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ABSTRACT5

The size and complexity of modern astronomical surveys has grown to the point where, in many cases,6

traditional human scheduling of observations are tedious at best and impractical at worst. Automated7

scheduling algorithms present an opportunity to save human effort and increase scientific productivity.8

A common scheduling challenge involves determining the optimal ordering of a set of targets over9

a night subject to timing constraints and time-dependent slew overheads. We present a solution to10

the ‘Traveling Telescope Problem’ (TTP) that uses Mixed-Integer Linear Programming (MILP). This11

algorithm is fast enough to enable dynamic schedule generation in many astronomical contexts. It12

can determine the optimal solution for 100 observations within 10 minutes on a modern workstation,13

reducing slew overheads by a factor of 5 compared to random ordering. We also provide a heuristic14

method that can return a near-optimal solution at significantly reduced computational cost. As a15

case study, we explore our algorithm’s suitability to automatic schedule generation for Doppler planet16

searches.17

Keywords: methods: observational18

1. INTRODUCTION19

Maximizing the scientific yield of expensive and often20

oversubscribed astronomical instrumentation requires21

meticulous planning of each night’s observations. How-22

ever, determining the optimal (or even near-optimal) se-23

quence of observations is challenging and time consum-24

ing task. Schedulers must incorporate temporal acces-25

sibility windows while factoring in slew and acquisition26

overheads that can themselves be time-variable. In this27

paper, we refer to the task of determining the optimal28

ordering of a set of observations by a telescope as the29

‘Traveling Telescope Problem’ or ‘TTP’ given its simi-30

larities to the ‘Traveling Salesman Problem’ or ‘TSP’.31

The scientific benefits of intelligently sequenced obser-32

vations can be significant, especially for programs with33

many targets spread over the entire sky. As an example,34

the Doppler planet searches at the Keck-I telescope ob-35

serve up to 100 targets per night (Howard et al. 2010).36

As we show below, a quasi-random sequence of 100 tar-37

gets requires over 3 hours of slew during a 10 hour night38

while an optimized sequence can reduce this to 0.5 hours.39

Automated solutions to the TTP offer a number of40

opportunities. As is the case for the TSP, a skilled41

human scheduler can generate a observation sequence42

that significantly outperforms a random ordering. How-43

ever, such script generation takes significant human ef-44

fort that could be devoted elsewhere. In addition, a45

number of ongoing and forthcoming surveys are or will46

be scheduled automatically. The Zwicky Transient Fa-47

cility (ZTF; Bellm et al. 2019a) and the Legacy Survey48

of Space and Time (LSST; Ivezić et al. 2019) are two ex-49

amples. Automated solutions to the TTP are necessary50

for automated surveys.51

While a rich literature exists on the TSP, standard52

solutions do not directly transfer to the TTP for sev-53

eral reasons. First, targets are often only accessible54

for a fraction of the night either due to their position55

on the sky or scientific need for time-critical observa-56

tions. Thus, a large fraction of the N ! target sequences57

are infeasible. Second, slew time between targets is it-58

self a function of time. As an example, Figure 1 shows59

the trajectory of two targets above the Keck-I telescope60

atop Maunakea. Two targets cross the meridian north61

and south of zenith, respectively. Like most large tele-62

scopes, Keck-I moves in the altitude and azimuth direc-63

tions and target slews are dominated by differences in64

azimuth. Figure 1 shows the variation in slew time over65

the course of the night, which grows as the targets first66

approach the meridian and then straddle the telescopes67

cable wrap limits.68
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Previous efforts have addressed the TTP under a num-69

ber of simplifying assumptions. The ZTF scheduler di-70

vides the night into short intervals and solves a stan-71

dard TSP while treating the set of accessible targets and72

target-to-target slew times as constant with in the inter-73

val (Bellm et al. 2019b). The James Webb Space Tele-74

scope’s scheduling architecture (Giuliano & Johnston75

2008), which is built upon the Hubble Space Telescope’s76

SPIKE software (Johnston & Miller 1994), also treats77

target-to-target slew times as constant. At present, we78

are not aware of any global solutions to the TTP that79

capture both variable accessibility windows and slew80

overheads.81

This paper is organized as follows. We describe82

the TTP in Section 2 and present a formulation using83

Mixed-Integer Linear Programming that can be solved84

to global optimally range of problem sizes. In Section 385

we conduct a suite numerical experiments to determine86

the performance and computational cost of our algo-87

rithm over various problem sizes. Section 4 discusses88

the limitations of our global approach and the potential89

of heuristic solutions. We conclude in Section 5.90

2. FORMULATION OF TRAVELING TELESCOPE91

PROBLEM92

2.1. Problem Setup93

For a given set of targets and an observing interval,94

we seek the tour that completes all exposures in the95

shortest possible time. Targets must be accessible for at96

least part of the observing duration. The slew time be-97

tween any pair of targets must be computed in advance,98

but the slew time may itself be a function of time. The99

formulation presented below was inspired by Sun et al.100

(2018) who developed a framework to optimize the prof-101

itability of parcel pickup and delivery with variable time102

windows and travel times.103

2.2. Slot Framework104

Following the TSP literature, we refer to targets to be105

traversed in the TTP as nodes since that work empha-106

sizes that the solution is a directed graph connecting all107

targets. With a list of N targets to be scheduled, we de-108

fine the total set of nodes to be {0, 1, ..., N,N +1}. The109

nodes 0 andN+1 are the anchoring start and end nodes;110

their location is arbitrary, i.e. not associated with a ce-111

lestial source. Their purpose is explained in Section 2.4.112

Each node i has an associated exposure time τ expi , and113

accessibility window [tei , t
ℓ
i ]. The values t

e
i and tℓi are the114

earliest and latest times the tour can depart node i, i.e.115

the time the observation concludes (see Figure 2). We116

summarize the symbols from the main body of this text117

in Appendix A.118

Next, we break the scheduling interval into M sub-119

intervals or ‘slots’, within which travel time is treated120

as constant. M is a free parameter and impacts the121

computational load (see Section 3). The slots may have122

uneven durations if desired. The boundaries of the slots123

are [wm, wm+1] where m indexes each slot.124

We then construct the slew tensor τ slewijm that specifies125

the travel time between any two nodes during every slot126

(see Figure 1). This depends on the telescope slew speed127

in altitude and azimuth directions as well as cable-wrap128

considerations. For a concrete example, τ slew4,6,2 specifies129

the computed travel time between the i = 4 node and130

j = 6 node during the bounds of the slot m = 2.131

2.3. Decision Variables132

Our MILP formulation involves both binary and con-133

tinuous variables. The following variables trace the flow134

through the nodes and the times of node departures:135

• Xijm is a binary variable equal to 1 if the tour136

traverses the arc from node i to node j during slot137

m and 0 otherwise.138

• Yi is a binary variable equal to 1 if the node i139

is entered at some point during the tour and 0140

otherwise.141

• ti is a continuous variable denoting the departure142

time from node i.143

• tijm is a continuous variable and equal to ti if the144

tour departs the node i toward the node j during145

the time slot m, 0 otherwise.146

The non-zero elements of Xijm describe the tour. The147

tensor dot product of Xijm and τ slewijm148

N∑
i,j=1

M−1∑
m=0

τ slewijm Xijm (1)149

is equal to the total travel time.150

2.4. Constraints151

Next, we introduce the following constraints:152

Constraint 1. Tour must depart the starting153

node. We require that flow be non-zero from 0 to some154

arbitrary target node j during some slot m in time to155

begin the tour.156

N∑
j=1

M−1∑
m=0

X0,j,m = 1 (2)157

Constraint 2: Tour must conclude at the ending158

node. Similarly, we anchor the end of the tour with the159
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Figure 1. Time dependent slew overheads at Keck Observatory. The left plot shows the motion of two targets in the
alt/az frame across the accessible region at Keck Observatory (latitude = 19.8◦ N). The top target sits at δ = 43.8◦, the bottom
at δ = 11.7◦. As time progresses, the azimuthal separation dominates the slew and steadily increases to a maximum of over five
minutes. Late in the night, the lower declination target crosses azimuth = 270◦, which corresponds to the assumed telescope
cable wrap limit. At this time, a direct slew becomes available, and the slew time drops significantly. For any two arbitrary
targets i and j, τ slew

ijm approximates the pairwise slew time within the bounds of each time slot as dictated by M . The right plot
shows the interpolated slew curve (grey) with the travel time tensor τ slew

ijm (black) over-plotted for the full night with M = 3. In
this extreme case, τ slew

ijm often misrepresents the slew time by several minutes in the second and third time slot.

end node N + 1. We must traverse the arc (i,N + 1)160

from some arbitrary target node i.161

N∑
i=1

M−1∑
m=0

Xi,N+1,m = 1 (3)162

Constraint 3: Y must indicate the visitation of a163

node. In the simplest possible case, we have a trivial164

solution traversing from 0 to N +1, stopping at a single165

target node along the way. The objective (see Section166

2.5) will reward the visitation of additional nodes be-167

tween these two constrained anchors. This requires first168

defining the variable Y to track whether nodes are being169

visited. Yi will be activated if the tour flows from the170

node i during any slot in time, into any subsequent node171

j.172

N+1∑
j=1

M−1∑
m=0

Xijm = Yi ∀ i = 0, . . . , N (4)173

Constraint 4: A slew into any target node must174

be accompanied by a slew away from that node.175

Excluding the starting and ending nodes, we require that176

the slew into any target node k must be accompanied177

by a slew out of k.178

N∑
i=0

M−1∑
m=0

Xikm −
N+1∑
j=1

M−1∑
m=0

Xkjm = 0 ∀ k = 1, . . . , N

(5)179

If Xijm is 1 for any arc (i, k) in the sequence, it will also180

hold 1 for some (k, j) arc at an arbitrary time. If the181

left term is 0 (the tour never enters node k) then the182

tour will never traverse a departing arc originating at183

k. The chronology of these events will next be enforced184

using the time variable t.185

Constraint 5: Define the selection variable tijm.186

Now we enforce the proper constraints to define the se-187

lection time variable tijm relative to our generic time188

variable ti. By summing over all potential destinations189

j and time slots m, we recover the value stored in ti.190

ti =

N+1∑
j=1

M−1∑
m=0

tijm ∀ i = 0, . . . , N (6)191

The second time variable tijm is critical for the following192

two constraints. It behaves like the product of ti and193

Xijm, but works within a linear program.194

Constraint 6: Departure time from a node is195

greater than the departure from the previous196

node plus the slew and exposure time. Say we be-197

gin to traverse from one node to another on the arc (i, j)198
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Figure 2. Schematic of sub-optimal, optimal, and infeasible tours in the travelling telescope problem. The four
polar plots on top show the sky above Keck Observatory (latitude = +19 deg) in alt/az coordinates. During a duration of four
hours, targets A–E move across the sky as the Earth rotates. The shaded region shows an inaccessible region of alt/az (here,
the Keck-I Naysmth platform). We have exaggerated slew times to clearly illustrate the differences between the three tours.
In the top sub-optimal tour, we include a horizontal timeline for targets A–D. The windows of accessibility are shown as
vertical ticks. For example, the earliest the telescope can complete observations of target A is labeled with teA while tlA, denotes
the latest time. Note that teA depends on both the rise time and exposure duration, and tℓi is the either the set time or the
end of the observing interval, whichever comes first. This scheduler uses a greedy approach; i.e., once the observation A of
completes, the telescope immediately slews to the unobserved target with the shortest slew time. The tour is feasible, but the
entire observing duration is required in this example. The middle optimal tour is scheduled with a global optimization. In our
example, the slew between A and D is so long that it is advantageous for the telescope to wait until target B rises to observe it,
before proceeding to D. This is the optimal tour to observe targets A–D. Finally the bottom plot shows the inclusion of a fifth
target E to illustrate an infeasible tour. There is not enough time to observe all targets.
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within the bounds of the slot m. Before the telescope199

may depart from the next node j, a minimum amount200

of time must pass, equal to the slew experienced on the201

journey from i to j plus the exposure time at the new202

node, i.e. τ slewijm + τ expj . The minimum time value of203

our departure from j is the time that the previous node204

i was departed tijm plus this minimum ‘passing time’.205

The inclusion of the variable Xijm will ensure only the206

proper values of i and m are considered for the journey207

to the new node j.208

tj ≥
N∑
i=0

M−1∑
m=0

(
tijm + (τ slewijm + τ expj )Xijm

)
∀ j = 1, . . . , N + 1

(7)209

Constraint 7: Ensure departure times are consis-210

tent with slot bounds. We must enforce constraints211

on the departure times tijm using bounds of the time212

windows defined in w. If we exit the node i during the213

time slot m, then the departure time must be within the214

bounds of the slot window.215

wmXijm ≤ tijm ≤ wm+1Xijm

∀ i = 0, . . . , N + 1

∀ j = 0, . . . , N + 1

∀m = 0, . . . ,M − 1

(8)216

Constraint 8: Departure times must respect217

node accessibility. Finally, we enforce the time win-218

dow constraints on the departure times ti for all the219

visited target nodes.220

teiYi ≤ ti ≤ tℓiYi ∀ i = 1, . . . , N (9)221

2.5. Objective222

We seek to maximize the the number of sched-223

uled exposures while minimizing total slew time224

Max

 N∑
i=1

Yi − C

N∑
i,j=1

M−1∑
m=0

τ slewijm Xijm)

 (10)225

Here, C is a small constant such that the slew penali-226

sation (second term) is always less than unity. Notice227

that our anchor nodes do not contribute to the total228

slews with this summation convention, and are there-229

fore used only for constraining the flow of the tour (a230

physical location need not be set, and the values in the231

first row and column of τ slewijm are set to 0).232

The objective function does not require all nodes be233

visited. In similar TSP literature such as Sun et al.234

(2018), each target node may be assigned a scalar prior-235

ity pj included as a coefficient in the left summation236

term in Equation 10. In such a formulation, lowest237

priority targets are preferentially excluded when total238

completion is infeasible. We note that global optimality239

becomes less intuitive when targets have different nu-240

merical priorities.241

In the TTP, the optimization will work to remove the242

targets that contribute most to the total slews in every243

case. The objective is clear: observe as many targets as244

possible as quickly as possible. We note that the formu-245

lation above describes a simple TTP where targets are246

observed once and no additional constraints are placed247

on the timing between observations. Appendix B de-248

scribes small modifications to the algorithm presented249

above that can accommodate such constraints.250

3. PERFORMANCE251

3.1. Numerical Experiments252

We evaluated our algorithm’s ability to solve the253

TTP through a suite of simulated target lists. We254

explored problem complexity along the following three255

axes: number of targets N , number of time slots M ,256

and duration of the scheduling interval D. We designed257

TTPs in the following manner:258

1. We specified a random calendar night at Keck Ob-259

servatory.260

2. We selected an observing duration D.261

3. We selected N stars from the California Legacy262

Survey (CLS; Rosenthal et al. 2021), a collection263

of 719 nearby stars that have been observed from264

Keck observatory for several decades as part of265

an extrasolar planet search. These stars com-266

prise a good TTP test set because they are nearly267

uniformly distributed on the sky with declination268

δ ≳ −40 deg and are thus observable for ≳ 7269

months per year. When sampling the targets, we270

required they be accessible for more than 50% of271

duration D. We removed a few close binaries that272

have negliable slew speeds.273

4. We modeled the slew rate of the Keck telescope274

as 1 deg per second in both altitude and azimuth275

directions.276

5. We assigned uniform exposure times (in minutes)277

to all targets according to:278

τ expi = (D − 2N)/N ∀ i = 1, . . . , N. (11)279

Setting the exposure times this way would com-280

pletely fill the observing duration given a random281

ordering of targets with an average slew time of282
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Figure 3. Comparison of a simple heuristic target ordering and a TTP optimized tour of N = 50 targets during a simulated
half night. The former routine orders the targets by their increasing set times. Top row: the azimuthal coordinate of the
simulated telescope in each case. Middle row: the elevation angle of the simulated telescope. Bottom row: time spent exposing,
slewing, or idle. The targets have randomized time windows, but are all accessible for at least half of the scheduling duration.
The worst case slew estimation from Equation 11 is 3.34 minutes per target. For the left (heuristic) column, the total slew time
is 73 minutes, or an average of 91 seconds per slew, leaving 27 minutes idle. In the optimized (right) tour, the total time is a
mere 13.8 minutes, or an average of 17.3 seconds per slew, resulting in 86 minutes idle (23 additional targets at the same pace).

120 sec or 2 min. For our experiments, slews in az-283

imuth (which ranges from 0 to 360 deg) dominate284

over those in altitude (which ranges from 0 to 90285

deg). The average distance between two randomly286

selected values between 0 and 360 is 120. We ex-287

pect all solutions to the TTP to be significantly288

more efficient. Thus our experiments are feasible289

by construction and we report the improvement290

relative to this random ordering.291

6. We selected M uniform slots within D.292

7. We calculated the distance tensor τ slewijm at the mid-293

point of each slot.294

With the experiment specified, we solved the MILP295

described in Section 2 with one additional constraint.296

Constraint 9: All target nodes must be visited.297

Yi = 1 ∀ i = 1, . . . , N (12)298

The problem generation process described above in299

general results in TTP instances in which it is possible300

to observe all N targets. Given this, we modify the301

objective function described in equation (10) to focus302

on minimizing slews only, resulting in the following new303

objective function.304

Min

 N∑
i,j=1

M−1∑
m=0

τ slewijm Xijm

 (13)305

In our results in Section 3.2, we use TTP-Global to306

refer to the formulation defined in Section 2 with the307

objective function in equation (13) and constraint (12).308

Before describing our grid-based exploration of prob-309

lem complexity, we show one example solution to the310

TTP in Figure 3. We compared it with a simple heuris-311

tic solution for a 50 target observing sequence conducted312

over a half night to emulate a human generated script.313

In this heuristic, targets are observed in the order of314

their set times, i.e. the earliest setting target is observed315

first. Figure 3 shows graphically the slew overheads that316

TTP-Global eliminates through a more efficient ordering.317

3.2. Computational Results318

We test our formulation using different combinations319

of the number of targets N , the number of slots M and320

the duration/scheduling interval D. For the scheduling321

interval D, we consider quarter nights, half nights and322

full nights. For quarter nights, we vary N in {5, 10, 25};323

for half nights, we vary N in {5, 10, 25, 50}; and for full324

nights, we vary N in {5, 10, 25, 50, 100}. For each com-325

bination of D and N , we vary M in {1, 3, 10}.326
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For each combination of N and D, we consider 10327

randomly generated sets of targets, and consider the328

three different values of M , giving rise to a total of329

(3+4+5)× 3× 10 = 360 problem instances. We solved330

TTP-Global using Gurobi version 10.0.1, a state-of-the-331

art optimization suite that solves MILP problems using332

the branch-and-bound algorithm (Gurobi Optimization,333

LLC 2023). We used the Python programming language334

to generate the input data for TTP-Global and to formu-335

late TTP-Global using the Gurobi Python API. We con-336

ducted our suite of numerical experiments on Amazon337

Elastic Compute Cloud (EC2), on a single instance of338

type m6a.48xlarge (AMD EPYC 7R13 processor, with339

192 virtual CPUs and 768 GB of memory). For each340

experiment, we allocated 8 virtual CPUs and limited341

computation time to 1800 seconds.342

For a few points of reference, a TTP with N = 25 tar-343

gets and M = 1 involved an MILP with 1643 rows (con-344

straints) and 1513 columns (variables), and the M = 10345

case had 14765 rows and 14635 columns. A TTP with346

N = 100 targets had 21518 rows, 21013 columns for347

M = 1, and 208790 rows, 208285 columns for M = 10.348

For each experiment, we recorded the following infor-349

mation:350

• SlewTimeτ : total slew time of the final schedule351

obtained from Gurobi, calculated using the dis-352

cretized tensor τ slewijm .353

• RelRedτ : relative reduction in slew time of the354

final schedule compared to the randomly ordered355

value of 2N ; mathematically, it is defined as:356

RelRedτ =
2N − SlewTimeτ

2N
× 100%. (14)357

• SlewTimereal: real slew time of the final schedule,358

calculated based on the ti departure time values359

of the schedule.360

• RelRedreal: the analog of RelRedreal for the real361

slew time.362

• Runtime: computation time363

• Whether a provably optimal solution was found.364

• Whether a feasible solution was found.365

Table 1 summarizes these statistics for the ten ex-366

periments conducted at each combination of N , M367

and D. We report the number of experiments where368

Gurobi found a feasible solution, NumFeas, and a prov-369

ably optimal solution NumOptimal. For the feasible set,370

we report the average values of SlewTimeτ , RelRedτ ,371

SlewTimereal, and RelRedreal. for each combination372

of N , M and D, where the average is taken over the373

NumFeas instances for which a feasible solution was374

found. For example, for (Half, 50, 3), NumFeas is 8, in-375

dicating that Gurobi found a feasible schedule in only376

8 out of the 10 instances; consequently, the value of377

12.7 for SlewTimeτ is the average slew time over those378

8 feasible schedules. We show the average Runtime and379

RelRedreal values for different problem sizes in Figure 4.380

4. DISCUSSION381

We may draw a number of conclusions about the suit-382

ability of TTP-Global for the TTP from Table 1 and Fig-383

ure 4. Gurobi generally found a feasible schedule when384

the number of targets N ≤ 25. For N ≥ 50 targets, our385

ability to find a feasible solution depended sensitively on386

the number of slots. Gurobi found a feasible schedule387

for all ten instances when M = 1, for some when M = 3,388

and for none when M = 10.389

Not surprisingly, runtime was a strong function of N390

and M as can be clearly seen in Figure 4. For exam-391

ple, Gurobi found optimal solution for all (D,N,M) =392

(Full, 25, 1) experiments with an average Runtime of393

4.7 seconds. In contrast, the (Full, 25, 10) experiments394

found no optimal solutions in the 1800 second time limit.395

For the largest (Full, 100, 3) experiments, not even a fea-396

sible solution was found in the time limit. We find that397

the M = 1 case scales well into the realm of N = 100,398

solving even faster than the N = 50 case. While this399

goes against our initial intuition, we suspect this be-400

havior is the result of parameter tuning by Gurobi to401

accommodate larger models.402

When we do find a feasible schedule, it is significantly403

more efficient relative to the 2N baseline. For exam-404

ple, for the (D,N,M) = (Half, 50, 3) experiments, the405

average SlewTimereal is 22.4 minutes compared to the406

2N = 100 minute benchmark, a reduction of RelRedreal407

= 77.6%. For the (Full, 100, 1) set of instances, av-408

erage SlewTimereal is 36.1 minutes, which is a reduc-409

tion of 82.0% relative to the 2N = 200 minute bench-410

mark. We note that in all cases, SlewTimeτ is less than411

SlewTimereal. For example, for the same D = Full,412

N = 100, M = 1 set of instances, SlewTimeτ is a mere413

16.4 minutes, which is a reduction of RelRedτ = 91.8%414

relative to the 200 minute worst-case value. The differ-415

ence between RelRedreal and RelRedτ stems from our416

piece-wise slew approximation, i.e. the choice of M for417

each model.418

In the quarter night models, we find little improve-419

ment from using higher values of M , since the slews420

vary minimally with respect to time. For the longer du-421

rations, we see some benefit for higher M in the simpler422

N < 25 cases. For N ≥ 25, the higher M models be-423
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D N M NumFeas NumOptimal Runtime SlewTimeτ RelRedτ SlewTimereal RelRedreal

(s) (min) (%) (min) (%)

Quarter 5 1 10 10 0.0 4.1 59.1 5.3 47.0

Quarter 5 3 10 10 0.0 3.7 63.3 5.3 47.0

Quarter 5 10 10 10 0.1 3.5 64.5 5.1 48.7

Quarter 10 1 10 10 0.0 5.8 70.9 8.2 58.8

Quarter 10 3 10 10 0.3 5.4 73.2 8.1 59.4

Quarter 10 10 10 10 2.1 5.3 73.7 7.7 61.4

Quarter 25 1 10 10 0.5 8.1 83.8 13.0 74.0

Quarter 25 3 10 9 217.7 7.8 84.4 11.3 77.5

Quarter 25 10 8 3 1625.2 9.6 80.8 13.7 72.7

Half 5 1 10 10 0.0 4.9 50.8 7.5 25.4

Half 5 3 10 10 0.0 4.7 53.2 6.3 36.8

Half 5 10 10 10 0.1 4.4 55.5 6.3 37.1

Half 10 1 10 10 0.1 6.5 67.3 12.5 37.6

Half 10 3 10 10 0.5 5.8 70.8 9.8 51.1

Half 10 10 10 10 3.5 5.5 72.4 8.5 57.4

Half 25 1 10 10 9.7 9.2 81.5 15.5 69.0

Half 25 3 10 8 776.8 8.5 83.0 15.2 69.6

Half 25 10 8 0 1800.0 12.7 74.6 20.5 59.1

Half 50 1 10 5 954.7 12.1 87.9 22.8 77.2

Half 50 3 8 0 1800.0 12.7 87.3 22.4 77.6

Half 50 10 0 0 1800.1 – – – –

Full 5 1 9 9 0.0 6.0 39.7 6.8 31.7

Full 5 3 9 9 0.0 5.3 47.0 7.3 27.0

Full 5 10 9 9 0.0 5.3 47.3 7.0 29.5

Full 10 1 9 9 0.1 8.3 58.6 13.1 34.6

Full 10 3 9 9 0.6 7.4 62.8 8.6 56.8

Full 10 10 9 9 1.6 6.5 67.6 8.9 55.3

Full 25 1 10 10 4.7 10.4 79.1 19.9 60.2

Full 25 3 10 5 1379.4 9.6 80.7 16.7 66.6

Full 25 10 10 0 1800.0 12.3 75.3 19.1 61.8

Full 50 1 10 7 1009.6 13.2 86.8 24.5 75.5

Full 50 3 3 0 1800.0 18.8 81.2 27.6 72.4

Full 50 10 0 0 1800.0 – – – –

Full 100 1 10 8 619.8 16.4 91.8 36.1 82.0

Full 100 3 0 0 1800.1 – – – –

Full 100 10 0 0 1800.0 – – – –

Table 1. Computational results of TTP-Global for different values of D, N and M . Note: “–” indicates that the metric could
not be calculated due to Gurobi not being able to obtain a feasible schedule for any of the ten instances. For D = Full, N = 5
and D = Full, N = 10, one instance was determined to be infeasible. The goal of our experiment is to devise target lists and
exposure times that are feasible in the limit of large N, however for small N this is not strictly guaranteed.

come too complex to be solved to optimality in the time424

limit (leaving better slews in question), but the M = 1425

models continue to demonstrate extremely efficient slews426

despite the higher expected variability.427

In most cases, increasing the value of M did not428

demonstrate a significant advantage over the static mod-429

els. For the high N models, the optimizer was often not430

able to construct a feasible solution for M > 1. For431

scheduling full nights of observations, the M = 1 case432

demonstrates dramatic improvement in slew times by433

up to a factor of 5, and increasing M provides more434

computational complexity than can be handled by our435

global algorithm in the time limit. For most cases, we436
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Figure 4. Top row: average value of Runtime for TTP-Global when scheduling each duration type D, with varying values of M .
In the quarter night case, TTP-Global can schedule all 25 observations for M < 10, but struggles to reach optimality at M = 10.
In the half night case, only the M = 1 model achieves optimality for N = 50. For the full night, TTP-Global handles N = 100
far better than expected for the static case in comparison to N = 50. Bottom row: average relative improvement RelRedreal for
each value of D across the model types. For all D and the respective maximum values of N , TTP-Global can reliably reduce
slews by around a factor of 5. For small N , there is some benefit to using M > 1. For larger models, the risk of long slews in
the M = 1 case has little impact on RelRedreal.

would recommend M = 1 be the standard due to its437

exceptionally fast runtime.438

In our numerical experiments we attempted to solve439

TTP-Global to a provably optimal solution by branch-440

and-bound. For large numbers of targets or finely dis-441

cretized slew tensors this approach may not be compu-442

tationally tractable. We note that many heuristic so-443

lutions to the TSP have been developed that achieve444

near-optimal solutions. We suspect that analogous high-445

quality heuristic solutions exist for the TTP, which may446

be equipped to solve the M > 1 models for much higher447

N . We develop one such procedure in the Appendix for448

comparison with our global solution.449

5. CONCLUSIONS450

In this work, we addressed the challenge of deter-451

mining the most efficient ordering of a set of exposures452

at a telescope. We formulated the Traveling Telescope453

Problem (TTP) as a mixed-integer linear program TTP-454

Global and solved it using a standard commercial opti-455

mizer for problem sizes as large as 100 targets in ∼ 10456

minutes using modest computational resources. The457

speed of TTP-Global means it can be run dynamically458

throughout the night and respond to real-time changes459

in target accessibility from weather. Further work is460

needed to develop algorithms that can solve the TTP461

for substantially larger sets of targets or substantially462

finer time-resolution in slew overheads. Local searches463

initialized with an heuristic solution may prove fruitful.464

We hope that algorithms like the one described here465

can assist or automate scheduling, save human effort466

and increase the scientific productivity of astronomical467

surveys.468
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APPENDIX478

A. VARIABLES479

Table 2 lists the variables used in all preceding sections of this paper, along with their first usage:480

Table 2. Symbols Used

Symbol Definition Section

C Small normalization constant used in objective function. Ensures the scheduling of additional obser-
vations is prioritized

2.5

i, j, k Indices for arbitrary nodes 2.2

m Index for an arbitrary time slot 2.2

M The number of time slots where slews are assumed constant. 2.2

N The number of celestial targets assigned to the TTP 2.2

tei The earliest time value at which the node i can be departed based on observability constraints 2.2

tℓi The latest time value at which the node i can be departed based on observability constraints 2.2

ti A continuous variable indicating the time value of the departure from node i 2.3

wm The time value at which the slot m begins 2.2

Xijm A binary decision variable indicating the flow state between nodes i, j during the time slot m. Holds
1 if a slew takes place, and 0 otherwise

2.3

Yi A binary decision variable that indicates the visitation of the node i. Holds 1 if the node is visited,
and 0 otherwise

2.3

τ exp
i The exposure duration of the target node i 2.2

τ slew
ijm Travel time between the nodes i, j during the time slot m 2.2

B. VARIANTS OF THE TRAVELLING TELESCOPE PROBLEM481

B.1. Consecutive Targeting482

One may require two exposures i and i′ be scheduled back-to-back, such as a science observation and a calibration483

observation. Such linked observations may be specified via two additional constraints:484

Yi + Yi′ =2

(
M−1∑
m=0

Xii′m +

M−1∑
m=0

Xi′im

)
(B1)485

Yi =Yi′ . (B2)486
487

The first constraint ensures that if both observations take place, the directed tour must pass directly from i to i′ or488

vice versa. The second constraint ensures both observations or neither observation occur.489

B.2. Intra-Night Spacing Requirements490

One may wish to enforce a minimum interval between two exposures. A common example occurs in time-series mon-491

itoring where multiple observations of the same target occur during the same night, subject to a minimum separation.492

We accomplish this by letting N correspond to the total number of exposures to be collected across all targets. For493
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simplicity let us assign exposure indices such that exposures of the same target occur consecutively in the total exposure494

list {1, . . . , N}. That is, if the target requires nexp individual exposures, the node indices {κ, κ+ 1, . . . , κ+ nexp − 1}495

correspond to that target for some value κ.496

With the repeat observations specified, we enforce a minimum interval via the following constraint:497

N+1∑
j=1

M−1∑
m=0

tijm ≥
N+1∑
j=1

M−1∑
m=0

ti−1,j,m + Yiτ
sep, ∀ i = κ+ 1, . . . , κ+ nexp − 1 (B3)498

Subsequent exposures of a given target must not end until at least τ sep has passed since the previous exposure ended.499

For example, if the linked exposures of a target have index i = 5 and 6, exposure 6 may not end until at least τ sep has500

passed since exposure 5 ended.501
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C. LOCAL SEARCH HEURISTIC502

Here, we develop an alternative formulation to the TTP which uses a local search heuristic. We refer to this as503

TTP-LS to distinguish it from TTP-Global which searches the global solution space.504

C.1. Algorithm Description505

In the TTP, there are two sets of decisions that need to be made simultaneously. One is the sequence in which the506

targets will be visited. For example, with N = 5, we have to choose between 5 → 1 → 4 → 2 → 3, 1 → 3 → 2 → 4 → 5,507

and so on. The other set of decisions involves the timing slews. This involves deciding a (continuous) time ti within the508

observing duration D to slew and the corresponding slot m. Even with a fixed sequence exposures, this is a non-trival509

task. As a result, making both sets of decisions under the umbrella of a single MILP formulation is computationally510

demanding.511

This suggests an alternate approach to the TTP that decouples the sequence decision from the timing decision.

Suppose that the sequence of targets is fixed. When should the telescope slew in order to minimize slew times? Let σ

denote the sequence of targets, which is a bijective function σ : {1, . . . , N} → {1, . . . , N}, and let the minimum total

slew time be denoted by the function F , so that F (σ) is the minimum total slew time that one would obtain from

following the sequence σ. Let Σ denote the set of all such sequences. For example, for N = 5 targets and the sequence

5 → 1 → 4 → 2 → 3, the corresponding σ is

σ(1) = 5

σ(2) = 1

σ(3) = 4

σ(4) = 2

σ(5) = 3

The TTP can then be abstractly formulated as

min
σ∈Σ

F (σ),

which is an optimization problem over sequences in Σ. As written, this is not a problem that can be readily provided

to any commercial solver, but because of the discrete nature of Σ, it can potentially be solved using local search. Let

z ∈ {1, . . . , N} and z′ ∈ {1, . . . , z − 1, z + 1, . . . , N} be positions in the sequence, and let σz↔z′
denote the sequence

obtained by swapping the targets in positions z and z′; that is, σz↔z′
is the unique sequence such that

σ(z) = σz↔z′
(z′),

σ(z′) = σz↔z′
(z),

σ(z′′) = σz↔z′
(z′′) ∀z′′ ∈ {1, . . . , N} \ {z, z′}.

Let Nz(σ) denote the set of neighboring sequences of σ obtained by swapping the target at position z with a target

at any other position:

Nz(σ) =

{
σ′ ∈ Σ

σ′ = σz↔z′

for some z′ ∈ {1, . . . , z − 1, z + 1, . . . , N}

}
With this definition, our local search algorithm can be formally described as Algorithm 1.512

In words, we begin from some initial sequence σ. We use U to denote the set of sequence positions which have513

not yet tried to modify. As long as there is at least one sequence position we have not tried to change, we pick a514

sequence position z, and calculate the best neighboring sequence σ∗ obtained by swapping the target at position z515

with the target at any other position. If the objective value F ′ of the best neighboring sequence improves on the516

current objective value F (σ), we replace σ with σ∗, and we reset U to be the set of all positions. Otherwise, if we do517

not make improvement in an iteration of the while loop, then U will be reduced by one member. If N such iterations518

occur, then U will be empty, and we will have ascertained that there is no neighboring sequence we can move to in519

order to reduce the objective value; in other words, σ is a locally optimal sequence. We note that this heuristic is520

similar to the 2-OPT heuristic (Croes 1958) for the classical TSP problem, which involves eliminating two edges in a521
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Algorithm 1 Pseudocode of local search procedure.

Require: Initial sequence σ ∈ Σ.
1: Set U ← {1, . . . , N}.
2: while |U| > 0 do
3: Select z ∈ U ; set U ← U \ {z}
4: Set σ∗ ← argminσ′∈Nz(σ) F (σ′)
5: Set F ′ ← minσ′∈Nz(σ) F (σ′)
6: if F ′ < F (σ) then
7: Set σ ← σ∗,
8: Set U ← {1, . . . , z − 1, z + 1, . . . , N}
9: end if

10: end while
11: return Locally optimal sequence σ

TSP tour and reconnecting the tour so that the edges are swapped. The main difference comes from the function F ,522

which calculates the minimum total slew time when one assigns the targets in the sequence to slots optimally.523

Before this algorithm can be deployed, we must specify how to compute F (σ). The function value F (σ) for a fixed524

sequence σ can be calculated by solving a MILP. While this MILP shares some similarities with the TTP problem525

described in Section 2, it is a simpler because target sequence is fixed and “baked in” to the optimization problem.526

This smaller MILP is a subroutine in Algorithm 1. We provide further details on this integer program in Section C.2.527

We must also consider sequences of targets that are infeasible. In some cases, for a fixed sequence σ of targets, it may528

not be possible to make the timing decisions and the slot decisions in way that respects the accessibility windows and529

slot bounds. In such cases, the MILP that defines the function F (·) will be infeasible. We can extend the definition of530

F (·) so that F (σ) = +∞ if the corresponding MILP is infeasible for sequence σ; since Algorithm 1 is always choosing531

the neighboring sequence with the lowest value of F , this ensures that Algorithm 1 will never replace the current532

sequence with one that is infeasible.533

However, even with this fix, one problem that still remains is if the initial sequence σ and all neighboring sequences534

of that initial sequence are infeasible. In this case, Algorithm 1 will not return a feasible sequence, as it will simply535

terminate with the current sequence. This is a serious issue, because it is not straightforward to identify a sequence536

of targets for which the TTP problem constraints can be perfectly satisfied. In Section C.3, we present a feasibility537

heuristic for identifying such a sequence.538

C.2. Calculating Minimum Total Slew Time for a Fixed Sequence of Targets539

As noted in the previous section, a key component of Algorithm 1 is the function F , which maps a sequence σ to a540

minimum slew time F (σ). We use z to denote the index of a position in this sequence σ. For targets, z will range in541

{1, 2, . . . , N}. With a slight abuse of notation, we will use z = 0 to denote the start node of the telescope, and assume542

that σ(0) = 0; similarly σ(N + 1) = N + 1 at the final node. Thus, z can take any value in {0, 1, . . . , N + 1}.543

Let Y at
z,m be a binary decision variable that is 1 if the telescope departs the target at position z ∈ {0, 1, . . . , N + 1}

in the sequence in slot m, and 0 otherwise. Let Y by
z,m be a binary decision variable that is 1 if the telescope reaches slot

m by position z ∈ {0, 1, . . . , N +1} in the sequence and 0 otherwise. Let tz denote the departure time of the telescope

from the node at position z. The function F is obtained by solving the following MILP:

minimize

N∑
z=1

M−1∑
m=0

τ slewσ(z),σ(z+1),mY at
z,m (C4a)

subject to Y by
0,0 = 1, (C4b)

Y by
z,m ≤ Y by

z+1,m, ∀ z = 0, 1, . . . , N, m = 0, 1, . . . ,M − 1, (C4c)

Y by
z,m+1 ≤ Y by

z,m, ∀ z = 0, 1, . . . , N + 1, m = 0, 1, . . . ,M − 2, (C4d)

Y at
z,m = Y by

z,m − Y by
z,m+1, ∀ z = 0, 1, . . . , N + 1, m = 0, 1, . . . ,M − 2, (C4e)

Y at
z,M−1 = Y by

z,M−1, ∀ z = 0, 1, . . . , N + 1, (C4f)

tz ≥ tz−1 +

M−1∑
m=0

τ slewσ(z−1),σ(z),m · Y at
z−1,m + τ expσ(z), ∀z = 1, 2, . . . , N + 1, (C4g)
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tz ≥
M−1∑
m=0

wm · Y at
z,m, ∀z = 0, 1, . . . , N + 1, (C4h)

tz ≤
M−1∑
m=0

wm+1 · Y at
z,m, ∀z = 0, 1, . . . , N + 1, (C4i)

tz ≥ teσ(z), ∀ z = 0, 1, . . . , N + 1, (C4j)

tz ≤ tℓσ(z), ∀ z = 0, 1, . . . , N + 1, (C4k)

Y by
z,m ∈ {0, 1}, ∀ z = 0, 1, . . . , N + 1, m = 0, 1, . . . ,M − 1, (C4l)

Y at
z,m ∈ {0, 1}, ∀ z = 0, 1, . . . , N + 1, m = 0, 1, . . . ,M − 1. (C4m)

In order of appearance, the constraints have the following meaning. Constraint (C4c) requires that if we have reached544

slot m by position z, then it must be the case that we have reached slot m by position z+1. Constraint (C4d) requires545

that if we have reached slot m+1 by position z, then we must have reached slot m by position z. Constraints (C4e) and546

(C4f) link the Y by and Y at variables; constraint (C4e) means that we are in slot m at position z if and only if we have547

reached slot m by position z (Y by
z,m = 1) and have not reached slot m+1 by position z (Y by

z,m+1 = 0). Constraint (C4f)548

similarly requires that we are in slot M − 1 at position z if and only if we have reached slot M − 1 by position z.549

Constraint (C4g) requires that the departure time from the target in position z is at least the slew time that is realized550

departing from the target in slot z− 1 plus the exposure time of the target in position z. Constraints (C4h) and (C4i)551

ensure that the departure time of each position z is within the lower and upper bounds of that position’s assigned slot,552

while constraints (C4j) and (C4k) ensure that the departure time from each position z ∈ {1, . . . , N} is within the rise553

and set times for the target in that position (teσ(z) and tℓσ(z) respectively). The last two constraints enforce that the554

Y at and Y by variables are binary.555

The MILP problem (C4) is essentially the TTP problem of Section 2, restricted to a particular sequence σ. Essentially,556

this formulation decides when each target’s departure time will be and to what slots the different positions in the557

sequence will be allocated. Importantly, the sequence of targets is not a decision variable as it is in the original TTP558

model; it is a fixed input that is provided by the user.559

Many of the constraints are direct analogs of constraints that appear in the TTP-Global formulation. For example,560

(C4j) and (C4k) model the rise and set time constraints for each target in each position, mirroring constraint (9) of561

the TTP MILP. As another example, (C4i) and (C4h) model the lower and upper bounds of each slot, similarly to562

constraint (8). Note that because the sequence of targets is fixed, many of the constraints from the full TTP MILP563

can be simplified, and other decisions, such as the departure times and in which slot each target is being departed564

from, can be expressed more efficiently using different decision variables. Specifically, the decision of which slot each565

position is assigned to is captured by the Y by
z,m decision variables. Here, we remark that these variables are an example566

of the incremental encoding technique in integer programming, which enhances the efficiency of branching in the567

branch-and-bound algorithm that is the cornerstone of integer programming solvers. We refer interested readers to the568

review paper of Vielma (2015), and to Bertsimas et al. (2011), Bertsimas et al. (2019) and Mǐsić (2020) for examples569

of applications of this technique in air traffic control, vehicle routing and optimization over trained machine learning570

models.571

As a result, problem (C4) is much easier to solve than the full TTP MILP. We found that that Gurobi could572

determine the exact optimal solution to this problem in under a second with a single thread.573

C.3. Feasibility Algorithm574

The local search approach described above may fail if it initialized at an infeasible sequence whose neighbors are575

also all infeasible. In order for Algorithm 1 to return a sequence that can be implemented, the initial sequence must576

be one for which the minimum slew problem (C4) is feasible. Given the combinatorical complexity of the TTP, it is577

unlikely that one would randomly select a target sequence that would result in problem (C4) being feasible.578

Thus motivated, we present in this section an algorithm that, starting from any sequence, seeks to return a feasible579

sequence. We note that this algorithm is a heuristic, and is not guaranteed to succeed. Nevertheless, our numerical580

results in Section C.4 indicate that this heuristic is generally very effective.581

At a very high level, the algorithm we will propose resembles our local search procedure, Algorithm 1, in that it582

starts from a sequence σ and makes moves to neighboring sequences. The key difference is the objective function583
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that is used. Instead of using the function F , the feasibility algorithm first seeks to locally optimize a function G1,584

followed by a function G2. The function G1(σ) measures, for the sequence σ, the smallest violation of the slot window585

constraints (C4h) and (C4i) that can be attained when we choose the departure times and the slots to which each586

target is assigned to. This violation is a nonnegative quantity; a positive value implies that we are unable to satisfy all587

of the constraints, i.e., at least one constraint in constraint sets (C4h) and (C4i) is violated. A value of zero implies588

that all of the constraints in the two constraint sets are satisfied. The function G2(σ) similarly measures the smallest589

possible violation of the visibility constraints (C4j) and (C4k) when we choose the departure times and the slots.590

Again, a positive value implies that at least one constraint in the constraint sets (C4j) and (C4k) is violated, while a591

value of zero implies we can satisfy all of the constraints defined by (C4j) and (C4k).592

G1 is defined by the following MILP:

minimize

N+1∑
z=0

ϵslot,ez +

N+1∑
z=0

ϵslot,ℓz (C5a)

subject to Y by
0,0 = 1, (C5b)

Y by
z,m ≤ Y by

z+1,m, ∀ z = 0, 1, . . . , N, m = 0, 1, . . . ,M − 1, (C5c)

Y by
z,m+1 ≤ Y by

z,m, ∀ z = 0, 1, . . . , N + 1, m = 0, 1, . . . ,M − 2, (C5d)

(C5e)

Y at
z,m = Y by

z,m − Y by
z,m+1, ∀ z = 0, 1, . . . , N + 1, m = 0, 1, . . . ,M − 2, (C5f)

Y at
z,M−1 = Y by

z,M−1, ∀ z = 0, 1, . . . , N + 1, (C5g)

tz ≥ tz−1 +

M−1∑
m=0

τ slewσ(z−1),σ(z),m · Y at
z−1,m + τ expσ(z), ∀z = 1, 2, . . . , N + 1, (C5h)

tz ≥
M−1∑
m=0

wm · Y at
z,m − ϵslot,ez , ∀z = 0, 1, . . . , N + 1, (C5i)

tz ≤
M−1∑
m=0

wm+1 · Y at
z,m + ϵslot,ℓz , ∀z = 0, 1, . . . , N + 1, (C5j)

tz ≥ teσ(z) − ϵez, ∀ z = 0, 1, . . . , N + 1, (C5k)

tz ≤ tℓσ(z) + ϵℓz, ∀ z = 0, 1, . . . , N + 1, (C5l)

Y by
z,m ∈ {0, 1}, ∀ z = 0, 1, . . . , N + 1, m = 0, 1, . . . ,M − 1, (C5m)

Y at
z,m ∈ {0, 1}, ∀ z = 0, 1, . . . , N + 1, m = 0, 1, . . . ,M − 1, (C5n)

ϵez, ϵ
ℓ
z, ϵ

slot,ℓ
z , ϵslot,ez ≥ 0, ∀z = 0, 1, . . . , N + 1. (C5o)

Observe that this integer program is similar to the minimum slew problem (C4), except that we now allow for593

violations of the constraints (C4h), (C4i), (C4j) and (C4k). The main modifications are as follows. First, observe that594

in addition to the decision variables of problem (C4), problem (C5) includes the decision variables ϵez, ϵ
ℓ
z, ϵ

slot,ℓ
z , ϵslot,ez ,595

which measure how much the rise, set, slot upper bound and slot lower bound constraints can be violated in time.596

Second, observe that constraints (C5i) - (C5l) resemble constraints (C4h) - (C4k), except that the new597

ϵez, ϵ
ℓ
z, ϵ

slot,ℓ
z , ϵslot,ez appear. These new decision variables are bounded from below by zero and unbounded from598

above, so they effectively allow the optimizer to choose to not satisfy these constraints. For example, in the con-599

straint tz ≤ tℓσ(z) + ϵℓz, for whatever value of tz we choose, we can always make the constraint satisfied by setting ϵℓz600

to be equal to any value greater than max{0, tz − tℓσ(z)}; as a concrete example, if tz = 120 and tℓσ(z) = 80, then any601

ϵℓz ≥ max{120− 80, 0} = 40 will satisfy the constraint.602

Lastly, observe that the objective function is equal to the sum of the ϵslot,ℓz and ϵslot,ez variables. Thus, the optimizer603

seeks to find the assignments of sequence positions to slots and the departure times so as to minimize how much604

the slot lower and upper bound constraints from problem (C4) are violated. Observe that if the optimal objective605

value of problem (C5) is zero, then we have found a partially feasible solution to problem (C4) that satisfies all of606

the constraints, and in particular constraints (C4h) and (C4i), with the possible exception of the rise and set time607
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constraints (C4j) and (C4k). Importantly, note that no matter what sequence σ one chooses, problem (C5) is always608

feasible.609

We now define the function G2. The function G2 is defined as the objective value of the following integer program,

which is

minimize

N+1∑
z=0

ϵez +

N+1∑
z=0

ϵℓz (C6a)

subject to constraints (C5b) - (C5o), (C6b)

ϵslot,ez = 0, ∀z = {0, 1, . . . , N + 1}, (C6c)

ϵslot,ℓz = 0, ∀z = {0, 1, . . . , N + 1}. (C6d)

Problem (C6) has the same structure as problem (C5), except that we force the violation variables ϵslot,ez and ϵslot,ℓz610

to zero; thus, we no longer allow for violations of the slot bound constraints (C4h) and (C4i). We do still allow for611

violations of the rise and set time constraints (C4j) and (C4k). The objective function measures how much the rise612

and set time constraints are violated. Observe that if the objective value of problem (C6) is zero, then we have exactly613

verified that the minimum slew time MILP (C4) is feasible.614

With problems (C5) and (C6) defined, we can now define the feasibility algorithm, which we provide in Algorithm 2.615

This algorithm works by first performing local search using the function G1. If the local optimum is such that the616

value of G1 is positive, then the algorithm terminates and returns that the problem is infeasible. Otherwise, if the617

value of G1 is zero, then we continue to the next phase, in which we perform local search using the function G2. If618

the local optimum of G2 is positive, then the algorithm again terminates and returns that the problem is infeasible.619

Otherwise, if the value of G2 is zero, then we have identified a feasible sequence. Note that Algorithm 2 is a heuristic620

and does not provably verify that problem (C4) is infeasible. If it returns “Problem is infeasible”, it may not be the621

case that the minimum slew problem is actually infeasible.622

C.4. Computational results for local search heuristic623

We now present our results on our heuristic approach described above. We tested our approach on the same collection624

of 360 experiments described in Section 3.2, and compute the same result metrics. We tested two variants of our local625

search procedure:626

• TTP-LS-1: Here, we execute our overall algorithm from a single random starting point, which we obtain by627

drawing a sequence σ uniformly at random from all possible N ! sequences.628

• TTP-LS-10: In the second variant, we execute our overall algorithm from ten randomly generating starting629

points, each of which is a uniformly randomly generated sequence, and retain the best solution obtained over630

the ten repetitions.631

With both TTP-LS-1 and TTP-LS-10, we impose a time limit of 600 seconds on the total run time. In the most extreme632

case, TTP-LS-1 will require 600 seconds, while TTP-LS-10 will require 600 × 10 = 6000 seconds. In both variants,633

the functions G1 and G2 (see Appendix C.3) and F (see Appendix C.2) are computed by solving the corresponding634

MILPs using Gurobi with a single thread. We again implement our procedure in Python and run our experiments on635

the same Amazon EC2 instance described in Section 3.2.636

Table 3 summarizes the results for TTP-LS-1 and Figure 5 shows run time and slew efficiency for different problem637

sizes. TTP-LS-1 exhibits favorable performance in terms of computation time; in most cases, TTP-LS-1 terminates with638

a locally optimal solution within 600 seconds. The only exception is the (D,N,M) = (Full, 100, 10) set of instances.639

Note that TTP-LS-1 resulted in a feasible schedule in all but seven of the 360 instances; importantly, TTP-LS-1 finds a640

feasible schedule in all of the instances for parameter combinations for which the TTP-Global MILP fails (for example,641

for (Full, 100, 10), TTP-LS-1 produces a feasible schedule in all ten instances in 600 seconds, whereas TTP-Global fails642

to find a feasible schedule in all ten instances with 1800 seconds of computation. Of those seven instances in which643

TTP-LS-1 did not find a feasible schedule, six are the same instances which were determined to be infeasible by TTP-644

Global, and in one instance, the feasibility procedure (Algorithm 2) failed to identify a feasible solution, despite the645

fact that the instance does admit a feasible solution based on running TTP-Global. Lastly, in terms of solution quality,646

the total slew time, as measured by SlewTimeτ and SlewTimereal, compares favorably to the worst-case bound of 2N .647
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Algorithm 2 Pseudocode of feasibility procedure.

Require: Initial sequence σ ∈ Σ.
1: {Phase 1: Minimization of G1 (violation of slot lower and upper bound constraints)}
2: Set U ← {1, . . . , N}.
3: while |U| > 0 do
4: Select z ∈ U ; set U ← U \ {z}.
5: Calculate σ∗ ← argminσ′∈Nz(σ) G1(σ

′).
6: Calculate G′

1 ← minσ′∈Nz(σ) G1(σ
′).

7: if G′
1 < G1(σ) then

8: Set σ ← σ∗.
9: Set U ← {1, . . . , z − 1, z + 1, . . . , N}.

10: end if
11: end while
12: if G1(σ) > 0 then
13: return Problem is infeasible.
14: else
15: {Phase 2: Minimization of G2 (violation of rise and set time constraints)}
16: Set U ← {1, . . . , N}.
17: while |U| > 0 do
18: Select z ∈ U ; set U ← U \ {z}.
19: Calculate σ∗ ← argminσ′∈Nz(σ) G2(σ

′).
20: Calculate G′

2 ← minσ′∈Nz(σ) G2(σ
′).

21: if G′
2 < G2(σ) then

22: Set σ ← σ∗.
23: Set U ← {1, . . . , z − 1, z + 1, . . . , N}.
24: end if
25: end while
26: if G2(σ) > 0 then
27: return Problem is infeasible.
28: else
29: return Feasible sequence σ.
30: end if
31: end if

In the most significant case, with N = 100 targets, TTP-LS-1 obtains schedules with total slew times that achieve a648

reduction of approximately 80% relative to the 2N bound.649

Table 4 and Figure 5 presents analogous results for TTP-LS-10.650

We found that the TTP-LS-10 schedules were signficantly more efficient than the TTP-LS-1 schedules. For example,651

for (Full, 100, 1), SlewTimeτ is 32.6 min for TTP-LS-10, compared to 43.7 min for TTP-LS-1.652

In cases where the TTP-Global returned an optimal schedule, this schedule was often much more efficient than653

TTP-LS-10 and TTP-LS-1. For example, for (Full, 50, 1), the TTP-Global MILP was solved to full optimality in seven654

out of ten instances, and the average SlewTimeτ was 13.2 min, compared to 27.6 min for TTP-LS-1 and 19.9 min for655

TTP-LS-10. TTP-LS-10 and TTP-LS-1 do not guarantee a globally optimal solution, but gap between local and global656

optima suggests additional work on heuristic solutions could prove fruitful.657

On the other hand, in cases where the TTP-Global MILP does not terminate with an optimal solution, it is possible658

for the local search solution to perform better. For example, for the (D,N,M) = (Half, 25, 10) experiments, the TTP-659

LS-10 solution has an average SlewTimeτ of 10.8 min compared to 12.7 min for TTP-Global. Lastly, the computation660

time for TTP-LS-10 is roughly ten times that of TTP-LS-1, as one would expect. However, we note that the ten661

repetitions are independent, and could be carried out in parallel. This could be attractive from an implementation662

standpoint, as both TTP-LS-1 and TTP-LS-10 were executed with a single-thread, so one could easily execute the local663

search procedure from multiple starting points in parallel within a multi-threaded computing environment.664

There are several key takeaways from Figure 5 when D = Full. Adopting static target-to-target slew overheads665

(M = 1), we find TTP-Global solves the schedule for N up to 100 in most runs. TTP-Global produces the highest666

RelRedreal improvement of above 80% for the N = 100 case. For smaller cases of N , it sees some benefit from higher667

values of M , but cannot find feasible solutions in the time limit for large N . The local solvers TTP-LS-1 and TTP-LS-10668

scale exponentially with N , and find local optima for all N in their expected time limits. RelRedreal benefits from669
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Figure 5. Runtime and RelRedreal for each duration type D, as found in Tables 1, 3, and 4. The first two rows summarize
these statistics for the D = Quarter simulations, the next two for D = Half, and the bottom two for D = Full. The top row in
each pair shows the average Runtime (and optimal subset, for TTP-Global) across all runs for D with varying M as a function
of N . The bottom row in each pair shows the average RelRedreal for the same values of D and M .
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D N M NumFeas Runtime SlewTimeτ RelRedτ SlewTimereal RelRedreal

(s) (min) (%) (min) (%)

Quarter 5 1 10 0.0 4.3 57.1 6.1 38.6

Quarter 5 3 10 0.0 4.4 56.3 5.9 40.7

Quarter 5 10 10 0.1 4.1 58.7 5.8 41.8

Quarter 10 1 10 0.1 7.7 61.3 11.1 44.6

Quarter 10 3 10 0.1 7.3 63.6 10.7 46.5

Quarter 10 10 10 0.6 7.1 64.7 10.7 46.6

Quarter 25 1 10 1.5 14.3 71.5 19.4 61.2

Quarter 25 3 10 3.5 13.7 72.5 20.8 58.4

Quarter 25 10 10 24.3 13.9 72.2 21.7 56.7

Half 5 1 10 0.0 5.4 45.9 6.8 32.4

Half 5 3 10 0.0 4.8 51.8 5.9 40.7

Half 5 10 10 0.1 4.6 53.6 6.0 40.4

Half 10 1 10 0.1 7.9 60.6 13.2 33.8

Half 10 3 10 0.1 7.7 61.5 11.8 40.8

Half 10 10 10 0.4 7.2 64.0 11.8 41.0

Half 25 1 10 1.1 15.9 68.3 22.6 54.9

Half 25 3 10 2.7 13.1 73.8 21.7 56.6

Half 25 10 10 11.1 13.4 73.2 20.8 58.4

Half 50 1 10 11.8 23.1 76.9 36.9 63.1

Half 50 3 10 30.4 20.3 79.7 35.5 64.5

Half 50 10 10 167.4 22.5 77.5 35.0 65.0

Full 5 1 9 0.0 6.2 37.6 6.6 34.4

Full 5 3 9 0.0 5.7 43.1 7.2 27.5

Full 5 10 9 0.0 5.5 44.6 7.0 30.0

Full 10 1 8 0.1 10.0 49.9 16.4 17.9

Full 10 3 9 0.1 9.5 52.6 11.7 41.5

Full 10 10 9 0.5 8.5 57.4 11.3 43.5

Full 25 1 10 1.2 17.5 65.0 27.7 44.7

Full 25 3 10 2.2 17.0 66.0 23.5 53.0

Full 25 10 10 6.8 14.4 71.2 20.3 59.5

Full 50 1 10 11.3 27.6 72.4 41.9 58.1

Full 50 3 10 23.1 23.2 76.8 34.7 65.3

Full 50 10 10 76.2 23.3 76.7 33.9 66.1

Full 100 1 10 98.7 43.7 78.2 63.6 68.2

Full 100 3 10 321.6 37.0 81.5 63.9 68.0

Full 100 10 10 602.0 38.7 80.6 62.6 68.7

Table 3. Computational results for TTP-LS-1 procedure.

higher M for moderate values of N , but also has diminishing returns for N = 100, and a lower ceiling compared to670

the global solution. Local search is equipped to find feasible solutions to larger models, but struggles to find solutions671

near the global optimum at high N , regardless of the value of M .672
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D N M NumFeas Runtime SlewTimeτ RelRedτ SlewTimereal RelRedreal

(s) (min) (%) (min) (%)

Quarter 5 1 10 0.1 4.1 59.1 6.0 39.6

Quarter 5 3 10 0.2 3.7 63.3 5.3 47.2

Quarter 5 10 10 0.5 3.5 64.5 5.1 48.9

Quarter 10 1 10 0.8 5.8 70.9 9.3 53.7

Quarter 10 3 10 1.3 5.8 71.2 9.0 55.0

Quarter 10 10 10 5.2 5.5 72.6 8.8 55.9

Quarter 25 1 10 13.2 10.2 79.7 16.7 66.7

Quarter 25 3 10 36.1 9.9 80.2 16.3 67.5

Quarter 25 10 10 214.4 9.6 80.8 14.8 70.3

Half 5 1 10 0.1 4.9 50.8 7.4 25.8

Half 5 3 10 0.2 4.7 53.2 6.8 32.1

Half 5 10 10 0.5 4.4 55.5 6.3 37.1

Half 10 1 10 0.8 6.6 67.2 11.8 41.1

Half 10 3 10 1.3 6.0 70.1 9.5 52.6

Half 10 10 10 4.4 5.8 71.0 9.7 51.7

Half 25 1 10 12.1 11.2 77.7 19.8 60.3

Half 25 3 10 26.0 10.8 78.4 18.5 63.0

Half 25 10 10 118.6 10.8 78.5 18.8 62.4

Half 50 1 10 113.1 19.1 80.9 36.3 63.7

Half 50 3 10 330.3 16.7 83.3 30.0 70.0

Half 50 10 10 2003.9 17.0 83.0 26.8 73.2

Full 5 1 9 0.1 6.0 39.7 6.8 31.6

Full 5 3 9 0.2 5.3 47.0 7.3 27.1

Full 5 10 9 0.5 5.3 47.3 7.0 29.5

Full 10 1 9 0.9 8.8 56.2 13.3 33.3

Full 10 3 9 1.4 7.7 61.7 9.4 52.9

Full 10 10 9 4.5 6.5 67.5 9.5 52.4

Full 25 1 10 12.2 12.2 75.5 23.2 53.6

Full 25 3 10 22.3 12.1 75.9 20.0 60.1

Full 25 10 10 65.4 11.4 77.1 18.4 63.2

Full 50 1 10 109.2 19.9 80.1 33.0 67.0

Full 50 3 10 224.9 19.5 80.5 27.5 72.5

Full 50 10 10 842.0 17.9 82.1 26.8 73.2

Full 100 1 10 1052.1 32.6 83.7 58.8 70.6

Full 100 3 10 2852.0 29.8 85.1 54.1 72.9

Full 100 10 10 6025.6 32.3 83.8 55.3 72.4

Table 4. Computational results for TTP-LS-10 procedure.
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