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Abstract

We propose an extension of matrix games where the row player may select rows and remove columns, subject to a
budget constraint. We present an exact mixed-integer linear programming (MILP) formulation for the problem, provide
analytical results concerning its solution, and discuss applications in the security domain. Our computational experiments
show heuristic approaches on average obtain suboptimal solutions with at least a 20% relative gap with those obtained
by our MILP formulation.
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1. Introduction

Matrix games are two-player zero-sum games where each
player selects an action from a finite set of available ac-
tions. The payoffs to each player depend on the actions
selected by both. The game is called zero-sum when the
amount won by one player is the loss of the other, i.e., the
payoffs always sum to zero. The payoffs in such a game
can be captured by a matrix whose rows and columns iden-
tify the actions available to the players and entries specify
the amount of winnings/losses, hence a matrix game. The
matrix is fixed and known to the players. It is customary
to present the matrix by the earnings of the row player; a
negative entry indicates a loss.

Given a matrix A = [aij ]m×n representing the game,
the row and column players simultaneously select strategies
to maximize their payoff from the game, accounting for
strategic play by the other player. Let x ∈ Rm

+ denote the
row player’s strategy, i.e., they select action i ∈ {1, . . . ,m}
with probability xi, where

∑m
i=1 xi = 1. Similarly, let

y ∈ Rn
+ denote the column player’s strategy, unknown to

the row player. When a player’s strategy is a unit vector, it
is known as a pure strategy; otherwise, it is called a mixed
strategy. Then, the expected payoff to the row player in
each round is x⊤Ay =

∑m
i=1

∑n
j=1 aijxiyj . Patently, with

a fixed strategy x̂, the row player’s expected earning will
be no less than min

y
x̂⊤Ay, which is shown to be equal to

min
j

∑m
i=1 aij x̂i [1]. Thus, an optimal strategy for the row

player can be obtained by maximizing this lower bound
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on their expected earning over all possible strategies, as
follows:

max
x,z

z

s.t. z −
m∑
i=1

aijxi ≤ 0, ∀j ∈ {1, . . . , n},

m∑
i=1

xi = 1,

xi ≥ 0, ∀i ∈ {1, . . . ,m}.

(1)

The optimal value of linear program (1) is called the value
of the game. By duality, it can be shown that an optimal
strategy for the column player that minimizes their max-
imum expected loss leads to the same game value; this is
the celebrated Minimax Theorem [7]. We refer to [1, 6] for
more details on matrix games.

In this work, we consider a novel extension of matrix
games. The row player is given a budget and must pay for
each row they wish to have available and for each column
they may wish to remove. That is, there is a given payoff
matrix A, where each row and column have an associated
price. The row player first selects a (budget-feasible) sub-
matrix of A, and the game is then played on the submatrix.
Hence, the row player seeks to determine an optimal set
of row selections and column removals to purchase and
a corresponding (mixed) strategy for the game. We call
this problem the matrix game designer problem (MGD)
and show it can be formulated as a mixed-integer linear
program (MILP).

We provide analytical results concerning the formula-
tion, as well as the results of our computational experi-
ments. Our analytical results highlight that MGD is sub-
stantially different than the problem of finding optimal
strategies in a fixed zero-sum game. For example, it is
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well known that in zero-sum games, dominated actions
are never played in an optimal strategy.1 Nevertheless,
we show that in MGD, depending on the associated costs,
dominated strategies may be purchased and played, while
the corresponding dominating strategy is not. Our com-
putational results then show that our MILP formulation
lends itself to “good” solutions using an off-the-shelf MILP
solver, i.e., ones that can be computed reliably in reason-
able time on randomly drawn games. In contrast, we show
that multiple natural heuristic approaches that one may
apply to MGD are substantially suboptimal relative to the
solutions calculated via the MILP approach.

Our work is motivated by applications of MGD in the
security domain and is similar to existing Bayesian Stackel-
berg game approaches to security scheduling [8, 9, 10, 16].
In these settings, a limited set of security resources must
be scheduled to maximize some notion of rewards, which
are generally constructed to capture the severity of differ-
ent types of attacks and may incorporate their probability
of success. A Stackelberg game is a general-sum matrix
game where a leader (e.g., defender) moves first and a fol-
lower (e.g., attacker), possibly having learned the leader’s
strategy, moves after. Bayesian Stackelberg games extend
this to account for multiple follower types, the realized
type unknown to the leader beforehand. While Stackelberg
games have successfully been employed in the scheduling
of canine units at US airports [8], US Air Marshalls on
commercial flights [12], and patrol units to prevent wild
life poaching [15], current approaches assume a fixed set
of resources which may be readily selected with no explicit
associated expenses.

We differ from previous works in security games in that
we do not assume possession of a fixed set of resources
readily available for use, but instead consider a budgetary
constraint reflecting investments into specific types of se-
curity. That is, whereas previous works focus solely on
scheduling existing resources, we instead model the prob-
lem of determining which resources to invest into as well as
how to employ them. Another important difference is our
use of zero-sum games, which, although less general, ex-
hibit favorable properties in their resolution by admitting
a MILP formulation without requiring ancillary lineariza-
tion techniques. Further, we do not explicitly consider
multiple attacker types, but instead allow for arbitrary
types of attacks. Additionally, we show that our strategy
investment framework can be extended to the Bayesian
Stackelberg security game formulation of Pita et al. [8].

2. Applications

We provide a motivating application for our framework
within the security domain. Consider securing an airport

1A dominated strategy for a row player is a row of the matrix
such that the payoff vector corresponding to that row is pointwise
lower than the payoff vector corresponding to some other row.

against malicious, strategic attackers. There is a set of
m available screening technologies (e.g., millimeter wave
scanners) or security personnel, which can be employed
at particular locations [3, 11]. There is also a set of n
possible attacks against the airport. Screening technology
i interdicts attack j with a given probability pij . These
probabilities constitute a matrix A.

We assume that the airport wants to maximize the
probability of successful interdiction while the attackers
wants to minimize the same objective, meaning that the
matrix A can be interpreted as the payoff matrix of a zero-
sum game. This framework can be easily extended to ac-
count for severity of the attacks by defining aij = Rj(pij),
where Rj is a weight parameter indicating the importance
of preventing attack j. We can extend the above setting
to also accommodate various operational conditions. For
example, if the effectiveness of certain security measures
vary under different operational conditions (e.g., less like-
lihood of detecting malicious events during rush hours), an
attack can be considered as two separate actions from the
opponent (during rush hours and otherwise), with different
conditional probabilities for an effective detection.

In addition to the screening technologies varying in
price and effectiveness (e.g., basic x-ray machines versus
new 3D computational tomography scanners), there may
also be available investments which (at a cost) serve to
remove certain feasible actions of the attackers. For in-
stance, investment in high compound walls or vehicle secu-
rity barriers may remove the possibility of certain perime-
ter breaches [5]. With a given budget, the airport must
first choose which security measures to make available
and/or which actions of the attackers to eliminate.

Subsequently the airport must choose how to employ
the chosen screening techniques (optimal strategy) to max-
imize the likelihood of detecting malicious attacks, taking
into account that attackers will be strategic. Given a set of
available screening technologies, a strategy x corresponds
to the frequency of assignments of passengers to the dif-
ferent types of security technologies and procedures.2 Any
given attacker then chooses an attack j, so that the pro-
portion of various attacks in the population is denoted y.

3. Formulation

Consider a matrix game A and the respective formula-
tion (1). We extend this game by introducing variables
r ∈ {0, 1}m and s ∈ {0, 1}n to specify the designer’s de-
cisions; ri = 1 indicates row i ∈ {1, . . . ,m} has been se-
lected, and sj = 1 indicates column j ∈ {1, . . . , n} has
been removed. Let cr ∈ Rm

+ and cs ∈ Rn
+ denote the (non-

negative) cost vectors associated with purchasing rows and
eliminating columns, respectively, and b the resource bud-
get. The following proposition captures the representabil-
ity of MGD as a mixed-integer linear program (MILP).

2It is impractical to have every passenger be screened by each
type of security [3, 11].
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Proposition 1. Given a matrix game A = [aij ]m×n and
a budget b, the corresponding matrix game designer’s prob-
lem (MGD) can be formulated as follows:

max
r,s,x,z

z (2a)

s.t. z −
m∑
i=1

aijxi ≤Mjsj , ∀j ∈ {1, . . . , n}, (2b)

m∑
i=1

xi = 1, (2c)

m∑
i=1

cri ri +

n∑
j=1

csjsj ≤ b, (2d)

0 ≤ xi ≤ ri, ∀i ∈ {1, . . . ,m}, (2e)

r ∈ {0, 1}m, (2f)

s ∈ {0, 1}n, (2g)

where Mj = amax − min
i

aij , ∀j ∈ {1, . . . , n}, and amax

denotes the largest entry of matrix A.

The formulation is equivalent to (1), with additional con-
straints: (2d) together with (2f)-(2g) enforces the budget
constraint, and (2e)-(2f) ensure the row player may only
play rows purchased. The parameter Mj in (2b) ensures
that the corresponding constraint associated with an elimi-
nated column is relaxed. To show thatMj = amax−min

i
aij

is an upper bound on z −
∑m

i=1 aijxi, ∀j ∈ {1, . . . , n}, ob-
serve that the value of a game is always bounded above
by its largest matrix entry, i.e., z ≤ amax, and for every
j ∈ {1, . . . , n},

∑m
i=1 aijxi ≥ (min

i
aij)

∑m
i=1 xi = min

i
aij .

Remark 1. We naturally assume that the budget b can
afford to purchase each row separately, i.e., b ≥ max{cri :
i = 1, . . . ,m}; otherwise, rows whose prices exceed b may
be removed from the formulation. We also assume the bud-
get is not sufficient to eliminate all columns of the original
game, i.e., b <

∑n
j=1 c

s
j , because otherwise the problem

is trivial (i.e., remove all columns). Further, note that
constraint (2c) combined with (2e) ensures that at least
one row is purchased. Under these conditions, it can be
easily verified that formulation (2) is always feasible and
well-defined.

We highlight that the values of Mj , j ∈ {1, . . . , n}, play a
crucial role in the strength of an MILP formulation. Larger
values increase the size of the convex relaxation, which
generally results in a larger search tree [13, 14]. Therefore,
it is desirable to obtain values for Mj which are as tight
as possible.

Remark 2. Mj is a sharp bound on z−
∑m

i=1 aijxi, ∀j ∈
{1, . . . , n}. Note that an optimal solution to (2) may con-
stitute a matrix of a single row and a single column. Let
i′ ∈ {1, . . . ,m} and j′ ∈ {1, . . . , n} respectively identify
the actions available to the row and column players in
such a game, with ai′j′ = amax, which implies x∗

i′ = 1

and z∗ = amax. Then, for a column j′′ ∈ {1, . . . , n}\{j′},
the condition ai′j′′ = min

i
aij′′ will suffice to lead to z∗ −∑m

i=1 aij′′x
∗
i = amax − min

i
aij′′ . Any further improve-

ment on this bound will depend on additional information,
such as practicality and affordability of removing particu-
lar columns. The impracticality of removing a column j
may be enforced by setting Mj = 0 or enforcing sj = 0.

4. Analytical Results

Our first result concerns the standard game-theoretic no-
tion of dominated actions. An action i is said to be domi-
nated (by action i′) if there exists another action i′ for the
player which gives them a higher payoff regardless of the
opponent’s action. In regular matrix games, dominated
actions may be discarded from the formulation, as an op-
timal strategy will never employ them. In MGD, however,
the purchasing price must also be taken into account.

Proposition 2. Let a row i of a matrix game A be dom-
inated by some row i′. Then, an optimal solution to an
instance of MGD characterized by A and b (1) will never
include both i and i′, and (2) may include i only if it is
strictly less expensive to purchase than i′, i.e., cri < cri′ .

Proof. The proof of (1) is implied by the dominance of i′ in
the game over a submatrix including both i and i′. For (2),
let row i be at least as expensive to purchase as row i′ and
included in an optimal solution of MGD with (optimal)
strategy x̃, i.e., x̃i > 0 and x̃i′ = 0. Then, replacing i with
i′ in such a solution will yield a budget-feasible strategy x̂
with x̂i = x̃i′ = 0, x̂i′ = x̃i > 0 and a larger game value,
contradicting optimality of x̃.

An immediate implication of this result is that a domi-
nated action for the row player in the original matrix game
may be excluded from the MGD formulation only if it is at
least as expensive to purchase as the corresponding domi-
nating action.

Remark 3. It is rational to assume that the opponent
(column player) will never select a dominated action from
their set of available actions (i.e., a column whose every en-
try yields a higher payoff to the row player than some other
column). However, since the set of available actions for the
column player is determined by the row player in MGD,
a dominated column (of the original game) may not be
discarded from the formulation; such a column may prove
to be a part of the column player’s optimal strategy in the
absence of the dominating column, due to its removal.

The concept of row dominance in MGD may be extended
to tighten the linear-programming relaxation solution of (2),
as shown by the following proposition.

Proposition 3. Let A be a matrix game such that row i
contains equal or lesser payoffs (to the row player) than a
row i′, for all of the opponent’s actions except for a column
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j′, i.e., aij ≤ ai′j , ∀j ∈ {1, . . . , n}\{j′}. We say row i is
conditionally dominated by row i′. Then, if cri ≥ cri′ , the
inequality xi + sj′ ≤ 1 is valid for (2).

Proof. The proof is almost immediate. If sj′ = 0 in an op-
timal solution of MGD, the inequality is trivially valid. On
the other hand, if sj′ = 1 (i.e., the column j′ is removed),
row i may be safely excluded from consideration by Propo-
sition 2, leading to the valid inequality xi ≤ 0.

We provide computational results on the strength of these
inequalities in Appendix A.

With a view to defining a heuristic approach to MGD in
the sequel, we can define what we term the attractiveness
of actions. This is a more nuanced concept than domi-
nance: the latter is the case where an action is more at-
tractive to a player than another action, regardless of that
of the opponent. In particular, upon solving a regular ma-
trix game, we consider the actions’ frequency of use in an
optimal strategy as a measure of their attractiveness: we
say an action is more attractive than another if it is to
be played more frequently in an optimal strategy of the
game.3

Recall that frequency of use for the row and column
player’s actions in a regular matrix game are given by the
optimal values of the primal and dual variables of linear
program (1), respectively. Such preferences, however, do
not hold under the budget constraint for MGD. In fact,
a row that is a part of an optimal strategy in the regular
matrix game may not be selected under the budget con-
straint. Similarly, a column leading to a nonbinding value
constraint z −

∑m
i=1 aijxi ≤ 0 of the regular matrix game

may become binding in an optimal solution of (2). More
importantly, MGD does not exhibit a nesting behavior re-
garding selected rows and removed columns as the budget
increases. This is illustrated through the following exam-
ple.

Example 1. Consider the matrix game

A =


−0.20 −0.10 0.20 0.20 0.15
0.00 0.35 0.10 −0.10 0.20
0.30 0.35 −0.05 −0.25 −0.05
0.25 0.25 −0.25 −0.05 0.40
0.45 −0.15 0.20 −0.20 0.10


with row and column prices given by

cr =
[
2 3 4 4 5

]
, and

cs =
[
10 11 12 11 12

]
,

3Of course, more attractive strategies do not result in higher ex-
pected payoffs for the player, expectation taken over the optimal
strategy of the opponent. It is straightforward to show that given the
opponent’s optimal strategy, all actions in the support of a player’s
optimal strategy must result in the same expected value, equaling
the value of the matrix game. Hence we use the term attractiveness
to simply denote actions that are played more often in an optimal
strategy.

respectively. Let R and S denote the sets of selected rows
and removed columns, respectively. With a budget of 20
units, the (unique) optimal purchasing decisions and strat-
egy are

R = {2, 5}, S = {4},
x =

[
0.00 0.58 0.000 0.00 0.42

]
,

leading to the optimal objective value of 0.14. With an
increased budget of 25 units, the (unique) optimal pur-
chasing decisions and strategy are

R = {1}, S = {1, 2},
x =

[
1.00 0.00 0.00 0.00 0.00

]
,

leading to the optimal objective value of 0.15. On the
other hand, in the regular matrix game the row player
would employ actions {1, 2, 4, 5} and obtain an objective
of 0.04. The corresponding optimal strategy is given by

x =
[
0.47 0.08 0.00 0.33 0.12

]
.

This observation indicates that a solution method for pur-
chasing decisions that follows some measure of preference
inherited from the original matrix game would lead to sub-
optimal strategies for MGD in general. Similarly, a greedy
method for row selection and column removal decisions
based on immediate gain in the game value would gen-
erally be suboptimal for MGD. These approaches, how-
ever, may be used to construct heuristic solutions for the
problem. We investigate the quality and computational
performance of these methods in comparison with formu-
lation (2) in Section 6.

Finally, formulation (2) can be modified to determine
the minimum budget needed to achieve a game value at
least v. This is particularly important in security games,
where a certain minimum game value (probability of inter-
dicting attacks) must be achieved. We note that meaning-
ful values for v will depend on the original matrix game.
For example, setting v > amax leads to patent infeasibility.

Proposition 4. Given a matrix game A = [aij ]m×n, the
problem of determining the minimum budget required to
achieve a game value at least v—or conclude infeasibility—
may be formulated as follows:

min
r,s,x,β

β (3a)

s.t. v −
m∑
i=1

aijxi ≤Mjsj , ∀j ∈ {1, . . . , n}, (3b)

m∑
i=1

xi = 1, (3c)

m∑
i=1

cri ri +

n∑
j=1

csjsj ≤ β, (3d)

0 ≤ xi ≤ ri, ∀i ∈ {1, . . . ,m}, (3e)
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r ∈ {0, 1}m, (3f)

s ∈ {0, 1}n, (3g)

where β denotes the budget.

Proof. Given a budget β̂, consider an arbitrary partial fea-
sible solution (r̂, ŝ, x̂) to (3) and let Î and Ĵ denote the cor-
responding sets of selected rows and columns for the game,
respectively, i.e., Î = {i : r̂i = 1} and Ĵ = {j : ŝj = 0}.
Observe that v ≤

∑m
i=1 aij x̂i, ∀j ∈ Ĵ , holds by (3b), which

immediately implies v ≤ min
j∈Ĵ

∑m
i=1 aij x̂i. Since the choice

of x̂ was arbitrary, this result holds for all (feasible) strate-
gies within Î. Therefore, every feasible solution to (3) in-
duces a matrix game whose value is at least as large as v,
and the formulation seeks that with the minimum budget
among all such feasible solutions.

Remark 4. While an optimal solution (r∗, s∗, x∗, β∗) of (3)
identifies the minimum budget and optimal row selection
and column removal decisions, the strategy solution x∗

may not lead to the value z∗ = max
x(I∗)

{
min
j∈J∗

∑m
i=1 aijxi

}
of the game induced by I∗ and J∗. We note that game
value is a (nondecreasing) piecewise constant function of
the budget. This implies that, given a partial optimal so-
lution (r∗, s∗, β∗), the corresponding game value may be
considerably greater than v, while x∗ only needs to ensure
that the expected payoff to the row player is no less than
v. After obtaining the minimum budget and optimal row
selection and column removal decisions from an optimal
solution of (3), an optimal strategy for the row player in
the corresponding game may be identified by solving (1)
over the respective submatrix.

5. Extension to Bayesian Stackelberg Security Games

Bayesian Stackelberg games have been employed in schedul-
ing security resources for various applications [8, 9, 12, 15,
16]. They are attractive models due to their ability to in-
corporate multiple attacker types, weigh the importance
of protecting different targets appropriately, and, as the
defender moves first, account for the possibility of attack-
ers learning the defender’s strategy, by generating mixed
strategies [2, 8]. We now show how to extend our strategy
investment framework to the Bayesian Stackelberg game
of Pita et al. [8]. They formulate the problem first as
a mixed-integer bilinear program (MIBLP), which is then
linearized. Given the nature of the formulation, we restrict
our focus to the purchasing of row player actions (i.e., no
column removals).

We first provide associated notation. In this Stackel-
berg security game, there is one defender and |L| types
of attackers. The vector x denotes the defender’s mixed
strategy and ql is the binary strategy vector of an attacker
of type l ∈ L. The index set of the defender’s and at-
tacker’s actions are denoted by X and Ql, respectively,

and their payoffs are captured in matrices Rl and Cl, re-
spectively. Furthermore, pl denotes the probability the
defender faces an attacker of type l, variable al captures
the reward of an attacker of type l, and M is a sufficiently
large positive scalar for relaxing constraints. The objective
is to maximize the expected reward of the defender.

The initial MIBLP formulation of Pita et al. [8] is lin-
earized through the change of variables zlij = xiq

l
j ; effec-

tively, zlij captures the defender’s probability of employ-

ing action i in anticipation of an attack j ∈ Ql from
an attacker of type l. To impose a budget constraint
with budget b and row prices c, we introduce variables
ri ∈ {0, 1}, ∀i ∈ X, and add constraints (4h)-(4j) to their
linearized reformulation, resulting in the following MILP:

max
x,q,a

∑
i∈X

∑
l∈L

∑
j∈Ql

plRl
ijz

l
ij (4a)

s.t.
∑
i∈X

∑
j∈Ql

zlij = 1, ∀l ∈ L, (4b)

∑
j∈Ql

zlij ≤ 1, ∀l ∈ L, i ∈ X, (4c)

qlj ≤
∑
i∈X

zlij ≤ 1, ∀j ∈ Ql, l ∈ L, (4d)∑
j∈Ql

qlj = 1, ∀l ∈ L, (4e)

0 ≤ (al −
∑
i∈X

Cl
ij(

∑
h∈Ql

zlih)) ≤ (1− qlj)M,

∀j ∈ Ql, l ∈ L, (4f)∑
j∈Ql

zlij =
∑
j∈Ql

z1ij , ∀l ∈ L, i ∈ X, (4g)

∑
i∈X

ciri ≤ b, (4h)∑
j∈Ql

zlij ≤ ri, ∀l ∈ L, i ∈ X, (4i)

ri ∈ {0, 1}, ∀i ∈ X, (4j)

0 ≤ zlij ≤ 1 ∀j ∈ Ql, l ∈ L, i ∈ X, (4k)

qlj ∈ {0, 1}, ∀j ∈ Ql, l ∈ L, (4l)

al ∈ R, ∀l ∈ L. (4m)

Note that this formulation computes a strategy zlij for
each attacker type l, partitioned over attacker actions j ∈
Ql; accordingly,

∑
j∈Ql zlij represents the defender’s mixed

strategy component xi, against an attacker of type l. The
constraint (4g) ensures the defender’s strategy is consis-
tent across all attacker types. In (4f), the left inequal-
ity implies al is an upper bound on the attacker’s re-
ward,

∑
i∈X Cl

ij(
∑

h∈Ql zlih). The right inequality is re-

laxed when qlj = 0 and lower bounds the attacker’s reward

with al when qlj = 1; this results in al necessarily equaling
the attacker’s maximum payoff. The constraint (4d) en-
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sures the defender protects against the best attacker strat-
egy. The constraints (4h)-(4j) impose availability and bud-
get constraints on the defender’s mixed strategy.

6. Computational Experiments

Finally, we describe the procedures and results of our com-
putational experiments. In particular, we analyze the role
of matrix size, budget, and column prices in the MGD
formulation (2), and compare its performance with two
heuristic approaches.

We constructed matrices of sizes given by the Cartesian
product {10, 50, 100}2. The entries were drawn uniformly
from −0.5 to 0.5, and each column was scaled by a random
number from the set {10, 20, 30, 40, 50} to mimic severity
of attacks, as explained in Section 2. For each matrix size,
we constructed five instances. To observe the effect of row
and column prices, we solved each matrix instance with
row and column prices of comparable size, as well as with
column prices three times and five times as large. We
will refer to these column price levels as LOW, MEDIUM, and
HIGH. Finally, for each matrix instance and price range,
we solved the MGD with a budget 0.25, 0.50 and 0.75 the
total sum of row and column prices, resulting in 405 total
instances. All were generated with Julia 1.8 and solved
with Gurobi 10.0.0 [4] on a machine with an Intel Core i7
processor at 1.8 GHz and 8 GB of RAM. A time limit of
20 minutes and a MIPGap of 1% were imposed.

Figure 1 summarizes the performance of the MILP for-
mulation (2) on the aforementioned MDG instances. This
figure shows the average solution time for each class of
instances. In general, the solution time exhibited a de-
creasing trend with increasing available budget. This was
more notable when the budget proportion increased from
0.50 to 0.75. Also, higher column prices led to longer so-
lution times, although this was less often the case for the
smallest budget proportion. We note that these figures in-
clude data from instances that terminated due to the time
limit (approximately 13%), resulting in smaller averages
for the more difficult problems.

Next, we describe our heuristic methods. The first
method is a greedy algorithm, in which row selections and
column removals are purchased incrementally based on the
largest immediate gain in value, as outlined Algorithm 1,
where R denotes the set of row selections and S the set of
column removals.

In this algorithm, the “best” row selection or column
removal decisions are those leading to the highest added
value to an incumbent game, which may be determined by
solving an MILP or a series of LPs for each unpurchased
row and column. We note that purchasing at least one
row is required to ensure the feasibility of the obtained
solution; hence, the algorithm starts by purchasing a row.
We will refer to this method as HG.

Our second heuristic method exploits optimal solutions
to the original matrix game (without budget); it ranks

Figure 1: Solution time vs matrix size per column price level, for a
fixed budget proportion.

Figure 2: Quality of the heuristic solution methods.
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Algorithm 1 A greedy heuristic method for MGD

1: Let R = S = ∅; M = {1, . . . ,m}; N = {1, . . . , n}
2: Determine “best” affordable row i
3: R← R ∪ {i}; M ←M\{i}
4: while M ̸= ∅ or N ̸= ∅ do
5: Determine “best” affordable row i (to be included)

or column j (to be removed)
6: if (i = ∅ and j = ∅) or (No Improvement) then
7: break
8: else
9: Update R,S,M,N appropriately

10: end if
11: end while
12: Solve the matrix game induced by R and S for x∗, z∗

13: return R,S, x∗, z∗

the players’ actions (rows and columns) based on their
“frequency of use” as given by an optimal solution, as a
measure of their attractiveness to the respective players,
and follows this rank to make purchasing decisions as long
as the budget allows. Algorithm 2 presents this method,
which we will refer to as HR.

Algorithm 2 A rank-based heuristic method for MGD

1: Let R = S = ∅; spent = 0
2: Solve the original matrix game and obtain optimal

value of primal variables x̃ and dual variables ỹ
3: Merge and sort x̃, ỹ values in descending order; store

the ordered list in L
4: Purchase first affordable row and update L,R, spent
5: for ℓ ∈ L
6: if spent + cℓ > b then
7: continue
8: else
9: Add ℓ to R if it is a row or to S if a column

10: spent ← spent + cℓ
11: end if
12: end
13: Solve the matrix game induced by R and S for x∗, z∗

14: return R,S, x∗, z∗

Details of our computational results for the two heuris-
tic methodsHG andHR, in comparison with the MILP for-
mulation (2), are provided in Appendix A. In summary,
the MILP formulation (2) was most often faster than HG.
The HG solutions led to 20 − 40% smaller game values
than that of the MILP solutions, even for instances where
MILP timed out. The HR method was much faster than
MILP and HG, as expected, but its relative gap (from an
optimal solution) was almost twice as big as HG. Figure 2
illustrates these results.

Lastly, we measured the strength of the conditional
dominance inequality from Proposition 3. Including the
inequality in the MILP formulation led to improved solu-
tion time for about 40% of the instances that were solved

within the time limit. The maximum number of (branch-
and-cut) nodes explored among the instances in each class
was most often larger for the formulation without cuts,
which implies the inequality may be more effective when
employed in solving large-scale instances. Detailed com-
putational results are presented in Appendix A.

7. Conclusion

This paper introduces the matrix game designer problem
(MGD), which finds applications in security investment
and scheduling. We propose a mixed-integer linear pro-
gramming formulation for MGD, present some analytical
results, and provide results of our computational experi-
ments.

Acknowledgement. Partial support of Office of Naval
Research grant N000142112262 and National Institutes of
Health grant 3R01CA257814-02S1 are gratefully acknowl-
edged.

Appendix A. Computational Experiment Results

Table A.1 present details of our computational experiment
results for the heuristic methods, in comparison with the
MILP formulation (2). Table A.2 provides our computa-
tional results concerning the strength of the conditional
dominance inequality of Proposition 3.
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procedure. We set the time limit of 10 minutes in these experiments.
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