists an optimal solution to the

optimization model defined in (4.31)–(4.34) that satisfies δijr ∈ {−1,0,1} for all (i, j)∈A and r ∈ {1,2, ..., |K|}.
Proposition 4.3 is established. □

B.7. Proof of Proposition 4.4

Proof. We first note that the nonlinear model defined in (4.30) for G(x,y,z, ρ̂) can be reformulated

written as the nonlinear optimization model defined in (4.31)–(4.34). We then prove Proposition 4.4 by

showing that the nonlinear optimization model defined in (4.31)–(4.34) can be equivalently written as the

MILP model defined by (4.35)–(4.39).

Similar to our MILP reformulation of FRP (x,z), by Proposition 4.3, constraints (4.34) can be replaced with

δijr ∈ {−1,0,1} for all (i, j)∈A and r ∈ {1,2, ..., |K|}. By (4.33) we have that τ̃ijr ∈ {τ ijr− τ̂ijr, τ ijr, τ ijr+ τ̂ijr},
which, together with τ ijr ∈N>0, τ̂ijr ∈N0 and τ ijr > τ̂ijr, implies that τ̃ijr ∈N>0. Moreover, we introduce a

new variable φ̂jir to represent each nonlinear term
(∑

k∈Ki
zkjir(β

k
i −λk

i )+
∑

k∈Kd
i
zkjir(ψ

k−λk
i )
)
· τ̃jir− ρ̂|δijr|.

We then replace each integer variable δjir with three new binary variables ζ̂jir,−1, ζ̂jir,0 and ζ̂jir,1, which

are used to indicate whether δijr equals -1, 0 and 1, respectively. Let τ̃ijr,−1 = τ ijr − τ̂ijr, τ̃ijr,0 = τ ijr and

τ̃ijr,1 = τ ijr + τ̂ijr. Accordingly, the following linear constraints can be derived for the newly introduced

variables, where M3 is a sufficiently large constant.

ζ̂ijr,−1 + ζ̂ijr,1 + ζ̂ijr,0 = 1, ∀ (i, j)∈A, r ∈ {1,2, ..., |K|} (B.5)( ∑
k∈Ki

zkjir(β
k
i −λk

i )+
∑
k∈Kd

i

zkjir(ψ
k −λk

i )
)
τ̃jir,ℓ − ρ̂|ℓ| −M3(1− ζ̂jir,ℓ)≤ φ̂jir
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≤
( ∑

k∈Ki

zkjir(β
k
i −λk

i )+
∑
k∈Kd

i

zkjir(ψ
k −λk

i )
)
τ̃jir,ℓ − ρ̂|ℓ|+M3(1− ζ̂jir,ℓ),

∀ (j, i)∈ ,A, r ∈ {1,2, ..., |K|}, ℓ∈ {−1,0,1} (B.6)

ζ̂ijr,ℓ ∈ {0,1}, ∀ (i, j)∈A, r ∈ {1,2, ..., |K|}, ℓ∈ {−1,0,1}. (B.7)

Thus, the nonlinear optimization model defined in (4.31)–(4.34) for G(x,y,z, ρ̂) can be reformulated to the

following maximization MILP model:

G(x,y,z, ρ̂) =max F1(x,y)−Z +
∑

(j,i)∈A

|K|∑
r=1

φ̂jir −
∑
k∈K

∑
(i,j)∈A

(M1x
k
ij) · ηkij

+
∑
k∈K

∑
(i,j)∈A

|K|∑
r=1

[M1(z
k
ijr − 1)] · (θkijr + ξkijr)

+
∑
k∈K

ek · (γk −λk
ok)+

∑
k∈K

lk · (λk
dk −ψk)

s.t. (4.6)− (4.13), (B.5)− (B.7)

Hence, Proposition 4.4 is proved.

B.8. Proof of Lemma 4.3

Recall that we slightly abuse the notation to define that σ/∥0∥1 = 0 for σ = 0, σ/∥0∥1 =+∞ for σ > 0, and

σ/∥0∥1 =−∞ for σ < 0. Consider any (x,y,z)∈X . To prove the first statement of Lemma 4.3, we note that

if F1(x,y)+FLP (x,z, τ̃ (0))−Z > 0, then

ρ̂∗(x,y,z)≥ F1(x,y)+FLP (x,z, τ̃ (0))−Z
∥0∥1

=+∞,

implying that ρ̂∗(x,y,z) =+∞.

To prove the second statement, consider the case where F1(x,y)+FLP (x,z, τ̃ (0))−Z ≤ 0, which implies

that (F1(x,y) + FLP (x,z, τ̃ (0) − Z))/∥0∥1 ≤ 0. According to the definition of ρ∗(x,y,z), we have that

(F1(x,y)+FLP (x,z, τ̃ (δl))−Z)/∥δl∥1 ≤ ρ∗(x,y,z) for all δl ∈U \ {0}. Moreover,

• If maxδ∈U{F1(x,y)+FLP (x,z, τ̃ (δ))−Z}≤ 0, then

ρ̂∗(x,y,z) =max
δ∈U

F1(x,y)+FLP (x,z, τ̃ (δ))−Z
∥δ∥1

≤ 0.

• Otherwise, maxδ∈U{F1(x,y) +FLP (x,z, τ̃ (δ))−Z}> 0, implying that there must exist a δ∗ ∈U \ {0}
with F1(x,y)+FLP (x,z, τ̃ (δ

∗))−Z > 0 and ρ̂∗(x,y,z) = (F1(x,y)+FLP (x,z, τ̃ (δ
∗))−Z)/∥δ∗∥1 > 0.

By Lemma 4.2 and Proposition 4.3, we can assume without loss of generality that δ∗ijr ∈ {−1,0,1} for

all (i, j) ∈A and r ∈ {1,2, ..., |K|}, which, together with δ∗ ∈U \ {0}, implies that ∥δ∗∥1 ≥ 1. Thus, we

obtain that

0< ρ̂∗(x,y,z)≤ F1(x,y)+FLP (x,z, τ̃ (δ)
∗)−Z

1
≤max

δ∈U
{F1(x,y)+FLP (x,z, τ̃ (δ))−Z}.

Hence, it can be concluded that if F1(x,y) + FLP (x,z, τ̃ (0)) − Z ≤ 0, there must be ρ̂∗(x,y,z) ≤
max{0, F1(x,y)+maxδ∈UFLP (x,z, τ̃ (δ))−Z}.

Lemma 4.3 is proved. □
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B.9. Proof of Lemma 4.4

Consider any (x,y,z) ∈ X . By Lemma 4.2, if ρl ≤ ρ∗(x,y,z), we have that maxδ∈U{F1(x,y) +

FLP (x,z, τ̃ (δ))−Z − ρl∥δ∥1}=G(x,y,z, ρl)≥ 0. Note that δ(ρl) indicates a realization of δ such that

F1(x,y)+FLP (x,z, τ̃ (δ(ρl)))−Z − ρl∥δ(ρl)∥1 =max
δ∈U

{F1(x,y)+FLP (x,z, τ̃ (δ))−Z − ρl∥δ∥1}.

Since maxδ∈U{F1(x,y)+FLP (x,z, τ̃ (δ))−Z − ρl∥δ∥1} ≥ 0, we obtain that

F1(x,y)+FLP (x,z, τ̃ (δ(ρl)))−Z − ρl∥δ(ρl)∥1 ≥ 0,

which implies that

ρ′l =
F1(x,y)+FLP (x,z, τ̃ (δ(ρl)))−Z

∥δ(ρl)∥1
≥ ρl.

Therefore, we obtain that

G(x,y,z, ρ′l) = max
δ∈U

{F1(x,y)+FLP (x,z, τ̃ (δ))−Z − ρ′l∥δ∥1}

≥ F1(x,y)+FLP (x,z, τ̃ (δ(ρl)))−Z − ρ′l∥δ(ρl)∥1 = 0.

Thus, by Lemma 4.2, it follows that ρ′l ≤ ρ∗(x,y,z). Lemma 4.4 is proved. □

B.10. Proof of Theorem 4.2

To prove the first statement of Theorem 4.2, consider each iteration n of Algorithm 2. Let ρ
(n)
l denote the

value of ρl updated in Step 4. Algorithm 2 solves G(x,y,z, ρ
(n)
l ) in Step 5, derives its optimal solution

δ(ρ
(n)
l ) of G(x,y,z, ρ

(n)
l ) by (4.40), and computes the value of ρ

′(n)
l from δ(ρ

(n)
l ) by ρ

′(n)
l = (F1(x,y) +

FLP (x,z, τ̃ (δ(ρ
(n)
l ))) − Z)/∥δ(ρ(n)l )∥1. If Algorithm 2 does not terminate at iteration n, we have that

G(x,y,z, ρ
(n)
l )> 0, which, together with Lemma 4.2, implies that ρ

(n)
l <ρ∗(x,y,z). Thus, by Lemma 4.4, we

know that

ρ
(n)
l <ρ

′(n)
l ≤ ρ∗(x,y,z). (B.8)

By the definition of G(x,y,z, ρ
′(n)
l ) and ρ

′(n)
l , we have that

G(x,y,z, ρ
′(n)
l )≥ F1(x,y)+FLP (x,z, τ̃ (δ(ρ

(n)
l )))−Z − ρ

′(n)
l ∥δ(ρ(n)l )∥1 = 0. (B.9)

Next, consider each iteration m with m≥ n+1. If Algorithm 2 does not terminate at iteration m, we can

obtain that

ρ
(m)
l ≥ ρ

′(n)
l , (B.10)

G(x,y,z, ρ
(m)
l ) = F1(x,y)+FLP (x,z, τ̃ (δ(ρ

(m)
l )))−Z − ρ

(m)
l ∥δ(ρ(m)

l )∥1 > 0, (B.11)

F1(x,y)+FLP (x,z, τ̃ (δ(ρ
(n)
l )))−Z − ρ

(m)
l ∥δ(ρ(n)l )∥1 ≤ 0, (B.12)

where (B.10) and (B.11) are implied by Step 4 of Algorithm 2 and Lemma 4.2, and (B.12) is implied by (B.9)

and (B.10). By (B.8) and (B.10) we obtain that ρ
(n)
l < ρ

(m)
l . This, together with (B.11) and (B.12), implies

that δ(ρ
(n)
l ) and δ(ρ

(m)
l ) are not equal.
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According to Proposition 4.3, each δ derived by (4.40) satisfies that δijr ∈ {−1,0,1} for all (i, j) ∈A and

r ∈ {1,2, · · · , |K|}. Therefore, as there are a finite number of such δ, Algorithm 2 must terminate in a finite

number of iterations. Moreover, when Algorithm 2 terminates, we have that G(x,y,z, ρl) = 0. By Lemma 4.2,

we obtain that Algorithm 2 returns ρl = ρ∗(x,y,z), and accordingly, δ(ρl) is the corresponding worst-case

scenario for (x,y,z). Hence, the first statement of Theorem 4.2 is proved.

The second statement of Theorem 4.2 follows directly from the property of bisection search. For any ϵ > 0,

Algorithm 2 only needs at most ⌈log2((ρ
(0)
h − ρ(0)l )/ϵ)⌉ iterations to ensure that ρh − ρl ≤ ϵ. At each iteration

of Algorithm 2, by Lemma 4.2 and Lemma 4.4 we note that ρl ≤ ρ∗(x,y,z)≤ ρh and G(x,y,z, ρl)≥ 0. Thus,

after ⌈log2((ρ
(0)
h −ρ(0)l )/ϵ)⌉ iterations, we have that ρl ≤ ρ∗(x,y,z)≤ ρh ≤ ρl + ϵ, and by G(x,y,z, ρl)≥ 0 we

also have that (F1(x,y)+FLP (x,z, τ̃ (δ(ρl)))−Z ≥ ρl∥δ(ρl)∥1. Hence, the second statement of Theorem 4.2

is also proved. □

B.11. Proof of Theorem 4.3

At each iteration of Algorithm 3, UB and LB are updated by solving the corresponding master problem

and subproblem, while a new worst-case scenario δ in U is obtained and added into the scenario subset Λ.

Algorithm 3 stops when UB = LB. Accordingly, by following an argument similar to that in the proof of

Theorem 4.1, we can show as follows that Algorithm 3 must terminate and return an optimal solution to

model RS in a finite number of iterations.

First, we show that Algorithm 1 returns an optimal solution to model RS if it terminates with UB =LB.

As model RSMILP(Λ) is a relaxation of model RS, the value of LB, which equals the optimal objective value

of model RSMILP(Λ), is a valid lower bound on the optimal objective value of model RS. As UB is the

worst-case normalized cost deviation of a first-stage solution (x̂, ŷ, ẑ), it provides a valid upper bound on the

optimal objective value of model RS. Thus, when UB = LB is achieved, (x̂, ŷ, ẑ) forms an optimal solution

to model RS.

Next, we show that Algorithm 1 must terminate with UB =LB in a finite number of iterations. To show

this, we note that at each iteration n, if the worst-case scenario δ(n) identified in Step 3 of Algorithm 1 is

not in the current scenario subset Λ, it will be added to Λ. According to Proposition 4.3, δ(n) satisfies that

δ
(n)
ijr ∈ {−1,0,1} for all (i, j)∈A and r ∈ {1,2, ·, |K|}, and has a finite number of possible values. Therefore, in

a finite number of iterations, δ(n) identified in Step 3 of Algorithm 1 must be included in the current scenario

set Λ. In such a situation, both LB and UB must be equal to the optimal objective value of the current

master problem, implying that (x̂, ŷ, ẑ) forms an optimal solution to model RS. This completes the proof of

Theorem 4.3. □

Appendix C: Acceleration Strategies for C&CG Algorithms

In this section, we illustrate several acceleration strategies employed in our implementation of the newly

proposed C&CG algorithms.
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C.1. Master Problems: Removing Redundant Variables and Constraints, Imposing Valid

Inequality, and Breaking Symmetry

For the master problems solved in our C&CG Algorithms, we can strengthen their formulations by removing

redundant variables and constraints, imposing a valid inequality, and breaking their symmetric structure.

First, for each commodity k ∈ K, and for each pair of nodes i′ and j′ of the network D = (N ,A), let

τk(i′, j′) denote the length of the shortest-time path from node i′ to node j′ under the nominal travel times

in the flat network, such that the origin ok and destination dk of commodity k are not included in between

the start and end nodes of the path. It can be seen that for each arc (i, j)∈A, if τk(ok, i)+ τ ij + τk(j, dk)>

lk − ek, then under the nominal travel times, commodity k cannot pass arc (i, j) without violating its earliest

time for departure from origin ok or its due time for arrival at destination dk. Therefore, in every nominal

timely-implementable first-stage solution of the robust CTSNDP, commodity k can pass arc (i, j) ∈A only

if the following condition is satisfied:

τk(ok, i)+ τ ij + τk(j, dk)≤ lk − ek. (C.1)

Define Kij as the set of such commodities k that satisfy (C.1). Accordingly, variables and constraints

associated with commodity k ∈K\Kij can be safely eliminated from the master problems for each (i, j)∈A.

Second, consider each arc (i, j) ∈ A, and each pair of different commodities k, k′ ∈ Kij . If k and k′ are

consolidated and shipped together through arc (i, j) in a nominal timely-implementable first-stage solution

to the robust CTSNDP, then due to the constraints of commodities k and k′ on earliest times for departure

from their origins and latest times for arrival at their destinations, both of the following conditions must be

satisfied:

τk(ok, i)+ τ ij + τk′
(j, dk

′
)≤ lk

′ − ek
′
, (C.2)

τk(ok
′
, i)+ τ ij + τk(j, dk)≤ lk − ek. (C.3)

Define K2
ij to be the set of such commodity pairs (k,′ k′) that satisfy (C.2) and (C.3) above. Accordingly,

(C.4) below can be introduced to the master problems as a valid inequality, prohibiting k and k′ from being

consolidated for each k and k′ that do not satisfy conditions (C.2) and (C.3):

zkijr + zk
′

ijr ≤ 1, ∀ (i, j)∈A, (k, k′)∈ (Kij ×Kij) \K2
ij , r= {1,2, ..., |K|− 1}. (C.4)

Third, to break the symmetric structure of each master problem solved in our C&CG algorithms, we can

restrict that for each arc (i, j)∈A, the square sum of commodities’ indices included in the r-th consolidation

on (i, j), which equals
∑

k∈K(k ·k)zkijr, must be non-decreasing in r. Accordingly, the following inequality can

be introduced to the master problems, without changing their optimal objective values:∑
k∈K

(k · k)zkijr ≥
∑
k∈K

(k · k)zkijr+1, ∀ (i, j)∈A, r= {1,2, ..., |K|− 1}. (C.5)
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C.2. Subproblems: Removing Redundant Variables and Constraints

For the subproblems solved in our C&CG algorithms, we can strengthen their formulations by removing

redundant variables and constraints. In the following, we first present it for the RO-C&CG algorithm, and

then for the RS-C&CG algorithm.

First, for any given nominal timely-implementable first-stage solution (x,y,z) of model RO with (C.5)

satisfied, we can obtain its corresponding flat solution denoted by (P(x,z),C(x,z)). Let P k(x,z) indicate the

corresponding flat path for commodity k ∈K, with N k(x,z) and Ak(x,z) representing its node sequence and

arc sequence, respectively. For each arc α ∈A, let Cα(x,z) indicate the corresponding set of all non-empty

consolidations on arc α∈A. As a result, |Cα(x,z)| represents the total number of consolidations on arc α.

In any optimal solution to model FRP (x,z) defined in (3.29)–(3.40) of the subproblem, only arcs in Ak

and nodes in N k can be visited by commodity k, implying that vkij = 0 for all (i, j)∈A\Ak and k ∈K, and

that wk
i = 0 for all i∈N \N k, k ∈K. Since empty consolidations are redundant, we have that bijr = 0 for all

(i, j) ∈ A with |C(i,j)
r (x,z)|= 0. As a result, excluding these redundant decision variables and their related

constraints will not change the optimal objective value of model FRP (x,z). Accordingly, we can replace N ,

A, and |K| in model FRP (x,z) defined in (3.29)–(3.40) of the subproblem with their corresponding N k(x,z),

Ak(x,z) and |C(i,j)(x,z)|, respectively.

With the redundant variables and constraints of model FRP (x,z) defined in (3.29)–(3.40) excluded,

some variables and constraints of its reformulation defined in (4.19)-(4.20) can also be excluded. The

resulting model, denoted by SRP1(x,z), is shown as follows, where T (x,z) denotes the domain defined

by (4.6) – (4.13), (4.21) – (4.24) and (B.4), with N , A and |K| replaced by their corresponding N k(x,z),

Ak(x,z) and |C(i,j)(x,z)|, respectively:

[SRP1(x,z)] FRP (x,z) = max
(ζ,β,γ,ψ,η,θ,ξ,λ,φ)∈T (x,z)

∑
(j,i)∈Ak(x,z)

|C(j,i)(x,z)|∑
r=1

φjir

−
∑
k∈K

∑
(i,j)∈Ak(x,z)

(M1x
k
ij) · ηkij

+
∑
k∈K

∑
(i,j)∈Ak(x,z)

|C(i,j)(x,z)|∑
r=1

[M1(z
k
ijr − 1)] · (θkijr + ξkijr)

+
∑
k∈K

ek · (γk −λk
ok)+

∑
k∈K

lk · (λk
dk −ψk).

As a result, the RO-C&CG algorithm can solve the subproblem for any given nominal timely-implementable

first-stage solution (x,y,z) by solving the SRP1(x,z) model. In this model, the number of consolidation

indices on each arc (i, j) ∈ A is equal to |C(i,j)(x,z)|, which is generally much smaller than |K|. From the

optimal solution obtained for SRP1(x,z), we can compute the worst-case scenario δ ∈ U(Γ) for (x,y,z)

according to (C.6) below, thereby still ensuring the convergence of the RO-C&CG method.

δijr =

{
−ζijr,−1 + ζijr,1, if r ∈ {1, ..., |C(i,j)(x,z)|},
0, otherwise,

∀ (i, j)∈A, r ∈ {1, ..., |K|}. (C.6)



59

Next, for any given nominal timely-implementable first-stage solution (x,y,z) of model RS with (C.5)

satisfied, consider the maximization MILP model defined in (4.35)–(4.39) for the computation of G(x,y,z, ρ)

for the subproblem of the RS-C&CG algorithm. By following an argument similar to that above, it can be

shown that, to compute G(x,y,z, ρ), we also only need to solve model Ĝ(x,y,z, ρ) shown below, where

T (x,z) denotes the domain defined by (4.6) – (4.13) and (B.5) – (B.7), with N , A and |K| replaced by their

corresponding N k(x,z), Ak(x,z) and |C(i,j)(x,z)|, respectively:

[Ĝ(x,y,z, ρ)] max
(ζ̂,β,γ,ψ,η,θ,ξ,λ,φ̂)∈T (x,z)

F1(x,y)−Z +
∑

(j,i)∈Ak(x,z)

|C(j,i)(x,z)|∑
r=1

φ̂jir −
∑
k∈K

∑
(i,j)∈Ak(x,z)

(M1x
k
ij) · ηkij

+
∑
k∈K

∑
(i,j)∈Ak(x,z)

|C(i,j)(x,z)|∑
r=1

[M1(z
k
ijr − 1)] · (θkijr + ξkijr)

+
∑
k∈K

ek · (γk −λk
ok)+

∑
k∈K

lk · (λk
dk −ψk).

From the optimal solution obtained for Ĝ(x,y,z, ρ) above, we can compute the worst-case scenario δ ∈U for

(x,y,z) according to (C.7) below, thereby also ensuring the convergence of the RS-C&CG method.

δijr =

{
−ζ̂ijr,−1 + ζ̂ijr,1, if r ∈ {1, ..., |C(i,j)(x,z)|},
0, otherwise,

∀ (i, j)∈A, r ∈ {1, ..., |K|}. (C.7)

C.3. Iterations: Bundling New Scenarios to Add

To further enhance the efficiency of both the RO-C&CG and RS-C&CG algorithms, we also implement a

bundle strategy to update the scenario set in each iteration. This approach is similar to the one used by

Remli et al. (2019) in their Benders decomposition-based algorithm for a transpiration service procurement

problem.

In each iteration of our C&CG algorithms, we solve the master problem to obtain an optimal first-stage

solution, as well as a pool of feasible first-stage solutions. We can accomplish this using general optimization

solvers such as Gurobi and CPLEX. These first-stage feasible solutions, including the optimal solution, are

sorted by their objective values in non-decreasing order. For each of these solutions, we then solve the

corresponding subproblem to identify its worst-case scenario, resulting in multiple new scenarios that can be

added to the master problem for future iterations. As we add more new scenarios in each iteration, the C&CG

algorithm may require fewer iterations to reach the optimum solution. However, as we add new scenarios

along with their decision variables and constraints, the size of the master problem increases, which may lead

to longer computation times for each iteration of the algorithm.

Accordingly, to strike a better balance between efficiency and accuracy, we add a bundle of at most two

new scenarios to the master problem in each iteration. One of these new scenarios is the worst-case scenario

of the optimal first-stage solution. To identify the second scenario to add, we evaluate the first-stage solutions

in the pool and choose the solution with the least objective value. If this solution’s objective value is better

than the current best upper bound on the optimal objective value, we update the upper bound accordingly,

and we then add the worst-case scenario of this best solution, as the second scenario in the bundle, to the

master problem.
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Appendix D: Details on Instance Generation for Computational Experiments

For our computational experiments, we generated instances of the robust CTSNDP based on the seven

instance classes (named R4-R10) of the fixed-charge capacitated multi-commodity network design (CMND)

problem available in the literature Ghamlouche et al. (2003). The attributes of each instance class, including

the size of the node set |N |, the size of the arc set |A|, and the size of the commodity set |K|, are given in

columns 2-4 of Table 5.1. Each class consists of five networks with varying values for the ratio of fixed cost

to variable cost, and for the ratio of the total demand of commodities to the total capacity of the network.

These instances are referred to as “untimed” instances, as they do not have any temporal attributes such as

travel times of arcs, or earliest available times and due times of commodities.

To obtain “timed” instances for each of the 7 classes of the CMND problem, we followed an approach

similar to that presented in Boland et al. (2017) to generate fixed costs and time attributes of the CTSNDP.

First, for each arc (i, j) ∈A, we set the nominal value of travel time (in minutes) τ ij to be proportional to

its fixed cost fij by setting τ ij = fij/0.55, as in Boland et al. (2017). This is based on the same premise that

fij represents the transportation cost for carriers that spend 0.55 cents per mile, and that their trucks travel

at 60 miles per hour.

Next, for each commodity k ∈ K, we followed a normal distribution to randomly generate the available

time ek. Let Lk denote the length of the shortest-time path from origin ok to destination dk for commodity

k in the flat network under the nominal travel times τ . We then set the due time lk of each commodity

k ∈ K by lk = ek +Lk +Fk. Here, the parameter Fk ≥ 0 represents the time flexibility for the delivery of

commodity k, which we also set randomly using a normal distribution. We used the same normal distribution

to generate the available times ek for all instances, but used two different normal distributions to generate

Fk for instances of high and low time flexibility, respectively. Consequently, we had two combinations of

normal distributions to generate commodities’ available times and time flexibility. The detailed settings of

these normal distributions are described in Table D.1, where L denotes the average of Lk over all k ∈K.

Table D.1 Detail setting of the normal distributions used for generating “timed” instances.

Normal Distribution Mean(µ) Standard Deviation(σ)

For generating ek L 1
6
L

For generating Fk

1
2
L 1

6
· 1
2
L

1
4
L 1

6
· 1
4
L

For each “timed” instance obtained, we then generated unit in-storage holding costs and unit delay penalties

for the commodities. We set the per-unit-of-demand-and-time in-storage holding cost hk for each commodity

k ∈ K to be proportional to its cheapest per-unit-of-time per-unit-of-flow cost, i.e., hk = 0.5mina∈A{(cka +
fa/ua)/τa} where τa is the nominal value of the travel time generated. Inspired by Lanza et al. (2021),

for each commodity k ∈ K, we set its penalty gk per unit of time for the delay to be twice the most
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expensive per-unit-of-time transportation cost for it to pass through an arc, i.e., gk = 2 ·maxa∈A{(cka · qk +

fa⌈qk/ua⌉)/τa}.

Moreover, to characterize travel time uncertainty, we generated the maximum deviation τ̂ij of the travel

time for each arc (i, j)∈A by setting τ̂ij = µ̂ijτ ij . Here, τ ij is the nominal value of the travel time generated,

and µ̂ij is a coefficient randomly selected from 0.1 to 0.5.

For each network in each problem class, we randomly generated 3 instances for each combination of the

distributions for commodities’ available time and time flexibility. As a result, we obtained 5× 2× 3 = 30 test

instances for each of the 7 instance classes, and thus obtained 7× 30 = 210 test instances in total.
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