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We study the continuous-time service network design problem (CTSNDP) under travel time uncertainty,

aiming to design a transportation service network along a continuous-time planning horizon, with robust

operational efficiency even in the presence of travel time deviations. Incorporating travel time uncertainty

holds a great practical value. However, it poses a significant challenge in both problem formulation and

solution computation, as the time-indexed mixed-integer linear programming (MILP) formulations commonly

used to solve the CTSNDP with deterministic travel times become impractical. To tackle this challenge, we

propose a new consolidation-indexed MILP formulation for the deterministic CTSNDP, which enables us

to derive computationally tractable formulations for a robust optimization model and a robust satisficing

model. Both of these robust models provide solutions that can mitigate the impact of travel time uncertainty,

without knowledge of the precise joint probability distribution of travel times. To compute the exact

optimal solutions for these models, we develop two tailored column-and-constraint generation algorithms.

This particularly marks the first success of such algorithms in solving a two-stage robust satisficing model,

featuring a novel enhanced bisection search procedure for a challenging max-min fractional optimization

problem. Our computational results demonstrate the effectiveness of these algorithms, the tractability of the

proposed formulations, as well as the trade-offs involved in achieving the robust solutions.

Key words : service network design; continuous time; travel time uncertainty; transportation; robust

optimization; robust satisficing; exact algorithm; column-and-constraint generation

1. Introduction

In the transportation industry, a significant portion of the freight is moved by consolidation carriers,

including railroads, container shipping lines, less-than-truckload motor carriers, and regular and

express postal service providers. These consolidation carriers transport shipments that are small

compared with their vehicles’ capacities. As a result, they need to consolidate their shipments to

achieve cost-effectiveness, which poses a service network design problem (SNDP).

The SNDP involves routing of shipments from their origins to destinations through a network of

terminals, where shipments can be transferred from inbound vehicles to outbound vehicles. Each

shipment has an available time for departure from its origin and a due time for arrival at its
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destination. To transport shipments between terminals, vehicles with limited capacities are needed.

At each terminal, when multiple shipments are consolidated, the outbound vehicle carrying these

shipments cannot be dispatched until all the inbound vehicles bringing these shipments have arrived.

Accordingly, a classic SNDP seeks to determine routing and consolidation plans of the shipments,

and numbers and dispatch times of the vehicles on each terminal-to-terminal movement, so that

the shipment available times and due times are met, with the total operational cost minimized.

The classic SNDP and other variants of the SNDP have been extensively studied, due to their

wide applications and theoretical significance (Wieberneit 2008). However, the existing studies

primarily focus on deterministic variants, assuming that all problem parameters, such as shipment

quantities and travel times, are known in advance. To model the deterministic variants, a widely

used technique is discretization, which discretizes the planning horizon into a number of time points

(see, e.g., Crainic et al. 2016). Using these time points, a deterministic SNDP can be modeled on

a time-expanded network, in which each time-space node represents a combination of a time point

and a terminal, and each arc connecting two time points represents a shipment’s movement between

terminals or its waiting at a terminal during a specific period.

The time-expanded network constructed from the discretization can be effectively used to

incorporate decisions of the SNDP. Based on this, a mixed-integer linear programming (MILP)

formulation can be established. It is time-indexed, since the decision variables involved are indexed

by a pair of time points of the time-space nodes. The time-indexed MILP formulation can be solved

by commercial optimization solvers and received significant attention (Wieberneit 2008).

However, the time-indexed MILP formulation is only an approximation of the SNDP, where the

planning horizon is continuous and vehicles can be dispatched at any time. Achieving high-quality

solutions requires a fine discretization, which often leads to a large and typically intractable

time-indexed MILP formulation of the SNDP. To solve the continuous-time variant of the SNDP

(or CTSNDP in short), Boland et al. (2017) proposed a Dynamic Discretization Discovery (DDD)

algorithm, which iteratively adjusts the discretization level until reaching an optimal solution. This

exact algorithm was later enhanced by Hewitt (2019), Marshall et al. (2021), and Shu et al. (2024).

The formulations and solution algorithms introduced above are applicable to only deterministic

variants of the SNDP. In contrast, this paper focuses on the development of an exact solution

algorithm for a new variant of the CTSNDP that incorporates travel time uncertainty. It is an

under-explored and challenging task that holds significant practical value.

1.1. Significance and Challenges of Incorporating Travel Time Uncertainty

Actual travel times for transportation services are often unknown in advance due to factors such

as weather conditions and traffic congestion, leading to delays and late deliveries. This can result
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in disruptive impacts, such as penalties and customer dissatisfaction (Lanza et al. 2021). Bertsimas

et al. (2019) has highlighted the significant importance of travel time estimation. A considerable

amount of literature has investigated travel time uncertainty in different applications, including

traffic assignment and vehicle routing (Nikolova and Stier-Moses 2014, Jaillet et al. 2016).

Despite its significance, travel time uncertainty has rarely been considered for transportation

service network design. Existing studies incorporating uncertainty in SNDP mainly focus on demand

uncertainty, either using a stochastic optimization approach to optimize the average performance

(Wang et al. 2019, Lium et al. 2009), or a robust optimization approach (Wang and Qi 2020) to

optimize the worst-case performance. When dispatch times are involved, existing solution methods

all use the time-indexed formulation to incorporate uncertain demands. This is achievable because,

even with demand uncertainty, all decision variables retain the same time indices as those in the

time-indexed formulation of the deterministic SNDP. In communication network design, the robust

optimization approach has also been employed to address demand and cost uncertainties (Koster

et al. 2013, Pessoa and Poss 2015, Altın et al. 2011), where time-related decisions are not involved.

Unlike uncertain demands, incorporating uncertain travel times poses a significant challenge, as

the time-indexed formulation of the deterministic SNDP becomes impractical. Decisions involving

travel times, such as actual departure times of vehicles, require time-indexed decision variables with

varying indices for different realizations of uncertain travel times. This significantly increases the

size and complexity of the optimization model.

We study the CTSNDP under travel time uncertainty over a continuous-time planning horizon.

Due to the impracticality of the time-indexed formulation, exact solution methods for the

deterministic CTSNDP, such as the DDD algorithm, cannot be applied. Compared with other

transportation problems, such as traffic assignment and vehicle routing, incorporating travel time

uncertainty in the CTSNDP poses another challenge. When a shipment has a delay, it can trigger

delays for other shipments awaiting consolidation at a terminal, consequently causing delays at

other terminals. Such a delay propagation caused by consolidation greatly complicates the problem.

1.2. Related Work

Among the limited studies that consider travel time uncertainty in SNDP, the delay propagation

caused by consolidation has been overlooked, except for Demir et al. (2016), Hrušovskỳ et al. (2018),

Layeb et al. (2018), which focus on a restricted SNDP where services can only be selected from a

small candidate set. These three studies adopt a stochastic optimization approach to incorporate

travel time uncertainty and optimize the average performance. However, it requires to know the

joint probability distribution of all the travel times, which is often not possible. Due to the large

number of decision variables and the multitude of possible realizations of uncertain factors, solving



4

the stochastic optimization model derived from this approach to optimality is challenging. These

three studies apply only heuristic methods based on simulations or limited travel time samples.

Our paper is the first to adopt a robust optimization approach to study the CTSNDP under travel

time uncertainty. Our goal is to design a transportation service network that maintains reliable

operational efficiency, even in the presence of travel time deviations and without knowledge of the

actual travel time distribution. The robust optimization approach only requires a distribution-free

uncertainty set that defines the possible realizations of uncertain factors (Bertsimas et al. 2011). It

relaxes the need for precise distribution information, and often leads to an optimization formulation

with a tractable reformulation that can be efficiently solved. In the classic robust optimization

approach, the objective is to optimize the worst-case objective value of a solution over different

realizations of uncertain factors.

A recent study by Long et al. (2023) proposes a robust satisficing approach, aiming to find a

solution that best achieves a prescribed target of the objective value, with the worst-case normalized

violation from the target minimized. Unlike the traditional robust optimization which restricts

the possible realizations of uncertain factors within a pre-specified uncertainty set, the robust

satisficing framework allows the nature to choose the realization in the whole space. It has also

been demonstrated through several applications to have the advantage of improving out-of-sample

performance over the classic robust optimization approach (Zhou et al. 2022, Cui et al. 2023).

To apply the robust optimization and robust satisficing approaches, we need to incorporate travel

time uncertainty into the CTSNDP formulation. As discussed in Section 1.1, this is a challenging

task, since the time-indexed formulations commonly used for the deterministic CTSNDP become

impractical. Moreover, the MILP formulations presented in Demir et al. (2016) and Hrušovskỳ

et al. (2018) for the SNDP consist of decision variables with service indices, which are essentially

time-indexed, as services are defined by their departure and arrival times. Hewitt and Lehuédé

(2023) propose an MILP formulation for the deterministic CTSNDP without time indices. However,

its total number of decisions and constraints is proportional to the total number of possible shipment

combinations, which can be exponentially large, making it very challenging to solve.

1.3. Our Contributions

This study tackles the challenge of formulating and solving the robust CTSNDP under travel

time uncertainty, without knowledge of the travel time distribution. We first propose a new

consolidation-indexed MILP formulation for the deterministic CTSNDP, eliminating the need for

time indices. This enables us to derive tractable MILP formulations for both a robust optimization

model and a robust satisficing model of the robust CTSNDP, which are based on distribution-free

polyhedral uncertainty sets and involve two stages of optimization. These two robust modeling
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frameworks enable decision makers to better align their preferences regarding the robustness

guarantees of the solutions obtained and the trade-offs involved. It is worthy noting that our

formulations for robust models can also be used to derive MILP formulations for other optimization

models, including stochastic programming, to incorporate travel time uncertainty.

To solve the robust optimization model and the robust satisficing model, we develop two exact

algorithms, respectively. They both follow a column-and-constraint generation (C&CG) framework,

which has widely been applied to two-stage robust optimization models (see, e.g., Zeng and Zhao

2013, Wang and Qi 2020), but has never been applied to two-stage robust satisficing models

before. The critical step in our C&CG algorithms is its solution to a subproblem that finds the

worst-case realized travel times for any given first-stage solution, for which we need to analyze and

utilize optimality properties of the subproblem. For our robust optimization model, this subproblem

involves max-min optimization where the inner minimization is a linear program (LP). We can

reformulate it as an MILP and solve it by an optimization solver. For our robust satisficing model,

the subproblem is much more complicated, as it involves max-min fractional optimization, requiring

us to develop a novel enhanced bisection search procedure. Through extensive computational

experiments, we demonstrate the tractability of our proposed models, the effectiveness of our

developed algorithms, and the trade-off involved in achieving the robustness guarantees.

In what follows, Section 2 introduces problem statements for both the deterministic CTSNDP and

the robust CTSNDP under travel time uncertainty. Section 3 presents our new MILP formulation

for the deterministic CTSNDP, and its extensions to the robust optimization model and the robust

satisficing model of the robust CTSNDP. Section 4 explains and analyzes our C&CG algorithms.

The computational results are discussed in Section 5, followed by a conclusion in Section 6. All

notation is summarized in Table A.1 of Appendix A and all proofs are presented in Appendix B.

2. Problem Statements

In this section, we first introduce the deterministic CTSNDP where travel times are given, and

then define two variants of the robust CTSNDP where travel times are uncertain.

2.1. Deterministic CTSNDP

The deterministic CTSNDP examined in this paper extends the problem setting in Boland et al.

(2017), with shipment holding costs being incorporated. Unlike Boland et al. (2017), we define its

feasible solutions over the physical network of the terminals, instead of the time-expanded network.

Consider a network D = (N ,A) with a physical node set N and a directed arc set A, which is

referred to as the flat network. Each physical node represents a terminal, and each arc represents

a direct transport service from one terminal to another. Consider a commodity set K, where each
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commodity k ∈K represents a shipment, with its origin denoted by ok ∈N , its destination denoted

by dk ∈N , and its shipping quantity denoted by qk ∈N>0. Each commodity k ∈K has an earliest

available time ek ∈ N for departure from its origin ok, and has a due time lk ∈ N>0 for arrival at

its destination dk. No commodity can be delivered separately, and thus each commodity can only

be assigned exactly one delivery path. As a result, each commodity must be picked up exactly

once from the origin after the earliest available time and delivered exactly once to the destination

before the due time. However, commodities can be temporarily stored at any nodes, waiting to be

consolidated for shipping together on different arcs of the network.

In the flat network D, each arc (i, j) ∈ A is associated with four attributes: (1) travel time

τij ∈N>0; (2) a per-unit-of-flow (travel) cost ckij ∈R>0 for each commodity k ∈ K; (3) a fixed cost

fij ∈ R>0 per vehicle for (shipping) service on the arc; and (4) a capacity uij ∈ N>0 per vehicle

for (shipping) service on the arc. Additionally, both in-transit and in-storage holding costs are

considered here for each commodity. In particular, the in-transit holding costs are incorporated

into the flow costs ckij for commodities k ∈ K and arcs (i, j) ∈ A. A per-unit-of-demand-and-time

in-storage holding cost hk ∈R≥0 is incurred when a commodity k ∈K is stored at any node.

The deterministic CTSNDP requires the deciding of delivery paths and consolidation plans for all

commodities, as well as the numbers and the dispatch times of the required vehicles. Its objective

is to satisfy all delivery requirements while keeping the total cost minimized.

A feasible solution to the deterministic CTSNDP consists of (i) a routing plan, (ii) a consolidation

plan, and (iii) a departure schedule, these being defined as follows (see the illustration in Figure 2

of Appendix A). We call a directed path P in the flat network D a flat path, which is represented

by its node sequence (ν1, ν2, . . . , νm+1) and arc sequence (a1, a2, . . . , am), with m∈N>0 denoting the

total number of its arcs. As in actual practice, the delivery path of each commodity cannot have

repeated vertices or arcs, and thus must be an elementary flat path from the origin to the destination

of the commodity. Accordingly, a routing plan P is defined as a collection of |K| elementary flat

paths in the flat network D, with each flat path P k ∈ P for k ∈ K representing the delivery path

of commodity k from its origin ok to destination dk, where the node and arc sequences of P k are

denoted by (νk1 , ν
k
2 , . . . , ν

k
mk+1

) and (ak1 , a
k
2 , . . . , a

k
mk), respectively, with ν

k
1 = ok and νk

mk+1
= dk, and

with no repeated nodes or arcs.

Given a routing plan P, we need to specify how commodities are consolidated for each arc α∈A
of the flat network D. Let K(P, α) = {k ∈K | ∃akn = α,1≤ n≤mk} indicate a subset of commodities

whose flat paths in P pass through arc α. A consolidation on α for P can be represented by a subset

of K(P, α), so that commodities in this subset are consolidated to be shipped together on α. Since

each commodity cannot be split during transportation, there are at most |K| consolidations on each
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arc α. We use Cα
r ⊆K(P, α) to indicate the r-th consolidation on α for the routing plan P, so that

all the commodities in Cα
r are shipped through α together. A consolidation plan C for P can thus

be defined as a collection of consolidations Cα
r ⊆K(P, α) for α ∈A and r ∈ {1,2, . . . , |K|}, where r

is referred to as the consolidation index. If the consolidations Cα
r for r = 1,2, . . . , |K| cover all the

commodities k ∈ K(P, α) for each arc α ∈ A, i.e.,
⋃|K|

r=1C
α
r = K(P, α) is satisfied for each α ∈ A,

then such a routing-consolidation pair (P,C) forms a flat solution to the deterministic CTSNDP.

Given a flat solution (P,C), we need to further specify the departure time of each commodity

from every node it passes through. Since each flat path in P is an elementary path, every commodity

can depart from the same node at most once. Accordingly, a departure schedule T is defined as

a collection of departure times tk
νkn

for k ∈K and n ∈ {1,2, . . . ,mk}, indicating when commodity k

departs from node νkn via arc akn of its flat path P k. Thus, (P,C,T ) forms a feasible solution to the

deterministic CTSNDP if the departure schedule T satisfies that

tkνkn ≥ ek, for n= 1, (2.1)

tk
νkn+1

≥ tkνkn + τakn , for n∈ {1,2, . . . ,mk − 1}, (2.2)

tkνkn + τakn ≤ lk, for n=mk, (2.3)

tki = tk
′

i , for k ∈C(i,j)
r and k′ ∈C(i,j)

r with (i, j)∈A and r ∈ {1,2, · · · , |K|}. (2.4)

Here, for each commodity k ∈ K, constraints (2.1) and (2.3) together ensure that the departure

time from its origin and arrival time at its destination are both within the time window [ek, lk], and

constraints (2.2) are due to the travel times of arcs on its flat path. Constraints (2.4) ensure that

commodities consolidated on the same arc all pass the arc at the same time. A flat solution (P,C)
is timely-implementable, if there exists such a departure schedule T that satisfies (2.1)–(2.4).

From a feasible solution (P,C,T ), we can obtain holding times Hk
n for nodes νkn with n =

1,2, . . . ,mk+1 on the flat path P k of each commodity k ∈K, with Hk
1 = tk

νk1
−ek, Hk

n = tk
νkn
−(tk

νkn−1
+

τakn−1
) for n ∈ {2, . . . ,mk}, and Hk

mk+1
= lk − (tk

νk
mk

+ τak
mk

). Accordingly, we can define h(P,T )

to represent the total holding cost, where h(P,T ) =
∑

k∈K
∑mk+1

n=1 hkqkHk
n, and define f(P,C)

to represent the total fixed cost and flow cost, where f(P,C) =
∑

α∈A
∑|K|

r=1 fα⌈
∑

k∈Cα
r
qk/uα⌉ +∑

k∈K
∑mk

n=1 c
k
akn
qk. Thus, the total cost of solution (P,C,T ) equals f(P,C)+h(P,T ).

Without loss of generality, we assume that for each commodity k ∈ K, the difference (lk − ek)

between its latest arrival time lk at the destination and available time ek at the origin is not smaller

than the length of the shortest-time path from ok to dk in the flat network D. This is sufficient to

ensure the existence of a feasible solution to the deterministic CTSNDP. The deterministic CTSNDP

can thus be formulated as follows, where S indicates the domain of all the feasible solutions.

(Deterministic CTSNDP) min
(P,C,T )∈S

[f(P,C)+h(P,T )].
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2.2. Robust CTSNDP

We now introduce the robust CTSNDP under travel time uncertainty, which we refer to as the robust

CTSNDP for short. Suppose that for each arc α ∈ A, the actual travel time τ̃α for commodities

passing through α is determined by τ̃α = τα+ τ̂αδα. Here, τα ∈N>0 is the nominal value of τ̃α, and

τ̂α ∈ N with τ̂α < τα is the maximum deviation of τ̃α with respect to the nominal value τα. The

coefficient δα is a random variable (but with unknown distribution), and its value falls within the

range [−1,1]. Thus, τ̃α falls within the range [τα − τ̂α, τα + τ̂α].

For each α ∈ A, since there can be at most |K| consolidations on arc α, we use τ̃αr for r ∈
{1,2, . . . , |K|} to indicate the travel time of the r-th consolidation on arc α. Let U indicate the

support of the vector δ of random variables δαr for α∈A and r ∈ {1,2, ..., |K|}. We have that

U=
{
δ : δαr ∈ [−1,1],∀α∈A, r ∈ {1,2, ..., |K|}

}
. (2.5)

For each realized coefficient value δ ∈ U, we use τ̃ (δ) to indicate the vector of the corresponding

realized travel times (τα + τ̂αδαr) for α∈A and r ∈ {1,2, ..., |K|}, which can be defined as

τ̃ (δ) =
{
τ̃ : τ̃αr = τα + τ̂αδαr,∀α∈A, r ∈ {1,2, ..., |K|}

}
. (2.6)

We refer to vector δ as scenario, and refer to τ̃ (δ) as the realized travel time for δ.

Similar to the stochastic SNDP studied in Lanza et al. (2021), the decision process for the robust

CTSNDP has two stages. In the first stage, before actual values of the travel times are realized, the

problem needs to determine a routing plan P and a consolidation plan C that form a flat solution

(P,C). As P and C are crucial to determine resources for transportation, such as vehicles, which

require time for preparation, they need to be independent of the realized travel times. Given (P,C),
in the second stage, which is after the actual values of the travel times are realized, the problem

needs to determine an actual departure schedule T , which can adapt to the realized travel times.

Due to travel time uncertainty, it is costly to satisfy the due time constraints for every possible

realization of the travel times. Accordingly, in the second stage of the robust CTSNDP, we relax the

due time constraints and impose a penalty gk per unit of time for the delay of each commodity k’s

arrival at its destination. Thus, given a flat solution (P,C), and after actual travel times τ̃ (δ) with

δ ∈ U are realized, we need to compute the holding costs and delay penalty costs incurred in the

second stage. For this, we need to determine an optimal departure schedule T = (tk
νkn
)k∈K,1≤n≤mk ,

where each tk
νkn

denotes the departure time of commodity k from node νkn on the flat path P k of P.

Specifically, for each commodity k ∈K and arc akn = (νkn, ν
k
n+1) of P

k, since (P,C) is a flat solution,

there must exist r(k,n)∈ {1,2, . . . , |K|} such that the commodity k is contained in the consolidation

C
akn
r(k,n) of C. Thus, the actual travel time of commodity k on arc akn equals τ̃akn,r(k,n). Accordingly,

the actual departure schedule T needs to satisfy constraints (2.1), (2.4), and (2.7) below:

tk
νkn+1

≥ tkνkn + τ̃akn,r(k,n), for k ∈K, n∈ {1,2, . . . ,mk − 1}. (2.7)
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Constraints (2.7) are similar to (2.2) with τakn replaced by τ̃akn,r(k,n). Thus, the domain of such actual

departure schedules T is denoted by T(P,C, τ̃ (δ)). Let g(P,T ) =
∑

k∈K g
k ·max{tk

νk
mk

+ τ̃ak
mk

,r(k,mk)−

lk,0}, indicating the total delay penalty for an actual departure schedule T with respect to flat

paths in P. Hence, under the realized travel times τ̃ (δ) with δ ∈U, the corresponding second-stage

cost, including the holding costs and delay penalties, equals h(P,T )+ g(P,T ). Its minimum value,

minT ∈T(P,C,τ̃ (δ)) [h(P,T )+ g(P,T )]}, is referred to as the second-stage cost under scenario δ.

For the first stage of the robust CTSNDP, a flat solution (P,C) needs to be determined before

the actual travel times are realized. Following the light robustness approach, proposed by Fischetti

and Monaci (2009), we require that the flat solution (P,C) to be determined in the first stage needs

to form a feasible solution to the deterministic CTSNDP under a nominal scenario, where travel

times take their nominal values with no deviations. This is also commonly required in practice.

Accordingly, such a flat solution (P,C) must be timely-implementable under the nominal scenario,

and we refer to it as a nominal timely-implementable first-stage solution. We use F to indicate the

domain of all nominal timely-implementable first-stage solutions.

The robust CTSNDP aims to find a robust nominal timely-implementable first-stage solution

under the travel time uncertainty. Below, we adopt two modeling frameworks, namely robust

optimization and robust sacrificing, to characterize the robustness of such solutions.

Remark 2.1 (Uncertainty Revelation) The second stage of the robust CTSNDP introduced

above assumes that actual travel times are revealed before the departure schedule is determined. This

aligns with the literature (see, e.g., Atamtürk and Zhang 2007, Yanıkoğlu et al. 2019). However,

in some situations, the actual travel time for transporting a shipment through an arc cannot be

determined until the transportation is completed. Such a mechanism is referred to as the dynamic

uncertainty revelation. Appendix C shows that solutions to our two-stage formulation of the robust

CTSNDP can be adapted for the dynamic uncertainty revelation, without increasing objective values.

2.2.1. Robust Optimization Variant of CTSNDP Given an integer Γ∈N, known as the

budget of uncertainty, we can use it to adjust the level of robustness as needed, by introducing the

following budgeted uncertainty set U(Γ) of scenarios δ:

U(Γ) =
{
δ : ∥δ∥1 ≤ Γ, δαr ∈ [−1,1],∀α∈A, r ∈ {1,2, ..., |K|}

}
, (2.8)

where ∥δ∥1 =
∑

α∈A,r∈{1,2,...,|K|} |δαr|. It contains all possible δ such that ∥δ∥1, the total relative

deviation of the travel times τ̃ (δ) from their nominal values, does not exceed Γ.

The robust optimization variant of the CTSNDP under travel time uncertainty (or RO-CTSNDP

in short) has an objective to minimize the worst-case total two-stage cost with respect to the
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budgeted uncertainty set U(Γ) on δ. To achieve this, the RO-CTSNDP needs to determine a nominal

timely-implementable first-stage solution (P,C) ∈ F that minimizes the sum of the first-stage cost

(which is independent of the realization of δ) and the worst-case second-stage cost (which is over the

budgeted uncertainty set U(Γ) on δ). Accordingly, the RO-CTSNDP can be formulated as follows:

[RO-CTSNDP] min
(P,C)∈F

{f(P,C)+ max
δ∈U(Γ)

min
T ∈T(P,C,τ̃ (δ))

[h(P,T )+ g(P,T )]}.

2.2.2. Robust Satisficing Variant of CTSNDP We follow the modeling framework of Long

et al. (2023) to establish the robust satisficing variant of the CTSNDP under travel time uncertainty

(or RS-CTSNDP in short). Let Z0 represent the optimal objective value of the deterministic

CTSNDP under nominal travel times. Given a prescribed target Z of the total two-stage cost with

Z ≥Z0, the RS-CTSNDP needs to determine a nominal timely-implementable first-stage solution

(P,C)∈ F that best achieves the prescribed target Z, so that the worst-case normalized magnitude

of the deviation from the target is minimized. Accordingly, the RS-CTSNDP can be formulated as

min
(P,C)∈F

{ρ∈R≥0 : f(P,C)+ min
T ∈T(P,C,τ̃ (δ))

[h(P,T )+ g(P,T )]−Z ≤ ρ∥δ∥1, ∀δ ∈U}.

Here, the constraints imposed on the first-stage solution (P,C) ∈ F restrict the deviation of the

total two-stage cost from the prescribed target Z to not exceed ρ∥δ∥1 for every possible scenario

δ in the uncertainty set U. As a result, ρ indicates the worst-case magnitude of the deviation from

the prescribed cost target, normalized by the total relative deviation ∥δ∥1 of the travel times. This

quantity measures the fragility of a given solution and needs to be minimized to attain robustness.

3. Optimization Models

We first propose a new compact MILP model for the deterministic CTSNDP using consolidation

indices instead of time indices. Based on this, we then derive two-stage mixed-integer nonlinear

programming (MINLP) models for the two variants of the robust CTSNDP (RO-CTSNDP and

RS-CTSNDP), with their second-stage costs for each scenario formulated as linear programs (LP).

3.1. Consolidation-Indexed MILP Model for Deterministic CTSNDP

As described in Section 2, a feasible solution to the deterministic CTSNDP consists of a routing

plan P, a consolidation plan C, and a departure schedule T . (i) To represent the routing plan P,

we introduce a binary variable xk
ij for each (i, j) ∈ A and k ∈ K, indicating whether commodity

k ∈ K passes through arc (i, j). (ii) To represent the consolidation plan C, we first introduce a

binary variable zkijr for each (i, j) ∈ A, r ∈ {1,2, · · · , |K|}, and k ∈ K, indicating whether the r-th

consolidation C(i,j)
r on arc (i, j) contains commodity k. We then introduce a non-negative integer

variable yijr for each (i, j)∈A and r ∈ {1,2, · · · , |K|}, indicating the number of vehicles needed by

consolidation C(i,j)
r of arc (i, j) to accommodate the commodities in consolidation C(i,j)

r . (iii) To
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represent the departure schedule T , we first introduce a non-negative continuous variable vkij for

each (i, j) ∈A and k ∈K, which indicates the time when commodity k departs from node i when

passing through arc (i, j). If commodity k does not pass through arc (i, j), then vkij equals 0. We

introduce a non-negative continuous variable bijr for each (i, j) ∈ A and r ∈ {1,2, ..., |K|}, which
represents the time when commodities of the r-th consolidation C(i,j)

r on arc (i, j) depart from node

i. (iv) We also introduce a non-negative continuous variable wk
i for i ∈ N and k ∈ K to represent

the holding time for commodity k at terminal i. It equals 0 if commodity k does not pass node i.

Accordingly, the deterministic CTSNDP can be represented by the following compact MILP

model, referred to as model DO, where M denotes a sufficiently large constant:

[DO] min
∑

(i,j)∈A

|K|∑
r=1

fij · yijr +
∑
k∈K

∑
(i,j)∈A

(ckijq
k) ·xk

ij +
∑
k∈K

∑
i∈N

(hkqk) ·wk
i (3.1)

s.t.
∑

(i,j)∈A

xk
ij −

∑
(j,i)∈A

xk
ji =

 1, i= ok,
−1, i= dk, ∀k ∈K, i∈N ,
0, otherwise,

(3.2)

∑
k∈K

qkzkijr ≤ uijyijr, ∀ (i, j)∈A, r ∈ {1,2, ..., |K|}, (3.3)∑
k∈K

qkzkijr ≥ uijyijr −uij +1, ∀ (i, j)∈A, r ∈ {1,2, ..., |K|}, (3.4)

|K|∑
r=1

zkijr = xk
ij, ∀ (i, j)∈A, k ∈K, (3.5)∑

j:(j,i)∈A

(vkji + τjix
k
ji)≤

∑
j:(i,j)∈A

vkij, ∀ i∈N \{ok, dk}, k ∈K, (3.6)∑
j:(ok,j)∈A

vkokj ≥ ek, ∀ k ∈K, (3.7)

∑
j:(j,dk)∈A

(vkjdk + τjdkx
k
jdk)≤ lk, ∀ k ∈K, (3.8)

vkij ≤Mxk
ij, ∀ (i, j)∈A, k ∈K, (3.9)

bijr −M(1− zkijr)≤ vkij ≤ bijr +M(1− zkijr), ∀ (i, j)∈A, k ∈K, r ∈ {1,2, ..., |K|}, (3.10)

wk
i =



∑
j:(i,j)∈A

vkij − ek, i= ok,

lk −
∑

j:(j,i)∈A
(vkji + τjix

k
ji), i= dk, ∀ i∈N ,∀ k ∈K,∑

j:(i,j)∈A
vkij −

∑
j:(j,i)∈A

(vkji + τjix
k
ji), otherwise,

(3.11)

xk
ij ∈ {0,1} and vkij ≥ 0, ∀ (i, j)∈A, k ∈K, (3.12)

yijr ∈N≥0 and bijr ≥ 0, ∀ (i, j)∈A, r ∈ {1,2, ..., |K|}, (3.13)

zkijr ∈ {0,1}, ∀ (i, j)∈A, k ∈K, r ∈ {1,2, ..., |K|}, (3.14)

wk
i ≥ 0, ∀ i∈N , k ∈K. (3.15)
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The objective function (3.1) indicates the total cost to be minimized, which includes three terms

for the total fixed cost, total flow cost, and total holding cost, respectively. Constraints (3.2)–(3.5)

are imposed to define the routing and the consolidation plans. Specifically, constraints (3.2) are

flow balance constraints, ensuring that each commodity travels along one flat path from its origin

to its destination. Constraints (3.3) and (3.4) are capacity constraints. They ensure that the total

quantity of commodities in each consolidation of an arc does not exceed the total capacity of the

vehicles assigned to each consolidation of the arc, and restrict that yijr = ⌈(
∑

k∈K q
kzkijr)/uij⌉ for

every (i, j)∈A, r ∈ {1,2, ..., |K|}, which equals the number of vehicles needed by consolidation C(i,j)
r

of arc (i, j). Constraints (3.5) are consolidation coverage constraints, ensuring that for every arc

(i, j) on the flat path of commodity k ∈K, there exists a consolidation of arc (i, j) that contains k.

Constraints (3.6) are imposed to define the departure schedule. Specifically, constraints (3.6)–(3.8)

are imposed on commodities’ departure times with respect to the travel time of each arc, as well

as the earliest available time and the due time of each commodity. Constraints (3.9) ensure that

for each commodity, its departure time from each of its unvisited nodes is zero. Constraints (3.10)

ensure that for each arc (i, j) ∈ A, the commodities that are consolidated to be shipped together

through (i, j) have the same departure time from node i. They are similar to synchronization

constraints in vehicle routing literature (Soares et al. 2024). Constraints (3.11) are imposed to

define the holding time for each commodity k ∈K and each node i ∈N . Constraints (3.12)-(3.15)

define the domains of all the decision variables.

For each feasible solution (x,y,z,v,b,w) of model DO, (x,y,z) corresponds to a flat solution

(P,C), and v corresponds to a departure schedule T that satisfies (2.1)–(2.4), which imply that

such (P,C,T ) forms a feasible solution to the deterministic CTSNDP. As far as we know, model DO

is the first compact MILP model of the deterministic CTSNDP that utilizes consolidation indices,

and thus, we refer to it as the consolidation-indexed MILP model of the deterministic CTSNDP.

3.2. Two-Stage MINLP Optimization Models for Robust CTSNDP

As explained in Section 2, for both the two variants of the robust CTSNDP, (x,z) of the first-stage

decisions needs to ensure the existence of a departure schedule that satisfies the constraints with

respect to commodities’ earliest available times and due times under the nominal scenario. For

this, we need to introduce decision variables vkij and bijr to indicate commodities’ departure times

and consolidations’ departure times for the nominal scenario, similar to the variables vkij and bijr

of model DO. Moreover, in the second stage, constraints with respect to the commodities’ due

times are relaxed, but delay penalties are imposed. As a result, we need to introduce an additional

decision variable sk for each k ∈K, indicating the delay of commodity k’s arrival at its destination.
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3.2.1. Robust Optimization Model Following Section 2.2.1, the RO-CTSNDP can be

formulated as a two-stage MINLP (model RO) below, whereM denotes a sufficiently large constant:

[RO] min
∑

(i,j)∈A

|K|∑
r=1

fij · yijr +
∑
k∈K

∑
(i,j)∈A

(ckijq
k) ·xk

ij +FRP (x,z) (3.16)

s.t. (3.2)− (3.5), (3.12)− (3.14) (3.17)∑
j:(j,i)∈A

(vkji + τ jix
k
ji)≤

∑
j:(i,j)∈A

vkij, ∀ i∈N \{ok, dk}, k ∈K, (3.18)∑
j:(ok,j)∈A

vkokj ≥ ek, ∀ k ∈K, (3.19)

∑
j:(j,dk)∈A

(vkjdk + τ jdkx
k
idk)≤ lk, ∀ k ∈K, (3.20)

vkij ≤Mxk
ij, ∀ (i, j)∈A, k ∈K, (3.21)

bijr −M(1− zkijr)≤ vkij ≤ bijr +M(1− zkijr), ∀ (i, j)∈A, k ∈K, r ∈ {1,2, ..., |K|}, (3.22)

vkij ≥ 0, ∀ (i, j)∈A, k ∈K, (3.23)

bijr ≥ 0, ∀ (i, j)∈A, r ∈ {1,2, ..., |K|}. (3.24)

Here, FRP (x,z) indicates the worst-case second-stage cost and can be calculated by the max-min

optimization model below, referred to as model RP(x,z), where M1 is a sufficiently large constant.

[RP(x,z)] FRP (x,z) = max
τ̃ (δ):δ∈U(Γ)

min
∑
k∈K

∑
i∈N

(hkqk) ·wk
i +

∑
k∈K

gk · sk (3.25)

s.t.
∑

j:(j,i)∈A

(vkji +

|K|∑
r=1

τ̃jirz
k
jir)≤

∑
j:(i,j)∈A

vkij, ∀ i∈N \{ok, dk}, k ∈K, (3.26)∑
j:(ok,j)∈A

vkokj ≥ ek, ∀ k ∈K, (3.27)

∑
j:(j,dk)∈A

(vkjdk +

|K|∑
r=1

τ̃jdkrz
k
jdkr)≤ lk + sk, ∀ k ∈K, (3.28)

vkij ≤M1x
k
ij, ∀ (i, j)∈A, k ∈K, (3.29)

vkij ≤ bijr +M1(1− zkijr), ∀ (i, j)∈A, k ∈K, r ∈ {1,2, ..., |K|}, (3.30)

vkij ≥ bijr −M1(1− zkijr), ∀ (i, j)∈A, k ∈K, r ∈ {1,2, ..., |K|}, (3.31)

wk
i ≥



∑
j:(i,j)∈A

vkij − ek, i= ok,

(lk + sk)−
∑

j:(j,i)∈A
(vkji +

|K|∑
r=1

τ̃jirz
k
jir), i= dk, ∀ i∈N ,∀ k ∈K,

∑
j:(i,j)∈A

vkij −
∑

j:(j,i)∈A
(vkji +

|K|∑
r=1

τ̃jirz
k
jir), otherwise,

(3.32)
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vkij ≥ 0, ∀ (i, j)∈A, k ∈K, (3.33)

bijr ≥ 0, ∀ (i, j)∈A, r ∈ {1,2, ..., |K|}, (3.34)

wk
i ≥ 0, ∀i∈N , k ∈K, (3.35)

sk ≥ 0, ∀k ∈K. (3.36)

The objective (3.16) of model RO is to minimize the sum of the deterministic first-stage cost and

the worst-case second-stage cost with respect to the uncertainty set U(Γ) on δ. The first-stage cost

includes the fixed costs and the flow costs shown in the first two terms of (3.16). The worst-case

second-stage cost is represented by FRP (x,z). In model RO, constraints in (3.17) are the same

as those of model DO imposed on (x,z). Constraints (3.18)–(3.24) are similar to those in model

DO, with τji replaced by the nominal travel times τ ji. These constraints are imposed to ensure the

existence of a feasible departure schedule under the nominal scenario.

The max-min optimization model RP(x,z) is to compute the worst-case second-stage cost for

(x,z). Given any τ̃ (δ) with δ ∈ U(Γ), the inner minimization problem of RP(x,z) needs to

determine variables (v,b,w,s), with the objective of minimizing the second-stage cost that equals

the sum of the holding costs and delay penalties as shown in (3.25). Most of the constraints in the

inner minimization problem are the same as those of model DO imposed on (v,b,w), except (3.26),

(3.28) and (3.32). Compared with constraints (3.6), (3.8), and (3.11) of model DO, constraints

(3.26), (3.28), and (3.32) replace τjix
k
ji with

∑|K|
r=1 τ̃jirz

k
jir for each (j, i)∈A, as the latter indicates

the actual travel time of commodity k on arc (j, i) if k passes through (j, i). Moreover, the decision

variable sk for k ∈K is included in the right-hand sides of constraints (3.28) and (3.32), in order to

represent the delay in commodity k’s arrival at its destination.

Let FLP (x,z, τ̃ (δ)) denote the optimal objective value of the inner minimization problem of

model RP(x,z), which is the second-stage cost of (x,z) for scenario δ. This can be calculated by

the following linear program, which is referred to as model LP(x,z, τ̃ (δ)):

[LP(x,z, τ̃ (δ))] FLP (x,z, τ̃ (δ)) =min
∑
k∈K

∑
i∈N

(hkqk) ·wk
i +

∑
k∈K

gk · sk (3.37)

s.t. (3.26)− (3.36). (3.38)

3.2.2. Robust Satisficing Model Following Section 2.2.2, RS-CTSNDP can also be

formulated as a two-stage MINLP (model RS) below:

[RS] min ρ (3.39)

s.t.
∑
k∈K

∑
(i,j)∈A

(ckijq
k) ·xk

ij +
∑

(i,j)∈A

|K|∑
r=1

fij · yijr +FLP (x,z, τ̃ (δ))−Z ≤ ρ∥δ∥1, ∀ δ ∈U, (3.40)

ρ≥ 0, (3.2)− (3.5), (3.12)− (3.14), (3.18)− (3.24). (3.41)
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Model RS aims to minimize ρ, which represents the worst-case magnitude of the deviation from

the prescribed cost target, normalized by the total relative deviation ∥δ∥1 of the travel times. Here,

FLP (x,z, τ̃ (δ)) is the optimal objective value of model LP(x,z, τ̃ (δ)) defined in (3.37) and (3.38),

indicating the second-stage cost of (x,z) under any given τ̃ (δ) with δ in the uncertainty set U.
In model RS, constraints (3.40) specify that for every possible scenario δ, the deviation of the

total two-stage cost from the prescribed target Z cannot exceed ρ∥δ∥1. The domain of variable ρ is

defined by ρ≥ 0 in (3.41). Other constraints in (3.41) are the same as those in model RO, ensuring

that (x,y,z) forms a nominal timely-implementable first-stage solution.

4. Exact Algorithms

Following the C&CG framework of Zeng and Zhao (2013), we develop two exact algorithms to

solve model RO and model RS, respectively. Their critical step is the solution to a subproblem,

aiming to compute the worst-case scenario δ for a given first-stage solution. For model RO, as in

existing studies, this subproblem is a max-min problem, which can be reformulated as an MILP

using the dual of its inner minimization LP, and solved by an optimization solver. For model RS,

this subproblem is more complicated, as it involves max-min fractional optimization and cannot be

reformulated as an MILP. To address this, we develop a novel enhanced bisection search procedure.

Below we first illustrate and analyze our C&CG algorithm for model RS in details, and

then discuss our C&CG algorithm for model RO. Their implementations, including acceleration

techniques, are illustrated in an online repository at https://github.com/SSN0712/2024.06.26.

4.1. C&CG Algorithm for Robust Satisficing Model

For any given first-stage solution (x,y,z) we define F1(x,y) below as its first-stage total cost:

F1(x,y) =
∑
k∈K

∑
(i,j)∈A

(ckijq
k) ·xk

ij +
∑

(i,j)∈A

|K|∑
r=1

fij · yijr (4.1)

Let X denote the domain of (x,y,z,v,b) defined by linear constraints (3.17)–(3.24), and Q(δ)

denote the domain of (v,b,w,s) defined by linear constraints (3.26)–(3.36) under the realized

travel time τ̃ (δ). For any possible scenario δ ∈U, FLP (x,z, τ̃ (δ)) defined in (3.37)-(3.38) represents

the second-stage cost of any first-stage solution (x,y,z) under δ. Thus, model RS proposed in

Section 3.2.2 can be rewritten as the following noncompact MILP:

[RSMILP] min ρ

s.t. F1(x,y)+
∑
k∈K

∑
i∈N

(hkqk) ·wk(δ)
i +

∑
k∈K

gk · sk(δ) −Z ≤ ρ∥δ∥1, ∀ δ ∈U, (4.2)

(v(δ),b(δ),w(δ),s(δ))∈Q(δ), ∀ δ ∈U, (4.3)

ρ≥ 0, (x,y,z,v,b)∈X .

https://github.com/SSN0712/2024.06.26
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Here, (v(δ),b(δ),w(δ),s(δ)) represents a vector of second-stage decision variables associated with

each possible scenario δ in U. Constraints (4.2) and (4.3) ensure that the deviation of the total

two-stage cost from the prescribed target Z does not exceed ρ∥δ∥1 for every possible scenario δ ∈U.
As a result, solving model RS is reduced to solving the above noncompact MILP model RSMILP.

Model RSMILP can be relaxed by replacing U in (4.2) and (4.3) with any of its subsets Λ⊆U.
The resulting relaxation is referred to as model RSMILP(Λ), and can be strengthened by appending

to Λ more scenarios δ ∈U. When Λ=U, models RSMILP(Λ) and RSMILP are equivalent.

4.1.1. Computing the worst-case scenario δ by enhanced bisection search Consider

any given first-stage solution (x,y,z). For any δ ∈U, the ratio (F1(x,y)+FLP (x,z, τ̃ (δ))−Z)/∥δ∥1
represents a normalized cost deviation from the prescribed target under scenario δ. Here we slightly

abuse the notation to define that σ/∥0∥1 = 0 for σ= 0, σ/∥0∥1 =+∞ for σ > 0, and σ/∥0∥1 =−∞
for σ < 0. Accordingly, constraints (4.2) and (4.3) in model RSMILP imply that the normalized

cost deviation with respect to the prescribed target Z cannot exceed ρ for all δ ∈U.
The maximum value of the normalized cost deviation over all δ ∈U is defined as the worst-case

normalized cost deviation of (x,y,z), and the corresponding δ that leads to the ratio achieving the

maximum value is referred to as the worst-case scenario for (x,y,z), with respect to model RS.

Computing such a worst-case scenario δ can be formulated as the following max-min fractional

optimization model, which is referred to as model FO(x,y,z):

[FO(x,y,z)] ρ∗(x,y,z) =max
δ∈U

F1(x,y)+FLP (x,z, τ̃ (δ))−Z
∥δ∥1

. (4.4)

where FLP (x,z, τ̃ (δ)) is defined by a minimization problem LP(x,z, τ̃ (δ)) in (3.37)-(3.38) and

ρ∗(x,y,z) denotes the optimal objective value of model FO(x,y,z).

Solving the above max-min fractional optimization model FO(x,y,z) to exact optimality is

challenging, as it cannot directly be reformulated as an MILP, nor can it directly be solved by the

classic bisection search. To tackle this, we develop a novel enhanced bisection search procedure. It

starts with a lower bound ρl and an upper bound ρh on the optimal objective value ρ∗(x,y,z) of

model FO(x,y,z). In each iteration, it first evaluates whether the middle point ρ̂= (ρl + ρu)/2 is

larger than ρ∗(x,y,z). If ρ̂ is larger, the upper bound ρh is decreased to ρ̂. Otherwise, the lower

bound ρl is increased to ρ̂. After the obtained lower bound ρl is further enhanced, the procedure

proceeds to the next iteration unless ρl is proved to equal ρ∗(x,y,z).

Given any guessed value ρ̂, consider the following optimization model, which does not involve

fractional optimization and whose optimal objective value is denoted by G(x,y,z, ρ̂):

G(x,y,z, ρ̂) = max
δ∈U

F1(x,y)+FLP (x,z, τ̃ (δ))−Z − ρ̂∥δ∥1. (4.5)

Lemma 4.1 below indicates that one can determine whether ρ̂ is less than, greater than, or equal

to ρ∗(x,y,z) by evaluating the value of G(x,y,z, ρ̂).
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Lemma 4.1 If G(x,y,z, ρ̂) > 0, then ρ̂ < ρ∗(x,y,z). Otherwise, if G(x,y,z, ρ̂) ≤ 0, then ρ̂ ≥
ρ∗(x,y,z). If G(x,y,z, ρ̂) = 0, then ρ̂= ρ∗(x,y,z).

To solve G(x,y,z, ρ̂), which is a max-min problem, we need to reformulate it as an MILP. For

this, we establish Proposition 4.1 below, stating an optimality property of G(x,y,z, ρ̂) to restrict

the domains of variables δijr.

Proposition 4.1 There exists an optimal solution to the nonlinear optimization model defined in

(4.5) such that (i) δijr ∈ {−1,0,1} for each (i, j) ∈A, and that (ii) δijr ∈ {0,1} for each (i, j) ∈A
r ∈ {1,2, ..., |K|} with

∑
k∈K h

kqkτ̂ij ≤ ρ̂.

Recall that FLP (x,z, τ̃ (δ)) is defined by a linear program in (3.37)–(3.38). Let βk
i , γ

k, ψk, ηkij, θ
k
ijr,

ξkijr, and λ
k
i denote the dual variables associated with its constraints (3.26)–(3.32). Let Ω indicate the

feasible domain of its dual, which is a convex polyhedron defined by linear constraints. Accordingly,

based on Proposition 4.1, we can reformulate G(x,y,z, ρ̂) as an MILP shown in Proposition 4.2.

Proposition 4.2 G(x,y,z, ρ̂) defined in (4.5) can be equivalently written as the following MILP:

max F1(x,y)−Z +
∑

(j,i)∈A

|K|∑
r=1

φ̂jir −
∑
k∈K

∑
(i,j)∈A

(M1x
k
ij) · ηkij +

∑
k∈K

∑
(i,j)∈A

|K|∑
r=1

[M1(z
k
ijr − 1)] · (θkijr + ξkijr)

+
∑
k∈K

ek · (γk −λk
ok)+

∑
k∈K

lk · (λk
dk −ψk) (4.6)

s.t. (β,γ,ψ,η,θ,ξ,λ)∈Ω, (4.7)

ζ̂ijr,−1 + ζ̂ijr,1 + ζ̂ijr,0 = 1, ∀ (i, j)∈A, r ∈ {1,2, ..., |K|}, (4.8)

M2(ζ̂jir,ℓ − 1)≤ φ̂jir −
( ∑

k∈Ki

zkjir(β
k
i −λk

i )+
∑
k∈Kd

i

zkjir(ψ
k −λk

i )
)
τ̃jir,ℓ + ρ̂|ℓ| ≤M2(1− ζ̂jir,ℓ),

∀ (j, i)∈A, r ∈ {1,2, ..., |K|}, ℓ∈ {−1,0,1}, (4.9)

ζ̂ijr,−1 = 0, ∀ (i, j)∈A(ρ̂), r ∈ {1,2, ..., |K|}, (4.10)

ζ̂ijr,ℓ ∈ {0,1}, ∀ (i, j)∈A, r ∈ {1,2, ..., |K|}, ℓ∈ {−1,0,1}. (4.11)

where Ki = {k ∈K : i ̸= ok and i ̸= dk}, Kd
i = {k ∈K : i= dk}, A(ρ̂) = {(i, j)∈A :

∑
k∈K h

kqkτ̂ij ≤ ρ̂},
and M2 is a sufficiently large constant. Given ζ̂ijr,−1 and ζ̂ijr,1 for (i, j)∈A and r ∈ {1, ..., |K|} in

the optimal solution of this MILP, the corresponding worst-case scenario δ can be obtained by

δijr =−ζ̂ijr,−1 + ζ̂ijr,1, ∀ (i, j)∈A, r ∈ {1, ..., |K|}. (4.12)

Next, consider any given lower bound ρl on ρ∗(x,y,z). Let δ(ρl) indicate the realization of δ,

derived by (4.12) from the optimal solution to model G(x,y,z, ρl) defined in (4.6)–(4.11). Define

ρ′l below to indicate the normalized cost deviation under δ(ρl).

ρ′l = (F1(x,y)+FLP (x,z, τ̃ (δ(ρl)))−Z)/∥δ(ρl)∥1. (4.13)
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Lemma 4.2 below implies that we can always enhance ρl to a better lower bound ρ′l. As explained

later in Remark 4.1, this enhancement is essential for computing the exact value of ρ∗(x,y,z).

Lemma 4.2 If ρl ≤ ρ∗(x,y,z), then ρ′l defined in (4.13) satisfies that ρl ≤ ρ′l ≤ ρ∗(x,y,z).

Below, we provide a summary of our enhanced bisection search procedure for any given first-stage

solution (x,y,z) in Algorithm 1, along with its correctness and convergence in Theorem 4.1.

Algorithm 1 Enhanced Bisection Search Procedure for Any Given (x,y,z)

1. If (F1(x,y) +FLP (x,z, τ̃ (0))−Z)> 0, return +∞ as the value of the worst-case normalized

cost deviation of ρ∗(x,y,z), and 0 as the worst-case scenario for (x,y,z).

2. Initialize the values of ρl and ρh such that ρl ≤ ρ∗(x,y,z)≤ ρh.

3. Set ρ̂= (ρh+ρl)/2, solve the maximization MILP model (4.6)–(4.11) to compute G(x,y,z, ρ̂).

4. If G(x,y,z, ρ̂) > 0, increase ρl to ρ̂, and if G(x,y,z, ρ̂) < 0, decrease ρh to ρ̂. Then go to

Step 5. However, if G(x,y,z, ρ̂) = 0, increase ρl to ρ̂, derive the scenario δ(ρl) from the optimal

solution to the model by (4.12), and then go to Step 6.

5. Enhancement: Solve the MILP model (4.6)–(4.11) to compute G(x,y,z, ρl), derive the scenario

δ(ρl) by (4.12), and compute ρ′l from δ(ρl) by (4.13). If G(x,y,z, ρl) = 0, then go to Step 6.

Otherwise, set ρl to ρ
′
l, and go to Step 3 for the next iteration.

6. Return ρl as the worst-case normalized cost deviation ρ∗(x,y,z), and return δ(ρl) as the

worst-case scenario for (x,y,z).

Theorem 4.1 Consider any given feasible first-stage decisions (x,y,z). (i) Algorithm 1 is

guaranteed to terminate within a finite number of iterations, with the value of ρ∗(x,y,z) and a

worst-case scenario δ for (x,y,z) returned. (ii) Let ρ
(0)
l and ρ

(0)
h denote the initial values of ρl and

ρh assigned in Step 3 of Algorithm 1. Then, for any ϵ > 0, after ⌈log2((ρ
(0)
h − ρ(0)l )/ϵ)⌉ iterations of

Steps 3–6, Algorithm 1 obtains a lower bound ρl on ρ
∗(x,y,z) and a scenario δ(ρl)∈U, such that

ρl ≤ ρ∗(x,y,z)≤ ρl + ϵ and F1(x,y)+FLP (x,z, τ̃ (δ(ρl)))−Z ≥ ρl∥δ(ρl)∥1.

Theorem 4.1 indicates that our enhanced bisection search procedure in Algorithm 1 is an exact

algorithm that solves model FO(x,y,z) within a finite number of iterations. It also implies that

Algorithm 1 solves model FO(x,y,z) to an accuracy ϵ > 0 within ⌈log2((ρ
(0)
h − ρ

(0)
l )/ϵ)⌉ iterations.

Remark 4.1 (Enhancement in Step 5) The enhancement in Step 5 is essential to guarantee

that Algorithm 1 solves model FO(x,y,z) to exact optimality within a finite number of iterations.

Without it, Algorithm 1 functions only as a standard bisection search procedure, in which valid
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lower and upper bounds of ρ∗(x,y,z) can be obtained with their gap smaller than a given tolerance

ϵ > 0 within a finite number of iterations. However, this standard bisection search procedure cannot

guarantee to produce the exact value of ρ∗(x,y,z) within a finite number of iterations.

4.1.2. RS-C&CG Algorithm As shown in Algorithm 2 below, in each iteration n, where

n= 1,2, · · · , our C&CG algorithm for model RS (referred to as RS-C&CG algorithm) first solves an

optimal solution (x̂, ŷ, ẑ, ϕ) to model RSMILP(Λ) as the master problem for a particular subset Λ

of U. It then applies the enhanced bisection search procedure in Algorithm 1 to solve FO(x,y,z) as

the subproblem, and obtains the worst-case normalized cost deviation ρ∗(x,y,z), denoted by ρ(n),

as well as the corresponding worst-case scenario, denoted by δ(n). Since RSMILP(Λ) is a relaxation

of model RS, its optimal objective value obtained is a lower bound on the optimal objective value of

model RS. Since (x,y,z) forms a nominal timely-implementable first-stage solution to model RS,

max{0, ρ(n)} provides an upper bound on the optimal objective value of model RS. If the lower

bound equals the upper bound, model RS is solved to optimum. The algorithm terminates with

an optimal solution given by (x̂, ŷ, ẑ). Otherwise, it appends the identified scenario δ(n) to Λ.

Model RSMILP(Λ) of the master problem is extended and strengthened with new decision variables

(v(δ),b(δ),w(δ),s(δ)) and their new constraints in (4.2)- (4.3). The algorithm proceeds to the next

iteration. Theorem 4.2 below establishes the correctness and convergence of the algorithm.

Algorithm 2 RS-C&CG Algorithm for Solving Model RS

1. Initially, set the iteration number n to 1, and set the subset Λ of U to {0}.
2. Solve the master problem, i.e., model RSMILP(Λ), to obtain its optimal objective value

denoted by LB and its optimal solution denoted by (x̂, ŷ, ẑ, ϕ).

3. Apply the enhanced bisection search procedure in Algorithm 1 to solve subproblem FO(x̂, ŷ, ẑ),

so as to obtain the worst-case normalized cost deviation ρ∗(x̂, ŷ, ẑ), denoted by ρ(n), and to

obtain the corresponding worst-case scenario, denoted by δ(n). Let UB denote max{0, ρ(n)}.
4. If LB =UB, then the algorithm terminates and returns an optimal solution given by (x̂, ŷ, ẑ).

Otherwise, update Λ=Λ
⋃
{δ(n)}, update n= n+1, and go to Step 2 for the next iteration.

Theorem 4.2 Algorithm 2 returns an optimal solution to model RS in a finite number of iterations.

4.2. C&CG Algorithm for Robust Optimization Model

Similarly, model RO proposed in Section 3.2.1 can be rewritten as the following noncompact MILP:

[ROMILP] min
∑
k∈K

∑
(i,j)∈A

(ckijq
k) ·xk

ij +
∑

(i,j)∈A

|K|∑
r=1

fij · yijr +ϕ (4.14)
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s.t. ϕ≥
∑
k∈K

∑
i∈N

(hkqk) ·wk(δ)
i +

∑
k∈K

gk · sk(δ), ∀ δ ∈U(Γ), (4.15)

(v(δ),b(δ),w(δ),s(δ))∈Q(δ), ∀ δ ∈U(Γ), (4.16)

(x,y,z,v,b)∈X . (4.17)

Here, ϕ is a newly introduced decision variable, and (v(δ),b(δ),w(δ),s(δ)) represents a vector of

second-stage decision variables associated with each possible scenario δ in U(Γ). Constraints

(4.15) and (4.16) ensure that ϕ equals the worst-case second-stage cost. As a result, solving the

min-max-min model RO is reduced to solving the above noncompact MILP model ROMILP.

Model ROMILP can also be relaxed by replacing U(Γ) in constraints (4.15) and (4.16) with any of

its subsets Λ⊆U(Γ). The resulting relaxation is referred to as model ROMILP(Λ). The relaxation

can be strengthened by appending to Λ more scenarios δ in U(Γ).
Our C&CG algorithm for model RO, referred to as RO-C&CG algorithm, iteratively solves

model ROMILP(Λ) to obtain a first-stage solution (x,y,z) and appends its worst-case scenario

δ to Λ, until (x,y,z) implies an optimal solution. With respect to model RO, a scenario δ is a

worst-case scenario, if the second-stage cost of (x,y,z) equals under δ the worst-case second-stage

cost FRP (x,z). Both δ and FRP (x,z) can be determined by solving model RP(x,z) in (3.25)–(3.36).

Our RO-C&CG algorithm for model RO is similar to Algorithm 2 for model RS, except that in

Step 3, it can directly apply an optimization solver to solve model RP(x,z) as the subproblem.

This is because by Proposition 4.3 below, RP(x,z) has an equivalent maximization MILP model.

Proposition 4.3 The max-min model RP(x,z) defined by (3.25)–(3.36) for FRP (x,z) can be

equivalently written as a maximization MILP model.

5. Computational Experiments

We performed two sets of computational experiments. The first set aimed to assess the performance

of our exact algorithms in solving model RO and model RS. The second set aimed to evaluate the

performance of solutions obtained from model RO and model RS with different parameters of the

uncertainty sets and under different performance criteria. In the implementation of our RO-C&CG

algorithm and RS-C&CG algorithm, we used the Gurobi solver (v.10.0.2) to solve the master

problems and subproblems. All experiments were conducted on a PC with an Intel(R) Core(TM)

i7-8700 CPU at 3.20 GHz and 64 GB RAM. The uncertainty budget Γ of model RO was set to

⌈µΓ · |K|⌉, the cost target Z of model RS was set to ⌈(1 + µz) · Z0⌉. Values of µΓ and µz will be

explained later for different experiments.

Based on the seven instance classes of the fixed-charge capacitated multi-commodity network

design problem in Ghamlouche et al. (2003), we randomly generated 210 test instances of the



21

Table 5.1 Computational Performance of RO-C&CG and RS-C&CG Algorithms.

Class |N | |A| |K|

RO-C&CG RS-C&CG

opt% g% T
Im%

opt% g% T
Im%

mean max mean max
R4 10 60 10 100.0 0.0 0.2 6.4 29.7 100.0 0.0 0.3 37.8 100.0
R5 10 60 25 100.0 0.0 7.3 7.2 28.1 100.0 0.0 8.1 46.7 100.0
R6 10 60 50 73.3 0.4 9672.7 6.5 21.5 66.7 13.7 11520.1 46.1 85.5
R7 10 82 10 100.0 0.0 0.4 9.7 25.8 100.0 0.0 0.4 22.2 100.0
R8 10 83 25 100.0 0.0 11.7 11.8 23.1 100.0 0.0 12.3 48.7 85.4
R9 10 83 50 86.7 0.1 7117.9 6.9 11.9 100.0 0.0 1530.5 37.4 82.2
R10 20 120 40 100.0 0.0 489.5 9.0 26.7 90.0 0.5 4402.3 52.1 91.9
Mean 94.3 0.1 2471.4 8.2 29.7 93.8 1.9 2486.3 41.6 100.0

robust CTSNDP, which are available at https://github.com/SSN0712/2024.06.26. The numbers

of nodes |N |, arcs |A|, and commodities |K| vary from 10 to 20, 60 to 120, and 10 to 50, respectively.

5.1. Algorithm Performance of RO-C&CG and RS-C&CG

In the first set of experiments, both RO-C&CG and the RS-C&CG were terminated when the

running time exceeded eight hours or the optimality gap between the best upper and lower bounds

found was below 0.01%. We solved the deterministic model DO by the Gurobi solver, and used its

optimal objective value as the cost target Z0 in RS-C&CG. We set µΓ = µz = 0.05.

The computational results are presented in Table 5.1. For each class of the test instances and for

each algorithm, we report the percentage of the instances solved to optimality in column opt%, the

average optimality gap in column g% (defined as the percentage gap between the best upper and

lower bounds found), the average computational time in CPU seconds in column T, and the mean

and maximum of improvement ratio against the optimal deterministic solution in column Im%.

Table 5.1 shows the effectiveness of our RO-C&CG and RS-C&CG algorithms. Within the time

limit, they both solve around 94% of the instances to optimality, and achieve optimality gaps of 0.1%

and 2.6% on average, respectively. Columns Im% indicate that compared with the deterministic

optimal solutions, the best upper bounds produced by our RO-C&CG and RS-C&CG algorithms

significantly improve the objective values with respect to model RO and model RS by 8.2% and

41.6% on average and by 29.7% and 100.0% at maximum, respectively.

Table 5.1 confirms the computational tractability of both model RO and model RS that we derive

for the robust CTSNDP, underscoring their practical usefulness. Notably, our study presents the

first development of a C&CG-based algorithm for effectively solving a two-stage robust satisficing

model, encouraging its future extensions to other problems that encompass uncertainties.

5.2. Solution Performance of Models RO and RS

Models RO and RS have distinct objectives for robustness. Following the approach in Bertsimas

and Sim (2004) and Atamtürk and Zhang (2007), our second set of experiments evaluates the

https://github.com/SSN0712/2024.06.26
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trade-offs for achieving the robustness. This involves comparing first-stage solutions obtained from

models RO and RS based on their nominal, average, and worst-case performances.

• For the nominal performance, we calculated the total cost of each first-stage solution in the

nominal scenario. For comparison, we solved model DO to obtain the minimum achievable

total cost for the nominal scenario.

• For the average and the worst-case performances, we randomly generated a set Π of scenarios

assumed to be uniformly distributed, and calculated the average and the worst-case total cost

of each first-stage solution over these scenarios. For comparison, we computed the minimum

achievable average total cost and the minimum achievable worst-case total cost by solving a

stochastic programming model (SP) and a min-max optimization model (MM), which can both

be formulated as an MILP by using our formulations of models RO and RS (see Appendix D).

Note that model DO assumes no travel time uncertainty, while models SP and MM presume

knowledge of the travel time distribution, circumstances that are often unrealistic in practice.

For the tractability of models SP and MM, we set |Π|= 200. We used the Gurobi solver to solve

models DO, SP, and MM. Our experiments focused on class R7, because its 30 instances were all

solved to optimality for models RO, RS, DO, SP, and MM, while each of the classes R6, R8, R9, and

R10 had some instances that could not be solved to optimality for models SP and MM within eight

hours. For each instance in R7, we used RO-C&CG to solve model RO for each uncertainty budget

Γ ∈ {1,2, ...,10}, and used RS-C&CG to solve model RS for each cost target Z = ⌈(1 + µz) · Z0⌉
with µz ∈ {0.02,0.04, ...,0.2}, where Z0 is set as the optimal objective value of model DO.

We first compare the total costs of the solutions obtained from models RO and RS in nominal

scenarios with that of the optimal nominal solution obtained from model DO. The results are

presented in Figure 1(a), where the total cost along the vertical axis is the mean across all instances

in R7. It can be seen that solutions obtained from model RS exhibit better overall performance

in the nominal scenario than those from model RO. When µz increases, the total nominal cost of

the solutions from model RS gradually increases. In contrast, when Γ increases from 1, the total

nominal cost of solutions obtained from model RO is often changed slightly.

For each instance in class R7, we generated 200 random scenarios to create Π for models SP

and MM, and then calculated the average and the worst-case total costs of solutions obtained

from models RO and RS over these random scenarios in Π, under different Γ and µz. We compare

them with the minimum achievable average total cost obtained from model SP and the minimum

achievable worst-case total cost obtained from model MM. The results are shown in Figures 1(b)

and 1(c), where the total cost along the vertical axis is the mean across all the instances in R7.

Figure 1(b) shows that both model RO (with any Γ) and model RS (with any µz) can produce

solutions of good average performance, within 4% from the minimum achievable average cost
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Figure 1 Performance comparison of solutions from models RO and RS.
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(b) Average total costs
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(c) Worst-case total costs
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obtained from model SP, while solutions from model RS exhibit better average performance than

model RO. Figure 1(c) shows that model RO (with any Γ) and model RS (with µz > 0.1) can produce

solutions of good worst-case performance, within 5% from the minimum achievable worst-case cost

obtained from model MM, while solutions from model RO exhibit better worst-case performance

than model RS. We can see that the impact of Γ on the average and the worst-case performances

of model RO is not as significant as the impact of µz on these performances of model RS.

Our findings confirm the practical usefulness of model RO and model RS. Compared with

model SP and model MM, they are computationally more tractable, and do not need the distribution

information of travel times. They can achieve comparable average solution performance to that

of model SP, and comparable worst-case solution performance to that of model MM, although

model RS sometimes requires a proper parameter setting to achieve this. Compared with model RS,

model RO has better worst-case solution performance, making it useful for conservative decision

makers. Compared with model RO, model RS has better average performance, making it useful for

decision makers who prioritize average performance but have limited distribution information about

travel times. Moreover, the cost target of model RS is a more effective parameter for adjusting the

trade-off involved in achieving the robustness guarantees for solutions obtained.

6. Conclusions

This paper studies a robust CTSNDP under travel time uncertainty, for which we derive several

computationally tractable formulations and effective exact algorithms. It has established a strong

foundation for future research: (i) There is great interest in enhancing our exact algorithms. One

possible enhancement is to develop tailored branch-and-bound algorithms to solve those MILP

models of both subproblems and master problems involved in our exact algorithm. (ii) As the

first attempt at incorporating travel time uncertainty into robust service network design, we have

developed robust optimization and robust satisficing models based on polyhedral uncertainty sets.

Further exploration of alternative robust optimization approaches, such as the distributionally
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robust optimization approach, is an area of interest. (iii) Our robust optimization model and robust

satisficing models, accompanied by their C&CG algorithms, provide a solid foundation that can be

extended to tackle travel time uncertainty in other transportation problems.
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Appendix A: Glossary of Notation and Illustrative Examples

Table A.1 Glossary of notation.

Notation Meaning

D (flat) network D= (N ,A)

N node set of network D
A arc set of network D
K set of commodities

ok origin of commodity k ∈K
dk destination of commodity k ∈K
qk demand of commodity k ∈K
τij travel time of arc (i, j)∈A
ckij per-unit-of-flow cost of arc (i, j)∈A and commodity k ∈K
fij fixed cost of arc (i, j)∈A
uij capacity of arc (i, j)∈A
ek earliest available time of commodity k ∈K
lk latest arrival time of commodity k ∈K
hk per-unit-of-demand-and-time (in-storage holding) cost of commodity k ∈K at a terminal

P = {P k}k∈K routing plan with P k representing a path for commodity k ∈K
C = {Cα

r }α∈A,r∈{1,2,...,|K|} consolidation plan with Cα
r subset of commodities and with r the consolidation index

T departure schedule

f(P,C) total fixed cost and flow cost of solution (P,C,T )

h(P,T ) total holding cost of solution (P,C,T )

g(P,T ) total delay penalty of solution (P,C,T )

δ vector of random variables δαr for α∈A and r ∈ {1,2, ..., |K|}
τ̃ij uncertain travel time of arc (i, j)∈A
τ̃ vector of uncertain travel times τ̃ij
τ̄ij nominal value of τ̃ij
τ̂ij maximum deviation of τ̃ij with respect to nominal value τ̄ij
Z prescribed target of the total two-stage cost

U support of vector δ

U(Γ) budgeted uncertainty set of vector δ with Γ denoting a budget of uncertainty

D domain of all feasible solutions (P,C,T )

F domain of all nominal timely-implementable first-stage solutions

T(P,C, τ̃ ) domain of departure schedule T with respect to solution (P,C)
x decision variables on routing plans

z decision variables on consolidation plans

y decision variables on numbers of vehicles

v decision variables on departure times

Z, Q domains of decision variables

DO consolidation-indexed formulation for deterministic CTSNDP

RO robust optimization model for robust CTSNDP

RS robust satisficing model for robust CTSNDP

RP(x,z) max-min model defined by (3.25)–(3.36) for the worst-case second-stage cost

LP(x,z, τ̃ ) inner minimization problem of model RP(x,z) as a linear program

ROMILP noncompact MILP defined in (4.14)-(4.17), a reformulation of model RO

RSMILP noncompact MILP reformulation of model RS, with constraints (4.2)-(4.3) included

FO(x,y,z) model defined in (4.4) for the worst-case normalized cost deviation of (x,y,z)

SP stochastic programming model in Appendix D to minimize expected total cost

MM min-max optimization model in Appendix D to minimize worst-case total cost

F1(x,y) first-stage cost of solution (x,y,z)

FRP (x,z) worst-case second-stage cost of solution (x,y,z)

FLP (x,z, τ̃ ) optimal objective value of model LP(x,z, τ̃ ), the minimum cost of (x,z) under τ̃

ρ∗(x,y,z) optimal objective value of model FO(x,y,z)

G(x,y,z, ρ̂) optimal objective value of model defined in (4.5)
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Figure 2 Illustrative examples for a CTSNDP instance, where (c) presents a flat solution that ships commodity

1 via arc (b, a), commodity 2 via arcs (d, b) and (b, a), and commodity 3 via arc (c, a), with commodities

1 and 3 consolidated on arc (b, a), and (d) presents a feasible solution based on the flat solution in (c)

with departure and arrival times specified in the last two numbers within the brackets on the arcs.

(a) Flat network D

a b

c d

(b) Commodity data

k ok dk qk ek lk

1 b a 25 0 160
2 d a 30 20 180
3 c a 40 0 180

(c) Flat solution

P C
k P k α Cα

r

1 (b,a) (b,a) {1,3}, {2}
2 (d,b,a) (d,b) {2}
3 (c,b,a) (c,a) {3}

(d) Feasible solution

a b

c d

({2},90,150)

({1,3},40,100)

({3
},0
,4
0)

({
2}
,2
0
,9
0)

Appendix B: Proof of Statements

B.1. Proof of Lemma 4.1

Recall that we slightly abuse the notation to define that σ/∥0∥1 = 0 for σ = 0, σ/∥0∥1 =+∞ for σ > 0, and

σ/∥0∥1 =−∞ for σ < 0. Consider any (x,y,z)∈X and any given ρ̂.

First, if G(x,y,z, ρ̂)> 0, then according to (4.5), we have that maxδ∈U {F1(x,y)+FLP (x,z, τ̃ (δ))−Z −

ρ̂∥δ∥1}> 0, which implies that there exists a δ∗ ∈U with F1(x,y)+FLP (x,z, τ̃ (δ
∗))−Z− ρ̂∥δ∗∥1 > 0. Thus,

ρ∗(x,y,z) =max
δ∈U

F1(x,y)+FLP (x,z, τ̃ (δ))−Z
∥δ∥1

≥ F1(x,y)+FLP (x,z, τ̃ (δ
∗))−Z

∥δ∗∥1
> ρ̂

Second, if G(x,y,z, ρ̂)< 0, then we have that maxδ∈U {F1(x,y)+FLP (x,z, τ̃ (δ))−Z− ρ̂∥δ∥1}< 0, which

implies that F1(x,y)+FLP (x,z, τ̃ (δ))−Z − ρ̂∥δ∥1 < 0, ∀δ ∈U. Thus,

F1(x,y)+FLP (x,z, τ̃ (δ))−Z
∥δ∥1

< ρ̂, ∀δ ∈U.

Therefore, we obtain that

ρ∗(x,y,z) =max
δ∈U

F1(x,y)+FLP (x,z, τ̃ (δ))−Z
∥δ∥1

< ρ̂.

Third, if G(x,y,z, ρ̂) = 0, then we obtain that maxδ∈U {F1(x,y)+FLP (x,z, τ̃ (δ))−Z− ρ̂∥δ∥1}= 0, which

implies that there exists a δ∗ ∈ U such that F1(x,y) + FLP (x,z, τ̃ (δ
∗))−Z − ρ̂∥δ∗∥1 = 0, and F1(x,y) +

FLP (x,z, τ̃ (δ))−Z − ρ̂∥δ∥1 ≤ 0, ∀δ ∈U \ {δ∗}. Thus,

F1(x,y)+FLP (x,z, τ̃ (δ
∗))−Z

∥δ∗∥1
= ρ̂, and

F1(x,y)+FLP (x,z, τ̃ (δ))−Z
∥δ∥1

≤ ρ̂, for all δ ∈U \ {δ∗},

which implies that

ρ̂∗(x,y,z) =max
δ∈U

F1(x,y)+FLP (x,z, τ̃ (δ))−Z
∥δ∥1

= ρ̂.

Hence, Lemma 4.1 is proved.
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B.2. Proof of Proposition 4.1

First, we need to establish Lemma B.1 below, which indicates that model LP(x,z, τ̃ (δ)) always has a feasible

solution for each (x,z) that satisfies constraints (3.17)–(3.24) and for each δ ∈U.

Lemma B.1 For any (x,z) that satisfies constraints (3.17)–(3.24), and for any δ ∈U, model LP(x,z, τ̃ (δ))

in (3.37)–(3.38) always has a feasible solution.

Proof. For any given (x,z) that satisfies constraints (3.17)–(3.24), it corresponds to a nominal

timely-implementable flat solution (P,C). Consider any δ ∈ U with the corresponding realized travel time

τ̃ (δ). For such (P,C) and τ̃ (δ), we first show as follows that there exists a departure schedule T such that

constraints (2.1)–(2.4) are satisfied, from which we can then obtain a feasible solution to model LP(x,z, τ̃ (δ)).

For the nominal timely-implementable flat solution (P,C), consider each commodity k ∈ K and its flat

path P k in P with an arc sequence denoted by (ak1, ..., a
k
mk). For each n ∈ {1,2, . . . ,mk}, there must exist a

consolidation C
ak
n

rkn
∈ C for arc akn with rkn ∈ {1,2, · · · , |K|} such that k ∈Cak

n

rkn
. We can now construct a network

GC = {NC,AC} where each non-empty consolidation Cα
r ∈ C corresponds to a node, denoted by ⟨α, r⟩, in the

node set NC, and each pair of consolidations C
ak
n

rkn
and C

ak
n+1

rk
n+1

for k ∈K and n∈ {1, ...,mk − 1} corresponds to

an arc (⟨akn, rkn⟩, ⟨akn+1, r
k
n+1⟩) in the arc set AC.

Since the flat solution (P,C) is a nominal timely-implementable first-stage solution, there exists a departure

schedule T which satisfies (2.1)–(2.4) with nominal travel times τ . According to T , for each consolidation

Cα
r ∈ C of arc α= (ν, ν′) ∈A we can obtain its corresponding departure time from node ν, which is denoted

by tα,r. For each pair of consolidations C
ak
n

rkn
and C

ak
n+1

rk
n+1

with k ∈K and n∈ {1, ...,mk −1}, the departure time

of C
ak
n

rkn
from node νk

n plus the nominal value τak
n
of travel time of arc akn must be less than or equal to the

departure time of C
ak
n+1

rk
n+1

from node νk
n+1. Thus, by the definition of GC = {NC,AC}, we obtain that

tα,r + τα ≤ tα′,r′ , ∀ (⟨α, r⟩, ⟨α′, r′⟩)∈AC.

This, together with τα > 0 for all α∈A, implies that GC must be an acyclic network, and thus has a topological

ordering of nodes in NC, denoted by (⟨α1, r1⟩, ⟨α2, r2⟩, . . . , ⟨α|NG |, r|NG |⟩).

Next, consider each possible realized travel time τ̃ (δ) with any δ ∈U. For n= 1,2, . . . , |NG|, we can set the

departure time of consolidation Cαn
rn

, denoted by t̂αn,rn , iteratively as follows: t̂α1,r1 =maxk∈K e
k and t̂αn,rn =

t̂αn−1,rn−1
+max(i,j)∈A{τ ij + τ̂ij} for n= 2,3, . . . , |NC|. Thus, it can be seen that for each commodity k ∈K,

t̂αk
1 ,r

k
1
≥ t̂α1,r1 =max

k∈K
ek ≥ ek and t̂αk

n+1
,rk

n+1
≥ t̂αk

n,rkn
+ max

(i,j)∈A
{τ ij + τ̂ij} ≥ t̂αk

n,rkn
+ τ̃αk

n
for n= 1, . . . ,mk − 1.

Thus, by setting the departure time of commodity k for node νk
n to be equal to t̂αk

n,rkn
, for n= 1,2, . . . ,mk

and k ∈ K, we obtain a plan T̂ which satisfies the constraints (2.1), (2.2) and (2.4) under the travel time

τ̃ (δ). From such a departure schedule T̂ , we can obtain the values of variables vkij , bijr, w
k
i , and s

k according

to their definitions, which form a feasible solution to model LP(x,z, τ̃ (δ)). Hence, Lemma B.1 is proved. □

Recall that FLP (x,z, τ̃ (δ)) is defined by a linear program in (3.37)–(3.38). As in Section 4.1.1, let βk
i , γ

k,

ψk, ηkij , θ
k
ijr, ξ

k
ijr, and λ

k
i denote the dual variables associated with its constraints (3.26)–(3.32), respectively.
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Let Ω indicate the feasible domain of its dual, which is a convex polyhedron defined by some linear constraints.

By Lemma B.1 and the strong duality theorem, the optimal objective value of LP(x,z, τ̃ ) equals that of its

dual linear program.

Accordingly, we can replace the LP formulation of FLP (x,z, τ̃ (δ)) with its dual to reformulate the model

defined in (4.5) for G(x,y,z, ρ̂) as the following nonlinear optimization model:

G(x,y,z, ρ̂) = max F1(x,y)+
[ ∑
(j,i)∈A

|K|∑
r=1

(
∑
k∈Ki

zkjir(β
k
i −λk

i )+
∑
k∈Kd

i

zkjir(ψ
k −λk

i )) · τ̃jir

−
∑
k∈K

∑
(i,j)∈A

(M1x
k
ij) · ηkij +

∑
k∈K

∑
(i,j)∈A

|K|∑
r=1

[M1(z
k
ijr − 1)] · (θkijr + ξkijr)

+
∑
k∈K

ek · (γk −λk
ok)+

∑
k∈K

lk · (λk
dk −ψk)

]
−Z −

∑
(i,j)∈A

|K|∑
r=1

ρ̂|δijr| (B.1)

s.t. (β,γ,ψ,η,θ,ξ,λ)∈Ω, (B.2)

τ̃ijr = τ ij + τ̂ijδijr, ∀ (i, j)∈A, r ∈ {1,2, ..., |K|}, (B.3)

−1≤ δijr ≤ 1, ∀ (i, j)∈A, r ∈ {1,2, ..., |K|}. (B.4)

Next, to further prove Proposition 4.1, for any given (x,z) and ρ̂, consider any optimal

solution (β∗,γ∗,ψ∗,η∗,θ∗,ξ∗,λ∗, τ̃ ∗,δ∗) of the optimization model defined in (B.1)–(B.4). By fixing

(β,γ,ψ,η,θ,ξ,λ) = (β∗,γ∗,ψ∗,η∗,θ∗,ξ∗,λ∗), the nonlinear optimization model defined in (B.1)–(B.4)

reduces to the following nonlinear model on δ, denoted as model S1.

[S1] max
∑

(j,i)∈A

|K|∑
r=1

{
τ̂jir

( ∑
k∈Ki

zkjir(β
k
i

∗ −λk
i

∗
)+

∑
k∈Kd

i

zkjir(ψ
k∗ −λk

i

∗
)
)
· δjir − ρ̂ · |δjir|

}
s.t. − 1≤ δijr ≤ 1, ∀ (i, j)∈A, r ∈ {1,2, ..., |K|}

We can see that δ∗ is an optimal solution of model S1. For any optimal solution δ̂ of model S1,

(β∗,γ∗,ψ∗,η∗,θ∗,ξ∗,λ∗, τ̃ (δ̂), δ̂) forms a feasible solution of the optimization model in (B.1)–(B.4), and it has

the same objective value as that of (β∗,γ∗,ψ∗,η∗,θ∗,ξ∗,λ∗, τ̃ ∗,δ∗). Thus, (β∗,γ∗,ψ∗,η∗,θ∗,ξ∗,λ∗, τ̃ (δ̂), δ̂)

is also an optimal solution to the optimization model in (B.1)–(B.4).

Consider any optimal solution δ̂ to model S1. Due to the optimality of δ̂, it can be seen that for any

(j, i) ∈A and r ∈ {1,2, ..., |K|}, if δ̂jir > 0, then τ̂jir

(∑
k∈Ki

zkjir(β
k
i

∗ − λk
i

∗
+
∑

k∈Kd
i
zkjir(ψ

k∗ − λk
i

∗
)
)
≥ 0, and

that if δ̂jir < 0, then τ̂jir

(∑
k∈Ki

zkjir(β
k
i

∗ − λk
i

∗
+
∑

k∈Kd
i
zkjir(ψ

k∗ − λk
i

∗
)
)
≤ 0. This is because otherwise, δ̂

cannot be an optimal solution to model S1, as we can increase its objective value by changing the sign of

each δ̂jir with τ̂jir

(∑
k∈Ki

zkjir(β
k
i

∗ −λk
i

∗
)+

∑
k∈Kd

i
zkjir(ψ

k∗ −λk
i

∗
)
)
· δ̂jir < 0 to its opposite. Thus, we obtain

that τ̂jir

(∑
k∈Ki

zkjir(β
k
i

∗ − λk
i

∗
) +

∑
k∈Kd

i
zkjir(ψ

k∗ − λk
i

∗
)
)
· δ̂jir ≥ 0 for all (j, i) ∈ A and r ∈ {1,2, ..., |K|}.

Accordingly, model S1 is equivalent to the following maximization LP, denoted as model S2:

[S2] max
∑

(j,i)∈A

|K|∑
r=1

{[∣∣∣τ̂jir( ∑
k∈Ki

zkjir(β
k
i

∗ −λk
i

∗
)+

∑
k∈Kd

i

zkjir(ψ
k∗ −λk

i

∗
)
)∣∣∣− ρ̂

]
· δ+jir

}
s.t. 0≤ δ+ijr ≤ 1, ∀ (i, j)∈A, r ∈ {1,2, ..., |K|}
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From any optimal solution δ+ of model S2, we can derive an optimal solution of model S1 by setting δjir = δ+jir

if τ̂jir

(∑
k∈Ki

zkjir(β
k
i

∗ − λk
i

∗
+
∑

k∈Kd
i
zkjir(ψ

k∗ − λk
i

∗
)
)
≥ 0, and setting δjir =−δ+jir if τ̂jir

(∑
k∈Ki

zkjir(β
k
i

∗ −

λk
i

∗
+
∑

k∈Kd
i
zkjir(ψ

k∗ − λk
i

∗
)
)
< 0, for each (j, i) ∈ A and r ∈ {1,2, ..., |K|}, so that their objective function

values are the same.

For model S2, its constraint matrix associated with δ+ijr ≤ 1 for all (i, j)∈A and r ∈ {1,2, ..., |K|} is totally

unimodular, as it contains only one entry of 1 in each column. Thus, the feasible solution region of model S2

is an integral polytope. There must exists an integral optimal solution to model S2 with δ+ijr ∈ {0,1} for

each (i, j) ∈ A and r ∈ {1,2, ..., |K|}. This implies that there exists an optimal solution δ to model S1 with

δijr ∈ {−1,0,1} for each (i, j) ∈ A and r ∈ {1,2, ..., |K|}. Such an solution δ must also be optimal for the

model in (B.1)–(B.4) and the model in (4.5).

Moreover, consider such an optimal solution δ′ to the model in (4.5) that satisfies δ′ijr ∈ {−1,0,1} for all

(i, j) ∈ A and r ∈ {1,2, ..., |K|}. Suppose there exist (i, j) ∈ A and r ∈ {1,2, · · · , |K|} with
∑

k∈K h
kqkτ̂ij ≤ ρ̂

and δ′ijr = −1. By changing only the value of δ′ijr from -1 to 0, we can obtain a new scenario in U, which

is denoted by δ′′. Under δ′′, the travel time for the r-th consolidation through arc (i, j) is increased by

τ̂ij , resulting in the decrease of the total holding cost by
∑

k∈K h
kqkτ̂ij at maximum. This implies that

FLP (x,z, τ̃ (δ
′′))− FLP (x,z, τ̃ (δ

′))≥−
∑

k∈K h
kqkτ̂ij . Thus, noting that ∥δ′′∥1 − ∥δ′∥1 =−1, it can be seen

that the difference between the objective value of model in (4.5) under δ′′ and that under δ′ is at least

ρ̂−
∑

k∈K h
kqkτ̂ij , which, due to

∑
k∈K h

kqkτ̂ij ≤ ρ̂, must be non-negative. Thus, δ′′ must also be an optimal

solution to the model in (4.5). By repeating this iteratively, we can obtain an optimal solution δ to the model

in (4.5) that satisfies both (i) and (ii) of Proposition 4.1. The proof is completed.

B.3. Proof of Proposition 4.2

By Proposition 4.1, constraints (B.4) can be replaced with δijr ∈ {−1,0,1} for all (i, j) ∈ A and r ∈

{1,2, ..., |K|}, and with δijr ∈ {0,1} for all (i, j) ∈ A(ρ̂) and r ∈ {1,2, ..., |K|} where A(ρ̂) = {(i, j) ∈ A :∑
k∈K h

kqkτ̂ij ≤ ρ̂}. By (B.3) we have that τ̃ijr ∈ {τ ijr − τ̂ijr, τ ijr, τ ijr + τ̂ijr}, which, together with τ ijr ∈N>0,

τ̂ijr ∈N0 and τ ijr > τ̂ijr, implies that τ̃ijr ∈N>0. Moreover, let a new variable φ̂jir represent each nonlinear

term
(∑

k∈Ki
zkjir(β

k
i − λk

i ) +
∑

k∈Kd
i
zkjir(ψ

k − λk
i )
)
· τ̃jir − ρ̂|δijr|. We replace each integer variable δjir with

three new binary variables ζ̂jir,−1, ζ̂jir,0 and ζ̂jir,1, which are used to indicate whether δijr equals -1, 0 and

1, respectively. Let τ̃ijr,−1 = τ ijr − τ̂ijr, τ̃ijr,0 = τ ijr and τ̃ijr,1 = τ ijr + τ̂ijr. Accordingly, the linear constraints

(4.8)–(4.11) can be derived. Thus, the nonlinear optimization model in (B.1)–(B.4) for G(x,y,z, ρ̂) can be

reformulated to the maximization MILP model shown in Proposition 4.2. The proof is completed.

B.4. Proof of Lemma 4.2

Consider any (x,y,z) ∈ X . By Lemma 4.1, if ρl ≤ ρ∗(x,y,z), we have that maxδ∈U{F1(x,y) +

FLP (x,z, τ̃ (δ)) − Z − ρl∥δ∥1} = G(x,y,z, ρl) ≥ 0. Note that δ(ρl) indicates a realization of δ such that

F1(x,y) + FLP (x,z, τ̃ (δ(ρl))) − Z − ρl∥δ(ρl)∥1 = maxδ∈U{F1(x,y) + FLP (x,z, τ̃ (δ)) − Z − ρl∥δ∥1}. Since
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maxδ∈U{F1(x,y) + FLP (x,z, τ̃ (δ))−Z − ρl∥δ∥1} ≥ 0, we obtain that F1(x,y) + FLP (x,z, τ̃ (δ(ρl)))−Z −

ρl∥δ(ρl)∥1 ≥ 0, which implies that

ρ′l =
F1(x,y)+FLP (x,z, τ̃ (δ(ρl)))−Z

∥δ(ρl)∥1
≥ ρl.

Hence, G(x,y,z, ρ′l) = maxδ∈U{F1(x,y) + FLP (x,z, τ̃ (δ))−Z − ρ′l∥δ∥1} ≥ F1(x,y) + FLP (x,z, τ̃ (δ(ρl)))−

Z − ρ′l∥δ(ρl)∥1 = 0. Thus, by Lemma 4.1, we obtain that ρ′l ≤ ρ∗(x,y,z). Lemma 4.2 is proved.

B.5. Proof of Theorem 4.1

To prove statement (i) of Theorem 4.1, consider each iteration n of Algorithm 1. Let ρ
(n)
l denote the

value of ρl updated in Step 4. Algorithm 1 solves G(x,y,z, ρ
(n)
l ) in Step 5, derives its optimal solution

δ(ρ
(n)
l ) of G(x,y,z, ρ

(n)
l ) by (4.12), and computes the value of ρ

′(n)
l from δ(ρ

(n)
l ) by ρ

′(n)
l = (F1(x,y) +

FLP (x,z, τ̃ (δ(ρ
(n)
l )))−Z)/∥δ(ρ(n)l )∥1. If Algorithm 1 does not terminate at iteration n, then G(x,y,z, ρ

(n)
l )>

0, which, together with Lemma 4.1, implies ρ
(n)
l <ρ∗(x,y,z). Thus, by Lemma 4.2, we have that

ρ
(n)
l <ρ

′(n)
l ≤ ρ∗(x,y,z). (B.5)

By the definition of G(x,y,z, ρ
′(n)
l ) and ρ

′(n)
l , we have that

G(x,y,z, ρ
′(n)
l )≥ F1(x,y)+FLP (x,z, τ̃ (δ(ρ

(n)
l )))−Z − ρ

′(n)
l ∥δ(ρ(n)l )∥1 = 0. (B.6)

Next, consider each iteration m≥ n+1. If Algorithm 1 does not terminate at iteration m, we have that

ρ
(m)
l ≥ ρ

′(n)
l , (B.7)

G(x,y,z, ρ
(m)
l ) = F1(x,y)+FLP (x,z, τ̃ (δ(ρ

(m)
l )))−Z − ρ

(m)
l ∥δ(ρ(m)

l )∥1 > 0, (B.8)

F1(x,y)+FLP (x,z, τ̃ (δ(ρ
(n)
l )))−Z − ρ

(m)
l ∥δ(ρ(n)l )∥1 ≤ 0, (B.9)

where (B.7) and (B.8) are implied by Step 4 of Algorithm 1 and Lemma 4.1, and (B.9) is implied by (B.6)

and (B.7). By (B.5) and (B.7) we obtain that ρ
(n)
l < ρ

(m)
l . This, together with (B.8) and (B.9), implies that

δ(ρ
(n)
l ) and δ(ρ

(m)
l ) are not equal.

By Proposition 4.1, each δ derived by (4.12) satisfies that δijr ∈ {−1,0,1} for all (i, j) ∈ A and r ∈

{1,2, · · · , |K|}. Therefore, as there are a finite number of such δ, Algorithm 1 must terminate in a finite

number of iterations. Moreover, when Algorithm 1 terminates, we have that G(x,y,z, ρl) = 0. By Lemma 4.1,

we obtain that Algorithm 1 returns ρl = ρ∗(x,y,z), and accordingly, δ(ρl) is the corresponding worst-case

scenario for (x,y,z). Hence, the first statement of Theorem 4.1 is proved.

The statement (ii) of Theorem 4.1 follows directly from the property of bisection search. For any ϵ > 0,

Algorithm 1 only needs at most ⌈log2((ρ
(0)
h − ρ

(0)
l )/ϵ)⌉ iterations to ensure ρh − ρl ≤ ϵ. At each iteration of

Algorithm 1, by Lemma 4.1 and Lemma 4.2 we note that ρl ≤ ρ∗(x,y,z)≤ ρh and G(x,y,z, ρl)≥ 0. Thus,

after ⌈log2((ρ
(0)
h −ρ(0)l )/ϵ)⌉ iterations, we have ρl ≤ ρ∗(x,y,z)≤ ρh ≤ ρl+ ϵ. By G(x,y,z, ρl)≥ 0 we also have

(F1(x,y)+FLP (x,z, τ̃ (δ(ρl)))−Z ≥ ρl∥δ(ρl)∥1. Hence, the statement (ii) of Theorem 4.1 is also proved.
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B.6. Proof of Theorem 4.2

At each iteration of Algorithm 2, UB and LB are updated by solving the corresponding master problem

and subproblem, while a new worst-case scenario δ in U is obtained and added into the scenario subset Λ.

Algorithm 2 stops when UB =LB.

First, we show that Algorithm 2 returns an optimal solution to model RS if it terminates with UB =LB.

As model RSMILP(Λ) is a relaxation of model RS, the value of LB, which equals the optimal objective value

of model RSMILP(Λ), is a valid lower bound on the optimal objective value of model RS. As UB is the

worst-case normalized cost deviation of a first-stage solution (x̂, ŷ, ẑ), it provides a valid upper bound on the

optimal objective value of model RS. Thus, when UB =LB, (x̂, ŷ, ẑ) forms an optimal solution to model RS.

Next, we show that Algorithm 2 must terminate with UB =LB in a finite number of iterations. We note

that at each iteration n, if the worst-case scenario δ(n) identified in Step 3 of Algorithm 2 is not in the current

scenario subset Λ, it will be added to Λ. According to Proposition 4.1, δ(n) satisfies that δ
(n)
ijr ∈ {−1,0,1} for

all (i, j)∈A and r ∈ {1,2, · · · , |K|}, and has a finite number of possible values. Therefore, in a finite number

of iterations, δ(n) identified in Step 3 of Algorithm 2 must be included in the current scenario set Λ. In such

a situation, both LB and UB must be equal to the optimal objective value of the current master problem,

implying that (x̂, ŷ, ẑ) forms an optimal solution to model RS. This completes the proof of Theorem 4.2.

B.7. Proof of Proposition 4.3

Recall that FLP (x,z, τ̃ (δ)) is defined by a linear program in (3.37)–(3.38), which, by Lemma B.1, always

has a feasible solution. Similar to our reformulation of G(x,y,z, ρ̂), we can replace the LP formulation of

FLP (x,z, τ̃ (δ)) with its dual, thereby reformulating the inner minimization problem of the max-min model

RP(x,z) of FRP (x,z) defined in (3.25)–(3.36). The reformulation takes the form of a nonlinear optimization

model with a bi-linear objective function, as shown below:

FRP (x,z) =max
∑

(j,i)∈A

|K|∑
r=1

( ∑
k∈Ki

zkjir(β
k
i −λk

i )+
∑
k∈Kd

i

zkjir(ψ
k −λk

i )
)
· τ̃jir

−
∑
k∈K

∑
(i,j)∈A

(M1x
k
ij) · ηkij +

∑
k∈K

∑
(i,j)∈A

|K|∑
r=1

[M1(z
k
ijr − 1)] · (θkijr + ξkijr)

+
∑
k∈K

ek · (γk −λk
ok)+

∑
k∈K

lk · (λk
dk −ψk) (B.10)

s.t. (β,γ,ψ,η,θ,ξ,λ)∈Ω, (B.11)

τ̃ijr = τ ij + τ̂ijδijr, ∀ (i, j)∈A, r ∈ {1,2, ..., |K|}, (B.12)

−1≤ δijr ≤ 1, ∀ (i, j)∈A, r ∈ {1,2, ..., |K|}, (B.13)∑
(i,j)∈A

|K|∑
r=1

|δijr| ≤ Γ. (B.14)

Proposition B.1 below indicates that the domain of each variable δijr can be restricted to {−1,0,1} without

changing the optimal objective value of the nonlinear optimization model above.
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Proposition B.1 There exists an optimal solution to the nonlinear optimization model defined in

(B.10)–(B.14) such that δijr ∈ {−1,0,1} for each (i, j)∈A and r ∈ {1,2, ..., |K|}.

Proof. For any given (x,z), consider any optimal solution (β∗,γ∗,ψ∗,η∗,θ∗,ξ∗,λ∗, τ̃ ∗,δ∗) of the nonlinear

optimization model defined in (B.10)–(B.14). By fixing (β,γ,ψ,η,θ,ξ,λ) = (β∗,γ∗,ψ∗,η∗,θ∗,ξ∗,λ∗), the

model defined in (B.10)–(B.14) reduces to the following nonlinear model on δ, denoted as model R1.

[R1] max
∑

(j,i)∈A

|K|∑
r=1

{
τ̂jir

( ∑
k∈Ki

zkjir(β
k
i

∗ −λk
i

∗
)+

∑
k∈Kd

i

zkjir(ψ
k∗ −λk

i

∗
)
)
· δjir

}
s.t. − 1≤ δijr ≤ 1, ∀ (i, j)∈A, r ∈ {1,2, ..., |K|},∑

(i,j)∈A

|K|∑
r=1

|δijr| ≤ Γ.

Accordingly, δ∗ must be an optimal solution to model R1. Moreover, for any optimal solution δ̂ to

model R1, (β
∗,γ∗,ψ∗,η∗,θ∗,ξ∗,λ∗, τ̃ (δ̂), δ̂) forms a feasible solution to the nonlinear optimization model

defined in (B.10)–(B.14), with the same objective value as that of (β∗,γ∗,ψ∗,η∗,θ∗,ξ∗,λ∗, τ̃ ∗,δ∗). Thus,

(β∗,γ∗,ψ∗,η∗,θ∗,ξ∗,λ∗, τ̃ (δ̂), δ̂) is also an optimal solution to the model defined in (B.10)–(B.14).

Consider any optimal solution δ̂ to model R1. Due to the optimality of δ̂, it can be seen that for any

(j, i) ∈A and r ∈ {1,2, ..., |K|}, if δ̂jir > 0, then τ̂jir

(∑
k∈Ki

zkjir(β
k
i

∗ − λk
i

∗
+
∑

k∈Kd
i
zkjir(ψ

k∗ − λk
i

∗
)
)
≥ 0, and

that if δ̂jir < 0, then τ̂jir

(∑
k∈Ki

zkjir(β
k
i

∗ − λk
i

∗
+
∑

k∈Kd
i
zkjir(ψ

k∗ − λk
i

∗
)
)
≤ 0. This is because otherwise, δ̂

cannot be an optimal solution to model R1, as we can increase its objective value by changing the sign of

each δ̂jir with τ̂jir

(∑
k∈Ki

zkjir(β
k
i

∗ −λk
i

∗
)+

∑
k∈Kd

i
zkjir(ψ

k∗ −λk
i

∗
)
)
· δ̂jir < 0 to its opposite. Thus, we obtain

that τ̂jir

(∑
k∈Ki

zkjir(β
k
i

∗ − λk
i

∗
) +

∑
k∈Kd

i
zkjir(ψ

k∗ − λk
i

∗
)
)
· δ̂jir ≥ 0 for all (j, i) ∈ A and r ∈ {1,2, ..., |K|}.

Accordingly, model R1 is equivalent to the following maximization LP, denoted as model R2:

[R2] max
∑

(j,i)∈A

|K|∑
r=1

{∣∣∣τ̂jir( ∑
k∈Ki

zkjir(β
k
i

∗ −λk
i

∗
+

∑
k∈Kd

i

zkjir(ψ
k∗ −λk

i

∗
)
)∣∣∣ · δ+jir}

s.t.
∑

(i,j)∈A

|K|∑
r=1

δ+ijr ≤ Γ,

0≤ δ+ijr ≤ 1, ∀ (i, j)∈A, r ∈ {1,2, ..., |K|}.

From any optimal solution δ+ to model R2, we can derive an optimal solution to model R1 by setting

δjir = δ+jir if τ̂jir

(∑
k∈Ki

zkjir(β
k
i

∗ − λk
i

∗
+
∑

k∈Kd
i
zkjir(ψ

k∗ − λk
i

∗
)
)
≥ 0, and setting δjir =−δ+jir otherwise, for

each (j, i)∈A and r ∈ {1,2, ..., |K|}, so that their objective values are the same.

For model R2, its constraint matrix associated with
∑

(i,j)∈A

∑|K|
r=1 δ

+
ijr ≤ Γ and δ+ijr ≤ 1 for all (i, j)∈A and

r ∈ {1,2, ..., |K|} is totally unimodular, as it contains two entries of 1 in each column. This implies that with

an integral Γ, the feasible solution region of model R2 is an integral polytope. Thus, there exists an integral

optimal solution to model R2 with δ+ijr ∈ {0,1} for each (i, j) ∈ A and r ∈ {1,2, ..., |K|}. This implies that

there exists an optimal solution δ to model R1 with δijr ∈ {−1,0,1} for each (i, j)∈A and r ∈ {1,2, ..., |K|}.
Therefore, there exists an optimal solution to the nonlinear optimization model defined in (B.10)–(B.14) that

satisfies δijr ∈ {−1,0,1} for each (i, j)∈A and r ∈ {1,2, ..., |K|}. Hence, Proposition B.1 is proved. □
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Continuing Proof of Proposition 4.3 We can now prove Proposition 4.3 as follows. By Proposition B.1,

constraints (B.13) can be replaced with δijr ∈ {−1,0,1} for all (i, j) ∈A and r ∈ {1,2, ..., |K|}. By (B.12) we

have that τ̃ijr ∈ {τ ijr − τ̂ijr, τ ijr, τ ijr + τ̂ijr}, which, together with τ ijr ∈N>0, τ̂ijr ∈N0 and τ ijr > τ̂ijr, implies

that τ̃ijr ∈N>0. Moreover, we introduce a new variable φjir to represent each nonlinear term
(∑

k∈Ki
zkjir(β

k
i −

λk
i ) +

∑
k∈Kd

i
zkjir(ψ

k − λk
i )
)
· τ̃jir. We then replace each integer variable δjir with three new binary variables

ζjir,−1, ζjir,0 and ζjir,1, which are used to indicate whether δijr equals -1, 0 and 1, respectively. Let τ̃ijr,−1 =

τ ijr − τ̂ijr, τ̃ijr,0 = τ ijr and τ̃ijr,1 = τ ijr + τ̂ijr. Accordingly, the following linear constraints can be derived for

the newly introduced variables, where M3 is a sufficiently large constant.

ζijr,−1 + ζijr,0 + ζijr,1 = 1, ∀ (i, j)∈A, r ∈ {1,2, ..., |K|}, (B.15)

−M3(1− ζjir,ℓ)≤φjir −
( ∑

k∈Ki

zkjir(β
k
i −λk

i )+
∑
k∈Kd

i

zkjir(ψ
k −λk

i )
)
τ̃jir,ℓ ≤M3(1− ζjir,ℓ),

∀ (j, i)∈A, r ∈ {1,2, ..., |K|}, ℓ= {−1,0,1}, (B.16)

ζijr,ℓ ∈ {0,1}, ∀ (i, j)∈A, r ∈ {1,2, ..., |K|}, ℓ= {−1,0,1}. (B.17)

Here, constraints (B.15) ensure that exactly one of the three variables ζjir,−1, ζjir,0 and ζjir,1 equals 1,

constraints (B.16) ensure that each variable φjir equals
(∑

k∈Ki
zkjir(β

k
i − λk

i ) +
∑

k∈Kd
i
zkjir(ψ

k − λk
i )
)
· τ̃jir,

and constraints (B.17) define the domain of the variables ζijr,−1, and ζijr,0, and ζijr,1. Thus, constraints

(B.14) can be replaced with the following linear constraint:

∑
(i,j)∈A

|K|∑
r=1

(ζijr,−1 + ζijr,1)≤ Γ. (B.18)

Therefore, the nonlinear optimization model defined by (B.10)–(B.14) for FRP (x,z) can be further

reformulated to the following maximization MILP model:

FRP (x,z) =max
∑

(j,i)∈A

|K|∑
r=1

φjir −
∑
k∈K

∑
(i,j)∈A

(M1x
k
ij) · ηkij +

∑
k∈K

∑
(i,j)∈A

|K|∑
r=1

[M1(z
k
ijr − 1)] · (θkijr + ξkijr)

+
∑
k∈K

ek · (γk −λk
ok)+

∑
k∈K

lk · (λk
dk −ψk)

s.t. (β,γ,ψ,η,θ,ξ,λ)∈Ω, (B.15) – (B.17) and (B.18).

Hence, Proposition 4.3 is proved. □

Appendix C: Adapting Solutions to Dynamic Uncertainty Revelation

The two-stage formulation of the robust CTSNDP introduced in Section 2.2 assumes that before the actual

departure schedule is determined in the second-stage, all actual travel times are revealed. In Remark 2.1, we

claim that this two-stage formulation can be adapted to cases under the dynamic uncertainty revelation. We

will now explain why this claim is correct.

Consider any first-stage solution (P,C) of a routing plan and a consolidation plan. Under dynamic

uncertainty revelation, the actual travel time of each consolidated shipment on an arc (i, j) ∈ A is only

revealed after its arrival at node j. One possible approach to determine the departure schedule is to apply a
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reactive policy in which for each (i, j) ∈A, every consolidated shipment on arc (i, j) departs from node i as

soon as all the commodities for the shipment have arrived at node i. Consequently, the departure times of

consolidated shipments depend only on the actual travel times realized in the previous part of their transport,

and not on the unrevealed future travel times.

Consider any possible scenario δ, which determines travel times τ̃ (δ). We now show that the departure

schedule obtained by the reactive policy introduced above achieves the minimum second stage cost under δ.

On the one hand, the reactive policy ensures that for each arc (i, j)∈A, every consolidated shipment on arc

(i, j) departs from node i as soon as all the commodities for the shipment have arrived at node i, ensuring that

all commodities arrive at their destinations at the earliest possible time. Therefore, the total delay penalty

must be minimized. On the other hand, for each commodity k, let T̃k(P,C,δ) indicate the total travel time of

commodity k under (P,C) and δ. Under the reactive policy, it can be seen that the total in-storage holding

time equals max{lk−ek− T̃k(P,C,δ),0}, which achieves the minimum total in-storage holding time. Thus, the

reactive policy achieves a minimum total in-storage holding cost that equals hk max{lk − ek − T̃k(P,C,δ),0}.

Hence, the departure schedule derived from the reactive policy achieves the minimum total second-stage

cost for each possible δ. Thus, solutions to the RO-CTSNDP and the RS-CTSNDP can be adapted by the

reactive policy to cases under the dynamic uncertainty revelation without increasing their objective values.

Appendix D: Models SP and MM

Given a set Π of scenarios assumed to be uniformly distributed, we can formulate a stochastic programming

model as follows, aiming to minimize the expected total cost over all possible scenarios in Π.

[SP] min
(x,y,z,v,b)∈X

∑
δ∈Π

1

|Π|

(∑
k∈K

∑
(i,j)∈A

(ckijq
k)xk

ij +
∑

(i,j)∈A

|K|∑
r=1

fijyijr +FLP (x,z, τ̃ (δ))
)

It utilizes the second-stage cost FLP (x,z, τ̃ (δ)), which is defined by a minimization LP in (3.37)-(3.38) for

our models RO and RS. As a result, model SP is a minimization MILP.

Similarly, given Π we can formulate a min-max optimization model as follows, aiming to minimizing the

worst-case total cost over all possible scenarios in Π.

[MM] min
(x,y,z,v,b)∈X

∑
k∈K

∑
(i,j)∈A

(ckijq
k)xk

ij +
∑

(i,j)∈A

|K|∑
r=1

fijyijr + max
δ∈Π

FLP (x,z, τ̃ (δ)).

Model MM can be further reformulated as follows:

min
Φ, (x,y,z,v,b)∈X

∑
k∈K

∑
(i,j)∈A

(ckijq
k)xk

ij +
∑

(i,j)∈A

|K|∑
r=1

fijyijr +Φ

s.t. Φ≥ FLP (x,z, τ̃ (δ)), ∀δ ∈Π.

It can be seen that the above reformulation of model MM is a minimization MILP, because FLP (x,z, τ̃ (δ))

is defined by a minimization LP in (3.37)-(3.38).
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