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Abstract

This paper investigates the design and analysis of price formation in wholesale electricity markets
given variability, uncertainty, non-convexity, and intertemporal operating constraints. The paper’s pri-
mary goal is to develop a framework to assess the many resource participation models, reserve product
definitions, and enhanced pricing methods that have arisen in U.S. systems, especially in the context of
growing contributions from wind, solar, and storage. Departing from the static models typically used for
electricity auctions based on thermal resources, the paper situates price formation within the sequential
decision problem faced by system operators. This more complete description of the problem has several
implications for price formation. Since prices are derived from operational models, algorithmic choices
in the design of policies for the sequential decision problem influence the prices ultimately formed. In
numerical tests, policy variants with comparable operational performance (within 3% in terms of total
cost) lead to substantial differences in prices and resource remuneration. Storage is particularly affected,
earning revenues ranging from 68% to 116% of the amount suggested as economically efficient by a
benchmark approximated through stochastic programming.
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1 Introduction

Wholesale electricity markets operate under the premise that power can be treated as a commodity, with

no differentiation between potential suppliers of the product at a given location for a given delivery period.

Markets necessarily make many compromises relative to the full complexity of electricity systems, e.g., by

discretizing time periods and using linear approximations to the power flow equations, leading to divergent

opinions on the validity of this premise. This paper concerns one aspect of the debate, namely, how to gen-

erate sequences of prices reflecting the variability, uncertainty, non-convexity, and intertemporal constraints

that govern power generation and storage. Representing one side, Tesfatsion (2023) calls for a fundamen-

tal reconsideration of pricing, arguing that intertemporal constraints render the concept of spot pricing to

be conceptually flawed. Representing the other side, Biggar and Hesamzadeh (2022) questions if efforts

to incorporate intertemporal constraints in price formation are even necessary. Operating between these

poles, debates about the treatment of variability, uncertainty, non-convexity, and intertemporal constraints

have manifested as discussion about and in some cases implementation of new storage participation models,
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reserve products, and price formation policies in several markets across the U.S. and worldwide (Electric

Power Research Institute, 2016; Sun et al., 2021). The effects of such alternative specifications are material.

An analysis performed by the Independent Market Monitor of the Electric Reliability Council of Texas (ER-

COT) after introduction of a new Contingency Reserve Service, for example, estimated that it had increased

charges by $8.5B over a three-month period (Potomac Economics, 2023b).

This paper develops a framework to assess the effect of such proposals on market outcomes, investigating

how choices made by wholesale market operators regarding algorithms for commitment, dispatch, and market

clearing can affect incentives for operation and investment. As such, the paper connects both to the higher-

level debate on the concept of spot pricing of electricity and to several more detailed price formation reforms

currently contemplated in the academic literature and in practice. The paper’s conceptual goal is a shift

from the static picture of the merit-order curve in thermal-dominant markets to a dynamic understanding

of price formation. Electricity prices are often colloquially described as the cost to serve an additional unit

of load for a given period. In a static, convex economic dispatch model, prices that maximize efficiency both

in short-run operations and long-run investment can be calculated as the dual variables corresponding to

power balance constraints equating supply and demand. With no intertemporal operating constraints, dual

values are typically determined by the fuel cost of thermal resources. In a dynamic model, an additional

unit of load in a given period not only entails a direct cost in the present period, but also places the system

in a slightly different state entering the subsequent operating period (e.g., with more or less energy stored

in batteries). Dynamic models have been long been understood as necessary to the design and analysis of

markets in regions with significant reservoir hydropower (see, e.g., Pereira and Pinto (1991) as well as more

recent reviews in Steeger et al. (2014) and Aasg̊ard et al. (2019)). In other regions, including the U.S. systems

that serve as the primary motivation of this paper, markets have evolved in a context where storage was

negligible. This state of affairs is set to change rapidly over the coming decade, as models typically find that

decarbonized electricity systems will feature substantial quantities of storage (Jenkins et al., 2018; Williams

et al., 2021; Frazier et al., 2021). With an estimated 680 GW of storage included in U.S. interconnection

queues at the end of 2022 (Lawrence Berkeley National Laboratory, 2023), this transition appears to be well

under way, necessitating a shift toward dynamic models.

The analysis begins in Section 2 by generalizing the classical result on efficiency-maximizing prices to

a multi-stage stochastic setting including storage. While this theoretical property makes such prices an

important benchmark, the arbitrarily large model from which they are derived cannot be used in actual

operations. Thus, our interest in this paper is investigating the degree to which different implementable

models for operations can lead to a stochastic process of spot prices that mimics the theoretical benchmark.

To assess this question, Section 3 casts the price formation problem as one of sequential decisions under
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uncertainty (Powell, 2022). A central point of the paper is to emphasize a clear separation between the

steps of modeling the decision problem, designing policies for it, and deriving prices consistent with the

decisions made under the chosen policy. The typical approach in the analysis of impacts from non-convexity

and intertemporal constraints on price formation in U.S. markets omits a full description of the sequential

decision problem, instead focusing on a forward (e.g., day-ahead) market covering many time periods and

neglecting the back-propagation of expectations for eventual real-time prices to those markets. This paper

argues for the centrality of real-time markets, which are cleared sequentially with a single binding interval.

Since profit-maximizing market participants will exploit differences between day-ahead and expected real-

time prices, a model of price formation in the real-time market is a necessary precondition for describing

price formation in day-ahead or other forward markets. Modeling as a sequential decision problem enables

extensions from the analysis of Mays (2021b) and Eldridge et al. (2023a,b), which demonstrate on limited

examples that price formation methods with attractive features in deterministic contexts do not necessarily

perform well when uncertainty is considered. Without reviewing the many participation models, reserve

products, and price formation proposals that have been put forward in the literature, several examples in

Section 3.4 highlight how adopting a more complete dynamic model of the problem is required to completely

specify how prices are formed and describe their economic properties.

After re-casting the price formation problem in this way, Section 4 formulates four different models for

market clearing that represent four different policies for the sequential decision problem. Through simple

numerical examples, we describe how the choice of policy and its parameterization can affect the prices

that emerge. The first policy, most appropriate for a decentralized market, is a single-period deterministic

economic dispatch in which the effects of intertemporal constraints and opportunity costs are incorporated

into the bids and offers of market participants. Since it in principle allows the system to take maximal

advantage of diffuse and continuously updating information, Biggar and Hesamzadeh (2022) argues that

this approach may be more effective than attempting to directly model multiple periods in market clearing.

However, since researchers typically do not have direct access to market participant views, this approach

is of limited use for the analysis of markets. The second is a deterministic lookahead model with net load

biasing similar to that employed by U.S. systems for reliability unit commitment processes and/or for market

clearing. Relative to the literature on multi-period market clearing, this paper’s focus in this context is on the

challenge posed by the need to calibrate bias parameters when using this approach (cf. Mays (2021b)). The

third is a deterministic lookahead model with reserve tuning, in which parameters associated with financially

binding reserve products are calibrated rather than non-binding energy forecasts. While a primary focus of

the literature has been how to choose reserve quantities, this paper’s focus is on how the third approach differs

from the second in its effect on prices for energy and reserves. Lastly, the fourth is a stochastic programming
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lookahead model in which uncertainty is represented through sampling. In contrast to prior literature on

stochastic market clearing, the stochastic program does not represent a day-ahead market or other forward

process (Pritchard et al., 2010; Zavala et al., 2017; Cory-Wright et al., 2018; Zakeri et al., 2019); instead, as

in Cho and Papavasiliou (2023), it is a multi-period model in which only the first period is binding, making

it a natural and readily implementable extension from the market-clearing approaches used by the California

Independent System Operator (CAISO) and New York Independent System Operator (NYISO). While these

four approaches are neither exhaustive nor mutually exclusive, the overarching goal with these descriptions

is to demonstrate the value of the modeling framework in evaluating different potential policies.

To illustrate the effect of different algorithmic choices, Section 5 shows results from a series of simulations

covering 20 days of operations on a system similar to ERCOT in 2018 with additional storage. The numerical

experiments confirm the potential for significant revenue impacts due to alternative models and parameter-

izations, with the total amount charged to load varying by nearly $1.5B. Based on their connection to the

idealized prices established in Section 2, we take the prices computed under the fourth, stochastic program-

ming policy as a reference point. While the tested operating policies result in similar total cost (within 3%

of the reference), fleetwide revenues vary over a much wider range, from 84.4 to 119.6% of the reference.

The practical consequences of the pricing impacts of different policies are possibly most significant with

respect to storage. At present, it is not clear how well U.S. markets are equipped to efficiently incorporate

this new class of resource (Karaduman, 2021). In market contexts storage relies on intertemporal arbitrage,

charging when prices are low and discharging when prices are high. While price volatility should be suffi-

cient to support efficient operation of and investment in storage under idealized assumptions (Korp̊as and

Botterud, 2020; Schmalensee, 2022), in practice systems suppress real-time price volatility through various

mechanisms (Mays, 2021a). In debates about resource adequacy, it is well understood that suppressing the

level of prices leads to a missing money problem and necessitates the introduction of supplemental revenue

streams to achieve an efficient level of capacity (Joskow, 2008; Joskow and Tirole, 2007; Cramton et al.,

2013). Similarly, a failure to allow full-strength price volatility implies a need for supplemental revenues to

achieve an efficient level of flexibility. While in theory, the “first-best” approach to inducing flexibility is

restoring price volatility, system operators in the U.S. have preferred “second-best” strategies, introducing

new rules and instruments into the market. Thus, a key question is the degree to which alternative policies

for price formation affect incentives for investment in storage. The numerical tests in Section 5 confirm that

storage revenues could vary even more than that for other resources, ranging from 68.5 to 116.4% of that

suggested by the reference.

The shift from static to dynamic models has several implications for the design and analysis of price for-

mation in electricity markets. The paper closes with a discussion of policy implications and future research
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directions. While the experiments conducted in the paper are not sufficient to conclusively support a specific

operating policy, a broad point is that the first and fourth policies described above, i.e., single-period auctions

with participant-submitted opportunity costs and multi-period stochastic programs, have the strongest con-

nection to the idealized prices that would support an efficient system in the long run. Along these lines, the

primary policy recommendation is to question many recent reforms that have added complexity to market

designs through new reserve products or price formation methods. These changes are typically implemented

in hopes that they will improve short-run efficiency with no consideration of long-run consequences. Instead

of explicitly defining reserve products, the algorithmic approaches in the first and fourth policies convey the

cost of uncertainty and value of flexibility through volatility in energy prices. These approaches avoid the

need for added complexity, stakeholder processes, and regular updates to ensure that reserve product spec-

ifications keep pace with an evolving resource mix. Given the theoretical disadvantages, market operators

must make a strong empirical case for new market products. Accordingly, a second policy recommendation is

to advocate for high-fidelity simulation tools enabling system operators to compare operational performance

and pricing outcomes with alternative algorithmic choices and reserve product specifications, putting them

in position to credibly demonstrate the value of new reserve products and parameterize them efficiently.

2 Benchmark prices for long-run efficiency

This section conveys a result on the prices that would support a competitive equilibrium at the socially

optimal long-run resource mix assuming convex cost functions, perfect competition and complete markets in

risk (Ferris and Philpott, 2022). The formulation of the problem will make clear that due to computational

and informational limits, forming these prices in real-world applications is unlikely. Nevertheless, because

of their connection to the long-run social optimum, they provide an important benchmark against which to

assess the quality of the implementable pricing policies discussed in subsequent sections. The formulation

and proof is a generalization of similar results on long-run competitive equilibrium including storage in

simpler settings (Korp̊as and Botterud, 2020; Schmalensee, 2022).

2.1 Capacity expansion with operational uncertainty

We first define the joint capacity expansion and operational problem faced by a social planner in a

risk neutral setting. The primary difference between this formulation and the standard capacity expansion

model used in the economics literature is the explicit inclusion of uncertainty in the operational stage.

Consider a scenario tree with nodes n ∈ N . At the root node n = 0 we make investments in generation

and storage resources, with which we operate the system through nodes NOP = N \ {0}. We denote the

unique predecessor of any node n ̸= 0 as n− and the set of immediate successors of node n as n+. The
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depth τ(n) of node n ∈ NOP along a path is interpreted as a time index t ∈ T . For convenience we will

assume annualized investment costs and hourly time steps, define τ(0) = 0, and define T = {1, . . . , 8760},

such that the tree represents a year of operations. We use ϕn to represent the probability that the path taken

through the scenario tree will include node n, with
∑

n∈N :τ(n)=t ϕn = 1 ∀t ∈ T . Here we define notation for

a relatively simple version of the capacity expansion problem. The important result of the proof extends to

more complicated formulations as long as convexity is maintained. We complicate the formulation further,

including by the introduction of non-convexity, in the next section.

While most of the simplifications are unimportant for the theoretical result, we draw attention to the

absence of reserve products. Since the stochastic model endogenously determines the need to prepare for

future intervals, products intending to address uncertainty across intervals do not need to be specified. At

the same time, products to address uncertainty within a given pricing interval or to compensate for features

not included in the model (e.g., voltage support) would still be necessary.

2.1.1 Notation

Sets:

• g ∈ G: generators

• b ∈ B: storage resources

• l ∈ L: demand bids

Parameters:

• CINV
g : investment cost for generator g ($/MW-yr)

• CINV
b : investment cost for storage resource b ($/MW-yr)

• COP
g : marginal cost for operating generator g ($/MWh)

• Eb: duration of storage resource b (hrs)

• V L
l : value of load l ($/MWh)

• Agn: availability of generator g in node n, as a fraction of installed capacity

• D+
ln: quantity of demand bid l in node n (MW)

Decision Variables:

• yg: capacity of generator g to install in node 0 (MW)

• yb: capacity of storage resource b to install in node 0 (MW)

• pgn: power output of generator g in node n (MW)

• kcbn: power charged by storage resource b in node n (MW)

• kdbn: power discharged by storage resource b in node n (MW)
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• jbn: state of charge for storage resource b in node n (MWh)

• dln: amount of demand l cleared in node n (MW)

2.1.2 Formulation

The social planner’s problem is stated as

(SOC)

max
y,p,kc,kd,j,d

−
∑
g∈G

CINV
g yg −

∑
b∈B

CINV
b yb

+
∑

n∈NOP

∑
l∈L

ϕnV
L
l dln −

∑
n∈NOP

∑
g∈G

ϕnC
OP
g pgn (1a)

subject to
∑
l∈L

dln −
∑
g∈G

pgn −
∑
b∈B

(kdbn − kcbn) = 0 ∀n ∈ NOP (ϕnλn) (1b)

dln ≤ D+
ln ∀l ∈ L, n ∈ NOP (ϕnα

D
ln) (1c)

pgn −Agnyg ≤ 0 ∀g ∈ G, n ∈ NOP (ϕnα
P+
gn ) (1d)

kcbn − yb ≤ 0 ∀b ∈ B, n ∈ NOP (ϕnα
K−
bn ) (1e)

kdbn − yb ≤ 0 ∀b ∈ B, n ∈ NOP (ϕnα
K+
bn ) (1f)

jbn − jb,n− + kdbn − kcbn = 0 ∀b ∈ B, n ∈ NOP (ϕnβbn) (1g)

jbn − Ebyb ≤ 0 ∀b ∈ B, n ∈ NOP (ϕnγbn) (1h)

jb0 = 0 ∀b ∈ B (ϕ0γb0) (1i)

dln ≥ 0 ∀l ∈ L, n ∈ NOP (1j)

pgn ≥ 0 ∀g ∈ G, n ∈ NOP (1k)

jbn, k
d
bn, k

c
bn ≥ 0 ∀b ∈ B, n ∈ NOP . (1l)

The social planner maximizes the value of load served across all nodes n ∈ NOP , subtracting the upfront

cost of investment in node n = 0 and the operating cost in all other nodes. Dual variables are scaled

by ϕn in order to produce unscaled prices (e.g., such that λn corresponds to the normal interpretation of

the cost to serve an additional unit of load in node n). Constraint (1b) enforces power balance. With

the objective, constraint (1c) models load curtailment. Constraint (1d) represents the maximum output

of generators, which depends on their node-dependent availability and the decision to install capacity in

node 0. Constraints (1e) and (1f) represent maximum charging and discharging from storage resources.

Constraint (1g) enforces consistency in the state of charge for storage resources and constraint (1h) encodes

the maximum state of charge, with constraint (1i) establishing an initial condition.
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2.2 Market participants

With the same notation, we can formulate models for each generation and storage resource to maximize

their operating profit given a fixed capacity. Without explicitly modeling financial trades, the assumptions

of complete markets in risk allow us to make the simplifying assumption that all participants are risk-neutral

with respect to the same socially determined probabilities ϕn (Philpott et al., 2016; Gérard et al., 2018).

With capacity fixed at yg and λn representing the price of power in node n, generator g ∈ G solves

(GEN)g max
p

∑
n∈NOP

ϕnpgn(λn − COP
g ) (2a)

subject to pgn ≤ Agnyg ∀n ∈ NOP (ϕnα
P+
gn ) (2b)

pgn ≥ 0 ∀n ∈ NOP . (2c)

Similarly, with capacity given at yb, storage resource b ∈ B solves

(STOR)b max
kc,kd,j

∑
n∈NOP

ϕnλn(k
d − kc) (3a)

subject to kcbn ≤ yb ∀n ∈ NOP (ϕnα
K−
bn ) (3b)

kdbn ≤ yb ∀n ∈ NOP (ϕnα
K+
bn ) (3c)

jbn − jb,n− + kdbn − kcbn = 0 ∀n ∈ NOP (ϕnβbn) (3d)

jbn ≤ Ebyb ∀n ∈ NOP (ϕnγbn) (3e)

jb0 = 0 (3f)

jbn, k
d
bn, k

c
bn ≥ 0 ∀n ∈ NOP . (3g)

Lastly, load l ∈ L solves the problem

(LOAD)l max
d

∑
n∈NOP

ϕndgn(V
L
l − λn) (4a)

subject to dln ≤ D+
ln ∀n ∈ NOP (ϕnα

D
ln) (4b)

dln ≥ 0 ∀n ∈ NOP . (4c)

2.3 Long-run equilibrium

Using these problem definitions, and retaining the assumptions of perfect competition and complete

markets in risk, we define a long-run competitive equilibrium for the market as follows.
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Definition 1. A long-run competitive equilibrium is a set of prices (λn)n∈NOP , installed generation capac-

ities (yg)g∈G , installed storage capacities (yb)b∈B, generator schedules (pgn)g∈G,n∈NOP , storage schedules

(kcbn, k
d
bn, jbn)b∈B,n∈NOP , and load consumption quantities (dln)l∈L,n∈NOP such that:

1. the generator schedules solve (GEN)g ∀g ∈ G, the storage schedules solve (STOR)b ∀b ∈ B, and the

load consumption quantities solve (LOAD)l ∀l ∈ L at the given prices and installed capacities;

2. the market clears in every operating node, i.e.,
∑

l∈L dln−
∑

g∈G pgn−
∑

b∈B(k
d
bn−kccn) = 0 ∀n ∈ NOP ;

and

3. all generators and storage resources have zero expected profit at the assumed annualized investment

cost, i.e.,

0 ≤ yg ⊥ CINV
g yg −

∑
n∈NOP

ϕnpgn(λn − COP
g ) ≥ 0 ∀g ∈ G

and

0 ≤ yb ⊥ CINV
b yb −

∑
n∈NOP

ϕnλn(k
d − kc) ≥ 0 ∀b ∈ B.

The following theorem shows that a solution to model (SOC) satisfies these conditions, with the proof

provided in Appendix A.

Theorem 1. Let (y∗, p∗, kc∗, kd∗, j∗, d∗) be an optimal solution to (SOC) and let (λ∗, α∗, β∗, γ∗) be an optimal

solution to its dual. Then the prices (λ∗
n)n∈NOP , installed generation capacities (y∗g)g∈G , installed storage

capacities (y∗b )b∈B generator schedules (p∗gn)g∈G,n∈NOP , storage schedules (kc∗bn, k
d∗
bn, j

∗
bn)b∈B,n∈NOP , and load

consumption quantities (d∗ln)l∈L,n∈NOP represent a long-run competitive equilibrium.

The relationship between competitive equilibrium and social optimum is an important justification for

the regulatory decision to establish competitive markets in electricity. Accordingly, this paper takes prices

derived in this theoretically efficient way to be an appropriate benchmark for evaluating alternative price

formation proposals. However, a clear drawback of model (1) is that, despite simplifications in the technical

constraints, it is impossible to solve as formulated in any practical setting. In the next section, we turn to

implementable models for the design and analysis of price formation.

3 Modeling the sequential price formation problem

We now turn to a more realistic description of how system operators solve the decision problem faced

at each node n ∈ NOP in model (1). Taking investment decisions as fixed and following Powell (2022), a

canonical model for the operational problem over time periods T = {1, . . . , T} can be stated as

max
π∈Π

E

[
T∑

t=1

Ct(St, X
π
t (St))

]
. (5)
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Here Ct represents benefits achieved at time t, which depends on the state of the system St and decision xt,

which is determined by some policy π in a set of potential policies Π, with Xπ
t (St) mapping states to actions.

In the electricity context, St may include the current status of generators, the state of charge for batteries,

and beliefs regarding future load, component failures, and the availability of wind and solar. Decisions

in xt can then include commitment status and dispatch levels for each resource in the system. Further,

with Wt+1 representing the new information available between time t and t + 1, the transition function

St+1 = SM (St, xt,Wt+1) describes how the system state may evolve into the next interval depending on

actions taken and the realization of random variables. The decision problem is to identify an eligible policy

π that will maximize net benefits accruing over the time period under consideration. Noting that system

operators may prefer to use an averse risk measure, for the time being Eq. (5) assumes risk neutrality.

3.1 Base policy: deterministic lookahead unit commitment

In electricity systems, the most common policy approach involves the solution of a series of deterministic

lookahead unit commitment problems (e.g., every 15 minutes, with lookahead periods ranging from several

hours to a full day ahead) along with more frequent deterministic economic dispatch problems with a shorter

lookahead horizon (e.g., a single-period model every 5 minutes). As a starting point for the discussion

and since it is commonly used in the analysis of power systems, we formulate a deterministic lookahead

unit commitment model to be solved sequentially for each hour-long period t. Because of their relevance

to debates about price formation, the formulation includes several technical constraints beyond those in

model (1). To simplify notation relative to the state St, the model includes H hours of history relevant

to current decisions along with F future hours for which the system operator wishes to make provisional

decisions. Section 4 explores modifications to this base policy.

3.1.1 Notation

Retaining the definition of the sets G, B, and L as well as parameters COP
g and V L

l from above, we alter

the indices of most other parameters and variables to reflect the sequential decision framework, replace the

investment decision variables with parameters, and define additional notation to describe additional technical

constraints.

Sets:

• t′ ∈ T H,F
t : time periods included in model t

• t′ ∈ T H
t = {t−H, t−H + 1, . . . , t− 1}: prior time periods included in model t

• t′ ∈ T F
t = {t+ 1, . . . , t+ F}: lookahead time periods included in model t

Known Parameters:
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• CNL
g : no-load cost for generator g ($/period)

• CSU
g : start-up cost for generator g ($)

• UR+
g , DR+

g : maximum up and down per-period ramping capability of generator g (MW/h)

• UT g, DT g: minimum up and down time for generator g

• Jb: energy capacity of storage resource b (MWh)

• Kb: power capacity of storage resource b (MW)

• ηcb : charging efficiency of storage resource b (p.u.)

• ηdb : discharging efficiency of storage resource b (p.u.)

• V R: penalty cost for reserve shortfall ($/MWh)

• R+
tt′ : reserve requirement in time period t′ in model t (MW)

Estimated Parameters:

• P̃+
gtt′ , P̃

−
gtt′ : maximum and minimum availability for generator g in time period t′, as estimated at time

t (MW)

• D̃+
ltt′ : quantity of demand bid l in time period t′, as estimated at time t (MW)

Decision Variables:

• ũgtt′ : (binary) commitment status of generator g in time period t′, provisional at time t

• ṽgtt′ : (binary) start-up decision for generator g time period t′, provisional at time t

• q̃gtt′ : (binary) shut-down decision for generator g in time period t′, provisional at time t

• p̃gtt′ : power output of generator g in time period t′, provisional at time t (MW)

• r̃gtt′ , r̃btt′ : reserve provided by generator g or storage resource b in time period t′, provisional at time

t (MW)

• k̃cbtt′ : power charged by storage resource b in time period t′, provisional at time t (MW)

• k̃dbtt′ : power discharged by storage resource b in time period t′, provisional at time t (MW)

• j̃btt′ : state of charge for storage resource b in time period t′, provisional at time t (MWh)

• d̃ltt′ : amount of demand l cleared in time period t′, provisional at time t (MW)

• z̃tt′ : total quantity of reserves provided by all resources in time period t, provisional at time t (MW)

A tilde over a parameter indicates that it is estimated based on the state St in which the system is

currently positioned. For t′ ∈ T H
t as well as t′ = t, we assume that these values are known with certainty.

Given this assumption for t′ = t, this paper focuses on variability and uncertainty across pricing intervals,

rather than within them. A tilde over a decision variable indicates that it is a provisional decision made at

time t for time t′. We also define a separate set of parameters without tildes to indicate the past decisions

made at time t′ ∈ T H
t for period t′, i.e., the actual binding decisions made under the chosen policy in the
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period t′ model. For example, the parameter ugt′ indicates the actual commitment status of generator g

in time period t′, as determined at time t′. We note that although they are irrelevant as primal decision

variables, we define notation for the decisions for time periods preceding time t because some price formation

methods in the literature and in practice incorporate start-up and no-load costs arising from prior decisions.

We use the notation x̃t to represent the whole set of provisional decisions made in the period t model, i.e.,

x̃t = (ũt, ṽt, q̃t, p̃t, r̃t, k̃
c
t , k̃

d
t , j̃t, d̃t, z̃t), and xt from above to represent the entire set of binding decisions made

in the period t model for time period t.

It is worth highlighting certain assumptions implicit in the notation, some of which could have important

consequences for a complete analysis of pricing policies. First, we assume that certain parameters relevant

to generator cost functions and technical constraints are “known.” In reality, these parameters are provided

by the generators themselves, and as such could reflect strategic decisions that are a function of the price

formation policy implemented by market operators (Duggan and Sioshansi, 2019). Further, we assume that

the penalty cost for reserve shortfall V R and the nominal reserve requirements R+
tt′ are determined in advance

rather than calculated dynamically. We note, however, that the presence of two indices on R+
tt′ implies that

the model may use a smaller reserve requirement as the relevant operating hour approaches to reflect smaller

forecast uncertainty. We return to the price formation consequences of reserve tuning later in the paper.

3.1.2 Formulation

A deterministic lookahead unit commitment policy for the period t problem can be stated as

(DLAC)

XDLAC
t (St|H,F ) ∈

argmax
x̃t

∑
l∈L

∑
t′∈T H,F

t

V L
l d̃ltt′ +

∑
t′∈T H,F

t

V Rz̃tt′

−
∑
g∈G

∑
t′∈T H,F

t

COP
g p̃gtt′

−
∑
g∈G

∑
t′∈T H,F

t

(
CNL

g ũgtt′ + CSU
g ṽgtt′

)
(6a)

subject to
∑
l∈L

d̃ltt′ −
∑
g∈G

p̃gtt′ −
∑
b∈B

(
k̃dbtt′ − k̃cbtt′

)
= 0 ∀t′ ∈ T H,F

t (λ̃tt′) (6b)

z̃tt′ −
∑
g∈G

r̃gtt′ −
∑
b∈B

r̃btt′ = 0 ∀t′ ∈ T H,F
t (µ̃tt′) (6c)

d̃ltt′ ≤ D̃+
ltt′ ∀l ∈ L, t′ ∈ T H,F

t (α̃D
ltt′) (6d)

z̃tt′ ≤ R+
tt′ ∀t′ ∈ T H,F

t (α̃R
tt′) (6e)
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P̃−
gtt′ ũgtt′ ≤ p̃gtt′ ∀g ∈ G, t′ ∈ T H,F

t (α̃P−
gtt′) (6f)

p̃gtt′ + r̃gtt′ ≤ P̃+
gtt′ ũgtt′ ∀g ∈ G, t′ ∈ T H,F

t (α̃P+
gtt′) (6g)

k̃cbtt′ ≤ Kb ∀b ∈ B, t′ ∈ T H,F
t (α̃K−

btt′ ) (6h)

k̃dbtt′ + r̃btt′ ≤ Kb ∀b ∈ B, t′ ∈ T H,F
t (α̃K+

btt′ ) (6i)

j̃btt′ − j̃bt,t′−1 +
1

ηdb
k̃dbtt′ − ηcb k̃

c
btt′ = 0 ∀b ∈ B, t′ ∈ T H,F

t (β̃btt′) (6j)

j̃btt′ ≤ Jb ∀b ∈ B, t′ ∈ T H,F
t (γ̃btt′) (6k)

p̃gtt′ − p̃gt,t′−1 ≤ UR+
g + P̃+

gtt′ ṽgtt′ ∀g ∈ G, t′ ∈ T H,F
t (δ̃+gtt′) (6l)

p̃gt,t′−1 − p̃gt,t′ ≤ DR+
g + P̃+

gtt′ q̃gtt′ ∀g ∈ G, t′ ∈ T H,F
t (δ̃−gtt′) (6m)

ṽgtt′ + ũgt,t′−1 − ũgtt′ − q̃gtt′ = 0 ∀g ∈ G, t′ ∈ T H,F
t (ζ̃gtt′) (6n)

t′∑
t′′=max(t−H,t′−UT g+1)

ṽgtt′′ − ũgtt′ ≤ 0 ∀g ∈ G, t′ ∈ T H,F
t (ζ̃+gtt′) (6o)

1−
t′∑

t′′=max(t−H,t−DT g+1)

q̃gtt′′ + ũgtt′ ≤ 0 ∀g ∈ G, t′ ∈ T H,F
t (ζ̃−gtt′) (6p)

d̃ltt′ ≥ 0 ∀l ∈ L, t′ ∈ T H,F
t (6q)

z̃tt′ ≥ 0 ∀t′ ∈ T H,F
t (6r)

p̃gtt′ , r̃gtt′ ≥ 0 ∀g ∈ G, t′ ∈ T H,F
t (6s)

j̃btt′ , k̃
d
btt′ , k̃

c
btt′ ≥ 0 ∀b ∈ B, t′ ∈ T H,F

t (6t)

ũgtt′ , ṽgtt′ , q̃gtt′ ∈ {0, 1} ∀g ∈ G, t′ ∈ T H,F
t (6u)

ũgtt′ , ṽgtt′ , q̃gtt′ = ugt′ , vgt′ , qgt′ ∀g ∈ G, t′ ∈ T H
t (6v)

p̃gtt′ , r̃gtt′ = pgt′ , rgt′ ∀g ∈ G, t′ ∈ T H
t (6w)

k̃cbtt′ , k̃
d
btt′ , j̃btt′ = kcbt′ , k

d
bt′ , jbt′ ∀b ∈ B, t′ ∈ T H

t (6x)

d̃ltt′ = dlt′ ∀l ∈ L, t′ ∈ T H
t (6y)

z̃tt′ = zt′ ∀l ∈ L, t′ ∈ T H
t . (6z)

The formulation omits several features of real-world unit commitment problems (e.g., transmission con-

straints, notification times for generators, and battery degradation), but is intended to have enough fidelity

to include several important issues affecting price formation. The objective function maximizes projected

surplus over the decision horizon, adding the value of served load and reserves minus the total cost of serving

that load. Provision of reserves is assumed to have no direct cost. We model a single reserve product,

assumed to be in the upwards direction only; since the numerical examples operate at an hourly time step,
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we are not able to capture constraints arising at the five-minute or sub-five-minute levels important in real-

world markets. Costs are modeled with the traditional three-part structure used in U.S. markets. We note

that this formulations does not include either opportunity costs or residual value for storage, leaving these

modifications for future sections.

The formulation preserves the constraints from model (1), incorporating changes in notation consistent

with the omission of investment variables and the switch to the sequential decisions framework. Con-

straint (6b) enforces power balance and constraint (6c) calculates total reserves. Constraint (6d) models

load curtailment while constraint (6e) models a reserve shortfall. Constraints (6f) and (6g) represent the

minimum and maximum output of generators, which depends on their commitment status ugt, and con-

straints (6h) and (6i) represent maximum charging and discharging from storage resources. Constraint (6j)

encodes logic for the state of charge for storage resources and constraint (6k) encodes the maximum state

of charge. Where the time index t −H − 1 appears, constraints can either be dropped or variables can be

replaced with parameters describing initial conditions. Constraints (6l) and (6m) describe ramping limits

for generators. Constraints (6n), (6o), and (6p) ensure consistency between start-up, shut-down, and com-

mitment variables given generator minimum run times. Inclusion of these constraints reinforces the need

for prior time periods t′ ∈ T H
t to fully describe the state of the system. Constraints (6q)–(6t) enforce

non-negativity, constraint (6u) introduces non-convexity through the binary commitment variables, and the

“non-revisionist” constraints (6v)–(6z) ensure that decisions from prior time periods (T H
t ) cannot be altered

in the current decision epoch. Greek letters to the right of each constraint define dual variables to be used

in relaxations or other modifications of the mixed-integer program. The most important of these are λ̃tt′

and µ̃tt′ , which give rise to binding prices for energy and reserves in period t, λt = λ̃tt and µt = µ̃tt, as

well as advisory prices for energy and reserves in t′ ∈ T F
t . We return to the topic of day-ahead markets, in

which prices for multiple time periods are binding, after establishing the real-time prices around which the

day-ahead markets are based.

3.2 Defining real-time pricing policies

Having defined the sequential decision problem faced by electricity system operators, as well as a base

policy describing one possible approach to the problem, the remainder of the section draws out several

implications for the design and analysis of price formation. The first contrast with the prior literature is in

fully specifying what is required to define a policy for real-time price formation. Broadly, the literature on

price formation seeks a set of prices that will support the solution identified for an instance of model (DLAC),

with complications arising due both to uncertainty and non-convexity. Typically, this is accomplished by

finding dual values corresponding to the system-wide constraints in a model that is closely related, but
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not identical, to model (DLAC). For example, the fixed binaries approach in O’Neill et al. (2005) that

could be considered “traditional” locational marginal pricing (LMP) first solves the mixed-integer program

in model (DLAC), then fixes all binary variables to their optimal values, then resolves the resulting linear

program to compute dual values as prices, while the convex hull pricing of Gribik et al. (2007) instead relaxes

the feasible region to its convex hull. By casting the problem in a sequential decision lens, however, it can be

seen that fully describing a pricing policy requires at least three distinct steps. Of these, only the third has

received major attention in the literature (exceptions include Singhal and Ela (2020), which looks at step 1,

and Frew et al. (2021), which looks at step 2). The remainder of this subsection delineates these three steps.

3.2.1 Step 1: specifying the model for operations

Most analyses of price formation take the form of model (DLAC), or some variant, as a given (see, e.g.,

the review in Liberopoulos and Andrianesis (2016)). The several design choices required in the construction

of model (DLAC) suggest why omitting this step may cause issues. Consider the lookahead horizon F . A

key source of concern for California is the evening ramp, during which the system sees growing demand

combined with falling production from solar. At mid-day in California, operators may already wish to begin

positioning the system for the evening ramp. Necessarily, changing the form of the model (e.g., by using a

larger number of hours F in the lookahead horizon) will change the prices calculated by the model. If the

lookahead horizon does not include this evening ramp, then potential price impacts from the ramp will not

be directly reflected in prices calculated in the model.

3.2.2 Step 2: specifying a parameterization

Model (DLAC) includes parameters for demand and generator availability that are estimated using

information available in state St. Thus, a full specification of an operating policy requires a description of how

these forward-looking estimates are chosen given the uncertainty in the system. It is widely understood in the

context of stochastic optimization that using the expected value of uncertain parameters in a deterministic

model would be unwise; model (DLAC) therefore entails a judicious selection of values in the parameters

P̃+
gtt′ , P̃−

gtt′ , and D̃+
ltt′ . A standard practice in U.S. systems is to bias the amount of load upwards or

bias the availability of wind and solar downwards to induce a better solution to the underlying stochastic

problem (Mays, 2021b). Decisions on which parameters to bias, and the amount to do so, will necessarily

affect the dual values computed when solving the model.

3.2.3 Step 3: specifying a pricing policy

Only after clarifying the choice of model and its parameterization can a pricing policy be fully defined.

In general, proposals in the literature demonstrate the theoretical or empirical properties of a given policy

15



having assumed the form of the model and its parameterization. Using the notation above, most studies

assess the properties of the prices λ̃tt′ ∀t′ ∈ T H,F
t in supporting the provisionally optimal decisions x̃t over the

lookahead horizon. For example, the analysis in Gribik et al. (2007) shows that convex hull prices minimize

a definition of lost opportunity costs for market participants, a property that leads Chao (2019) to claim

that “convex-hull pricing is generally considered an ideal solution” to the non-convex pricing problem. With

a more complete description of the sequential decision problem, however, it can be seen that many different

sets of convex hull prices could be calculated from different models under different parameterizations. Among

these, it is not clear which if any could be considered ideal. In a sequential decision context, defining lost

opportunity costs in terms of a single instance of model (DLAC) is incomplete. We do not need a set of

prices λ̃tt′ ∀t′ ∈ T H,F
t supporting the provisionally optimal decisions x̃ found by model (DLAC), but rather

a pricing policy that supports the operational policy sought in Eq. (5) and, ultimately, realized prices λt

consistent with the binding decisions xt determined under that policy and the realization of random variables

in the system. Given that prices calculated will depend on decisions in steps 1 and 2, it is not possible to

interpret theoretical results on the properties of prices derived starting only from step 3.

3.3 Defining day-ahead pricing policies

The discussion to this point has focused on real-time prices generated in a sequential manner, with the

period t model giving rise to binding prices and quantities only in period t. It might be objected that

day-ahead markets, on which analysis is often performed, typically cover a much larger set of time periods,

simultaneously determining prices and quantities for a 24-hour period. In the context of the modeling

framework above, day-ahead markets constitute special instances of model (DLAC) occurring once per day,

rather than every hour.

The major counterpoint to this potential objection is that for consistency in the economic analysis, a

day-ahead market should converge on prices that equal the expected value of those that will eventually

emerge in the real-time market in each hour. Using the notation above, if a day-ahead market executed at

time t creates binding financial positions for some future time period t′ ∈ T F
t , then a no-arbitrage condition

entails that

λ̃tt′ = EWt+1,...,Wt′ [λt′ ]. (7)

Without an explanation for why this no-arbitrage condition is not met, or at least approximated, a failure to

satisfy Eq. (7) implies that the behavior of market participants has not been fully characterized. In markets

that allow financial participants, virtual bids and offers will enter the day-ahead market; in markets that do

not allow financial participants, physical participants will alter their bids and offers. An implication is that
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employing an alternative pricing policy in only the day-ahead market would have little if any impact. For

example, the Independent Market Monitor for the Midcontinent ISO (MISO) reports that in 2022, the ELMP

model resulted in real-time prices that were $1.45/MWh higher than they would have been under traditional

locational marginal pricing (LMP), but “as expected, ELMP had almost no effect in the day-ahead market

because the supply is far more flexible and includes virtual transactions” (Potomac Economics, 2023a). In

other words, the formation of prices in the day-ahead markets is downstream of the policy chosen for price

formation in real time. As a result, analyses that focus on price formation policies in day-ahead markets

without describing how they are instantiated in real-time markets are incomplete.

3.4 Contrasts with prior literature

The goal of this subsection is to more specifically contrast the view of price formation advanced in this

paper with several strands of prior literature, describing the implications for design and analysis of electricity

markets along five dimensions.

3.4.1 Price formation policies and long-run efficiency

As highlighted in the analysis of Section 2, prices in wholesale electricity markets are intended to support

efficiency not only in short-run operations but also in long-run investments. In the broader view, the problem

in Eq. (5) is conditioned on the set of resources available in the system, and for consistency in the analysis a

pricing policy must result in sufficient revenue to support an investment equilibrium including those resources.

While some studies have investigated the long-run implications of alternative pricing policies (Herrero et al.,

2015; Mays et al., 2021; Guo et al., 2022; Byers and Hug, 2022), the primary focus of the literature on price

formation has been on short-run effects.

3.4.2 Arbitrage and production cost modeling

In addition to creating difficulties in the design of pricing policies, the no-arbitrage condition in Eq. (7)

presents a challenge for analysis of market outcomes using typical production cost models, which do not

include virtual bidders. A standard approach in such analyses is to mimic the two-settlement system of U.S.

day-ahead and real-time markets, conducting first a day-ahead market covering the entire operating day

and then a series of real-time markets with updated information. When simulating one year of operations,

such analyses typically report only a single realized time series of real-time prices, making it difficult to

assess conformance with Eq. (7). However, it is not uncommon for such analyses to result in persistently

lower prices in day-ahead markets than in real-time markets, suggesting under-commitment of resources in

the day-ahead time frame. One possible reason for this common result is the use of expected demand in

day-ahead market simulations. Given the “hockey stick” shape of real-time electricity prices as a function
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of demand, prices calculated under the assumption of expected demand will tend to underestimate expected

real-time prices (Mays, 2021b).

3.4.3 Participation models and dispatch authority

Using a model similar to model (DLAC), Jiang and Sioshansi (2023) investigate the question of whether

market operators can be granted the authority to dispatch storage resources given that the decisions they

make could affect prices. Based on duality arguments, the analysis suggests that prices will be equivalent

regardless who retains authority over dispatch. The analysis, however, does not reflect how enabling indepen-

dent storage operations would necessitate changes to model (DLAC) to include storage opportunity costs in

the objective function, and in this sense does not fully consider step 1 (Section 3.2.1). Further, by not making

explicit the parameterization of step 2 (Section 3.2.2), the analysis does not address how different estimates

of future demand and generator availability will affect the prices calculated. Given that storage owners and

system operators have different knowledge, beliefs, incentives, and levels of risk aversion, it is unlikely that

the two groups would employ the same estimates for uncertain parameters and therefore unlikely that the

two participation models would lead to equivalent prices. Accordingly, expanding the analysis to include

these factors could affect the policy recommendation to grant dispatch authority to system operators.

3.4.4 Ramp constraints and multi-interval pricing

Several recent papers put forward proposals for price formation in multi-interval market clearing models

in order to address ramping constraints that link consecutive periods (Hua et al., 2019; Chen et al., 2021;

Guo et al., 2021; Cho and Papavasiliou, 2023). One of the animating concerns behind these proposals,

summarized in Biggar and Hesamzadeh (2022) as the “time-inconsistency problem,” is that consecutive

instances of model (DLAC) will not necessarily result in the same prices in the presence of binding ramping

constraints. In our notation, even if we modify H and F such that the period t model and period t + 1

models cover the same time horizon, moving to period t + 1 changes the definition of the set of prior

time periods T H
t , expanding the number of constraints in Eqs. (6v)–(6z). These added constraints lead to

different calculated dual values, even if all parameters in the models are identical. The analysis in Biggar

and Hesamzadeh (2022) argues that time inconsistency is a special case of linear cost and utility functions,

while the review in Hogan (2022) suggests this case is sufficiently relevant to warrant implementation of

pricing logic addressing it. Viewed in a sequential decision context, however, the problem disappears: given

the arrival of new information Wt+1, there is no reason to believe that the estimated parameters P̃+
gtt′ , P̃

−
gtt′ ,

and D̃+
ltt′ could be the same over two consecutive periods. Along the lines of Biggar and Hesamzadeh (2022),

applying special logic to address this perceived problem could impede the incorporation of new information

in prices.

18



Because it also includes uncertainty and a rolling horizon simulation, the modeling framework in this

paper is closest to that of Cho and Papavasiliou (2023). However, it is worth mentioning the important

difference that the analysis in Cho and Papavasiliou (2023) focuses on results related to a stochastic and

convex version of model (DLAC), rather than the underlying sequential decision problem in Eq. (5). This

difference has especially interesting implications when storage or non-convexity, which are not present in Cho

and Papavasiliou (2023), are added to the model. In particular, because storage resources bid based on

opportunity costs that are calculated based on the distribution of futures prices, different pricing policies

lead to different storage offers and thus different operational decisions. We return to this discussion in

Section 4.2.

3.4.5 Avoidable fixed costs and non-convex pricing

With the stated aim of “allow[ing] the commitment costs of fast-start resources to be reflected in

prices” (Federal Energy Regulatory Commission, 2019), all of the FERC-jurisdictional markets except CAISO

have implemented new pricing mechanisms under the umbrella of Fast-Start Pricing or Extended LMP

(ELMP). Following earlier analyses of market clearing in general settings with non-convexities (Scarf, 1990),

many proposals have emerged in the literature attempting to resolve the issues that arise due to the lack

of uniform market-clearing prices in the context of electricity markets (see the review in Liberopoulos and

Andrianesis (2016)). A prominent example is the convex hull pricing policy sometimes considered an “ideal”

in deterministic settings. As discussed above, proposals in the literature typically bypass steps 1 and 2 when

specifying a price formation policy. Viewing the problem in a sequential decision context thus gives a new

criticism of convex hull pricing, and by extension many similar proposals. While it is sometimes suggested

that the major barrier to implementing convex hull prices is computational (Chao, 2019; Knueven et al.,

2021), a more fundamental issue is convex hull pricing has been defined on an incomplete model of the pricing

problem. This incompleteness has important consequences. In order for commitment costs to be reflected in

prices, proposals include some relaxation of the binary variables in model (DLAC). However, start-up and

no-load costs will not be reflected in real-time prices unless a) the set of prior time periods TH
t includes the

relevant start-up decision and b) the constraints on historical consistency, Eqs. (6v)–(6z), are also relaxed in

some way, such that the resulting feasible region is no longer the convex hull of the operational problem. In

other words, models must (implicitly or explicitly) be allowed to adjust decisions retroactively in order for

the cost of those decisions to participate directly in setting prices. Further, real-time market clearing models

in practice may exclude historical decisions altogether (i.e., H = 0), necessitating that market operators

take a different approach altogether (e.g., forming a different model in which costs from decisions in prior

intervals are allocated to the present one (Wang et al., 2016)). Examples in Mays (2021b) and Eldridge
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et al. (2023b) demonstrate how relaxing prior decisions in real-time price formation can degrade efficiency

and create poor incentives for the commitment of resources, contrary to the intentions of convex hull pricing.

4 Policies for sequential market clearing

Having described a model of the problem, this section considers the effect that different commitment

and dispatch policies may have on pricing outcomes. The modifications to model (DLAC) considered here

are not mutually exclusive, and system operators already use a combination of the first three approaches.

We analyze the variants separately in order to gain intuition on the different price formation effects of each

approach, using toy examples to explore the relationships between them. Throughout the examples, which

assume convexity, we as a default use the simplest possible pricing policy in “step 3” described above, taking

the dual variable λt = λ̃tt from Eq. (6b) to be the price in period t. In other words, the focus is on the

impacts of steps 1 and 2 rather than the step 3 that has received the most attention in the literature. We

first construct three toy examples, deriving the optimal dispatch and benchmark prices for each. We then

consider four implementable operating policies (i.e., variants of model (DLAC)) and pricing policies (derived

from the chosen variant of model (DLAC)), discussing their ability to identify the optimal dispatch decisions

and approximate the benchmark prices. To distinguish between the prices generated from different operating

policies, we attach a superscript to λt indicating the policy in use.

4.1 Toy Examples

Consider an example system with a single load l ∈ L valued at V L
l = $10, 000/MWh at a known demand

of Dlt = 10 MW for all periods t ∈ T . The problem extends for 3 hour-long periods, i.e., T = {1, 2, 3}.

There are two generators, one wind and one gas, as well as one storage resource. Wind is the lone source

of uncertainty. Let wind availability in MW be certain at P+
wind,1 = 16 in the first hour, distributed as

P+
wind,2 ∼ U(5, 10) in the second hour, and distributed as P+

wind,3 ∼ U(0, 20) in the third hour, with output

in the second and third hours assumed to be independent. At the beginning of period 2 we learn the actual

availability of wind in period 2, but no additional information about its availability in period 3. The gas

plant has a capacity of P+
gas,t = 9 MW in each time period t ∈ T , has no binary constraints or minimum

operating level, and operates at a cost of cOP
gas = $100/MWh. We initially consider a case without ramping

constraints, then add a limit of UR+
gas = DR+

gas = 4 MW/h for two other cases. The battery is able to

store Jb = 5 MWh of energy and we enter the first hour with jb0 = 0 MWh stored. Storage can charge

and discharge at a maximum power of Kb = 5 MW with perfect efficiency, no cost for degradation, and no

residual value to stored energy at the end of the third hour.

The problem is simple enough that we can solve it by inspection. In period 1, since the wind exceeds
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demand plus the size of the storage, we serve all the load with wind, fill up the storage, and curtail the extra

1 MW of wind. The period 3 problem is also straightforward by virtue of being deterministic. We use wind

and storage interchangeably up to their availability, since stored energy has no residual value at the end

of the problem. After exhausting the wind and storage, we deploy gas until either its ramping or capacity

constraint binds. Lastly, we curtail any residual demand that cannot be served. The period 2 problem is

the most interesting, requiring us to weigh the additional cost incurred in period 2 when operating the gas

plant against the lower cost expected by entering period 3 with more energy in storage and the gas plant

able to ramp to a higher level. In expected value terms, the optimal decision can be found by equating the

certain marginal cost of cOP
gas = $100/MWh with the expected marginal savings in period 3.

4.1.1 Example 1: no ramping constraint

First, as Example 1, suppose there were no ramping constraint, such that the state St is determined

entirely by the amount of stored energy entering period t, i.e., jb,t−1. Wind is dispatched first up to its

availability. Since P+
wind,2 ∼ U(5, 10), jb1 = 5, and Dl2 = 10, it is always possible to meet demand with wind

and storage, but the question is whether it would be superior to reserve more energy in storage and instead

use more gas. Depending on the realization of wind in period 3, the marginal recourse action in period 3

may also be using gas, in which case having additional energy in storage allows us to save $100/MWh, or

it may be curtailing load, in which case it allows us to save $10,000/MWh. In expected value terms the

operator is willing to use storage down to a level of 0.89 MWh, at which the probability of curtailing load

in period 3 (which occurs when P+
wind,3 < 0.11) is .11/20 = 0.0055 and the probability of gas being on the

margin (which occurs when 0.11 ≤ P+
wind,3 < 9.11) is 0.45. Leaving jb2 = .89 MWh of energy in storage

equates the expected period 3 marginal savings of 0.0055 · $10000/MWh+0.45 · $100/MWh with the certain

marginal cost of $100/MWh incurred by deploying additional gas in period 2. This efficient trade-off holds

regardless of the amount of wind available in period 2, so the optimal dispatch will be first to dispatch wind

up to its full availability, then storage down to a level of 0.89 MWh unless all demand is met first, then gas

as needed to meet any remaining demand.

4.1.2 Examples 2 and 3: with ramping constraint

Next, consider the case with the ramping constraint. In this case, the state St includes the state of

charge for the battery as well as the output of the gas plant in the previous period, i.e., pg,t−1. Since this

added complexity makes it harder to write down a solution for all potential values of P+
wind,2, we consider the

situations of P+
wind,2 = 10 (Example 2) and P+

wind,2 = 5 (Example 3). In Example 2, we are able to serve

load entirely with wind, but we prefer to use some gas in order to enable it to ramp higher in period 3. In

instances where there is insufficient ramping capability, having used extra gas in period 2 leads to savings of
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$10,000 - $100 = $9,900. Otherwise, there are no savings from having pre-positioned gas. Thus the optimal

dispatch reduces the probability of shortfall in period 3 to 100/9900 = 0.0101, which occurs when wind

availability P+
wind,3 < 0.0101 · 20 = 0.202. This implies gas dispatch of 0.798 MW in period 2.

With the ramping constraint and P+
wind,2 = 5, we are unable to meet period 2 load with wind but it is

always optimal to meet period 2 load in full. Since demand Dl2 = 10, discharge of storage will mirror the

dispatch of gas such that they combine to the 5 MW required to meet demand after accounting for wind.

Since stored energy jb1 = 5, this observation implies that the amount left in storage entering period 3, jb2,

will be precisely equal to the amount of gas dispatched in period 2, pgas,2. As a consequence, we can write

the potential savings in period 3 as a function of pgas,2, the amount of gas dispatched in period 2. If it

turns out that there is excess wind available, i.e., P+
wind,3 > Dl3 − pgas,2, then having additional energy in

storage and ramping capability will not affect period 3 costs. If gas is on the margin and within its ramping

capability, i.e., Dl3 − pgas,2 > P+
wind,3 > Dl3 − 2 · pgas,2 − UR+

gas, then having additional energy in storage

saves $100/MWh but having greater gas availability does not make a difference. Lastly, if wind is very low

and the gas ramping constraint is binding, i.e., P+
wind,3 < Dl3 − 2 · pgas,2 − UR+

gas, then having additional

energy in storage saves $10,000/MWh and having additional ramp capability saves $9,900/MWh, for a total

of $19,900/MWh. Setting the expected period 3 savings equal to the certain period 2 cost of $100/MWh

leads to an optimal gas dispatch of pgas,2 = 2.967 MW. This dispatch implies discharge from storage of

kdb2 = 2.033 MW and curtailment of demand in period 3 whenever P+
wind,3 < 0.065 MW.

4.1.3 Benchmark prices

In setting up these examples, we intentionally determined optimal decisions from first principles rather

than by solving an optimization model. The problem is simple enough that, however, that with small

modifications we could have used the idealized stochastic program from model (SOC) with arbitrarily many

operating nodes. More specifically, the examples can be considered as sub-trees starting from nodes with

depth τ(n) = 1 and adding the generator ramping constraint. In order to construct examples that make

the pricing results clearer, the investment stage of node 0 is omitted; as a consequence the resource mix

may not be optimal for these specific sub-trees. Nevertheless, the prices in these sub-trees still contribute to

overall remuneration, so it is still possible to meaningfully discuss the different long-run incentives provided

by different pricing policies. The optimal dispatch and benchmark prices for period 2 in the examples are

summarized in Table 1.

It can be observed that the benchmark price in many instances corresponds to the residual value of

storage, rather than the operating cost of wind or gas. To discuss further how these prices arise, we turn to

the first implementable policy.
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Table 1: Optimal Dispatch and Benchmark Prices in Period 2

Wind Avail. Wind Disp. Gas Disp. Storage Disc. Price

P+
wind,2 p∗wind,2 (MW) p∗gas,2 (MW) kd∗

b2 (MW) λ∗
2 ($/MWh)

6 < P+
wind,2 ≤ 10 P+

wind,2 0 10− P+
wind,2 25 + 5 · (P+

wind,2 − 6)

Ex. 1 5.89 < P+
wind,2 ≤ 6 P+

wind,2 0 10− P+
wind,2 45 + 500 · (P+

wind,2 − 5.89)

5 ≤ P+
wind,2 ≤ 5.89 P+

wind,2 5.89− P+
wind,2 4.11 100

Ex. 2 10 9.202 0.798 0 0
Ex. 3 5 5 2.967 2.033 67.58

4.2 Opportunity cost bidding

The first approach modifies the objective function in model (DLAC) to include bids and offers from

operators of battery storage. In the simplest setting, this implementation can take the form of a single-

period model (Biggar and Hesamzadeh, 2022). In this case, views on the future evolution of prices must be

incorporated in the behavior of market participants. With V C
btt′ representing the bid price at which storage

resource b will charge in period t′ and V D
btt′ representing the offer price at which it will discharge, with the

additional t index indicating that these values can be different in each sequential model, we add terms to

the objective function in Eq. (6a) to formulate the opportunity cost bidding policy as follows:

(DLAC −OC)

XDLAC−OC
t (St|H,F ) ∈

arg max
ũ,ṽ,q̃,p̃,r̃,k̃c,k̃d,j̃,d̃,z̃

∑
l∈L

∑
t′∈T H,F

t

V L
l d̃ltt′ +

∑
t′∈T H,F

t

V Rz̃tt′ +
∑
b∈B

∑
t′∈T H,F

t

(
V C
btt′ k̃

c
btt′ − V D

btt′ k̃
d
btt′

)
−
∑
g∈G

∑
t′∈T H,F

t

COP
g p̃gtt′ −

∑
g∈G

∑
t′∈T H,F

t

(
CNL

g ũgtt′ + CSU
g ṽgtt′

)
(8)

subject to (6b)–(6z).

We note that while real-world markets allow submission of piecewise linear bid and offer segments, the

formulation here simplifies to a single price for storage charging and discharging (as it does for load bids and

generator offers).

In Example 1 described above, consider the situation of the battery in period 2 and assume we employ a

single-period model for dispatch (i.e., H = F = 0). The battery will submit offers based on its view of prices

in period 3. In period 3, we formulate a deterministic, single-period version of model (8) without binary

variables in which the battery offers at $0/MWh. In the simplest pricing policy, the price is computed

as a dual value from the power balance constraint in Eq. (6b). Since wind is uniformly distributed as

P+
wind,3 ∼ U(0, 20), it is straightforward to calculate the distribution of prices that arise in period 3 as
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a function of stored energy jb2. If P+
wind,3 + jb2 ≥ Dl3, then wind and storage can satisfy all the load

and λ3 = $0/MWh. If Dl3 − P+
gas,3 < P+

wind,3 + jb2 < Dl3, then the gas plant must be engaged and

λ3 = $100/MWh. Lastly, if P+
wind,3+jb2 < Dl3−P+

gas,3 then load must be curtailed and λ3 = $10, 000/MWh.

Thus, if we were to enter period 3 with 0 MWh in storage, there would be a 50% chance that the price would

be $0/MWh, a 45% chance it would be $100/MWh, and a 5% chance it would be $10,000/MWh. If instead

we enter period 3 with 1 MWh in storage, there would still be a 45% chance of a price of $100/MWh, but

there would be no chance of curtailing load. If on the other hand we enter period 2 with 5 MWh in storage,

the probability of engaging gas would drop to 25% and there would be still be no chance of curtailing load.

These probabilities imply prices for period 2 determined through the offers of storage. Assuming perfectly

competitive, risk neutral offers, the marginal offer from storage in period 2 equals the expected price in

period 3, conditional on the amount of residual stored energy. Thus, storage enters period 2 with jb1 = 5

MWh of energy and submits an offer curve that grows linearly from $25/MWh to $45/MWh over the range

[0,4], then grows linearly from $45/MWh to $545/MWh over the range [4,5]. These offers reflect residual

values of stored energy consistent with the conditional expectation of prices in period 3 if storage is dispatched

up to a given point in period 2. This offer curve implies that in a competitive auction for period 2, storage

will clear before gas, which offers at $100/MWh, up to a level of 4 + (100 − 45)/(545 − 45) = 4.11 MW,

i.e., precisely the efficient amount determined in Section 4.1. Correspondingly, the price is set by storage

whenever wind availability P+
wind,2 < 5.89, and the resulting prices match the benchmark shown in Table 1.

This single-period model is perhaps the most general in terms of real-world markets, as it does not

require any special assumptions about the market operator’s ability to make decisions centrally. In more

decentralized settings (e.g., the Western Energy Imbalance Market or the Southeast Energy Exchange Market

in the U.S.), participants submit storage offers based on their private view of opportunity costs, based on

their own projected needs as well as their estimates of future price distributions.

Example 1 shows how, in certain cases and under certain assumptions, the optimal dispatch and prices

in a multi-period problem can be achieved using only a single-period model with appropriate definition of

opportunity costs. Despite this promise, under more realistic assumptions a lack of coordination can lead to

production inefficiency Philpott et al. (2010). At least three potential issues arise in determining opportunity

costs in the examples, to which we devote the remainder of this subsection.

4.2.1 Pre-positioning and market power

In Example 2, since wind is curtailed in period 2, marginal consumption would be met by reducing the

curtailment of wind, implying an efficient price of $0/MWh. Despite a price of $0/MWh, gas is dispatched

at 0.798 MW. In an analysis similar to that performed for Example 1, we would find that the distribution
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of prices in period 3 implied by the gas unit’s ramping constraint make it willing to incur a loss in period 2

in order to position itself for higher potential profits in period 3. In other words, the efficient dispatch could

be found if it submitted an offer below $0/MWh for its first 0.798 MW of production in period 2, leading

it to be dispatched ahead of wind in the single-period model. In doing so, it would incur an operating loss

of $79.80 in period 2. In this example, the unit would make up this loss in the 1.01% of cases when the

ramping constraint is binding in period 3 and prices are set by curtailed demand at $10,000/MWh.

While the separation between the $100/MWh cost of the gas plant and the $10,000/MWh value of lost

load heightens the contrast in the toy example, the more general question is whether system operators can

trust the process by which operators of technically constrained plants (gas in the example) would pre-position

equipment on the basis of future price expectations, especially when doing so would entail an upfront cost.

Recalling the assumption of complete markets in risk from the idealized model in Section 2, the viability of

relying on such pre-positioning could be enhanced if generators had the ability to “lock in” the higher prices

expected in future intervals.

An additional related question is whether effective market power mitigation is possible in such cases: in

the example, the gas plant could increase the frequency of scarcity pricing in period 3 by submitting an

offer of $100/MWh in period 2 for its first 0.798 MW of production instead of submitting at a negative

price. Since such an offer would be easily defensible as consistent with its operating costs, it is unclear how

a market power screen would identify it.

4.2.2 State-dependent offers and gate closure

In Example 3, the optimal solution is to dispatch storage at 2.033 MW and gas at 2.967 MW, based

on which the expected value of prices in period 3 can be calculated as $67.58/MWh. This expected price

implies that to achieve this dispatch in period 2, the marginal price from storage at this point of its offer

curve, and as such the clearing price, must be $67.58/MWh. As in Example 2, this price entails that the

gas plant incurs a loss in period 2 and requires that it nevertheless submit its first 2.967 MW of production

at a price below $67.58/MWh. An additional complexity of Example 3 relative to the previous examples,

however, is that the distribution of future prices depends on both components of the state variable. In

order for the battery operator to construct its offer curve it must assess the residual value of storage. Since

prices in period 3 depend on how high the gas plant is able to ramp, the residual value is conditional on the

dispatch of the gas plant in period 2, which the storage operator does not know when submitting its offers

for period 2. Heightening the challenge, gate closure in some real-world systems occurs well in advance of

operations (e.g., 75 minutes in CAISO).
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4.2.3 Market design vs. market analysis

The updated objective function in Eq. (8) makes use of the parameters V C
btt′ and V D

btt′ , which represent bid

and offer prices for storage resources. Since researchers do not typically have access to participant bids and

offers, the need to derive these values limits the usefulness of this policy variant for the analysis of markets.

In the context of design, however, market operators can simply request that these values be provided by

market participants prior to each auction. For that reason, the notation we use omits the tilde that we use

for estimated load and generator availability. However, there are several contexts in which system operators

may need to independently assess appropriate values to use. First, as mentioned in Section 3.4.3, some have

suggested that system operators be authorized to dispatch storage themselves. Second, as a market power

mitigation practice, many operators have the ability to substitute participant offers with lower “cost-based”

offers. In the case of storage resources, developing sound cost-based offers requires that market monitors

take a view on participant opportunity costs (Muñoz et al., 2018; Lavin et al., 2021). We note in this context

that these opportunity costs are unrelated to the cost of charging the resource, which is zero in the examples.

Third, many systems run non-market processes (e.g., reliability unit commitment models) that may have

longer lookahead horizons or other aspects that differ from the market clearing models. Since participant

bids and offers may only be available for time periods relevant to market clearing, system operators may

need their own estimate on these values for other time periods included in these models.

4.3 Deterministic lookahead with net load biasing

The second implementable policy we consider, one that is common in both the design and the analysis of

markets, uses the deterministic model (DLAC) directly, but biases the values of P̃+
gtt′ for maximum available

power, P̃−
gtt′ for minimum available power, and D̃+

ltt′ for demand to induce a higher quality solution to the

underlying stochastic problem. Removing the tildes that indicate the estimate to be used in the model,

let P+
gtt, P

−
gtt′ , and D+

ltt′ be random variables representing the corresponding uncertain parameters. Based

on the conditional distribution assessed given information in state St, let P̂+
gtt′,θ be an estimate of the θ

quantile of the maximum power available from generator g in time t′, as estimated at time t, with P̂−
gtt′,θ and

D̃+
ltt′,θ defined in an analogous way. Since this approach to modeling uncertainty is best suited to variable

renewables, let GV ⊆ G represent a subset of generators whose uncertainty we wish to address in the model.

To simplify the notation and guarantee feasibility, and because these inverter-based resources are typically

curtailable, we assume P−
gtt = 0 and thus P̂−

gtt′,θ = 0 ∀g ∈ GV .

To define the deterministic lookahead with net load biasing (DLAC − NLB − θ) policy, we use the
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following values for the estimated parameters in model (DLAC):

P̃−
gtt′ = 0 ∀g ∈ GV ,∀t′ ∈ T F

t ;

P̃+
gtt′ = P̂+

gtt′,θ ∀g ∈ GV ,∀t′ ∈ T F
t ; and

D̃+
ltt′ = D̂+

ltt′,1−θ ∀l ∈ L,∀t′ ∈ T F
t .

The remaining estimated parameters, i.e., those for generators g ∈ G \ GV , are set equal to the nominal

physical parameters of the generators (with adjustments for, e.g., planned maintenance outages). If the set

of potential policies Π is limited to this form, the problem in Eq. (5) becomes a search for the best possible

value of θ. In general, we expect system operators to use 0 < θ < 0.5, such that we have a pessimistic

estimate of the availability of uncertain generators and assume load will be higher than its median value.

Generalizations of this policy are immediately apparent: for example, operators may wish to choose different

values of θltt′ and θgtt′ for different loads and generators in the system or that change over time. For the

purposes of the discussion, however, we restrict to a single value.

4.3.1 The inevitability of biasing

Implementing a “bias-free” model of this form is not in general a viable operating strategy. From a

modeling standpoint we could have inserted expected values instead of quantile estimates for generator

availability and demand. However, this policy would likely perform poorly in practice. The intuition is

similar to that of the newsvendor problem, with results along those lines shown for two-stage examples

in Zavala et al. (2017) and Zakeri et al. (2019). Since the value of lost load is typically two to three orders of

magnitude greater than the cost of serving load, it is optimal to prepare for much higher than expected load.

Without biasing, deterministic lookahead models like (DLAC) will tend to under-commit thermal units and

over-dispatch storage in early time intervals.

In Example 1, suppose we solve a period 2 model that includes period 3, i.e., F = 1, and used the

expected availability of wind in period 3, i.e., P̃+
wind,2,3 = 10. Anticipating sufficient wind in period 3 to

meet all demand, this model would see no reason to avoid discharging storage to zero in period 2. If we

instead use a value of P̃+
wind,2,3 = 0.11 (i.e., we use θ = 0.11/20) in the (DLAC−NLB−θ) policy), then the

model will leave at least 0.89 MWh in storage, such that all demand is provisionally served in the lookahead

model. By biasing the load in this way, system operators can induce the deterministic model to produce

an optimal solution to the stochastic problem in this instance, replicating the period 2 dispatch shown in

Table 1. To be sure, we should not expect such an approach to recover an optimal dispatch in all cases.

Nevertheless, the wide use of net load biasing in practice suggests it can improve the quality of solutions.
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4.3.2 Biasing and prices

While in this example operators can reproduce the optimal dispatch, they cannot in most cases reproduce

the benchmark price. Table 2 shows the optimal bias term θ∗ to use in each example in period 2 in addition

to the price λNLB
t (θ∗) calculated by model (DLAC −NLB − θ) with that optimal θ.

Table 2: Dispatch and Prices in Period 2 with Net Load Biasing

Wind Avail. Optimal bias Price
P+
wind,2 param. (θ∗) λNLB

2 (θ∗) ($/MWh)

6 < P+
wind,2 ≤ 10 0

Ex. 1 5.89 < P+
wind,2 ≤ 6 0.11/20 0

5 ≤ P+
wind,2 ≤ 5.89 100

Ex. 2 10 0.202/20 0
Ex. 3 5 0.065/20 100

In Table 1, in the range 5.89 < P+
wind,2 < 10 prices follow the opportunity cost of storage. In model (DLAC−

NLB − θ), the price is $0 in the same range, since the model believes that exactly 0.89 MWh and no more

will be useful in useful in period 3. As such, the model calculates an implicit opportunity cost of $0 for

discharging storage down to that level. In other cases the policy can lead to a higher price. In Exam-

ple 3, assuming wind availability of P̃+
wind,2,3 = 0.065 restores the optimal dispatch, but leads to a price of

$100/MWh, above the benchmark of $67.58/MWh. Moreover, increasing the amount of bias in a future time

period t′ can affect prices in the binding period t in either direction. For example, if higher projected load

in future intervals causes the model to charge or keep more energy in storage it may cause prices to rise,

whereas if it causes ramping constraints to bind it may cause prices to fall.

Because a “neutral” approach is suboptimal and potentially even infeasible operationally, biasing is

inevitable under this policy. The primary point we wish to highlight in this regard is that, as a direct

consequence, operator choices about the degree of biasing necessarily impact price formation.

4.3.3 Multi-period pricing policies

In Table 1 we calculated prices in such a way that gas operates at a loss in period 2 in Examples 2

and 3. Losses occur due to the presence of a ramping constraint between periods 2 and 3 that sometimes

binds under the optimal dispatch. Table 2 shows that this potential for loss persists with net load biasing.

However, the same constraint leads to the potential for higher prices in period 3 under which the gas

plant recoups its losses. Shortfalls occur .202/20 = 1.01% of the time, leading to a benchmark price of

$10,000/MWh. Since it produces 4.798 MW in such cases, expected profit for the plant in period 3 is

$479.80, well above its certain loss of $79.80 in period 2. This result holds generally: in a stochastic

competitive equilibrium assuming convexity, units have the potential for short-term losses but will always
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be profitable in expectation ((Kazempour et al., 2018; Mays, 2021b)). However, since outcomes in period 3

are non-binding, following the optimal dispatch leads to a situation where the plant takes a guaranteed loss

without any guarantee it will recoup its losses in future intervals.

To address this potential issue, proposals have emerged for multi-interval pricing policies that would

adjust prices to limit the potential for short-losses (e.g., by lifting the price in period 2 to $100/MWh).

A key argument against these proposals is that they depart from the benchmark prices that support an

efficient resource mix in the long run, in particular weakening incentives for flexibility (Mays, 2021a; Wang

et al., 2023). A separate argument relevant to the examples is that the proposals have an unclear impact

on opportunity costs and thus operational efficiency. In order to not result in excess charges to load, the

higher price in period 2 must be accompanied by a lower price in period 3. Changing the distribution of

prices that emerges in period 3, however, would lead to different offers from storage (and all resources with

inter-temporal constraints) in period 2, and thus lead to different commitment and dispatch decisions.

4.3.4 Multi-period settlement

Another strategy to resolve the potential for loss in the first, binding interval is to make all intervals in

the lookahead model financially binding Zhao et al. (2020). In Example 2, the gas plant’s loss in period 2

would be accompanied by a financial contract for period 3 that guaranteed positive operating profit overall,

regardless of the price that emerged in period 3. Model (DLAC − NLB − θ) gives a provisional price

λ̃23 = $200/MWh, since an additional unit of load in period 3 requires an additional unit of output from gas

in both periods 2 and 3. Thus the deterministic model would have the gas plant sell forward 4.798 MWh in

period 3 at $200/MWh. Beyond the complications it presents for settlement, a major challenge with such

proposals is the same issue raised in Section 3.3. There is no mechanism in model (DLAC −NLB − θ) to

ensure that λ̃tt′ = EWt+1,...,Wt′ [λt′ ]. Without such a mechanism, settling on future intervals could present

arbitrage opportunities or compel market participants to take forward financial positions that did not accord

with their beliefs about future prices.

4.4 Reserve tuning

A third strategy system operators use is to adjust the quantities of reserves R+
tt′ procured in the model

or the penalty cost V R for a reserve shortfall. As in the previous strategy, tuning these quantities can

enable better solutions to the stochastic problem while maintaining a deterministic modeling framework.

Relative to net load biasing, however, there are significantly more degrees of freedom in this approach:

operators can define operating reserve demand curves with multiple steps and can even define new reserve

products. For example, separate reserve products may be defined for upwards and downwards adjustments,
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whereas operators have to choose a single direction (typically upwards) when biasing load. The different

implementations can also have different pricing impacts. For example, biasing load upwards in period

t′ = t + 1 could lead to a binding ramping constraint and a lower price in period t, whereas introducing

a ramping product in period t instead increases demand across all products and could therefore lead to a

higher price in period t.

With these additional degrees of freedom, there is a larger space of potential policies that may be pursued

under the umbrella of reserve tuning. We note the difference between reserve products addressing uncer-

tainty within a pricing interval and those addressing uncertainty across pricing intervals, with the modeling

framework in this paper focused on the latter. Appendix B provides a reserve formulation that holds extra

capacity in future intervals, with effects similar to that of net load biasing, as well as a formulation that spec-

ifies a value of residual energy at the end of the lookahead horizon, conceptually similar to opportunity cost

bidding. Here we define reserves in period t that reflect uncertainty only in period t+1. To define an upward

reserve tuning (DLAC − RT − θ) policy, we define the random variable Mtt′ =
∑

l∈L D+
ltt′ −

∑
g∈GV P+

gtt′

representing load net of variable generation at the system level in time t′ and make the substitution

R+
tt′ = R

+

t′ +max{0, M̂t,t′+1,1−θ −M t,t′+1} ∀t′ ∈ {t, ..., t+ F − 1},

where R
+

t′ represents a minimum quantity of reserves that must be procured in period t′ (e.g., due to

other sources of uncertainty). As before, M̂t,t′+1,1−θ denotes an estimate of the 1 − θ quantile of net load

and M t,t′+1 denotes its expected value. Expected values are used for the parameters P̃+
gtt′ and D̃+

ltt′ , and

operators are presumed to choose a value of θ such that there is an upwards shift in the reserves procured.

This specification is accompanied by a constraint restricting the supply of reserves from individual resources

based on their physical capabilities. For example, specifying r̃gtt′ ≤ UR+
g would limit the reserves supplied

by a generator to its upward ramping capability.

We note several differences between the (DLAC−NLB−θ) and (DLAC−RT −θ) policies. First, while

we assumed in Section 4.3 that net load biasing would not result in any binding forward financial positions,

the (DLAC−RT−θ) policy directly affects the quantity of reserves procured in the binding interval. Second,

as defined here the reserve adjustment is made at a system level, summing over all generators and loads

rather than handling each individually. Reserve products are typically defined zonally or system-wide, while

energy must be balance at a nodal level; while we have not written network constraints here, this difference

can affect congestion and losses. Third, reserve shortfall penalties determined by V R will typically be below

the value of load represented by V L
l , thus generating different prices in the event of a shortfall. Fourth, the

set of generators qualified to provide reserves is typically smaller than the set able to provide energy.
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4.4.1 Calibration and dispatch

As was the case with net load biasing, the problem is then to determine which value of θ to use. Beyond

this narrowly defined family, the problem could be expanded to test the performance of different reserve

product definitions. Since this paper’s focus is price formation rather than identifying optimal operating

policies, we consider the simpler question of identifying specifications that would enable a single-period

version of the (DLAC −RT − θ) policy executed in period 2 to result in dispatch solutions that are optimal

for the underlying stochastic problems in the examples. In Example 1, the challenge is to provoke the

model to dispatch gas instead of discharging storage below 0.89 MWh. This can be accomplished by relaxing

constraint (6g) to allow the gas plant to sell reserves up to its full capacity of 9 MW despite also selling energy

in the period. Then, setting a reserve requirement R+
2,2 = 9.89 will lead to storage selling 0.89 MW of reserves

and gas selling 9 MW. In Example 2, the system operator can set a requirement of R+
2,2 = 9.798, allow the

gas plant to sell up to pgas,2 + UR+
gas, and disallow the wind plant from selling reserves. Then storage will

sell 5 MW and gas 4.798 MW to satisfy the demand for reserves. Using the same limit in Example 3 while

setting a requirement R+
2,2 = 9.934 leads to storage selling 2.967 MW and gas selling 6.967 MW. In all of

the examples, the reserve requirements correspond to the same optimal bias parameters θ determined for

the net load biasing policy.

4.4.2 Prices, products, and revenues

As with the (DLAC −NLB − θ) policy, the (DLAC −RT − θ) policy tuned in this way can identify an

optimal dispatch on each of the example problems. However, the two policies have different effects on prices

and revenues. Table 3 shows the cleared reserve quantities as well as prices for energy reserves under the

(DLAC −RT − θ) assuming the same optimal θ values as in Table 2.

Table 3: Prices in Period 2 with Reserve Tuning

Wind Avail. Gas Reserve Storage Reserve Energy Price Reserve Price
P+
wind,2 r∗gas,2 (MW) r∗b2 λRT

2 (θ∗) ($/MWh) µRT
2 (θ∗) ($/MWh)

6 < P+
wind,2 ≤ 10 0 0

Ex. 1 5.89 < P+
wind,2 ≤ 6 9.00 0.89 0 0

5 ≤ P+
wind,2 ≤ 5.89 100 100

Ex. 2 10 4.798 5.00 0 100
Ex. 3 5 6.967 2.967 50 50

In Example 1, whenever P+
wind,2 > 5.89 storage is not fully allocated across energy and reserves, so an

increase in demand for either does not lead to increased cost. In Example 2, an increase in demand for

energy is met by curtailed wind, while an increase in demand for reserves must be met by gas, entailing

that it is dispatched to a higher level at cost of $100/MWh. In Example 3, an increase in demand for either
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product is met half by storage and half by gas, leading to prices of $50/MWh for both energy and reserves.

As such, the resulting energy prices depart from both the idealized benchmark in Table 1 and the net load

biasing policy in Table 2. An additional difference is the introduction of a new product for reserves with

a price of its own. In some instances, the new product can significantly change the compensation going to

resources in the system: in Example 2, whereas the benchmark price λ∗
2 = $0/MWh, the (DLAC −RT − θ)

policy gives rise to a payment of $479.80 to the gas plant and $500.00 to the storage resource.

4.4.3 Challenges in defining reserve products

In Section 2 we identified benchmark prices based on their ability to support a socially optimal resource

mix in the long run. In this benchmark we did not need to define any reserve products aimed at addressing

uncertainty across pricing intervals, since the need for additional flexibility is calculated endogenously by

the stochastic model. In this vein, it is worth highlighting the different economic interpretations that may

be attached to payments for reserves. In some cases (e.g., black start and reactive power), payments are for

services that are explicitly omitted from real-time auctions. For active power services deployed on timescales

faster than market clearing (e.g., fast frequency response and regulation), payments can reflect unpriced

fluctuations in marginal cost that occur within the pricing interval. By contrast, for services deployed on

timescales longer than market clearing, reserve products reflect algorithmic choices about how to commit and

dispatch the power system in ways that cannot replicate the stochastic ideal. A separate possible economic

justification for reserves relates to externalities due to the possibility of a system collapse (Joskow and Tirole,

2007). However, the general assumption is that the possibility of a cascading failure is unaffected on the

margin by the quantity of this slower class of reserves available.

Different algorithmic choices about reserves will result in different prices, different revenue for market

participants, and therefore a different long-run competitive equilibrium. The reserve products currently in

use in U.S. markets arose from engineering practice prior to the introduction of competitive markets and

were initially implemented in a context when settlements occurred on an hourly basis, longer than the ten-

to thirty-minute timescale on which contingency reserves are defined. Since settlement intervals have since

been reduced to five minutes, the economic justification for these reserve products must be reestablished.

The examples show that after the introduction of reserves, total payments to generators can be either

higher or lower in individual instances. To avoid an overall transfer from loads to generators relative to the

benchmark without reserve products, however, it must be the case that higher payments for intertemporal

reserve products lead to lower payments for energy in the long run.

One challenge in this context is the allocation of cost associated with the reserve product. Whereas

energy purchases can straightforwardly be charged to the entity that consumed the energy, the presence of
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reserve payments necessitates a methodology to recover costs from market participants. If the additional

cost in Example 2 were allocated to the load, as is the default in U.S. markets, it could justifiably ask why

it should pay for the service instead of the wind plant that is the source of uncertainty. The load could

similarly ask why the gas plant should be rewarded for its inflexibility, which exacerbates the effect of the

uncertainty. Given potential disagreements along these lines, the need for a cost allocation methodology

may be seen as a disadvantage of reserve products relative to the more straightforward outcomes that would

result with more reliance on energy markets.

A second challenge pertains to consistency in product definitions across markets and across time. Whereas

the benchmark with endogenous reserves is formulated in a general way and can apply to all systems,

reserve products are defined and parameterized in the context of Eq. (5). The policy identified by system

operators for their sequential decision problem can depend on the resource mix and other characteristics of

the particular system. This calibration implies that if they are near-optimal, product definitions will not be

consistent across systems and across time. This lack of consistency presents challenges for both the design

and analysis of electricity markets. In terms of design, one problem is that introducing a new product is a

several-year effort involving stakeholder processes, regulatory reviews, and software development, raising the

possibility that the product actually implemented will no longer reflect the needs of the system. Additionally,

a lack of consistency implies less ability to transfer knowledge across different markets and less ability to

hedge exposure to future reserve prices. In terms of analysis, it implies that projections of future market

outcomes should in principle include assumptions on the reserve market changes that could accompany shifts

in the resource mix.

4.5 Stochastic programming

Given the drawbacks in the three policies discussed above, here we describe how to compute prices in

a stochastic program that may be seen as a better approximation of the benchmark in Section 2. Among

the many potential alternative policies that might be employed to better handle uncertainty, we choose

a stochastic program because it is a natural extension from current practice, with prices in the binding

interval calculated in the same way they that occurs in a deterministic program. In the period t model

we solve a stochastic program using scenarios ω ∈ Ω̃t generated based on the state St, with scenario ω

assigned probability ρ̃ω. In order to write the stochastic program in a concise way, we add the subscript

ω to all the primal and dual decision variables as well as estimated parameters from model (DLAC) to

create scenario-specific copies. Let x̃tω = (ũtω, ṽtω, q̃tω, p̃tω, r̃tω, k̃
c
tω, k̃

d
tω, j̃tω, d̃tω, z̃tω) represent a full set of

scenario-specific provisional decisions made at time t for scenario ω and let Xtω represent the feasible region

of model (DLAC) for period t with the scenario-specific values of the estimated parameters inserted and
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all constraints multiplied by ρ̃ω. With x̃t enlarged to include all the scenarios, we can write a two-stage

stochastic lookahead unit commitment (SLAC) policy for the period t problem as follows:

(SLAC)

XSLAC
t (St|H,F ) ∈

argmax
xt,x̃t

∑
ω∈Ω̃t

∑
l∈L

∑
t′∈T H,F

t

ρ̃ωV
L
l d̃ltt′ω +

∑
ω∈Ω̃t

∑
t′∈T H,F

t

ρ̃ωV
Rz̃tt′ω

−
∑
ω∈Ω̃t

∑
g∈G

∑
t′∈T H,F

t

ρ̃ωC
OP
g p̃gtt′ω

−
∑
ω∈Ω̃t

∑
g∈G

∑
t′∈T H,F

t

ρ̃ω
(
CNL

g ũgtt′ω + CSU
g ṽgtt′ω

)
(9a)

subject to x̃tω ∈ Xtω ∀ω ∈ Ω̃t (9b)

x̃tω − xt = 0 ∀ω ∈ Ω̃t. (9c)

Structurally, the first stage in this model corresponds to decisions in the binding interval t while the second

stage covers the entire lookahead period T F
t . While we defined multiple copies of the decision variables

for the binding interval t for notational convenience, the nonanticipativity constraint in Eq. (9c) guarantees

that the model returns a single decision in this period. It should also be noted that while the model returns

scenario-specific prices λ̃ttω for the binding interval, we can set λSLAC
t =

∑
ω∈Ω̃t

ρ̃ωλ̃ttω. This sum can be

shown to be an optimal dual value in an equivalent formulation of the stochastic program that used a single

copy of the period t decisions. We note that model (SLAC) is a simplification of the full scenario tree in that

we have a smaller set of scenarios, the decision horizon is truncated, and all nonanticipativity constraints

that would otherwise appear for t′ ∈ T F
t have been relaxed. In period 2 of the toy examples, the second and

third of these simplifications are not relevant, making model (SLAC) enabling the model to converge on the

idealized benchmark of model (SOC) as the number of included scenarios grows.

4.5.1 Opportunity costs and prices

The motivation behind moving from a deterministic variants of the lookahead unit commitment to the

stochastic variant is to generate a better approximation λSLAC
t to the benchmark price λ∗

n that would

be produced at the corresponding node of the full scenario tree in model (SOC). Unlike in Section 4.2,

however, the opportunity is calculated endogenously by the centralized model rather than being submitted

by decentralized market participants. Because of these simplifications from the full scenario tree, we cannot

make guarantees regarding the similarity of the prices. In the toy examples, however, we are able both to

recover the optimal dispatch and form the benchmark prices.

34



In creating these estimates, the model provides an approximation of the marginal opportunity costs of

storage resources. Defining dual variable ν̃K+
bω for the constraints within Eq. (9c) that k̃dbttω − kdbt = 0 ∀b ∈

B, ∀ω ∈ Ω̃t, we can write the following dual constraint corresponding to the primal variable copies for

discharge from a storage resource b in the binding interval, i.e., k̃dbttω:

ρ̃ω(−λ̃ttω + α̃K+
bttω +

1

ηdb
β̃bttω + ν̃K+

bω ) ≥ 0. (10)

We can also write the dual constraint corresponding to the primal variable kdbt as follows:

−
∑
ω∈Ω̃t

ρ̃ω ν̃
K+
bω = 0. (11)

Suppose in some period t that a storage resource b is discharging above 0 but below its maximum ability,

i.e., 0 < kdbt < Kb. In other words, it is the marginal resource on the system. Due to the nonanticipativity

constraint, these inequalities hold for each of the scenario copies k̃dbttω. By complementary slackness we know

that each of the constraints in Eq. (10) holds with equality and that α̃K+
bttω = 0 ∀ω ∈ Ω̃t. Summing Eq. (10)

over all scenarios thus gives

∑
ω∈Ω̃t

ρ̃ω(−λ̃ttω +
1

ηdb
β̃bttω + ν̃K+

bω ) = 0. (12)

Substituting Eq. (11) and using the previously defined λSLAC
t =

∑
ω∈Ω̃t

ρ̃ωλ̃ttω gives

λSLAC
t =

∑
ω∈Ω̃t

ρ̃ω
1

ηdb
β̃bttω. (13)

The dual values β̃bttω correspond to the state of charge consistency constraints in the scenario copies of

constraint (6j) from model (DLAC). Accordingly, these dual variables can be interpreted as the value of

entering period t + 1 with an additional unit of stored energy. The price λSLAC
t generated when a storage

resource is on the margin is thus a weighted average opportunity cost adjusted by discharge efficiency ηdb .

4.5.2 Market design vs. market analysis revisited

Section 4.2.3 raised the distinction between market design and market analysis, arguing that the oppor-

tunity cost policy (DLAC − OC) could be appropriate for design but presents difficulties for analysis due

to the lack of direct access to participant opportunity costs. With an endogenous estimate of opportunity

costs across potential future scenarios, the (SLAC) policy may be superior to the (DLAC − NLB − θ)

and (DLAC − RT − θ) policies in this regard. As an additional advantage, model (SLAC) creates many
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scenario-specific estimates of the price in future intervals. Whereas deterministic models struggle to enforce

the no-arbitrage rule in Eq. (7), an estimate given by λ̂SLAC
tt′ =

∑
ω∈Ω̃t

ρ̃ωλ̃
SLAC
tt′ω may lead to lower error.

From a design perspective, the question is whether using model (SLAC) would be appropriate in actual

market clearing. One objection raised in the use of stochastic models in the generation of forward prices is

that market participants will not agree on the scenarios or other assumptions that act as inputs into the

market clearing model. Model (SLAC) avoids this criticism in that the only the spot price it produces is

binding, just as in present markets. While the price in the binding interval does depend on choices regarding

the scenarios, prices under net load biasing and reserve tuning are perhaps even more influenced by operator

choices.

In the toy examples, either model (DLAC − OC) or model (SLAC) could in principle replicate the

benchmark prices of model (SOC). In practice, the comparative performance of the two policies may be

dependent on the market structure and system characteristics. In competitive systems with ample flexibility,

the (DLAC − OC) policy could offer a simple way to get high-quality operational decisions and prices.

In systems where market power mitigation or a lack of flexibility present significant challenges, the more

centralized approach of model (SLAC) may lead to better performance.

5 Evaluating price formation policies

To demonstrate the effects that competing operating policies may have for price formation, this section

describes simulations using the (DLAC−NLB−θ), (DLAC−RT−θ), and (SLAC) policies on an ERCOT-

like test system. As previously mentioned, simulating the (DLAC−OC) policy would require an additional

step to estimate opportunity costs and construct participant offer curves. The primary intent with these

tests is not to calibrate and compare optimal versions of each policy, but to validate the observations in

Section 4 regarding the impact of model choice and parameterization on price outcomes. Thus, the results

include tests at multiple levels of θ reflecting, in an informal way, different levels of risk aversion among

operators.

Thermal generator costs and technical constraints are taken from the FERC unit commitment test sys-

tem Krall et al. (2012), with a subset of 456 generators selected to approximate the capacity mix in ERCOT.

The simulations assume 5,000 MW of 4-hr batteries with charge and discharge efficiencies ηcb = ηdb = 0.93,

for a round-trip efficiency of 86%. Scenarios for wind, solar, and load are generated based on forecasted

marginal distributions for each hour described in Bryce et al. (2023) and covering the 48-hour period of July

18–19, 2018, selected due to price spikes that occurred on those days. Scenarios are constructed separately

for wind, solar, and load by sampling from a standard uniform distribution in time t = 1, then in each

subsequent hour sampling from a triangular distribution centered on the current observation and extending
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0.1 in either direction, truncated (if applicable) to 0.0 and 1.0. These series are then mapped to the marginal

distributions from Bryce et al. (2023). Without performing a full statistical analysis (cf. Carmona and Yang

(2022)), the intention is to generate plausible sample paths given strong intertemporal correlation. The

experiments cover 10 sample paths of wind, solar, and load, with no outages among the batteries or thermal

plants, with each policy variant tested on the same set of realizations.

For all of the tested policies and in all time periods t ∈ T = {1, . . . , 48}, the entire set of time periods

is included in the model, i.e., T H,F
t = T . For the (DLAC − NLB − θ) and (DLAC − RT − θ) policies,

100 scenarios for future intervals t′ ∈ T F
t are generated at each time step t using the sampling procedure

described above; that is, scenarios are sampled from the correct distribution. The relevant quantile of each

random variable is estimated by ranking the 100 outcomes and using the value in position 100 · θ. In the

(SLAC) policy, each instance uses 20 scenarios generated in the same way. Results are reported for the entire

48-hour period, with no hours discarded; by observation, any end-of-horizon effects are limited since results

are driven by high-demand hours in the afternoon of each day. AMPL code and data for the simulations

will be available in an online appendix.

It can be understood that, while the experiments do seek some realism in pricing outcomes through the

incorporation of a large set of generators with detailed cost information, the tests cover a relatively small

number of options from the universe of potential operating policies. Additionally, all of the experiments

relax binary variables, resulting in linear programs for which prices can be straightforwardly calculated. As

described in Section 3.4.5 the analysis has significant implications for interpretation of policies adopted to

address non-convexity; numerical investigation of this topic is left for future work. The broader point of the

examples is to establish the need for the proposed framework in evaluating price formation: even with the

limited scope of tests included here, the models produce a wide range of price outcomes.

5.1 Operational performance

Table 4 reports the total production cost incurred when operating the system under each of the tested

policies, as well as the cost relative to the (SLAC) policy. As an additional comparison, the table reports

results using a policy (DLAC −AV G) that uses the expected value of demand and renewable availability in

all future time periods. A mild surprise is that the best performance among the tested policies is achieved

through a small amount of net load biasing under (DLAC −NLB − 45), outperforming (SLAC) by 0.3%.

The surprise is only mild, however; enhancements to (SLAC) (e.g., with more careful scenario selection, as

in Feng et al. (2015)) could improve its performance. While each of the policies could be further refined,

overall cost is within a relatively small window, ranging from 99.7 to 103.1% of the total calculated under

(SLAC). Moreover, perfect foresight models for the ten instances compute a cost of $803.2M, indicating
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relatively little room for improvement beyond these simple policies. The relative ease with which high-quality

policies can be identified may relate to the arbitrarily chosen addition of 5 GW of highly flexible battery

storage to the system.

More important for purposes of this paper are the pricing outcomes. As with the toy examples in Section 4,

prices vary much more widely than cost. Table 4 also shows the total charges for energy and reserves to

buyers of electricity under each of the policies. Taking the prices from (SLAC) to be the best available

approximation to the idealized benchmark of (SOC) and noting that the peak summer days included in the

simulation were intentionally chosen to include the potential for extreme price spikes, these charges range

from $3,556M to $5,040M, from 84.4 to 119.6% of those calculated under (SLAC).

Table 4: Outcome Comparison for Policy Variants

Policy Cost ($M) Relative Cost (%) Total Charges ($M) Prediction Bias ($/MWh)

(DLAC −NLB − 50) 833.5 103.1 4,076 -53.3
(DLAC −NLB − 45) 806.1 99.7 4,099 -51.8
(DLAC −NLB − 40) 806.3 99.7 3,993 -45.1
(DLAC −NLB − 35) 806.6 99.7 3,633 -30.4
(DLAC −NLB − 30) 818.8 101.2 3,556 -20.7
(DLAC −NLB − 25) 813.5 100.6 4,229 -21.5
(DLAC −NLB − 20) 825.9 102.1 4,989 -10.2
(DLAC −NLB − 15) 814.3 100.7 4,325 75.8
(DLAC −NLB − 10) 815.9 100.9 5,040 214.9
(DLAC −NLB − 5) 819.9 101.4 5,034 406.5

(DLAC −RT − 60) 816.3 100.9 4,071 -55.4
(DLAC −RT − 55) 822.7 101.7 4,072 -55.4
(DLAC −RT − 50) 829.4 102.5 4,061 -53.5
(DLAC −RT − 45) 831.5 102.8 4,079 -53.7
(DLAC −RT − 40) 832.2 102.9 4,092 -52.0

(DLAC −AV G) 812.9 100.9 4,053 -54.2

(SLAC) 808.8 100.0 4,214 -11.4

5.2 Price consistency

Along with the cost and price outcomes, Table 4 shows a metric for the bias in forward price predictions

calculated under each pricing policy. This metric is calculated for each iteration of the simulation as an

average of the average difference between provisional prices and the actual realized price in each time period

for which any predictions are made, i.e.,

1

47

∑
t′∈{2,...,48}

∑
t∈{1,...,t′−1}

(λ̃tt′ − λt′)/(t
′ − 1), (14)
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and then averaged across the ten iterations. Except in the policies with high net load biasing, provisional

prices are on average below the prices actually observed. As might be expected (cf. Zavala et al. (2017)),

the (SLAC) policy performs relatively well in terms of price consistency. However, perhaps related to the

naive sampling procedure (cf. Mak et al. (1999)) and the simplification to a two-stage program (cf. Brigatto

et al. (2017)), a negative bias remains.

As previously mentioned in Sections 3.3 and 3.4.2, a lack of price consistency presents a challenge for

analysis. In particular, while it is common to base economic analysis on “day-ahead” prices calculated

from lookahead models covering several intervals, a safer approach is to report simulation results (e.g., total

revenues) using only spot prices.

5.3 Long-run consequences

Prices in electricity markets are intended to support efficiency not only in short-run operations, but also

in long-run investment. It is thus important to consider the implications of different pricing policies on

the total remuneration for different types of resources. One challenge in interpreting the numerical results

is that we do not have access to the prices that would be computed by model (SOC), which are optimal

in the sense of supporting an efficient long-run resource mix. Despite the fact that the (SLAC) policy as

implemented is outperformed in short-run operations, its resemblance to the idealized stochastic program

makes it a defensible point of reference for the distribution of revenues across different resource types. As

previously discussed in Table 4, the choice of operating policy can have a significant impact on the total

revenue across all resources. Table 5 expands on this total, showing the revenue available to each resource

type in the system under each policy. In general, resource-specific revenues track the total charges. Storage

is a notable exception, with revenues deviating significantly from that seen by the market as a whole (e.g.,

68.5% vs. 84.4% under (DLAC −NLB − 30) and 116.4% vs. 97.1% under (DLAC −RT − 40). While the

numerical examples do not precisely replicate the rules of ERCOT or any other specific market, they indicate

the potential for substantial misallocation of investment due to inefficiencies in spot price formation.

In energy-only markets, such as ERCOT, the total revenue available dictates the level of investment and

therefore directly affects reliability outcomes. In systems with supplementary capacity payments, changes in

the revenue available through sale of energy and reserves are in principle balanced by a compensatory shift

in the revenue available through sale of capacity. However, since capacity payments are typically intended

to be non-discriminatory, they would be unlikely to affect distributional shifts embedded in the pricing of

energy and reserves. In principle, additional capacity-like products (e.g., the flexible capacity requirement

in CAISO) could restore near-efficient distributional outcomes in cases where price formation policies for

energy and reserves result in under-compensation of particular resource types.
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Table 5: Total Revenues Relative to (SLAC) Policy (%)

Policy Steam Combined Gas Wind Solar Storage All
(DLAC −NLB − 50) 96.6 96.4 96.1 99.1 96.7 81.7 96.7
(DLAC −NLB − 45) 97.1 96.9 96.7 99.2 97.4 102.1 97.3
(DLAC −NLB − 40) 94.7 94.5 93.9 98.2 94.8 97.1 94.7
(DLAC −NLB − 35) 86.6 86.0 84.7 94.6 85.2 80.7 86.2
(DLAC −NLB − 30) 84.9 84.2 82.7 93.7 83.3 68.5 84.4
(DLAC −NLB − 25) 100.5 100.4 100.4 100.0 101.9 95.3 100.4
(DLAC −NLB − 20) 118.4 118.7 120.3 104.9 120.7 114.0 118.4
(DLAC −NLB − 15) 103.1 102.9 103.1 98.0 101.9 98.3 102.6
(DLAC −NLB − 10) 120.1 120.3 122.1 102.8 119.9 115.3 119.6
(DLAC −NLB − 5) 120.0 120.2 122.1 102.2 119.8 114.8 119.5

(DLAC −RT − 60) 95.7 95.5 95.1 99.1 96.0 114.4 96.6
(DLAC −RT − 55) 95.6 95.3 94.9 99.0 95.8 115.3 96.6
(DLAC −RT − 50) 95.1 94.8 94.5 98.8 95.3 114.7 96.4
(DLAC −RT − 45) 95.5 95.2 94.8 99.0 95.7 115.5 96.8
(DLAC −RT − 40) 95.8 95.4 95.1 99.0 95.9 116.4 97.1

Note: Thermal generators in the data set are aggregated based on prime mover rather than fuel

6 Future directions

The goal of this paper is to promote a shift in the discussion of price formation in wholesale electricity

markets from a static to a dynamic modeling framework. While the design and analysis of systems with

significant reservoir hydropower have long relied on dynamic models, most other systems have come to rely

on simpler static models that have nevertheless been useful in contexts with limited variability, uncertainty,

and intertemporal constraints. The entry of large quantities of renewables and battery storage has increased

the salience of all of these factors, necessitating a richer modeling framework.

The shift has important consequences for several lines of research in electricity markets. The paper

demonstrates that many price formation methods proposed in the literature to address non-convexity or

intertemporal constraints are not fully specified in a dynamic context. With the addition of storage, a par-

ticular challenge with enhanced price formation proposals is to ensure that the opportunity costs arising from

future price distributions are consistent with efficient operational decisions in the present. The paper also in-

vites some skepticism regarding the implementation of new reserve products intending to address variability,

uncertainty, and intertemporal constraints. While economic analysis of electricity markets sometimes treats

reserves as a strict requirement, this paper describes them as reflections of the algorithmic choices made by

system operators. Additionally, the paper highlights that standard production cost simulations will result in

questionable pricing outcomes in cases with significant uncertainty. In numerical tests, provisional forward

prices calculated in deterministic lookahead models tended to underestimate the actual prices generated.

Perhaps most importantly, the paper highlights that algorithmic choices can have a significant impact on the

total revenue available to resources in the market. A particular concern in this regard is the degree to which
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current practices can efficiently incentivize investment in storage and other resources providing flexibility. In

recent years, the trend in U.S. markets has been toward introduction of new reserve products corresponding

to new constraints in the deterministic models used by system operators. The effect of these products on

long-term investment is not well understood. Several challenges attend the introduction and calibration of

reserve products, including cost allocation, determining which resources qualify to provide the service, and

ensuring that the product definition keeps pace with the needs of a changing resource mix.

While the simulations conducted in this paper intend to demonstrate the value of adopting a dynamic

framework, they leave many avenues for future exploration. First, the simulations cover only four policy

families out of the universe of potential options, and furthermore do not exhaust even those four. Second,

while the paper uses prices from a stochastic program as a point of reference because of its superficial

resemblance to the idealized benchmark prices that would arise in a model with a fully specified scenario

tree, further examination would be required to firmly establish the relationship. Third, since different

algorithmic choices lead to differences not only in expected prices but also in price volatility, future work

could investigate the implications of different policies with risk averse market participants and incomplete

risk trading. Fourth, the simulations limit participation to a set of well-defined resources on the bulk power

system, but extensions could explore the consequences of alternative price formation and reserve product

configurations for distribution-level and other non-traditional resources. Fifth, while the results highlight

the potential for choices regarding spot price formation to lead to suboptimal investment incentives, more

detailed simulations would be required to assess the degree to which current rules in any given market lead

to addressable inefficiencies.
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A Proof of Theorem 1

Proof of Theorem 1. The dual to (SOC) can be stated as follows:

(DSOC)

min
λ,α,β,γ

∑
n∈NOP

∑
l∈L

ϕnD
+
lnα

D
ln (15a)

subject to −
∑

n∈NOP

ϕnAgnα
P+
gn ≥ −CINV

g ∀g ∈ G (yg) (15b)

−
∑

n∈NOP

ϕn(α
K−
bn + αK+

bn + Ebγbn) ≥ −CINV
b ∀b ∈ B (yb) (15c)

ϕn(λn + αD
ln) ≥ ϕnV

L
l ∀l ∈ L, n ∈ NOP (dln) (15d)

ϕn(−λn + αP+
gn ) ≥ −ϕnC

OP
g ∀g ∈ G, n ∈ NOP (pgn) (15e)

ϕn(λn + αK−
bn − βbn) ≥ 0 ∀b ∈ B, n ∈ NOP (kcbn) (15f)

ϕn(−λn + αK+
bn + βbn) ≥ 0 ∀b ∈ B, n ∈ NOP (kdbn) (15g)

ϕn(βbn −
∑

m∈n+

βbm + γbn) ≥ 0 ∀b ∈ B, n ∈ NOP (jbn) (15h)

ϕ0(−
∑

m∈0+

βbm + γb0) ≥ 0 ∀b ∈ B (jb0) (15i)

αD
ln ≥ 0 ∀l ∈ L, n ∈ NOP (15j)

αP+
gn ≥ 0 ∀g ∈ G, n ∈ NOP (15k)

αK−
bn , αK+

bn , γbn ≥ 0 ∀b ∈ B, n ∈ NOP . (15l)

The dual to (GEN)g can be stated as follows:

(DGEN)g min
αP+

g

∑
n∈NOP

ϕnAgnygα
P+
gn (16a)

subject to ϕnα
P+
gn ≥ ϕn(λn − COP

g ) ∀n ∈ NOP (pgn) (16b)

αP+
gn ≥ 0 ∀n ∈ NOP . (16c)

The dual to (STOR)b can be stated as follows:

(DSTOR)b min
αK−,αK+,β,γ

∑
n∈NOP

ϕnyb(α
K−
bn + αK+

bn + Ebγbn) (17a)

subject to ϕn(α
K−
bn − βbn) ≥ −ϕnλn ∀n ∈ NOP (kcbn) (17b)
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ϕn(α
K+
bn + βbn) ≥ ϕnλn ∀n ∈ NOP (kdbn) (17c)

ϕn(βbn −
∑

m∈n+

βbm + γbn) ≥ 0 ∀n ∈ NOP (jbn) (17d)

ϕ0(−
∑

m∈0+

βbm + γb0) ≥ 0 (jb0) (17e)

αK−
bn , αK+

bn , γbn ≥ 0 ∀n ∈ NOP . (17f)

The dual to (LOAD)l can be stated as follows:

(DLOAD)l min
αD

∑
n∈NOP

ϕnD
+
lnα

D
ln (18a)

subject to ϕnα
D
ln ≥ ϕn(V

L
l − λn) ∀n ∈ NOP (dln) (18b)

αD
ln ≥ 0 ∀n ∈ NOP . (18c)

Constraints included in the primal and dual problems of the market participants are a subset of those

included in the social problem (SOC). Given optimal solutions (y∗, p∗, kc∗, kd∗, j∗, d∗) to (SOC) and

(λ∗, α∗, β∗, γ∗) to (DSOC), the complementary slackness conditions hold and are a superset of the conditions

for the market participant problems. Thus, the solution satisfies the first, profit-maximizing condition of

Definition 1. Next, since (y∗, p∗, kc∗, kd∗, j∗, d∗) is a feasible solution to (SOC), it also satisfies the second,

market-clearing condition of Definition 1.

For the third, zero-profit condition, from (SOC) and (DSOC) we can form the complementary slackness

conditions

0 ≤ yg ⊥ CINV
g −

∑
n∈NOP

ϕnAgnα
P+
gn ≥ 0 ∀g ∈ G

and

0 ≤ yb ⊥ CINV
b −

∑
n∈NOP

ϕn(α
K−
bn + αK+

bn + Ebγbn) ≥ 0 ∀b ∈ B.

If yg = 0 or yb = 0, then the relevant condition for generator g or storage resource b in Definition 1

is automatically satisfied. If yg > 0, then the right-hand condition is satisfied with equality. Multiplying

yields the expression CINV
g yg −

∑
n∈NOP ϕnAgnygα

P+
gn = 0. By strong duality,

∑
n∈NOP ϕnAgnygα

P+
gn =∑

n∈NOP ϕnpgn(λn − COP
g ). Similarly, if yb > 0, then multiplying the right-hand condition by yb yields the

expression CINV
b yb −

∑
n∈NOP ϕnyb(α

K−
bn + αK+

bn + Ebγbn) = 0. By strong duality,
∑

n∈NOP ϕnyb(α
K−
bn +

αK+
bn +Ebγbn) =

∑
n∈NOP ϕnλn(k

d−kc). Thus, substituting in both cases reconstructs the third condition in

Definition 1 and establishes zero expected profit in equilibrium. Thus, the prices (λ∗
n)n∈NOP , installed gen-

eration capacities (y∗g)g∈G , installed storage capacities (y∗b )b∈B generator schedules (p∗gn)g∈G,n∈NOP , storage
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schedules (kc∗bn, k
d∗
bn, j

∗
bn)b∈B,n∈NOP , and load consumption quantities (d∗ln)l∈L,n∈NOP constitute a long-run

competitive equilibrium.

B Alternate reserve formulations

Continuing the discussion in Section 4.4, a second way to think about reserves is to increase the capacity

available in the future based on uncertainty in the interval itself (rather than in subsequent intervals). Since

the supply of energy and reserves is linked through the constraint in Eq. (6g), doing so is conceptually similar

to the net load biasing described in Section 4.3. Using the notation from above, we can define the future

reserve tuning (DLAC − FRT − θ) policy with the substitutions

R+
tt′ = max{0,

∑
g∈GV

(P
+

gtt′ − P̂+
gtt′,θ) +

∑
l∈L

(D̂+
ltt′,1−θ −Dltt′)} ∀t′ ∈ T F

t .

Whereas the (DLAC − RT − θ) policy reflected uncertainty in the forecast for the subsequent interval,

this policy focuses on the uncertainty in forecasts for interval itself. To achieve the optimal dispatch, this

definition must be accompanied by a constraint limiting the quantity of capacity reserves able to be supplied

by resources. In Example 2, the optimal dispatch in period 2 can be achieved by setting R+
23 = 9.798 and

adding the constraints r̃gas,2,3 ≤ pgas,2 +UR+
gas and r̃b2,3 ≤ jb2. Then, even though the deterministic model

will expect to be able to serve all load in period 3 with wind at its expected availability of P̃+
wind,2,3 = 10, it

will dispatch gas in period 2 in order to provide sufficient reserves to satisfy the constraint.

A third way to define reserves is not through the parameters R+
tt′ and V R, but instead by defining a

residual value for energy in storage. We can formulate the residual value policy as follows:

(DLAC −RV )

XDLAC−RV
t (St|H,F ) ∈

arg max
ũ,ṽ,q̃,p̃,r̃,k̃c,k̃d,j̃,d̃,z̃

∑
l∈L

∑
t′∈T H,F

t

V L
l d̃ltt′ +

∑
t′∈T H,F

t

V Rz̃tt′ +
∑
b∈B

V J
t,t+F j̃bt,t+F

−
∑
g∈G

∑
t′∈T H,F

t

COP
g p̃gtt′ −

∑
g∈G

∑
t′∈T H,F

t

(
CNL

g ũgtt′ + CSU
g ṽgtt′

)
(19)

subject to (6b)–(6z),

with the new parameter V J
t,t+F employed to estimate the value of stored energy at the end of the lookahead

horizon. As before, we could substitute this value with a piecewise linear function without changing the

analysis but increasing the degrees of freedom for operators. In a single-period model, the demand curve for
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stored energy could be defined in a manner similar to the offer values in model (DLAC −OC). If the value

of this function crossed below V J
2,2 = $100/MWh at the quantity jb2,2 = 0.89, the model would then switch

from discharging storage to using gas at this point. Similarly, in a two-period model with P̃+
wind,2,3 = 10,

setting a residual value V J
2,3 = $100/MWh at the quantity jb2,3 = 0.89 (even though the residual value is by

definition $0 in period 3) would induce an optimal dispatch in period 2. In either case, the model could also

produce the optimal price λ∗
2. As such, modeling energy reserves in this way does not necessarily require

introduction of a reserve product to produce appropriate incentives. However, achieving this price would be

contingent on decisions made by system operators or market participants in establishing the value curve.
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