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Abstract

Standard quadratic optimization problems (StQPs) provide a versatile modelling tool in various

applications. In this paper, we consider StQPs with a hard sparsity constraint, referred to as sparse

StQPs. We focus on various tractable convex relaxations of sparse StQPs arising from a mixed-

binary quadratic formulation, namely, the linear optimization relaxation given by the reformulation-

linearization technique, the Shor relaxation, and the relaxation resulting from their combination. We

establish several structural properties of these relaxations in relation to the corresponding relaxations

of StQPs without any sparsity constraints, and pay particular attention to the rank-one feasible

solutions retained by these relaxations. We then utilize these relations to establish several results

about the quality of the lower bounds arising from different relaxations. We also present several

conditions that ensure the exactness of each relaxation.

Keywords— Standard quadratic optimization problems, sparsity, mixed-integer quadratic optimization,

reformulation-linearization technique, Shor relaxation
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1 Introduction

The Standard Quadratic optimization Problem (StQP) consists of minimizing a quadratic form over the standard

simplex (all vectors with no negative coordinates that sum up to one).

Since no assumptions on the definiteness of quadratic form are made, this problem class is NP-hard. Indeed,

the maximum-clique problem can be reduced to (StQP) [16]. Therefore, we can view the class of StQP as the
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simplest of the hard problems: the simplest non-convex objective functions are generated by indefinite Hessians,

and the feasible set is the simplest bounded polyhedron (polytope) with a very obvious structure of faces comprised

of standard simplices in lower dimensions when some variables are fixed to zero.

Despite its simplicity, the class of StQPs provides a quite versatile modelling tool (see, e.g., [1]). Applications

are numerous, ranging from the famous Markowitz portfolio problem in finance, evolutionary game theory in eco-

nomics and quadratic resource allocation problems, through machine learning (background–foreground clustering

in image analysis), to the life sciences –— e.g., in population genetics (selection models) and ecology (replicator

dynamics).

StQPs appear also quite naturally as subproblems in copositive-conic relaxations of mixed-integer or combi-

natorial optimization problems of all sorts. Finally, using barycentric coordinates, every quadratic optimization

problem over a polytope with known (and not too many) vertices can be rephrased as an StQP.

The aforementioned structural simplicity does not preclude coexistence of an exponential number of (local

or global) solutions to some StQPs. Some of these solutions may be sparse (and will be so with high probability

in the average case, see below), others may have many positive coordinates. However, in important applications

like some variants of sparse portfolio optimization problems where one is interested in investments with a limited

number of assets (see, e.g., [15] and the references therein), sparsity of a solution must be enforced by an additional,

explicit hard constraint on the number of positive coordinates. Introducing this sparsity constraint can render

StQPs NP-hard even if the Hessian is positive-definite.

This paper deals with such problems and investigates the structural properties of tractable linear and semidef-

inite relaxations which scale well with the dimension.

2 Background, Motivation, and Layout of Contribution

In this section, we provide some background on standard quadratic optimization problems. We present our

motivation for studying the variant with a hard sparsity constraint. We introduce our notation and give an

outline of the paper.

2.1 The Combinatorial Nature of Standard Quadratic Optimization – Coex-

istence of Solutions and Role of Active Sets

The well-studied Standard Quadratic optimization Problem (StQP) is given by

ℓ(Q) := min
x∈Rn

{
x⊤Qx : x ∈ F

}
, (StQP)

where Q ∈ Sn is the problem data, x ∈ Rn is the decision variable, and F ⊂ Rn denotes the standard simplex

given by

F :=
{
x ∈ Rn : e⊤x = 1, x ≥ 0

}
, (1)

where e ∈ Rn denotes the vector of all ones.

There is an exponential number, namely 2n − 1, of faces of F , which form the “combinatorial” reason for NP-

hardness. Indeed, if the active set {i : x∗
i = 0} at the global solution x∗ is known exactly, locating the solution

(i.e., determining x∗ or a value-equivalent alternative with the same set of zero coordinates) reduces to solving

an n × n linear equation system. The same holds true for locating local solutions and even first-order critical
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(KKT) points. This phenomenon may be the reason why recently iterative first-order methods were proposed,

which can achieve identification of the correct active set in finite time [6].

For any instance of (StQP), not all faces of F can contain an isolated (local or global) solution in their relative

interior, as there is an upper bound on their cardinality given by Sperner’s theorem on the maximal antichain

(and Stirling’s asymptotics), namely (
n

⌊n
2
⌋

)
∼
√

2

πn
2n as n → ∞ . (2)

Scozzari and Tardella [18] show that solutions can occur only in the relative interior of a face restricted to which

the objective function is strictly convex. Nevertheless, recent research [7] has shown an exponential behavior

regarding the number of local (or global) solutions: in the worst case, an instance of (StQP) of order n can have

at least

(15120)n/4 ≈ (1.4933)n (3)

coexisting optimal solutions, a lower bound that currently seems to be the largest one known. The other bad news

is that rounding on the standard simplex is, from the asymptotic point of view, also not always successful [3]. In

spite of all this, (StQP) admits a polynomial-time approximation scheme (PTAS) [2].

2.2 Worst-case versus Average-Case Behavior – Expected Sparsity

All of the above observations refer to the worst case, of course. Several researchers turned to the average case,

modelled by randomly chosen instances. Already in 1988, Kingman [11] observed that very large polymorphisms

(i.e., solutions x∗ with more than C
√
n positive coordinates) are atypical. More recently, in a series of papers

Kontogiannis and Spirakis [12, 13, 14] looked at models with several independent and identically distributed (e.g.,

Gaussian or uniform) entries of Q ∈ Sn and proved, among other results, that the expected number of (local)

solutions does not grow faster than exp(0.138n) ≈ (1.148)n, way smaller than the worst-case lower bound in (3).

Based upon more recent research by Chen and coauthors [8, 9], under quite reasonable distributional assumptions

modeling the random average case, the probability that the global solution has more than 2 positive coordinates

(i.e., that it does not lie on an edge of F ) is asymptotically vanishing faster than

K
(logn)2

n
with n → ∞ ,

where K > 0 is a universal constant [7, Proposition 1].

2.3 StQPs with a Hard Sparsity Constraint

However, if the instances are somehow structured, we cannot rely on our “luck” that Q exhibits an average

behavior in the above sense, and still, we may prefer a sparse solution to (StQP). So, in pursuit of these sparse

solutions, we introduce the following variant under a cardinality constraint, referred to as the sparse StQP :

ℓρ(Q) := min
x∈Rn

{
x⊤Qx : x ∈ Fρ

}
,

where

Fρ := {x ∈ F : ∥x∥0 ≤ ρ} . (4)

Here, ∥x∥0 denotes the number of nonzero components of a vector x and ρ ∈ {1, . . . , n} is the sparsity parameter.
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The elements of Fρ will be referred to as ρ-sparse. When ρ is fixed independently of n, Fρ is the union of

O(nρ) faces of F , a number polynomial in n. In each of these faces, due to (2), at most
(

ρ
⌊ ρ
2
⌋

)
local solutions to (4)

can coexist, so we end up with a polynomial set of candidates which makes problem (4) solvable in polynomial

time, again for universally fixed ρ. However, if ρ may increase with n, e.g. ρ = ⌊n
2
⌋, or even ρ = n, the above

observations show that the sparse StQP is NP-hard even when Q is positive semidefinite due to the combinatorial

nature of the sparsity term ∥x∥0.

Evidently, any (feasible or optimal) solution of the sparse StQP is a feasible solution to (StQP) with guaranteed

ρ-sparsity, which can be crucial. Even if ρ is fixed to a moderate number, say to 6, and for medium-scale

dimensions, say n = 100, polynomial worst-case behavior would not help much in practical optimization since

nρ = 1012. This emphasizes the need for tractable relaxations of the sparse StQP.

We start with some simple observations.

Lemma 2.1. The following relations hold:

ℓ(Q) = ℓn(Q) ≤ ℓn−1(Q) ≤ . . . ≤ ℓ2(Q) ≤ ℓ1(Q) , (5)

with

ℓ1(Q) = min
1≤k≤n

Qkk , (6)

and

ℓ2(Q) = min

{
min

{
QiiQjj−Q2

ij

Qii+Qjj−2Qij
: Qij < min{Qii, Qjj}, 1 ≤ i < j ≤ n

}
, ℓ1(Q)

}
. (7)

Furthermore, we have ℓ(Q) = ℓρ(Q) if and only if (StQP) has a ρ-sparse optimal solution.

Proof. The relations (5) and (6) follow from F1 = {e1, e2, . . . , en} ⊂ F2 ⊂ · · · ⊂ Fn−1 ⊂ Fn = F , where Fρ and

F are given by (1) and (4), respectively. For ρ = 2, a straightforward discussion of univariate quadratics over

the edges conv
({

ei, ej
})

, 1 ≤ i < j ≤ n (in case these are strictly convex functions yielding a minimizer in the

relative interior of the edge) is sufficient to establish (7). The last assertion is trivial.

The condition ℓ(Q) = ℓ2(Q) is related to edge-convexity of the instance of (StQP) as discussed in [18,

Theorem 1] but we will not dive into details here. Rather observe that the effort to calculate ℓ2(Q), obviously an

upper bound of ℓ(Q), is the same as for the closed-form lower bound ℓref(Q) ≤ ℓ(Q) proposed in [4]. The bracket

ℓref(Q) ≤ ℓ(Q) ≤ ℓ2(Q)

shrinks to a singleton (i.e. the discussed bounds are exact) if and only if all off-diagonal entries of Q are equal,

in which case, an optimal solution x∗ to (StQP) must satisfy ∥x∗∥0 ≤ 2 (see [4, Theorem 2] and (7)).
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2.4 Mixed-Binary Quadratic Formulation of Sparse StQPs and Contribu-

tions

By introducing binary variables, the sparse StQP can be reformulated as a mixed-binary QP:

ℓρ(Q) = min
x∈Rn

x⊤Qx

s.t.

e⊤x = 1

e⊤u = ρ

x ≤ u

u ∈ {0, 1}n

x ≥ 0.

(StQP(ρ))

In this paper, we focus on various convex relaxations of (StQP(ρ)), all more tractable than the conic ones

presented in [5, Section 3.2] for general quadratic optimization problems. In particular, we establish several

structural properties of these relaxations and shed light on the relations between each relaxation of (StQP(ρ))

and the corresponding relaxation of (StQP). We then draw several conclusions about the relations between

different relaxations as well as the strength of each relaxation.

While it turns out that all relaxations behave as expected for the case of ρ = n, already for the cases ρ = 1

and ρ = 2 (which cannot be excluded with a high probability in the random average case models) and other

moderate sparsity values, there is a sharp contrast between the relaxations, which contributes to the motivation

of this study. Typically, applications would require models with sparsity (significantly) less than half of the

dimension, for which we obtain more interesting results.

We will also pay particular attention to the case of rank-one solutions to the relaxations (all of them use

matrix variables by lifting), in particular, because they certify optimality if optimal to the relaxed problems, and

also because in algorithmic frameworks, we may (warm-)start with some (good) feasible solutions to the original

problem of larger sparsity than desired.

2.5 Notation and Organisation of the Paper

We use Rn, Rn
+, Rm×n, and Sn to denote the n-dimensional Euclidean space, the nonnegative orthant, the set

of m × n real matrices, and the space of n × n real symmetric matrices, respectively. We use 0 to denote the

real number 0, the vector of all zeroes, as well as the matrix of all zeroes, which should always be clear from the

context. We denote by e ∈ Rn and ei ∈ Rn, 1 ≤ i ≤ n, the vector of all ones and the ith unit vector, respectively.

All inequalities on vectors or matrices are understood to be applied componentwise. For A ∈ Sn and B ∈ Sn,

we use A ⪰ B to denote that A − B is positive semidefinite. For x ∈ Rn and an index set K ⊆ {1, . . . , n}, we

denote by xK ∈ R|K| the subvector of x restricted to the indices in K, where |·| denotes the cardinality of a finite

set. For singleton index sets, we simply use xj and Aij to denote the components of x ∈ Rn and A ∈ Rm×n. For

B ∈ Rn×n and b ∈ Rn, we denote by diag(B) ∈ Rn and Diag(b) ∈ Sn the vector given by the diagonal entries of

B and the diagonal matrix whose diagonal entries are given by b, respectively. The convex hull of a set is denoted

by conv(·). For any u ∈ Rn and v ∈ Rn, u⊤v denotes the Euclidean inner product. Similarly, for any U ∈ Rm×n
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and V ∈ Rm×n, the trace inner product is denoted by

⟨U, V ⟩ = trace(UTV ) =

m∑
i=1

n∑
j=1

UijVij .

The paper is organized as follows. In Section 3, we consider several convex relaxations of (StQP(ρ)). Sec-

tion 3.1 focuses on the RLT (reformulation-linearization technique) relaxation of (StQP(ρ)) and presents several

results in comparison with the RLT relaxation of (StQP). The Shor relaxation of (StQP(ρ)) is treated in Sec-

tion 3.2 and compared with that of (StQP). In Section 4, we then study the convex relaxation of (StQP(ρ))

given by combining the RLT and Shor relaxations and compare it with that of (StQP). We conclude the paper

in Section 5.

3 Convex Relaxations: RLT and Shor

In this section, we consider several well-known convex relaxations of (StQP(ρ)), which use LP (linear program-

ming) and SDP (semidefinite programming) methods. We study their properties and establish relations between

each relaxation of (StQP(ρ)) and the corresponding relaxation of (StQP).

3.1 RLT Relaxation

In this section, we consider the RLT (reformulation-linearization technique) relaxation of (StQP(ρ)) and compare

it with the RLT relaxation of (StQP).

RLT relaxations of optimization problems with a quadratic objective function and a mix of linear and

quadratic constraints are obtained by a two-stage process (see, e.g., [19]). The first stage, referred to as re-

formulation, consists of generating (additional) valid quadratic constraints from linear constraints by multiplying

each pair of linear inequality constraints as well as each linear equality constraint by each variable. In the second

stage, referred to as linearization, all of the original and additional quadratic functions are linearized by replacing

the quadratic terms xixj by a lifted variable Xij , 1 ≤ i ≤ j ≤ n. Together with the original linear constraints,

this gives rise to the RLT relaxation.

We first start with the RLT relaxation of (StQP):

ℓR1(Q) := min
x∈Rn,X∈Sn

{
⟨Q,X⟩ : (x,X) ∈ FR1

}
, (R1)

where

FR1 :=
{
(x,X) ∈ Rn × Sn : e⊤x = 1, Xe = x, x ≥ 0, X ≥ 0

}
. (8)

Note that x ≥ 0 is a redundant constraint in FR1 since it is implied by Xe = x and X ≥ 0. Furthermore, it

is easy to see that FR1 is a polytope. We first recall the following result about (R1).

Proposition 3.1 (Qiu and Yıldırım (2023) [17]). The set of vertices of FR1 is given by{
(ei, ei(ei)⊤) : i = 1, . . . , n

}
∪
{(

1

2
(ei + ej),

1

2
(ei(ej)⊤ + ej(ei)⊤)

)
: 1 ≤ i < j ≤ n

}
. (9)

Therefore,

ℓR1(Q) = min
1≤i≤j≤n

Qij ≤ ℓ(Q).

Furthermore, (R1) is exact (i.e., ℓR1(Q) = ℓ(Q)) if and only if

min
1≤i≤j≤n

Qij = min
1≤k≤n

Qkk.
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Proposition 3.1 implies that (R1) is exact if and only if the minimum entry of Q is on the diagonal. In this

case, (StQP) has a 1-sparse optimal solution, i.e., the optimal solution of (StQP) without any sparsity constraint

is already the sparsest possible solution. Furthermore, by Lemma 2.1, we immediately obtain

ℓ(Q) = ℓn(Q) = ℓn−1(Q) = . . . = ℓ1(Q) = min
1≤k≤n

Qkk. (10)

By reformulating the binarity constraint uj ∈ {0, 1} with u2
j = uj , j = 1, . . . , n in (StQP(ρ)), we obtain the

following RLT relaxation:

ℓR1
ρ (Q) := min

x∈Rn,u∈Rn,X∈Sn,U∈Sn,R∈Rn×n
⟨Q,X⟩

s.t.

e⊤x = 1

e⊤u = ρ

x ≤ u

x ≥ 0

diag(U) = u

Xe = x

R⊤e = u

Re = ρ x

Ue = ρ u

X −R⊤ −R+ U ≥ 0

X −R⊤ ≤ 0

R− U ≤ 0

X,R,U ≥ 0.

(R1(ρ))

Before we continue, let us remark that the constraints x ≤ u and x ≥ 0 are redundant in (R1(ρ)) since they

are implied by the constraints Xe = x, X ≥ 0, R⊤e = u, and X − R⊤ ≤ 0. Likewise, they imply u ≥ 0 and

R ≥ 0. Furthermore, it is easy to verify that R − U ≤ 0 and U ≥ 0 are implied by the constraints X − R⊤ ≤ 0

and X −R⊤ −R+ U ≥ 0. Note that u ≤ e is not implied in this formulation.

Let us denote the projection of the feasible region of (R1(ρ)) onto (x,X) by

FR1
ρ :=

{
(x,X) ∈ Rn × Sn : (x, u,X,U,R) is (R1(ρ))-feasible for some (u, U,R) ∈ Rn × Sn × Rn×n} . (11)

Note that

ℓR1
ρ (Q) = min

(x,X)∈Rn×Sn

{
⟨Q,X⟩ : (x,X) ∈ FR1

ρ

}
. (12)

Clearly, we have FR1
ρ ⊆ FR1 if 1 ≤ ρ ≤ n, where FR1 is given by (8). Our next result gives a description of

FR1
ρ in closed form for each ρ ∈ {1, . . . , n}.

Lemma 3.1. (i) FR1
1 =

{
(x,X) ∈ Rn × Sn : e⊤x = 1, X = Diag(x), x ≥ 0

}
.

(ii) For each ρ ∈ {2, 3, . . . , n}, we have FR1
ρ = FR1, where FR1 is given by (8).

Proof. (i) Let (x,X) ∈ FR1
1 . Then e⊤x = 1 and x ≥ 0. Moreover, there exists (u, U,R) ∈ Rn × Sn × Rn×n

such that (x, u,X,U,R) is (R1(ρ))-feasible with ρ = 1. Since U ≥ 0, diag(U) = u, and Ue = u, we obtain

U = Diag(u). By R − U ≤ 0 and R ≥ 0, we obtain that R is a diagonal matrix. Similarly, using X − R⊤ ≤ 0,

we conclude that X is a diagonal matrix. Since Xe = x, we obtain that X = Diag(x). Conversely, if e⊤x = 1,

7



X = Diag(x), and x ≥ 0, then it is easy to verify that (x, u,X,U,R) = (x, x,X,X,X) is (R1(ρ))-feasible. It

follows that (x,X) ∈ FR1
1 .

(ii) Let ρ ∈ {2, 3, . . . , n}. We clearly have FR1
ρ ⊆ FR1. Evidently, FR1 is a bounded polyhedron/polytope, so

for the reverse inclusion, it suffices to show that each vertex of FR1 belongs to FR1
ρ . By Proposition 3.1, the

set of vertices of FR1 is given by (9). If (x,X) = (ei, ei(ei)⊤) for some i = 1, . . . , n, then choose an arbitrary

u ∈ {0, 1}n such that ui = 1 and e⊤u = ρ. If, on the other hand, (x,X) = ( 1
2
(ei + ej), 1

2
(ei(ej)⊤ + ej(ei)⊤)) for

some 1 ≤ i < j ≤ n, then choose an arbitrary u ∈ {0, 1}n such that ui = 1, uj = 1, and e⊤u = ρ. In both cases

then, define R = xu⊤ and U = uu⊤. It is easy to verify that (x, u,X,U,R) ∈ Rn × Rn × Sn × Sn × Rn×n is

(R1(ρ))-feasible, which implies that each vertex of FR1 belongs to FR1
ρ . We conclude that FR1

ρ = FR1.

Lemma 3.1 immediately gives rise to the following results.

Corollary 3.1. (i) For ρ = 1, (R1(ρ)) is exact, i.e., ℓR1
1 (Q) = ℓ1(Q).

(ii) For each ρ ∈ {2, 3, . . . , n}, we have ℓR1(Q) = ℓR1
ρ (Q) = min

1≤i≤j≤n
Qij.

Proof. Both assertions follow from Lemma 3.1, Lemma 2.1, and (12).

We arrive at the following exactness result for the classical RLT relaxation of sparse StQPs:

Theorem 3.1. (R1(ρ)) is exact (i.e., ℓR1
ρ (Q) = ℓρ(Q)) if and only if ρ = 1 or min

1≤i≤j≤n
Qij = min

1≤k≤n
Qkk.

Proof. By Corollary 3.1(i), (R1(ρ)) is exact for ρ = 1. Let ρ ∈ {2, 3, . . . , n}. If (R1(ρ)) is exact, then Lemma 2.1

and Corollary 3.1(ii) imply that ℓR1
ρ (Q) = min

1≤i≤j≤n
Qij = ℓR1(Q) ≤ ℓ(Q) ≤ ℓρ(Q) = ℓR1

ρ (Q) = ℓR1(Q). The claim

follows from Proposition 3.1. Conversely, if min
1≤i≤j≤n

Qij = min
1≤k≤n

Qkk, then ℓR1
ρ (Q) = ℓR1(Q) = min

1≤i≤j≤n
Qij =

min
1≤k≤n

Qkk = ℓ(Q) = ℓρ(Q) by Lemma 2.1, Corollary 3.1(ii), and Proposition 3.1. Therefore, (R1(ρ)) is exact.

By Theorem 3.1, (R1(ρ)) is exact if and only if ρ = 1 or (StQP) itself already has a 1-sparse optimal solution.

Otherwise, in view of Lemma 2.1 and the relation ℓR1(Q) ≤ ℓ(Q), it follows from Corollary 3.1 that, for each

ρ ≥ 2, the lower bound ℓR1
ρ (Q) arising from (R1(ρ)) is, in general, quite weak as it already agrees with the lower

bound ℓR1(Q) obtained from the RLT relaxation (R1) of (StQP).

3.2 SDP Relaxation

In this section, we consider the standard Shor relaxation of (StQP(ρ)) in relation to that of (StQP).

The Shor relaxation of (StQP) is given by

ℓR2(Q) := inf
x∈Rn,X∈Sn

{
⟨Q,X⟩ : (x,X) ∈ FR2

}
, (R2)

where

FR2 :=
{
(x,X) ∈ Rn × Sn : e⊤x = 1, x ≥ 0, X ⪰ xx⊤

}
, (13)

a closed convex set not necessarily bounded, which necessitates the use of ‘inf’ in (R2). Indeed, we have the

following well-known result about (R2); we include a short proof for the sake of completeness.

Lemma 3.2. If Q ⪰ 0, then (R2) is exact (i.e., ℓR2(Q) = ℓ(Q)). If Q ̸⪰ 0, then ℓR2(Q) = −∞.
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Proof. If Q ⪰ 0, then, for any (R2)-feasible solution (x,X) ∈ Rn × Sn, we have ⟨Q,X⟩ ≥ x⊤Qx since X ⪰ xx⊤,

which implies that ℓ(Q) ≥ ℓR2(Q) ≥ ℓ(Q). If Q ̸⪰ 0, then there exists d ∈ Rn such that d⊤Qd < 0. Let x ∈ Rn

be any feasible solution of (StQP) and let X(λ) = xx⊤ + λdd⊤, where λ ≥ 0. The assertion follows by observing

that (x,X(λ)) ∈ FR2 for each λ ≥ 0 and that the objective function of (R2) evaluated at (x,X(λ)) tends to −∞

as λ → ∞.

The Shor relaxation of (StQP(ρ)) is given by

ℓR2
ρ (Q) := min

x∈Rn,u∈Rn,X∈Sn,U∈Sn,R∈Rn×n
⟨Q,X⟩

s.t.

e⊤x = 1

e⊤u = ρ

diag(U) = u

x ≤ u

x ≥ 0
1 x⊤ u⊤

x X R

u R⊤ U

 ⪰ 0.

(R2(ρ))

Note that the constraint u ≤ e is implied by diag(U) = u and the semidefiniteness constraint.

Similar to the RLT relaxation of (StQP(ρ)), let us introduce the following projection of the feasible region of

(R2(ρ)) onto (x,X):

FR2
ρ :=

{
(x,X) ∈ Rn × Sn : (x, u,X,U,R) is (R2(ρ))-feasible for some (u, U,R) ∈ Rn × Sn × Rn×n} . (14)

We again observe that

ℓR2
ρ (Q) = min

(x,X)∈Rn×Sn

{
⟨Q,X⟩ : (x,X) ∈ FR2

ρ

}
. (15)

Our next result gives a complete description of FR2
ρ for each ρ = 1, 2, . . . , n.

Lemma 3.3. For each ρ ∈ {1, 2, . . . , n}, we have FR2
ρ = FR2, where FR2 is given by (13).

Proof. We clearly have FR2
ρ ⊆ FR2. For the reverse inclusion, let (x,X) ∈ FR2 so that e⊤x = 1 and x ≥ 0,

so also x ≤ e. Furthermore X = xx⊤ + M for some M ⪰ 0. Define u = x +
(

ρ−1
n−1

)
(e − x) so that e⊤u = ρ

and 0 ≤ x ≤ u ≤ e. Let R = xu⊤ and U = uu⊤ + D, where D ∈ Sn is a diagonal matrix such that

Djj = uj − (uj)
2 ≥ 0, j = 1, . . . , n. Note that diag(U) = u and X R

R⊤ U

−

x
u

x
u

⊤

=

M 0

0 D

 ⪰ 0.

By Schur complementation, it follows that (x, u,X,U,R) ∈ Rn × Rn × Sn × Sn × Rn×n is (R2(ρ))-feasible.

Therefore (x,X) ∈ FR2
ρ .

Lemma 3.3 reveals that none of the feasible solutions of FR2 is cut off in the projection of the feasible region

of (R2(ρ)) for any choice of ρ ∈ {1, 2, . . . , n}. In view of (15), we obtain the following corollary.

Corollary 3.2. For any ρ ∈ {1, . . . , n}, we have ℓR2
ρ (Q) = ℓR2(Q).

9



Proof. The assertion follows from (R2), (15), and Lemma 3.3.

Now we obtain the following exactness result for the Shor relaxation of the sparse StQP:

Theorem 3.2. (R2(ρ)) is exact (i.e., ℓR2
ρ (Q) = ℓρ(Q)) if and only if Q ⪰ 0 and (StQP) has a ρ-sparse optimal

solution.

Proof. The assertion follows from Lemma 3.2, Corollary 3.2, and Lemma 2.1.

Theorem 3.2 shows that (R2(ρ)) provides a finite lower bound if and only if Q ⪰ 0. Furthermore, in this

case, the bound is tight if and only if the problem (StQP) without any sparsity constraint already has a ρ-sparse

optimal solution. It follows that (R2(ρ)), in general, is a weak relaxation. We close this section by specializing

Theorem 3.2 to the particular case with a rank-one Q ∈ Sn.

Corollary 3.3. Let Q = vv⊤, where v ∈ Rn. If v ∈ Rn
+ or −v ∈ Rn

+ or vi = 0 for some i ∈ {1, . . . , n}, then

ℓR2
ρ (Q) = ℓρ(Q) for each ρ ∈ {1, . . . , n}. Otherwise, ℓR2

1 (Q) < ℓ1(Q) and ℓR2
ρ (Q) = ℓρ(Q) for each ρ ∈ {2, . . . , n}.

Proof. Let Q = vv⊤, where v ∈ Rn. Note that x⊤Qx = (v⊤x)2 ≥ 0 for each x ∈ Rn. If v ∈ Rn
+ (resp.,

−v ∈ Rn
+ or vi = 0 for some i ∈ {1, . . . , n}), then (StQP) has a 1-sparse optimal solution given by ej ∈ Rn,

where j = arg min
1≤i≤n

vi (resp., j = arg min
1≤i≤n

(−vi) or i = j). The assertion follows from Theorem 3.2. Otherwise,

there exist i ∈ {1, . . . , n} and j ∈ {1, . . . , n} such that vi < 0 < vj . Therefore, setting x =
vj

vj−vi
ei − vi

vj−vi
ej ,

we obtain x ∈ F and x⊤Qx = (v⊤x)2 = 0 = ℓ(Q). On the other hand ℓ1(Q) = min
1≤k≤n

Qkk = min
1≤k≤n

v2k > 0 by

Lemma 2.1.

A comparison of Corollary 3.3 and Theorem 3.1 reveals that the Shor relaxation (R2(ρ)) can be strictly

weaker than the RLT relaxation (R1(ρ)) for ρ = 1, even when Q ⪰ 0.

4 SDP-RLT Relaxation

In this section, we consider the SDP-RLT relaxations of (StQP(ρ)) and (StQP) obtained by combining the

corresponding RLT relaxations and SDP relaxations presented in Section 3.1 and Section 3.2, respectively. In

particular, our objective is to shed light on the properties of the combined relaxation in relation to those of the

two individual relaxations.

The SDP-RLT relaxation of (StQP) is given by

ℓR3(Q) := min
x∈Rn,X∈Sn

{
⟨Q,X⟩ : (x,X) ∈ FR3

}
, (R3)

where

FR3 :=
{
(x,X) ∈ Rn × Sn : e⊤x = 1, Xe = x, x ≥ 0, X ≥ 0, X ⪰ xx⊤

}
. (16)

A complete description of instances of (StQP) that admit exact SDP-RLT relaxations is given below.

Theorem 4.1 (Gökmen and Yıldırım [10]). (R3) is exact (i.e., ℓR3(Q) = ℓ(Q)) if and only if (i) n ≤ 4; or (ii)

n ≥ 5 and there exist x ∈ F , P ⪰ 0, N ∈ Sn, N ≥ 0, λ ∈ R such that Px = 0, x⊤Nx = 0, and Q = P +N +λE.

Furthermore, for any such decomposition, x ∈ F is an optimal solution of (StQP) and ℓR3(Q) = ℓ(Q) = λ.
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We next consider the SDP-RLT relaxation of (StQP(ρ)):

ℓR3
ρ (Q) := min

x∈Rn,u∈Rn,X∈Sn,U∈Sn,R∈Rn
⟨Q,X⟩

s.t.

e⊤x = 1

e⊤u = ρ

x ≤ u

x ≥ 0

diag(U) = u

Xe = x

R⊤e = u

Re = ρ x

Ue = ρ u

X −R⊤ −R+ U ≥ 0

X −R⊤ ≤ 0

R− U ≤ 0

X,R,U ≥ 0
1 x⊤ u⊤

x X R

u R⊤ U

 ⪰ 0.

(R3(ρ))

Similar to the RLT and SDP relaxations, consider the projection of the feasible region of (R3(ρ)) onto (x,X)

given by

FR3
ρ =

{
(x,X) ∈ Rn × Sn : (x, u,X,U,R) is (R3(ρ))-feasible for some (u, U,R) ∈ Rn × Sn × Rn×n} . (17)

In a similar manner as above, we have

ℓR3
ρ (Q) = min

(x,X)∈Rn×Sn

{
⟨Q,X⟩ : (x,X) ∈ FR3

ρ

}
. (18)

It is also easy to see that

FR3
ρ ⊆ FR1

ρ ∩ FR2
ρ , (19)

where FR1
ρ and FR2

ρ are given by (11) and (14), respectively. Therefore,

max{ℓR1
ρ (Q), ℓR2

ρ (Q)} ≤ ℓR3
ρ (Q) ≤ ℓρ(Q) for all ρ ∈ {1, . . . , n} , (20)

which implies that (R3(ρ)) is at least as tight as each of (R1(ρ)) and (R2(ρ)).

Our first result follows from the previous results on weaker relaxations.

Corollary 4.1. If (i) ρ = 1, or (ii) min
1≤i≤j≤n

Qij = min
1≤k≤n

Qkk, or (iii) Q ⪰ 0 and (StQP) has a ρ-sparse optimal

solution, then (R3(ρ)) is exact.

Proof. The assertion follows from Theorem 3.1, Theorem 3.2, and (20).
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4.1 Projected Feasible Sets and Their Inner Approximations

We now focus on the sets FR3
ρ , ρ ∈ {1, . . . , n}. By Lemma 3.1, Lemma 3.3, (16), and (19),

FR3
1 ⊆

{
(x,X) ∈ Rn × Sn : e⊤x = 1, X = Diag(x), X ⪰ xx⊤, x ≥ 0

}
⊆ FR3, (21)

FR3
ρ ⊆

{
(x,X) ∈ Rn × Sn : e⊤x = 1, Xe = x, X ⪰ xx⊤, X ≥ 0, x ≥ 0

}
= FR3, ρ ≥ 2 . (22)

Next, we consider inner approximations of the sets FR3
ρ , where ρ ∈ {1, 2, . . . , n}.

Proposition 4.1. For any fixed ρ ∈ {1, . . . , n}, consider the corresponding formulation (StQP(ρ)). Then, we

have

conv
{
(x, xx⊤) : x ∈ Fρ

}
⊆ FR3

ρ , (23)

where Fρ and FR3
ρ are given by (4) and (17), respectively.

Proof. For any (StQP(ρ))-feasible solution (x, u) ∈ Rn ×Rn, we define X = xx⊤, R = xu⊤, and U = uu⊤. Then

obviously (x, u,X,U,R) ∈ Rn ×Rn ×Sn ×Sn ×Rn×n is (R3(ρ))-feasible. The claim now follows by (17) and the

convexity of FR3
ρ .

In the remainder of this section, we identify further properties of the sets FR3
ρ , where ρ ∈ {1, 2, . . . , n} and

their implications on the tightness of the lower bound ℓR3
ρ (Q).

4.2 The Extremely Sparse Case ρ = 1

In this section, we give an exact description of the set FR3
1 and discuss its implications. We start with a technical

lemma.

Lemma 4.1. For any a ∈ Rn
+ such that e⊤a ≤ 1, we have Diag(a)− aa⊤ ⪰ 0.

Proof. Let aP denote the subvector of a with strictly positive components. Note that Diag(a) − aa⊤ ⪰ 0 if

and only if Diag(aP) − aPa
⊤
P ⪰ 0. Therefore, without loss of generality, we may and do assume that a = aP.

We have Diag(a) − aa⊤ ⪰ 0 if and only if Diag(
√
a)−1(Diag(a) − aa⊤)Diag(

√
a)−1 = I −

√
a
√
a
⊤ ⪰ 0, where

√
a := [

√
a1,

√
a2, . . . ,

√
an]

⊤. The only nonzero eigenvalue of the rank-one matrix
√
a
√
a
⊤ is

√
a
⊤√

a = e⊤a ≤ 1.

Therefore, I −
√
a
√
a
⊤ ⪰ 0, which implies Diag(a)− aa⊤ ⪰ 0.

By Lemma 4.1, it is easy to see that the constraint X − xx⊤ ⪰ 0 on the right-hand side of (21) is redundant.

Therefore, by Lemma 3.1, we obtain

FR3
1 ⊆

{
(x,X) ∈ Rn × Sn : e⊤x = 1, X = Diag(x), x ≥ 0

}
= FR1

1 . (24)

Our next result shows that the inclusion in (24) actually holds with equality, thereby yielding an exact

description of FR3
1 .

Lemma 4.2. We have

FR3
1 = FR1

1 = conv
{
(x, xx⊤) : x ∈ F1

}
= conv

{
(ej , ej(ej)⊤) : j ∈ {1, . . . , n}

}
, (25)

where FR3
1 and FR1

1 are defined as in (17) and (11), respectively.

Proof. The assertion follows from the observation that FR1
1 = conv

{
(ej , ej(ej)⊤) : 1 ≤ j ≤ n

}
in conjunction

with Proposition 4.1 and (24).
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Lemma 4.2 reveals that the SDP-RLT relaxation (R3(ρ)) is identical to the RLT relaxation (R1(ρ)) for ρ = 1:

semidefinite constraints in (R3(ρ)) are redundant.

4.3 Case of Larger Sparsity ρ ≥ 2

In this section, we focus on the sets FR3
ρ , where ρ ∈ {2, 3, . . . , n}, and establish several properties and relations.

Our first result strengthens the inner approximation of FR3
ρ given by Proposition 4.1.

Lemma 4.3. We have {
(x,X) ∈ FR3 : x ∈ Fρ

}
⊆ FR3

ρ , all ρ ∈ {2, . . . , n} ,

where Fρ, FR3, and FR3
ρ are given by (4), (16) and (17), respectively.

Proof. Fix ρ ∈ {2, . . . , n} and let (x,X) ∈ FR3 with ∥x∥0 ≤ ρ. Choose u ∈ {0, 1}n such that x ≤ u and e⊤u = ρ.

Define R = xu⊤ and U = uu⊤. Clearly, diag(U) = u, R⊤e = u,Re = ρx, Ue = ρu, R − U ≤ 0, R ≥ 0, and

U ≥ 0. Since X = xx⊤ +M for some M ⪰ 0, we obtain X R

R⊤ U

−

x
u

x
u

⊤

=

M 0

0 0

 ⪰ 0.

Next, we consider the constraint X − R⊤ ≤ 0. Since X ≥ 0 and Xe = x, we obtain 0 ≤ Xij ≤ min{xi, xj}

for each 1 ≤ i ≤ j ≤ n. Therefore, if min{xi, xj} = 0, then Xij − uixj = −uixj ≤ 0. On the other hand, if

min{xi, xj} > 0, then ui = 1, which implies that Xij − uixj = Xij − xj ≤ 0. It follows that X −R⊤ ≤ 0.

Finally, we need to show that X −R−R⊤ +U ≥ 0. For each 1 ≤ i ≤ j ≤ n, if min{xi, xj} = 0, then Xij = 0

and min{Rij , Rji} = min{xiuj , xjui} = 0. Therefore,

Xij −Rij −Rji + Uij = 0−max{Rij , Rji} − 0 + uiuj = −max{xiuj , xjui}+ uiuj ≥ 0 ,

since x ≤ u. Here, we used the lattice identity v + w = min{v, w} + max{v, w}. On the other hand, if

min{xi, xj} > 0, then ui = uj = 1, which implies that Xij − Rij − Rji + Uij = Xij − xi − xj + 1. For any

1 ≤ i < j ≤ n, since xi + xj ≤ 1, we clearly have Xij − xi − xj +1 ≥ 0 since X ≥ 0. Finally, if i = j, since X ⪰ 0

and Xe = x, we obtain

Xii − 2xi + 1 = (ei − e)⊤X(ei − e) ≥ 0, i = 1, . . . , n,

which completes the proof.

By Lemma 4.3, none of the solutions in (x,X) ∈ FR3 with x ∈ Fρ is cut off by the projection FR3
ρ . This

observation gives rise to the following corollary.

Corollary 4.2. (i) For each ρ ∈ {2, . . . , n}, if there exists an optimal solution (x,X) ∈ Rn×Sn of (R3) such

that ∥x∥0 ≤ ρ, then ℓR3(Q) = ℓR3
ρ (Q).

(ii) We have FR3
n = FR3 and ℓR3(Q) = ℓR3

n (Q).

Proof. (i) We clearly have ℓR3(Q) ≤ ℓR3
ρ (Q) by (R3), (18), and (22). The reverse inequality follows from

Lemma 4.3.

(ii) As Fn = F , the first equality follows from (22) and Lemma 4.3, and the second one from the first asser-

tion (i).
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By Corollary 4.2, we can identify a particular set of instances of (StQP(ρ)) that admit an exact SDP-RLT

relaxation.

Corollary 4.3. Let ρ ∈ {2, . . . , n}. For any x ∈ Fρ, any P ⪰ 0 such that Px = 0, any N ∈ Sn such that

N ≥ 0 and x⊤Nx = 0, and any λ ∈ R, if Q = P +N + λE, then the SDP-RLT relaxation (R3(ρ)) is exact, i.e.,

ℓR3
ρ (Q) = ℓρ(Q).

Proof. Under the hypotheses, Theorem 4.1 implies that x ∈ F is an optimal solution of (StQP) and ℓR3(Q) =

ℓ(Q) = λ. The assertion follows from Corollary 4.2(i) and Lemma 2.1.

4.4 Rank-One Elements of FR3
ρ

Recall that each solution (x,X) ∈ FR3, where x ∈ Fρ, is retained in the projection FR3
ρ , ρ = 1, . . . , n by

Lemma 4.3. In this section, our goal is to shed light on the relations between FR3
ρ and the set of solutions

(x,X) ∈ FR3, where ∥x∥0 > ρ.

First, it follows from Proposition 4.1 and Lemma 4.2 that

FR3
1 ⊆ FR3

ρ for all ρ ∈ {2, . . . , n} , (26)

which, in turn, implies that (x,X) = ( 1
n
e, 1

n
I) ∈ FR3

ρ for each ρ ∈ {1, . . . , n} by Lemma 4.2. Therefore, for each

ρ ∈ {1, . . . , n}, there exists (x,X) ∈ FR3
ρ such that ∥x∥0 > ρ.

Let us restrict our attention to the subset of “rank-one solutions” (x,X) ∈ FR3, i.e., those with ∥x∥0 = ν > ρ

and X = xx⊤. Note that ⟨Q,X⟩ = x⊤Qx for each rank-one solution. This, in turn, enables us to compare ℓR3
ρ (Q)

and ℓν(Q) for some ν > ρ.

We start with the following result for ρ = 1.

Corollary 4.4. (x, xx⊤) ∈ FR3
1 if and only if x ∈ F1.

Proof. The claim follows from Lemma 4.2.

By Corollary 4.4, each rank-one solution (x, xx⊤) ∈ FR3, where ∥x∥0 > 1, is cut off by FR3
1 . We next focus

on FR3
ρ for ρ ≥ 2. To that end, we first state a technical result about the feasible region of (R3(ρ)).

Lemma 4.4. Let (x, u,X,U,R) ∈ Rn × Rn × Sn × Sn × Rn×n be (R3(ρ))-feasible, where ρ ∈ {1, . . . , n}. Then,

(ρ− 2)ui + 2Rii + (1− ρ)xi −Xii ≥ 0, for all i ∈ {1, . . . , n} . (27)

Proof. Suppose that (x, u,X,U,R) ∈ Rn × Rn × Sn × Sn × Rn×n is (R3(ρ))-feasible. Let us fix i ∈ {1, . . . , n}.

For each j ∈ {1, . . . , n} such that j ̸= i, we have

Uij −Rij −Rji +Xij ≥ 0.

Therefore,

0 ≤
∑

j∈{1,...,n}\{i}

(Uij −Rij −Rji +Xij)

= (ρui − ui)− (ρxi −Rii)− (ui −Rii) + (xi −Xii)

= (ρ− 2)ui + 2Rii + (1− ρ)xi −Xii,

where we used diag(U) = u, Xe = x, R⊤e = u, Re = ρ x, and Ue = ρ u in the second line. The assertion

follows.

14



Using this technical result, we can establish the following result about rank-one solutions for ρ = 2.

Corollary 4.5. For each x ∈ F such that ∥x∥0 ≥ 4, we have (x, xx⊤) ̸∈ FR3
2 .

Proof. We prove the contrapositive. Let ρ = 2 and let (x, xx⊤) ∈ FR3
ρ . Then, there exists (u, U,R) ∈ Rn ×Sn ×

Rn×n such that (x, u,X,U,R) ∈ Rn×Rn×Sn×Sn×Rn×n is (R3(ρ))-feasible, where X = xx⊤. Since X = xx⊤,

it follows from the positive semidefiniteness constraint that R = xu⊤. By Lemma 4.4, we obtain

(ρ− 2)ui + 2xiui + (1− ρ)xi − x2
i ≥ 0 for all i ∈ {1, . . . , n} .

Using ρ = 2, for each i ∈ {1, . . . , n} such that xi > 0, we obtain

ui ≥
1 + xi

2
.

Summing over each i ∈ {1, . . . , n} such that xi > 0, and observing
∑

i:xi>0

xi = e⊤x = 1, we arrive at

2 =
∑
i

ui ≥
∑

i:xi>0

ui ≥
∥x∥0 + 1

2
,

which implies that ∥x∥0 ≤ 3. The assertion follows.

By Corollary 4.5, each rank-one solution (x, xx⊤) ∈ FR3, where ∥x∥0 > 3, is cut off by FR3
2 . Furthermore,

for each x ∈ F such that ∥x∥0 = 3, the proof of Corollary 4.5 implies that there exists a unique u ∈ Rn given by

u = 1
2
(x + e) = x + 1

2
(e − x) such that (x, u, xx⊤, U,R) ∈ Rn × Rn × Sn × Sn × Rn×n is (R3(ρ))-feasible. Our

next result establishes that the choice of u can be generalized to larger values of ρ.

Theorem 4.2. We have{
(x, xx⊤) ∈ FR3 : x ∈ F2ρ−1

}
⊆ FR3

ρ for all ρ ∈
{
2, . . . ,

⌊
n+1
2

⌋}
, (28){

(x, xx⊤) ∈ FR3 : x ∈ F
}

⊆ FR3
ρ for all ρ ∈

{⌊
n+1
2

⌋
+ 1, . . . , n

}
, (29){

(x, xx⊤) ∈ FR3 : x ∈ Gρ

}
⊆ FR3

ρ for all ρ ∈
{
2, . . . ,

⌊
n
2

⌋}
, (30)

where we define for ρ ∈
{
2, . . . ,

⌊
n
2

⌋}
Gρ :=

{
x ∈ F : ∥x∥0 > 2ρ− 1, max

1≤i<j≤n:xixj>0

xixj

1− xi − xj
≤ (ρ− 1)(ρ− 2)

(∥x∥0 − 2) (∥x∥0 − 2ρ+ 1)

}
. (31)

Proof. By Corollary 4.2(ii), we have FR3
n = FR3, which implies (29) for ρ = n. Therefore, let ρ ∈ {2, . . . , n− 1}.

By Lemma 4.3, it suffices to focus on rank-one solutions (x, xx⊤), where x ∈ F with ∥x∥0 ≥ ρ+1. We abbreviate

ν := ∥x∥0 to ease notation. Our proof is constructive. Let us define u ∈ Rn as follows:

ui =

xi + λ(1− xi) , if xi > 0 ,

0 , otherwise,

where

λ :=
ρ− 1

ν − 1
∈ (0, 1). (32)

Note that 0 ≤ x ≤ u ≤ e and e⊤u = ρ. Let us define X = xx⊤, R = xu⊤, and

U = uu⊤ + U1 + U2,
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where

U1 := α
(
Diag(x)− xx⊤

)
,

U2 := β
(
Diag(a)− aa⊤

)
,

and α, β, and a ∈ Rn are given by

α :=
(ν − ρ)(ν − ρ− 1)

(ν − 1)(ν − 2)
≥ 0, (33)

β :=
(ν − ρ)(ρ− 1)

ν − 2
> 0, (34)

ai :=


1−xi
ν−1

, if xi > 0,

0, otherwise.
(35)

Note that a ∈ Rn
+, e⊤a = 1, and Ue = ρu, because U1e = U2e = 0. Furthermore, X R

R⊤ U

−

x
u

x
u

⊤

=

0 0

0 U1 + U2

 ⪰ 0,

where we used Lemma 4.1. In addition, if xi = 0, then Uii = 0 = ui. If xi > 0, then it follows as well that

Uii = ui, along the following lines:

Uii = u2
i + α(xi − x2

i ) + β(ai − a2
i )

= ((1− λ)xi + λ)2 + α(xi − x2
i ) +

β
ν−1

(1− xi)− β
(ν−1)2

(1− xi)
2

=
(
(1− λ)2 − α− β

(ν−1)2

)
x2
i +

(
2λ(1− λ) + α− β

ν−1
+ 2β

(ν−1)2

)
xi

+λ2 + β
ν−1

− β
(ν−1)2

.

(36)

We claim the last expression of (36) equals (1− λ)xi + λ = ui, which follows by equating the coefficients of x2
i ,

xi, and 1, in above expression and re-arranging all terms with λ to the right-hand side:.

α+ β
(ν−1)2

= (1− λ)2 = (ν−ρ)2

(ν−1)2

α+ β(3−ν)

(ν−1)2
= (1− λ)(1− 2λ) = (ν−ρ)(ν−2ρ+1)

(ν−1)2

0 + β(ν−2)

(ν−1)2
= λ(1− λ) = (ν−ρ)(ρ−1)

(ν−1)2

. (37)

Observe that the system (37) has a unique solution given by (33) and (34) since subtracting the second equation

from the first one yields the third equation. Therefore, we obtain that diag(U) = u. We clearly have X ≥ 0,

R ≥ 0, and X − R⊤ = (x − u)x⊤ ≤ 0. Finally, we focus on X − R − R⊤ + U ≥ 0 since each of R − U ≤ 0 and

U ≥ 0 is implied by these constraints. If xi = 0, then Uii − 2Rii +Xii = 0 ≥ 0. On the other hand, if xi > 0, we

have

Uii − 2Rii +Xii = u2
i + U1

ii + U2
ii − 2xiui + x2

i = (ui − xi)
2 + U1

ii + U2
ii ≥ 0,

where we used U1 ⪰ 0 and U2 ⪰ 0. Similarly, Uij − Rij − Rji + Xij = 0 ≥ 0 whenever 1 ≤ i < j ≤ n and

xixj = 0. On the other hand, if 1 ≤ i < j ≤ n and xixj > 0, we obtain

Uij −Rij −Rji +Xij = uiuj − αxixj − βaiaj − xiuj − xjui + xixj

= (ui − xi)(uj − xj)− αxixj − βaiaj

= λ2(1− xi)(1− xj)− αxixj − β
(ν−1)2

(1− xi)(1− xj)

=
(
λ2 − β

(ν−1)2

)
(1− xi − xj) +

(
λ2 − β

(ν−1)2
− α

)
xixj

= (ρ−1)(ρ−2)
(ν−1)(ν−2)

(1− xi − xj) +
2ρ−1−ν

ν−1
xixj ,

16



where we used (32), (33), and (34) to derive the last equation. Since ρ ≥ 2, ν ≥ 3, 1− xi − xj ≥ 0 and xixj > 0,

it follows that Uij − Rij − Rji +Xij ≥ 0 if ν ≤ 2ρ − 1, which establishes (28) and (29). If, on the other hand,

ν > 2ρ− 1, then Uij −Rij −Rji +Xij ≥ 0 by (31), giving rise to (30). This completes the proof.

Before we proceed to the important consequences of the above result, let us motivate the construction in its

proof, in particular the choice of λ and the other constants.

Observation 4.1. Let ρ ∈ {2, . . . , n} and let x ∈ F . Assume that ui = τxi + b if xi > 0 with 0 < τ < 1,

while ui = 0 if xi = 0. Furthermore, assume that Uij = cxi + cxj + d if xixj > 0 while Uij = 0 if xixj = 0 for

1 ≤ i < j ≤ n. It is easy to verify that the choices of u and U in the proof of Theorem 4.2 are in this form.

Then, the best choice of τ , b, c and d ensuring that (x, u,X,U,R) = (x, u, xx⊤, U, xu⊤) is R3(ρ)-feasible, is the

choice in the proof of Theorem 4.2.

Proof. Let ρ ∈ {2, . . . , n} and let x ∈ F . Again, abbreviate ν = ∥x∥0. From e⊤(τx + b) = e⊤u = ρ, we derive

b = ρ−τ
ν

∈ (0, 1) as ρ > 1 > τ and ρ− τ < ρ < ν. Furthermore, the constraints x ≤ u ≤ e become

xi ≤ min

{
1− b

τ
,

b

1− τ

}
= min

{
ν − ρ+ τ

ντ
,

ρ− τ

ν(1− τ)

}
for all i = 1, . . . , n .

Since g(τ) := ν−ρ+τ
ντ

decreases and h(τ) := ρ−τ
ν(1−τ)

increases with τ ∈ (0, 1), the maximum of min {g(τ), h(τ)}

is attained at τ∗ satisfying g(τ∗) = h(τ∗), and this value ensures that the formulation covers as many x ∈ F

as possible. Hence the best choice of τ would be the solution τ∗ of g(τ∗) = h(τ∗), namely τ∗ = ν−ρ
ν−1

, which is

exactly our choice in the proof of Theorem 4.2 with λ = 1− τ∗ = ρ−1
ν−ρ

. Since Uii = ui and Ue = ρu, we have for

xi > 0

τ∗xi + b+
∑

j ̸=i:xj>0

(cxi + cxj + d) = ρ(τ∗xi + b) or

(ν − 1)d+ c+
ρ− τ∗

ν
+ (ν − 1)cxi + (τ∗ − c)xi = ρτ∗xi +

ρ(ρ− τ∗)

ν
,

which implies, comparing coefficients of xi and 1, that
(ν − 1)c+ τ∗ − c = ρτ∗ and

(ν − 1)d+ c+ ρ−τ∗

ν
= ρ(ρ−τ∗)

ν
,

so that c = (ρ−1)τ∗

ν−2
= (ρ−1)(ν−ρ)

(ν−1)(ν−2)
and d = ρ−1

ν(ν−1)(ν−2)
[(ν− 2)ρ− 2τ∗(ν− 1)] = (ρ−1)(ρ−2)

(ν−1)(ν−2)
, substituting τ∗ = ν−ρ

ν−1
.

This justifies our choice of c and d in the proof of Theorem 4.2.

Example 4.1. The condition (31) is sufficient but not necessary. For n = 6 and ρ = 3, the point

x = [0.6, 0.2, 0.05, 0.05, 0.05, 0.05]⊤ ∈ F

violates (31) since

0.6 =
(0.6) (0.2)

1− 0.6− 0.2
= max

1≤i<j≤n:xixj>0

xixj

1− xi − xj
>

(ρ− 1)(ρ− 2)

(∥x∥0 − 2) (∥x∥0 − 2ρ+ 1)
= 0.5 ,

while there exists (u, U,R) ∈ R6 × S6 × R6×6 such that (x, u,X,U,R) = (x, u, xx⊤, U, xu⊤) is (SDP-RLT(3))-
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feasible. One choice of u and U is u = [0.8866, 0.5512, 0.3905, 0.3906, 0.3906, 0.3905]⊤ and

U =



0.8866 0.4674 0.3264 0.3265 0.3265 0.3264

0.4674 0.5512 0.1588 0.1588 0.1588 0.1588

0.3264 0.1588 0.3905 0.0986 0.0986 0.0986

0.3265 0.1588 0.0986 0.3906 0.0986 0.0986

0.3265 0.1588 0.0986 0.0986 0.3906 0.0986

0.3264 0.1588 0.0986 0.0986 0.0986 0.3905


.

Note that u is not given by an affine function of x in the sense of Observation 4.1.

Theorem 4.2 reveals that an increasingly larger and nontrivial set of rank-one solutions is contained in the

sets FR3
ρ as ρ increases. Note that Gρ given by (31) is a nonconvex set. Our next result gives further insight into

this set by providing a piecewise convex inner approximation.

Lemma 4.5. We have G2 = ∅ and

Hρ :=

n⋃
ν=2ρ

{x ∈ F : ∥x∥0 = ν, xi + xj ≤ δρ,ν , 1 ≤ i < j ≤ n} ⊆ Gρ if ρ ∈
{
3, . . . ,

⌊
n
2

⌋}
, (38)

where Gρ is defined as in (31) and

δρ,ν := 2
[(
τ2
ρ,ν + τρ,ν

)1/2 − τρ,ν
]
, (39)

with

τρ,ν :=
(ρ− 1)(ρ− 2)

(ν − 2) (ν − 2ρ+ 1)
. (40)

Furthermore, {
(x, xx⊤) ∈ FR3 : x ∈ Hρ

}
⊆ FR3

ρ for all ρ ∈
{
3, . . . ,

⌊
n
2

⌋}
. (41)

Proof. For ρ = 2, the upper bound in (31) equals zero, which implies that G2 = ∅. Let us fix ρ ∈
{
3, . . . ,

⌊
n
2

⌋}
and let x ∈ Hρ. Then, x ∈ F , ∥x∥0 = ν > 2ρ− 1, and it is easy to verify that

max
1≤i<j≤n:xixj>0

xixj

1− xi − xj
≤

δ2ρ,ν
4 (1− δρ,ν)

= τρ,ν ,

where the last equality follows from (39) and (40). Both inclusions (38) and (41) now follow from Theorem 4.2

by observing that ∥x∥0 = ν.

For fixed ρ ∈
{
3, . . . ,

⌊
n
2

⌋}
, it is worth noticing that τρ,ν given by (40) is a decreasing function of ν, which,

in turn, implies that δρ,ν given by (39) is a decreasing function of ν. Therefore, the positive components of

the elements of Hρ given by Lemma 4.5 tend to get closer to each other as ν increases. For instance, if ρ = 3,

then δρ,ν equals 0.7321, 0.5798, and 0.4805 for ν = 6, ν = 7, and ν = 8, respectively. Note that the point x

of Example 4.1 satisfies x /∈ G3, readily certifying x /∈ H3 since x1 + x2 = 0.8 > 0.7321.

Theorem 4.2 gives rise to several results about rank-one solutions of FR3
ρ . Our next result gives a complete

description of such solutions for ρ = 2.

Corollary 4.6. We have (x, xx⊤) ∈ FR3
2 if and only if x ∈ F3.

Proof. By Theorem 4.2, for any x ∈ F3, we have (x, xx⊤) ∈ FR3
2 by (28). The assertion follows from Corollary 4.5.
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For ρ = 1 and ρ = 2, it follows from Corollary 4.4 and Corollary 4.6 that (x, xx⊤) ∈ FR3
ρ if and only if x ∈ F1

and x ∈ F3, respectively. On the other hand, for ρ ≥ 3, Theorem 4.2 gives rise to our next result, which reveals

that such a nontrivial upper bound on ∥x∥0 concerning rank-one solutions of FR3
ρ does not exist.

Lemma 4.6. Let ρ ≥ 3. Then, for any ν ∈ {ρ+ 1, . . . , n}, there exists x ∈ Fν such that (x, xx⊤) ∈ FR3
ρ .

Proof. Let ρ ≥ 3 and ν ≥ ρ + 1. By Theorem 4.2, the assertion clearly holds for any x ∈ Fν such that

∥x∥0 = ν ≤ 2ρ−1. Suppose that ν > 2ρ−1. By Lemma 4.5, it suffices to construct an x ∈ Fν such that ∥x∥0 = ν

and x ∈ Hρ, where Hρ is defined as in (38). Let x ∈ Fν be given by

xi =


1
ν
, if i ∈ {1, . . . , ν} ,

0 , otherwise.

We therefore need to verify that
2

ν
≤ 2

[(
τ2
ρ,ν + τρ,ν

)1/2 − τρ,ν
]
,

where τρ,ν is given by (40). Rearranging and simplifying the terms, the above inequality reduces to

1

ν(ν − 2)
≤ τρ,ν .

By (40), this inequality holds if
ν − 2ρ+ 1

ν
≤ (ρ− 1)(ρ− 2) .

Since ρ ≥ 3 (and thus 2ρ− 1 > 0), we even have

ν − 2ρ+ 1

ν
≤ 1 ≤ (ρ− 1)(ρ− 2) ,

which establishes the assertion.

Following our earlier discussion about the positive components of the elements of the set Hρ, we remark that

all such components of the solution constructed in the proof of Lemma 4.6 are equal. Our next result establishes

another useful property of the rank-one solutions of FR3
ρ .

Theorem 4.3. For each ρ ∈ {1, . . . , n− 1}, if (x, xx⊤) ∈ FR3
ρ , then (x, xx⊤) ∈ FR3

ρ+1.

Proof. Let ρ ∈ {1, . . . , n − 1} and let (x, xx⊤) ∈ FR3
ρ . Let us define ν = ∥x∥0. If ρ ∈

{
2, . . . ,

⌊
n+1
2

⌋
− 1
}

and

ν ≤ 2(ρ + 1) − 1 = 2ρ + 1; or if ρ ∈
{⌊

n+1
2

⌋
, . . . , n

}
, then the assertion follows from Theorem 4.2. Therefore,

let us assume that ρ ∈
{
2, . . . ,

⌊
n+1
2

⌋
− 1
}

and ν > 2ρ + 1. For each ρ ≥ 3, we remark that the set of rank-one

solutions with this property is nonempty by Lemma 4.6.

Since (x, xx⊤) ∈ FR3
ρ , there exists (u, U,R) ∈ Rn ×Sn ×Rn×n such that (x, u, xx⊤, U,R) ∈ Rn ×Rn ×Sn ×

Sn × Rn×n is (R3(ρ))-feasible. Since X = xx⊤, we have R = xu⊤ and U − uu⊤ ⪰ 0 by Schur complementation.

We will construct (u′, U ′, R′) ∈ Rn × Sn × Rn×n such that (x, u′, xx⊤, U ′, R′) ∈ Rn × Rn × Sn × Sn × Rn×n is

(R3(ρ+ 1))-feasible.

Let u′ = u+ s, where s ∈ Rn is given by

si =


1−ui

∥u∥0−ρ
, if ui > 0,

0, otherwise.
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Since 0 ≤ u ≤ e, we have s ∈ Rn
+ since ∥u∥0 ≥ ν > 2ρ+ 1, which implies that

µ := ∥u∥0 − ρ > ρ+ 1 ≥ 3.

Therefore, we obtain 0 ≤ x ≤ u ≤ u′ ≤ e. Furthermore, e⊤s = 1, which implies that e⊤u′ = ρ + 1. Since

X = xx⊤, we define R′ = x(u′)T = R+ xs⊤. Finally, we define

U ′ = u′(u′)T +
µ− 2

µ

(
U − uuT

)
+ Diag(s)− ssT .

By Schur complementation, X R′

(R′)⊤ U ′

−

x

u′

x

u′

⊤

=

0 0

0 µ−2
µ

(
U − uuT

)
+ Diag(s)− ssT

 ⪰ 0,

where we used Lemma 4.1, µ > 3, and U − uu⊤ ⪰ 0. Therefore, the semidefiniteness constraint is satisfied.

We clearly have Xe = x, R′e = (ρ + 1)x, (R′)⊤e = u′, and U ′e = (ρ + 1)u′. We next focus on the constraint

diag(U ′) = u′. If ui = 0, then u′
i = ui = Uii = U ′

ii = 0 since si = 0. If ui > 0, then

U ′
ii = (u′

i)
2 +

µ− 2

µ

(
Uii − u2

i

)
+ si − s2i

= (ui + si)
2 +

µ− 2

µ

(
ui − u2

i

)
+ si − s2i

=
2

µ
u2
i +

µ− 2

µ
ui + si + 2uisi

=
1

µ

(
2u2

i + (µ− 2)ui + 1− ui + 2ui(1− ui)
)

=
(µ− 1)ui + 1

µ

= u′
i,

where we used diag(U) = u in the second line and the definition of s in the fourth line. This establishes

diag(U ′) = u′.

Furthermore, we have X ≥ 0, R′ = R + xs⊤ ≥ 0, and X − (R′)⊤ = X − R⊤ − sx⊤ ≤ 0 since X − R⊤ ≤ 0,

x ≥ 0, and s ≥ 0. We next verify X− (R′)⊤−R′+U ′ ≥ 0. Recall again that the remaining inequality constraints

are implied. For the diagonal components, we have

U ′
ii − 2R′

ii +Xii = u′
i − 2xiu

′
i + x2

i ≥ (u′
i)

2 − 2xiu
′
i + x2

i = (ui − xi)
2 ≥ 0, i = 1, . . . , n,

where we used diag(U ′) = u′ and 0 ≤ x ≤ u ≤ e. If 1 ≤ i < j ≤ n, then

U ′
ij −R′

ij −R′
ji +Xij = u′

iu
′
j +

µ− 2

µ
(Uij − uiuj)− sisj − xiu

′
j − xju

′
i + xixj

= (ui + si)(uj + sj) +
µ− 2

µ
(Uij − uiuj)− sisj

−xi(uj + sj)− xj(ui + si) + xixj

= uisj + siuj − xiuj − xisj − xjui − xjsi + xixj +
2

µ
uiuj +

µ− 2

µ
Uij

=
µ− 2

µ
(Uij − xiuj − xjui + xixj) +

2

µ
(uiuj − xiuj − xjui + xixj)

+uisj + siuj − xisj − xjsi

≥ 2

µ
((ui − xi)(uj − xj)) + (sj(ui − xi) + si(uj − xj))

≥ 0,
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where we used µ > 3 and Uij −Rij −Rji +Xij = Uij − xiuj − xjui + xixj ≥ 0 to derive the first inequality, and

0 ≤ x ≤ u together with s ≥ 0 to arrive at the final one. This completes the proof.

Theorem 4.3 establishes the nested behavior of the set of rank-one solutions of FR3
ρ with respect to ρ. We

close this section with the following result about the tightness of the lower bound ℓR3
ρ (Q) arising from (R3).

Corollary 4.7. We have

ℓR3
ρ (Q) ≤ ℓ2ρ−1(Q) , if ρ ∈

{
2, . . . ,

⌊
n+1
2

⌋}
, while (42)

ℓR3
ρ (Q) ≤ ℓ(Q) , if ρ ∈

{⌊
n+1
2

⌋
+ 1, . . . , n

}
. (43)

Proof. The relations follow from (18) and from (28) and (29), respectively.

Corollary 4.7 reveals that the lower bound ℓR3
ρ (Q) can be potentially quite weak especially for larger values

of ρ.

5 Concluding Remarks

A Standard Quadratic optimization Problem with hard sparsity constraints can be exactly reformulated as a

mixed-binary QP. Therefore, it is tempting to use tractable LP- or SDP-based relaxations, either in a straight-

forward/vanilla way or by suitable combinations as we did in Section 4. The aim is to achieve tight rigorous

bounds with a computational effort that scales well with the problem size.

However, our analysis reveals that some caveats are in place when following this approach. In unfavorable

circumstances (e.g., if the sparsity constraints are not stringent enough), the resulting bounds are quite weak.

We characterized the exactness of the bounds and studied the behavior of rank-one solutions to the relaxations.

The findings of this article definitely call for more investigation, either in the direction of refined RLT models,

or equally importantly, tighter conic-based relaxations which still offer some tractability. While these avenues

are beyond the scope of the present work, they remain on our research agenda for the near future.
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