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Abstract

The vehicle routing problem with stochastic demands (VRPSD) generalizes the classic ve-
hicle routing problem by considering customer demands as random variables. Similarly to
other vehicle routing variants, state-of-the-art algorithms for the VRPSD are often based
on set-partitioning formulations, which require efficient routines for the associated pricing
problems. However, all these set-partitioning-based approaches have strong assumptions on
the correlation between the demands random variables (e.g. no correlation), a simplification
that diverges from real-world settings where correlations frequently exist. In contrast, there
is a significant effort in the stochastic programming community to solve problems where the
uncertainty is modeled with a finite set of scenarios. This approach can approximate more di-
verse distributions via sampling and is particularly appealing in data-driven contexts, where
historical data is readily available. To fill this gap, we focus on the VRPSD with demands
given by scenarios. We show that, for any route relaxation (where repeated visits are allowed
in a route) and any approximation of the recourse cost that satisfy some mild assumptions,
the VRPSD pricing problem is still strongly NP-hard. This provides a very strong argument
for the difficulty of developing efficient column-generation based algorithms for the VRPSD
with demands following an empirical probability distribution of scenarios.

Keywords: Vehicle routing, Computational complexity, Stochastic programming

1. Introduction

Vehicle routing problems (VRPs) are ubiquitous in operations research, and many dif-
ferent variants have been proposed (Toth & Vigo, 2014). Among these variants, the vehicle
routing problem with stochastic demands (VRPSD) addresses the case where, rather than de-
terministic, the customer demands are stochastic and follow a given probability distribution.
As noted by Gendreau et al. (2016), the VRPSD has a rich history of over 50 years (Tillman,
1969), with an increasing interest in the last decade (Dinh et al., 2018; Florio et al., 2020;
Ghosal & Wiesemann, 2020; Pessoa et al., 2021; Ledvina et al., 2022; Florio et al., 2022;
Hoogendoorn & Spliet, 2023). To handle the possibility of route failures — that is, when the
realized accumulated demand of a route exceeds the vehicle capacity — different approaches
have been proposed, such as chance-constraint and dynamic reoptimization (Gendreau et al.,
2016). However, the most extensively explored approach, which is the focus of our study,
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models the VRPSD as a two-stage stochastic program with recourse. In this paradigm, the
first-stage determines the vehicle routes; then, in the second-stage, the customer demands
random variables are revealed upon vehicle arrival, and in the event of a route failure, a re-
course policy describes the recourse actions that the vehicle should execute. The optimization
model for the VRPSD then seeks to minimize the sum of the lengths of the selected routes
and their expected second-stage costs.

Following a trend in exact algorithms for different vehicle routing problems (Poggi &
Uchoa, 2014), several state-of-the-art exact algorithms for the VRPSD are based on set
partitioning (SP) formulations (Christiansen & Lysgaard, 2007; Gauvin et al., 2014; Florio
et al., 2020, 2022). In this context, a q-route is said to be a sequence of customers whose sum
of expected demands does not exceed the vehicle capacity. SP formulations for the VRPSD
typically have a variable for each q-route (or ng-route, see Gauvin et al. (2014)), and thus,
they may have exponential size. The linear programming relaxation of SP formulations are
then solved with a column-generation method, and consequently, the corresponding branch(-
cut)-and-price algorithms rely on computationally efficient routines for solving the pricing
problems. In fact, the exact algorithms of Christiansen & Lysgaard (2007); Gauvin et al.
(2014); Florio et al. (2020, 2022) all make use of efficient dynamic programming / labeling
algorithms to solve the pricing problems.

With the exception of Florio et al. (2022), all of the previously mentioned works assume
that the customer demands follow independent probability distributions. Furthermore, Florio
et al. (2022) allows only a very limited type of correlation, where all random variables are
affected by a single external factor. Motivated by results on the sample average approxima-
tion method and following several works in the stochastic optimization literature (Birge &
Louveaux, 2011; Swamy & Shmoys, 2012; Luedtke & Ahmed, 2008; Chen & Luedtke, 2022;
Verweij et al., 2003), we instead consider the VRPSD with an empirical probability distri-
bution of scenarios — henceforth simply called VRPSD with scenarios. The main goal of
this paper is to show that, under some mild assumptions on the second-stage costs, it is
strongly NP-hard to solve the pricing problem of the VRPSD with scenarios.

To the best of our knowledge, the only work that explicitly addresses the complexity of
solving the VRPSD pricing problem is a paper by Fukasawa & Gunter (2023). Although
their work also considers the VRPSD with scenarios, our results extend and generalize theirs
in at least two ways. To explain one of the main novelties of our work, we must make a few
comments about the paper of Fukasawa & Gunter (2023). First, the authors only consider a
particular recourse policy (the classical or detour-to-depot recourse policy). In addition, while
they give an indication of strong NP-hardness for pricing q-routes with demands following
independent normals, they argue that such a result still allows the existence of a pseudo-
polynomial pricing algorithm such as the one of Christiansen & Lysgaard (2007), since the
second-stage cost considered by Christiansen & Lysgaard (2007) is exact at the elementary
q-routes, but only approximate at the non-elementary ones. (A q-route is elementary if each
customer appears in it at most once.) One may then attempt to make the pricing problem of
the VRPSD with scenarios easier either by considering different recourse policies and/or
allowing approximate second-stage costs for non-elementary q-routes. In this paper, we
address these possibilities by replacing the second-stage cost of the VRPSD pricing problem
with a generic recourse cost function. We show that, for any choice of a recourse cost function
that satisfies a set of mild assumptions, the corresponding pricing problem for the VRPSD
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with scenarios is strongly NP-hard. In doing so, we not only extend the results of Fukasawa
& Gunter (2023) for alternative recourse policies, but we also prove that the VRPSD with
scenarios is strongly NP-hard regardless of the use of approximate second-stage costs for the
non-elementary q-routes.

The second contribution of our work is as follows. Typical hardness results for pricing
problems model the pricing problem as a generic optimization problem (with unconstrained
costs), and then a reduction from a known hard problem to that generic optimization problem
is shown. For example, one usually states that pricing elementary q-routes is strongly NP-
hard because the elementary shortest path problem with resource constraints (ESPPRC) is
strongly NP-hard (Irnich & Desaulniers, 2005). However, if we are interested in designing a
branch(-cut)-and-price algorithm that uses only elementary q-routes, we can restrict ourselves
to the case where the cost vector of the ESPPRC comes from the reduced costs of a restricted
master problem. Very recently, Spliet (2023) has shown that, even if we assume that the cost
vector has the form of reduced costs, pricing elementary q-routes for several VRP variants is
still strongly NP-hard. Similarly, we show that even when edge costs are restricted to the
form of reduced costs, the pricing problem of the VRPSD with scenarios is still strongly NP
hard.

Lastly, we mention that, contrary to most hardness results for VRP’s pricing prob-
lems (Fukasawa & Gunter, 2023; Irnich & Desaulniers, 2005; Spliet, 2023), our reduction
is not from the Hamiltonian cycle problem. Instead, we explore the fact that scenarios can
be used to model the edges of a graph, and we derive our results via a reduction from the
independent set problem. Loosely speaking, this is the main reason why our proof works for
any recourse cost function that satisfies the previously mentioned assumptions.

The remainder of this paper is organized as follows. Section 2 defines the VRPSD and
discusses set partitioning formulations. Section 3 presents our definitions of the recourse cost
functions and the VRPSD pricing problem(s). The proofs of the complexity results are shown
in Section 4. Section 5 concludes the paper and discusses further research directions.

2. Preliminaries

2.1. The vehicle routing problem with stochastic demands

We begin by defining the parameters in an instance of the vehicle routing problem with
stochastic demands (VRPSD). Let G = (V = {0} ∪ V+, E) be a complete undirected graph.
The vertex 0 represents the depot and the set V+ indicates the customers. With each edge e ∈
E, we associate a cost c(e) ∈ Q++. We may denote an edge (resp. arc) by either {u, v}
(resp. (u, v)) or uv. We also adopt the usual notation δ(v) := {uw ∈ E : u = v}, for
every v ∈ V . The letters k ∈ Z++ and B ∈ Q++ are used to refer to the desired number of
routes and the vehicle capacity, respectively. Let d be a random vector with entries in V+

indicating the random demand of each customer. The vector d is governed by a probability
distribution P, and we define d̄ := E[d] ∈ QV+

++, where each entry of d̄ is at most B. We
remark that we enforce G to be complete, as well as c and d̄ to be strictly positive because
this conforms to the majority of the VRPSD benchmark instances (Laporte et al., 2002;
Jabali et al., 2014; Florio et al., 2022).

As mentioned in the Introduction, the VRPSD with scenarios assumes that P is an empir-
ical probability distribution of scenarios. Let S be a finite set of scenarios and for each s ∈ S,
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let ds be a vector with entries dsv ∈ Q+, for every v ∈ V+ (note that here we allow zero
valued demands). Naturally, dsv indicates the demand of customer v in scenario s. We may
regard ds as a function, meaning that we write ds(v) instead of dsv. Each scenario s ∈ S has
an associated realization probability ps, and these probabilities sum up to one. We say that P
is given by scenarios if P(d = ds) = ps, for all s ∈ S. An instance of the VRPSD is denoted
by the tuple Ivrpsd = (G,P, c, B, k) and we use Ω to refer to the set of all instances of the
VRPSD with scenarios. (To avoid some technicalities, we consider two isomorphic graphs to
be the same graph.) We always use G to denote graphs, so if we write G ∈ Ivrpsd, we mean
that G is the graph in the VRPSD instance Ivrpsd.

Next, we discuss the concepts of q-routes and elementary q-routes. We define a q-route R
of G as a tuple (v1, v2, . . . , vℓ) such that

(i) {v1, . . . , vℓ} ⊆ V+;

(ii)
∑ℓ

j=1 d̄(vj) ≤ B; and

(iii) {{0, v1}, {v1, v2} . . . , {vℓ−1, vℓ}, {vℓ, 0}} ⊆ E.

(Since we assume that G is complete, item (iii) always holds, but we still include it here
for clarity.) We may regard R as a directed multigraph, meaning that V (R) refers to the
set {0, v1, v2, . . . , vℓ} and A(R) refers to the multiset {(0, v1), (v1, v2), . . . , (vℓ, 0)}. We natu-
rally extend the costs from the edges of G to the corresponding arcs, that is, if a = (u, v) is an
arc and e = uv ∈ E, then c(a) = c(e). The first-stage cost of a q-route R is given by the sum
of the cost of its arcs, i.e., c(R) =

∑
a∈A(R) c(a). The total expected demand of q-route R,

denoted by d̄(R), is the sum
∑ℓ

j=1 d̄(vj). A similar notation is also used for a scenario s ∈ S,

so ds(R) =
∑ℓ

j=1 d
s(vj). The value of d̄(R) may be different from the sum

∑
v∈V (R)∩V+

d̄(v)
since q-routes allow the repetition of customers. We say that a q-route R = (v1, v2, . . . , vℓ) is
elementary if v1, . . . , vℓ are all pairwise distinct.

LetR = (v1, . . . , vℓ) be a q-route ofG, we say thatR observes a failure if P(d(R) > B) > 0,
that is, R has a non-zero probability of exceeding the vehicle capacity. Recourse policies
describe recourse actions that aim to recover a vehicle from a failure. As we will see, our
results are not tied to a specific recourse policy; still, for illustration purposes, we briefly
mention the classical recourse policy. In this recourse policy, whenever collecting a customer
demand causes the vehicle load to exceed its capacity, the vehicle returns to the depot to
replenish its capacity and resume the route execution at the failed customer (see Dror (1990)
for more details). When the customer’s probability distributions are independent and have a
convolution property (Gendreau et al., 2016), other more sophisticated recourse policies have
been proposed, such as the optimal restocking recourse policy (Yee & Golden, 1980) and the
rule-based recourse policies (Salavati-Khoshghalb et al., 2019b,a). However, to the best of
our knowledge, no previous work addresses alternate recourse policies for the VRPSD with
scenarios. Nevertheless, as we mentioned earlier, our results are fairly general and do not
depend directly on the choice of the recourse policy.

For the moment, let us fix some recourse policy for the VRPSD with scenarios, and
let Q(R, d; Ivrpsd) be a random variable that indicates the (random) recourse cost of a q-
route R under this fixed recourse policy. Formally speaking, given the parameters in Ivrpsd, Q
is a function of the tuple R and the random variable d; however, to simplify notation, we write
simplyQ(R). A feasible solution for the VRPSD is a set of k elementary q-routes {R1, . . . , Rk}
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that visits every customer exactly once, i.e., {V (Ri) \ {0}}i∈[k] is a partition of V+. The
objective of the problem is to minimize the sum

∑
i∈[k](c(Ri) + E[Q(Ri)]).

2.2. Set partitioning formulations

We now describe in more detail the set partitioning (SP) formulations used in state-of-
the-art exact algorithms for the VRPSD (Christiansen & Lysgaard, 2007; Gauvin et al., 2014;
Florio et al., 2020). For any q-route R of G and customer v ∈ V+, we define count(v,R)
as being the number of times that vertex v appears in q-route R. Let Rq(Ivrpsd) be the set
of all q-routes of G ∈ Ivrpsd, when Ivrpsd is clear from the context, we write only Rq. For
each R ⊆ Rq we consider the following associated SP formulation

P(R) min
∑
R∈R

(c(R) + E[Q(R)]) · λR

s.t.
∑
R∈R

count(v,R) · λR = 1, ∀v ∈ V+, (1)∑
R∈R

λR = k, (2)

λ ≥ 0. (3)

We make three observations regarding these formulations. First, we comment on the
choice of the notation. We defined P so that it explicitly depends on the set R (and implicitly
depends on the remaining parameters of Ivrpsd), this is convenient for us because we can
talk about different SP formulations depending on the choice of R. For instance, suppose
that R+ ⊆ Rq is any set containing Re, where Re denotes the set of all elementary q-routes
of G. In this case, we say that R+ is a route-relaxation, and the notation P(R+) refers to a
valid formulation for the VRPSD (after enforcing integrality on the variables). Additionally,
for most of this paper, we consider the column-generation procedure, and in this setting, our
notation allows us to explicitly indicate the set of variables present in the restricted master
problem.

The second observation is about different choices of route-relaxations R+ and the corre-
sponding SP formulations. For example, if chooseR+ = Re, then the LP relaxation of P(R+)
is fairly strong, but at the expense of making the pricing problem strongly NP-hard (even
when there is no demand uncertainty, see (Irnich & Desaulniers, 2005; Spliet, 2023)). Hence,
state-of-the-art exact algorithms for VRPs typically use route-relaxations R+ ⊋ Re that
seeks a balance between the strength of the set partitioning formulation and the tractability
of the pricing problem. For the case of the VRPSD, Christiansen & Lysgaard (2007) uses R+

as the set of q-routes without subcycles of length 2; while Gauvin et al. (2014) set R+ to be
a route-relaxation based on ng-routes (Baldacci et al., 2011).

Finally, we mention that branch-cut-and-price algorithms for the VRPSD (Gauvin et al.,
2014; Florio et al., 2020, 2022) also impose that λ belongs to a set Λ defined by additional
valid linear inequalities, such as the rounded capacity inequalities (Laporte & Nobert, 1983)
and the subset row cuts (Jepsen et al., 2008). As we argue later in Section 4.1, for the purpose
of examining the complexity of the pricing problem, we may ignore such constraints without
loss of generality.
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Now let π and γ be the dual variables associated with constraints (1) and (2), respectively.
Our definition of the VRPSD pricing problem depends on the following dual formulation of P.

D(R) max
∑
v∈V+

πv + γk

s.t. γ +
∑
v∈V+

count(v,R) · πv ≤ c(R) + E[Q(R)], ∀R ∈ R. (4)

Fix R+ to be a route-relaxation and observe that formulation P(R+) may have an ex-
ponential number of variables (columns). We now briefly describe the column-generation
(CG) procedure that solves P(R+). Suppose that we have R ⊊ R+, such that |R| ≪ |R+|
and P(R) is feasible. We call P(R) the restricted master problem (with respect to R+).
Solving problem P(R) to optimality gives us dual multipliers π̄ and ᾱ which are opti-
mal for D(R). Each iteration of the CG procedure solves the so called pricing problem,
which can be seen as a separation problem in D(R+). In our context, the pricing prob-
lem checks if (π̄, ᾱ) satisfy all constraints (4), or if there is a q-route R ∈ R+ \ R such
that c(R) + E[Q(R)] −

∑
v∈V+

count(v,R) · π̄v < γ̄. If this last case holds, the process re-
peats for P(R ∪ {R}) and D(R ∪ {R}); otherwise, (π̄, ᾱ) is optimal for D(R+) and we are
done by linear programming duality.

Let count(uv,R) denotes how many times arc (u, v) appears in q-route R. Whenever
we have a dual vector π̄ ∈ QV+ , we assume that π̄0 = 0. Thus, we define

cπ̄(R) :=
∑

uv∈A(R)

count(uv,R) · (c(uv)− π̄v) =
∑

uv∈A(R)

count(uv,R) ·
(
c(uv)− π̄u + π̄v

2

)
.

The reduced cost of edge uv is given by cπ̄(uv) := c(uv)− 1
2(π̄u+ π̄v), while the reduced cost of

q-route R is the sum cπ̄(R) +E[Q(R)]− γ̄. Rewriting a violated inequality of type (4) yields

cπ̄(R) + E[Q(R)]− γ̄ < 0.

In other words, a q-route with negative reduced cost corresponds to a violated inequality
in D(R+).

3. Recourse cost functions and the VRPSD pricing problems

Before we define the VRPSD pricing problem, we need to point out a detail that we have
glossed over in Section 2. Recall that we have fixed the recourse policy a priori. Formally
speaking, the VRPSD is, in fact, a class of problems, as its definition depends on the choice
of the function E[Q(.)]. Since our results are valid for the pricing problems of several dif-
ferent problems in this VRPSD class, we now define a class of VRPSD pricing problems,
denoted (Prc(f)). In these problems, we replace the term E[Q(R)] by a generic recourse
cost function f(R; Ivrpsd), where R is a q-route of G. Once again, to ease notation, we may
omit Ivrpsd from the function parameters. Henceforth, whenever we write P(.) or D(.), we
refer to the resulting set-partitioning based formulations with E[Q(R)] replaced by f(R).
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Problem. VRPSD pricing problem (Prc(f))
Instance:

(a) an instance Ivrpsd = (G,P, c, B, k) of the VRPSD with scenarios;

(b) a set R ⊆ Rq such that P(R) is feasible; and
(c) a vector π̄ ∈ QV+ and a scalar γ̄ ∈ Q that are optimal for D(R).

Goal: If there is a q-route R ∈ Rq \R such that cπ̄(R)+ f(R)− γ̄ < 0, returns YES and R;
otherwise, returns NO.

Notice that we essentially defined (Prc(f)) as a decision problem, while typical hardness
results for pricing problems consider optimization problems. Moreover, the input for such
optimization problems usually does not assume that the objective function coefficients are
coupled with optimal dual multipliers. In fact, to the best of our knowledge, the only work
that uses conditions similar to (b) and (c) is the recent one by Spliet (2023).

We now discuss how permitting alternative recourse cost functions f in the definition
of the VRPSD pricing problem allows us to address another gap in the literature. For
the moment, let us fix E[Q(.)] to be the expected recourse cost of the classical recourse
policy. The complexity result of Fukasawa & Gunter (2023) is based on the observation
that if a vertex is repeated in a q-route, then all of its occurrences are perfectly correlated.
This insight is then used to prove that when the demands random variables follow inde-
pendent normals (and under some additional technical conditions), problem (2SQ) can be
used to solve the Hamiltonian cycle problem. Nevertheless, Christiansen & Lysgaard (2007)
had previously designed a branch-and-price algorithm for the VRPSD that uses a pseudo-
polynomial pricing routine. As demonstrated in Fukasawa & Gunter (2023), this seeming
contradiction is explained by the fact that the pricing algorithm of Christiansen & Lysgaard
(2007) may incorrectly compute the expected recourse cost of non-elementary q-routes. More
precisely, Christiansen & Lysgaard (2007) solves formulation P(Rq) with the term E[Q(R)]
replaced by g(R), where 0 ≤ g(R) ≤ E[Q(R)] and g(R) is guaranteed to be equal to E[Q(R)]
only when R is elementary. Even though g is only an approximation of E[Q(.)], the condition
that g coincides with E[Q(.)] at the elementary q-routes guarantees the correctness of Chris-
tiansen & Lysgaard (2007) branch-and-price algorithm. This same observation also holds for
more recent branch-cut-and-price algorithms based on set partitioning formulations (Gauvin
et al., 2014; Florio et al., 2020). As pointed out by Fukasawa & Gunter (2023), one may thus
wonder if a similar situation holds for the case when P is given by scenarios. In other words,
for the VRPSD with scenarios, if we only require the expected recourse costs to be computed
exactly for elementary q-routes, it is not clear if it is possible to design a pseudo-polynomial
time algorithm for solving the pricing problem. This question is our main motivation for
studying the computational complexity of solving (Prc(f)), for every choice of recourse cost
function f that satisfies the following assumptions.

Assumptions. For every Ivrpsd ∈ Ω, with G ∈ Ivrpsd, and every q-route R of G,

(A1) f(R) ∈ Q+ ∪ {+∞};
(A2) the value f(R) can be computed in polynomial-time with respect to Ivrpsd;
(A3) if R is elementary and P(d(R) ≤ B) = 1, then f(R) = 0;

(A4) if R is elementary, then f(R) ≥ P(d(R) > B) ·mine∈δ(0){c(e)}.
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Notice that, whenever R is non-elementary, only assumption (A1) constrains the value
of f(R). Therefore, the previously mentioned recourse cost function g used by Christiansen
& Lysgaard (2007) satisfies all of the above assumptions. We prove Theorem 1 below in
Section 4, and as a result, we show that, when P is given by scenarios, no choice of a recourse
cost function g′ — with 0 ≤ g′(R) ≤ E[Q(R)] and g′(R) = E[Q(R)] whenever R is elementary
— leads to a polynomial-time algorithm for the VRPSD pricing problem (unless P = NP).

Theorem 1. Let f be a recourse cost function satisfying assumptions (A1)-(A4), then
(Prc(f)) is strongly NP-hard.

Besides addressing the mentioned technical question on the hardness of VRPSD pricing
problems that allows “approximate” expected recourse cost at non-elementary q-routes; as-
sumptions (A1)-(A4) also let us handle many alternative recourse policies. Indeed, recourse
actions should not decrease the cost of a solution (assumption (A1)) and, if possible, should
be avoided (assumption (A3)). Moreover, if we seek to solve an optimization problem, it
is reasonable that we should be able to evaluate its objective function quickly (assumption
(A2)). Assumption (A4) was inspired by the fact that all of the recourse policies mentioned in
Section 2.1 (classical, optimal restocking and rule-based recourse policies) prescribe recourse
actions that unload the vehicle at the depot. Note that some lower bound assumption like
(A4) is necessary, as otherwise, we may choose f ≡ 0 and (Prc(f)) becomes a deterministic
VRP pricing problem, which is pseudo-polynomial solvable, but also provides no information
about the effects of uncertainty.

It turns out that even when the recourse policy prescribes recourse actions with costs
lower than a trip to the depot, the corresponding VRPSD pricing problem might still be
strongly NP-hard. Consider the following less constrained assumption.

(A4’) There exists a constant α ∈ (0, 1)∩Q such that, for all Ivrpsd ∈ Ω, with G ∈
Ivrpsd, and every q-route R of G, if R is elementary, then

f(R) ≥ α · P(d(R) > B) · min
e∈δ(0)

{c(e)}.

We show in Section 4 that replacing (A4) by (A4’) does not make the pricing problem easier.

Corollary 2. Let f be a recourse cost function satisfying assumptions (A1)-(A3) and as-
sumption (A4’), then (Prc(f)) is strongly NP-hard.

Another interesting implication of Theorem 1 is as follows. For each Ivrpsd ∈ Ω, letR+(Ivrpsd)
be a route-relaxation of Ivrpsd. Consider the pricing problem of formulation P(R+(Ivrpsd))
with E[Q(.)] replaced by f . In other words, consider the decision problem (Prc(R+, f)) de-
fined similarly to (Prc(f)) except that in item (b) we have R ⊆ R+(Ivrpsd) and our goal is
to check if there is negative reduced-cost q-route in R+(Ivrpsd)\R. Corollary 3 below shows
that, if f satisfies assumptions (A1)-(A4), problem (Prc(R+, f)) is also strongly NP-hard.

Corollary 3. For each Ivrpsd ∈ Ω, let R+(Ivrpsd) be a route-relaxation of Ivrpsd. Let f be a
recourse cost function satisfying assumptions (A1)-(A4), then (Prc(R+, f)) is strongly NP-
hard.

Proof. Choose f ′ such that, for all Ivrpsd ∈ Ω, f ′(R; Ivrpsd) = f(R; Ivrpsd) if R belongs
to R+(Ivrpsd); and f ′(R; Ivrpsd) = +∞ otherwise. Problem (Prc(R+, f)) is equivalent to
problem (Prc(f ′)).
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4. Complexity of VRPSD pricing problems

Let f be a recourse cost function satisfying (A1)-(A4), we first show a construction that,
given a graph and an independent set U , uses (Prc(f)) to check if the graph contains an
independent set U ′ larger than U . Theorem 1 then follows by solving the independent set
problem with a polynomial number of calls to an algorithm that solves (Prc(f)).

We start by formally defining the independent set problem (which is well known to be
strongly NP-hard).

Problem. Independent set problem
Instance: an undirected graph H and an integer t ∈ Z++.
Goal: returns YES if H has an independent set of size at least t, and returns NO otherwise.

4.1. Reducing the independent set problem to (Prc(f))

Let Iis = (H, t) be an instance of the independent set problem and let U be an independent
set of H with size t − 1. Define m := |E(H)| and label the vertices of H as {1, . . . , n}. We
assume that n ≥ 2, m ≥ n + 1 and H is connected. Without loss of generality, we also
assume that n /∈ U . The purpose of this section is to describe the construction of an instance
Iprc = (Ivrpsd,R, π̄, γ̄) of (Prc(f)) that corresponds to the instance Iis and the independent
set U . We also prove some simple results that (hopefully) motivate our chosen objects. In
Section 4.2 we then demonstrate that solving instance Iprc of (Prc(f)) is equivalent to solving
the independent set instance Iis.

Consider the graph G = (V = {0} ∪ V+, E = E1 ∪ E2 ∪ E3) where

V+ = V (H) ∪ {r1, r2, a} ∪ {r1i , r2i , wi, ai, bi}i∈[n],
E1 = {{0, r1}, {r1, a}, {a, r2}, {wn, 0}} ∪ {{wi−1, i}, {i, wi}, {wi−1, wi}}i∈[n],
E2 = {{0, r1i }, {r1i , ai}, {ai, r2i }, {r2i , i}, {r2i , bi}, {i, bi}, {bi, 0}}i∈[n]
E3 = {uv : u, v ∈ V, u ̸= v, uv /∈ E1 ∪ E2}.

To ease exposition, we sometimes regard w0 as r2. An illustration of the graph G is shown
in Figure 1.

Let ε be a positive number smaller than 1
n . The vehicle capacity is set to B2 = 9B1,

where B1 = (n+ 1)m+ ε. The number of vehicles is set to k = n+ 1. Let M be a rational
number larger than nB2. The cost of each edge uv ∈ E is set as follows.

c(uv) =


ε, if uv ∈ (E1 ∪ E2) \ (δ(0) ∪ {{r2i , i}}i∈[n])
1 + ε, if uv ∈ {{r2i , i}}i∈[n],
M, if uv ∈ δ(0) ∩ (E1 ∪ E2),

6B2M, if uv ∈ E3.

As we prove later (see Claim 2), edges in E3 have a “very large cost”, in the sense that if G
has a negative reduced cost q-route, then the edges of this q-route belongs to E1 ∪ E2.

The set S of scenarios of the input probability distribution P have cardinality m+ n+3,
and the scenarios in S are labeled as E(H)∪̇{r1, r2, sb}∪̇{si}i∈[n]. With each scenario s ∈ S,
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we associate a vertex set V (s) ⊆ V+ and a realization probability ps as follows.

(V (s), ps) =



(
{i, j}, 1

B2

)
, if s = ij ∈ E(H),(

{r1, r11, . . . , r1n}, 5B1
B2

)
, if s = r1,(

{r2, r21, . . . , r2n}, 3B1
B2

)
, if s = r2,(

{a, b1, . . . , bn}, ε
B2

)
, if s = sb,(

{wi, a1, . . . , an}, m
B2

)
, if s = si, for some i ∈ [n].

It is easy to check that
∑

s∈S ps = 1, so indeed the scenarios in S give a valid input probability
distribution P.

Let I(.) be the indicator function. We set the demand of customer v ∈ V+ in scenario s ∈ S
as ds(v) = B2 · I(v ∈ V (s)). Hence, the expected demand of each customer v ∈ V+ is

d̄(v) =



|δH(v)|, if v ∈ V (H),

5B1, if v ∈ {r1, r11, . . . , r1n},
3B1, if v ∈ {r2, r21, . . . , r2n},
ε, if v ∈ {a, b1, . . . , bn},
nm, if v ∈ {a1, . . . , an},
m, if v ∈ {w1, . . . , wn}.

r2
w1

1

0

w2 w3

2 3

r21 b1 r22 b2 r23 b3

r1

a

r11 r12 r13

a1 a2 a3

5B1

ε

3B1

5B1

nm

3B1

ε

m |δH(2)|

Figure 1: Illustration of the constructed graph G when H is a graph with vertex set {1, 2, 3}. We only show
the edges in E1 ∪E2. The edges in E1 (resp. E2) are shown in red and bold lines (resp. blue and thin lines).
The dashed lines indicates edges with costs 1 + ε. The numbers next to the arrows refer to the expected
demands.

The choice of the scenario demands implies some rather simple but relevant facts. Hence-
forth, for any subset of vertices V ′ ⊆ V+ and q-route R, we use count(V ′, R) as a short-hand
for

∑
v∈V ′ count(v,R).
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Fact 1. Let R be a q-route of G that observes no failures, then V (R)∩V (H) is an independent
set of H.

Proof. Since R observes no failures, we know that |V (R) ∩ V (s)| ≤ 1, for all s ∈ S. In
particular, for each s = ij ∈ E(H), we have that |V (R)∩V (H)∩{i, j}| = |V (R)∩{i, j}| ≤ 1.
Hence, V (R) ∩ V (H) is an independent set of H.

Fact 2. For every q-route R of G it holds that count({r1} ∪ {r1i }i∈[n], R) ≤ 1. Moreover,
if E(R) ⊆ E1 ∪ E2, it also holds that count({r1, r2} ∪ {r1i , r2i }i∈[n], R) ≤ 2.

Proof. For every vertex v ∈ {r1} ∪ {r1i }i∈[n], we have that 2 · d̄(v) = 10B1 > 9B1 = B2,
proving the first part of the statement. Now suppose by contradiction that the edges of R
belongs to E1 ∪E2 and count({r1, r2} ∪ {r1i , r2i }i∈[n], R) ≥ 3. Then q-route R also contains
a customer u that does not belong to {r1, r2} ∪ {r1i , r2i }i∈[n]. This implies that d̄(R) ≥
3 · d̄(r2) + d̄(u) > B2.

We now have a VRPSD instance Ivrpsd = (G,P, c, B, k). Since our objective is to prove
that (Prc(f)) is strongly NP-hard, we also mention that M and ε can be chosen so that
their unary encoding is polynomial on n. In order to have an instance of the VRPSD pricing
problem, it remains to construct R and (π̄, γ̄). However, before we show the construction,
we introduce a definition and prove a related fact.

Definition 1. Let T ⊆ V (H), we write RT to denote the elementary q-route of G with arc
set A(RT ) = {(0, r1), (r1, a), (a, r2), (wn, 0)} ∪ {(wi−1, i), (i, wi)}i∈T ∪ {(wi−1, wi)}i∈V (H)\T .

Fact 3. Let R⃗ = (v1, . . . , vℓ) and ⃗R = (vℓ, . . . , v1) be elementary q-routes of G with ℓ ≥ 2
and E(R⃗) = E( ⃗R) ⊆ E1, then there exists T ⊆ V (H) such that A(RT ) is equal to either A(R⃗)
or A( ⃗R).

Proof. Since E(R⃗) = E( ⃗R) ⊆ E1, either v1 = r1 or vℓ = r1. Without loss of generality,
assume v1 = r1. Since ℓ ≥ 2, we have v2 = a. Moreover, vertex r1 does not belong
to {v3, . . . , vℓ}, since 5B1 = d̄(r1) > B2 − d̄(v1) − d̄(v2) = 4B1 − ε. This implies that v3 =
r2 and vℓ = wn (since the depot is only adjacent to r1 and wn in (V,E1)). Since R⃗ is
elementary, R⃗ visits each vertex in {r2, w1, . . . , wn} exactly once and R⃗ = RT with T =
V (R⃗) ∩ V (H).

For each i ∈ [n], let us define the q-routes Ri := (r1i , ai, r
2
i , bi) and R′

i := (r1i , ai, r
2
i , i, bi).

We set R = {RU} ∪ {Ri}i∈U ∪ {R′
i}i∈V (H)\U (see Figure 2). For all i ∈ [n], it is clear that

both d̄(Ri) and d̄(R′
i) are at most B2. To see that d̄(RU ) ≤ B2, observe that d̄(V (RU ) ∩

{w1, . . . , wn}) = nm; furthermore, since U is an independent set, d̄(V (RU ) ∩ V (H)) =∑
i∈U |δH(i)| ≤ m.
Observe that {V (R) \ {0}}R∈R forms a partition of V+. Therefore, as |R| = n + 1 = k,

the only feasible solution to P(R) is λ̄ ∈ {0, 1}Rq with λ̄R = 1 if and only if R ∈ R. Every
q-route R ∈ R observes no failures, so by assumption (A3), f(R) = 0. The optimal value
for P(R) is thus

c(RU ) +
∑
i∈U

c(Ri) +
∑

i∈V (H)\U

c(R′
i) = 2M(n+ 1) + |V (H) \ U |+ ε(|V+| − (n+ 1)).
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Let us now construct a dual feasible solution (π̄, γ̄) with the same objective function value.
Set γ̄ = 0, and for each v ∈ V+, set

π̄v =



4M + ε, if v = a,

5M + ε, if v ∈ {a1, . . . , an},
−2M, if v = wn,

−3M, if v ∈ {b1, . . . , bn},
1 + ε, if v ∈ V (H),

−1 + ε, if v = wi and i ∈ U,

ε, otherwise.

Summing the dual values yields γ̄+
∑

v∈V+
π̄v = 2M(n+1)+ |V (H)\U |+ε(|V+|−(n+1))

(recall that n /∈ U). One can also check that cπ̄(R) + f(R) = cπ̄(R) = 0, for all R ∈ R;
so (π̄, γ̄) is optimal for D(R) (see Figure 2).

r2
w1

1

0

w2 w3

2 3

r21 b1
r22 b2 r23 b3

r1

a

r11 r12 r13

a1 a2 a3

4M + ε
5M + ε

ε

−3M

−2M

1 + ε
−1 + ε

1 + ε 1 + ε

ε

ε

ε

ε

Figure 2: Illustration of the set R and the dual vector π̄ with respect to the graph in Figure 1 and U = {2}.
The q-route RU is shown in red and bold lines, while the q-routes R′

1, R2 and R′
3 are shown in blue and thin

lines. Again, the dashed lines indicate edges with cost 1 + ε. The numbers next to an arrow pointing to a
vertex v ∈ V+ refer to the dual value π̄v. The reader can check that every q-route in R has zero reduced cost.

In fact, the following claim gives an easy expression to calculate the reduced cost of
q-route RT , for any T ⊆ V (H).

Lemma 4. For all T ⊆ V (H), cπ̄(RT ) = |U | − |T |.
Proof. We show that cπ̄(RT ) =

∑
uv∈A(RT ) count(uv,RT ) · (c(uv) − π̄v) = |U | − |T |. De-

fine A1 := {(wi−1, i), (i, wi)}i∈T and A2 := {(wi−1, wi)}i∈V (H)\T . Additionally, define a vec-

tor π′ ∈ RV+ obtained from π̄ as follows: π′
wn

= ε and π′
v = π̄v, for all v ∈ V+ \ {wn}. Notice

that (check Figure 2)∑(
c(a) : a ∈ {(0, r1), (r1, a), (a, r2), (wn, 0)}

)
−

∑(
π̄v : v ∈ {r1, r2, a, wn}

)
= −ε,
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so we can rewrite the reduced cost of RT as cπ̄(RT ) =
∑

uv∈A1∪A2
count(uv,R) ·(c(uv)−π′

v).
To evaluate cπ̄(RT ), take a vertex i in V (H). Then c((wi−1, i)) + c((i, wi))− π′

i − π′
wi

=
−1+ I(i ∈ U) and c((wi−1, wi))−π′

wi
= I(i ∈ U). Therefore,

∑
uv∈A1

count(uv,R) · (c(uv)−
π′
v) = −|T \ U | and

∑
uv∈A2

count(uv,R) · (c(uv)− π′
v) = |U \ T |. We conclude that∑

uv∈A(RT )

count(uv,RT ) · (c(uv)− π̄v) = |U \ T | − |T \ U | = |U | − |T |.

Remark 1. We can interpret π̄ with a discharging argument (Cranston & West, 2017):
for each q-route R = (v1, . . . , vℓ) ∈ R, each edge in e = {vj , vj+1} ∈ E(R) starts with a
charge of c(e) that is “distributed” among the customers in V (R); by the end of the process,
the total charge at node v ∈ V+ is exactly π̄v. For instance, if R = Ri the charges of
edges {0, r1i } and {0, bi} are distributed by sending 5M to vertex ai and −3M to vertex bi. The
remaining edges {vj , vj+1} ∈ E(Ri) each send its charges to vertex vj+1, with the exception
of edge {i, bi} that send its charges to r1i . A similar procedure is applied when R = R′

i.
The charges of the edges in RU are distributed as follows. The two edges in E(RU ) ∩ δ(0)
send 4M of charge to vertex a and −2M of charge to vertex wn. For each of the remaining
edges e = {vj , vj+1} ∈ E(RU ), we have three cases: if vj+1 = wn, then e send its charges
to r1; if {vj , vj+1} = {i, wi}, then e send 1 of charge to i and −1+ ε of charge to wi; if none
of the previous cases hold, e send its charges to vj+1. Since the discharging procedure do not
alter the net total charge, it follows that the primal and dual objectives are the same.

Remark 2. Recall that we mentioned in Section 2.2 that branch-cut-and-price algorithms
for the VRPSD (Gauvin et al., 2014; Florio et al., 2020, 2022) also impose that λ belongs
to a set Λ defined by additional valid linear inequalities. The solution λ̄ that we built here is
integral and feasible for P(R), so λ̄ satisfies the constraints in Λ. Suppose now that we want
to consider the constraints in Λ in the VRPSD pricing problem. Our construction shows that,
for the purposes of studying the hardness of the pricing problem, we can assume that the dual
variables associated with the constraints in Λ are all set to zero.

4.2. Proving that (Prc(f)) solves the independent set problem

Consider the instances Iis = (H, t) and Iprc = (Ivrpsd,R, π̄, γ̄) defined in Section 4.1.
The main step now is to show that Iis is a YES instance if and only if Iprc is also a YES
instance. As Claim 1 shows, one direction is an immediate implication of Lemma 4.

Claim 1. Suppose that T is an independent set of H with size greater than U , then RT has
negative reduced cost.

Proof. For all s ∈ S, |V (RT ) ∩ V (s)| ≤ 1, so RT observes no failures. By assumption
(A3), f(RT ) = 0. Using Lemma 4 we find that the reduced cost of RT is |U | − |T | < 0.

The converse direction requires more work; so we briefly comment on the intuition for
the proof. Let R∗ = (v1, . . . , vℓ) be a q-route of G with negative reduced cost. Vertex a
contributes with a “large negative value” of −5M − ε to the reduced cost of a q-route.
Since R∗ avoids edges in E3 (see Claim 2 below), we know that if vj = a, for some j ∈
[ℓ] \ {1}, then {vj−1, vj+1} = {r1, r2}. Therefore, by Fact 2, R∗ cannot contain a more than
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once. A similar argument also holds for ai and r1i , r
2
i , for every i ∈ [n]. We can leverage

this reasoning to prove that E(R∗) ⊆ E1; additionally, since every vertex in {wi}i∈[n] have
expected demand m, we can also show that R∗ is elementary. Applying Fact 3, Lemma 4 and
assumption (A4) we then learn that R∗ observes no failures. Finally, by Fact 1 and Lemma 4,
it follows that V (R∗) ∩ V (H) is an independent set of H larger than U .

Before we proceed, we need some extra notation. For any q-route R of G, we use π̄(R) as
a short-hand for

∑
v∈V (R) count(v,R)·π̄v, so cπ̄(R) = c(R)−π̄(R). We will also need to refer

to the contributions of vertices in A := {a, a1, . . . , an} and B := {wn, b1, . . . , bn} to π̄(R∗).
Hence, we define

pa :=
∑
v∈A

count(v,R∗) · π̄v,

pb :=
∑
v∈B

count(v,R∗) · π̄v,

p := π̄(R∗)− pa − pb,

so cπ̄(R∗) = c(R∗)− (p+ pa + pb).

Claim 2. E(R∗) ⊆ E1 ∪ E2

Proof. Notice that for every q-route R of G we have that π̄(R) < 6B2M . Therefore, if R∗

had an edge in E(R∗) ∩ E3, then R∗ would have positive reduced cost.

Claim 3. count(A, R∗) = count(B, R∗) = 1.

Proof. By Claim 2 and Fact 2, we know that count(A, R∗) ≤ 1. To see that count(A, R∗) =
1, note that

cπ̄(R∗) + f(R∗) ≥ c(R∗)− π̄(R∗) = c(R∗)− p− pa − pb > M + ε− pb − pa,

where the first inequality follows from (A1) and the second inequality follows from c(R∗) ≥
2M + ε and p < (1 + ε)B2 < 2B2 < nB2 < M . Since R∗ has negative reduced cost, we get

M + ε− pb − pa < cπ̄(R∗) + f(R∗) < 0. (5)

This implies that pa > M + ε − pb ≥ 0, since pb ≤ 0. Therefore, count(A, R∗) = 1
and pa ≤ 5M + ε.

Inequality (5) also implies that −pb < pa −M − ε ≤ 4M , and thus count(B, R∗) ≤ 1,
since otherwise −pb ≥ 4M . To finish the proof, notice that, by the way we set the de-
mands, count({r1, r11, . . . , r1n}, R∗) ≤ 1. Therefore, since the depot is only adjacent to ver-
tices in {r1, r11, . . . , r1n}∪B in the graph (V,E1∪E2), it follows from Claim 2 that count(B, R∗) ≥
1.

Claim 4. (v1, v2, v3, vℓ) = (r1, a, r2, wn) or symmetrically, (vℓ, vℓ−1, vℓ−2, v1) = (r1, a, r2, wn).

Proof. Since R∗ has negative reduced cost, R∗ has at least 2 customers. Thus, by Claim 2,
either (1) (v1, vℓ) ∈ {r1, r11, . . . , r1n} × B or (2) (vℓ, v1) ∈ B × {r1, r11, . . . , r1n} holds. By
symmetry, we assume (1), in which case v2 ∈ A (since ℓ ≥ 2) and v3 ∈ {r2, r21, . . . , r2n}
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(since d̄(v1) = 5B1). We show that v1 cannot be equal to r1i , for any i ∈ [n]. Suppose
not, then (v2, v3) = (ai, r

2
i ). We have two cases. If v4 = bi, then by Claims 2 and 3 we

know that R∗ = Ri ∈ R, a contradiction. Otherwise, by Claims 2 and 3, v4 = i and v5 /∈
{wi−1, wi, r

2
i } since d̄(r2i ) > d̄(wi−1) = d̄(wi) = m and d̄(i) > ε. So v5 = bi and R∗ = R′

i, a
contradiction. We conclude that (v1, v2, v3) = (r1, a, r2).

To see that vℓ = wn, suppose by contradiction that vℓ = bi, for some i ∈ [n]. By Claim
3, we then have that pa = 4M + ε, pb = −3M , c(R∗) ≥ 2M + ε and p < (1 + ε)B2 < 2B2 <
mB2 = M . By assumption (A1), we then get the following contradiction,

cπ̄(R∗) + f(R∗) ≥ c(R∗)− p− pa − pb > 0.

Claim 5. R∗ is elementary and observes no failures.

Proof. By Claim 4, assume that (v1, v2, v3, vℓ) = (r1, a, r2, wn). Then B2 − d̄(r1) − d̄(a) −
d̄(r2) = B1 − ε = (n + 1)m, so the sum of the average demands of v3, . . . , vℓ is at most B1,
and therefore, R∗ avoids vertices in {r2i }i∈[n]. Since count(B, R∗) = 1 and vℓ = wn,
R∗ also avoids vertices in {bi}i∈[n]. Therefore, E(R∗) ⊆ E1 and R∗ contains all vertices
in {w1, . . . , wn}.

Now suppose that R∗ is not elementary, then R∗ visits a vertex w ∈ {w0, . . . , wn} at least
twice, and thus, d̄(v3) + . . . + d̄(vℓ) > m(n + 1) = B1 − ε, a contradiction. Therefore, R∗ is
elementary, and by Fact 3, we know that R∗ = RT , for some T ⊆ V (H). Using Lemma 4,
we have that cπ̄(R∗) = |U | − |T | ≥ −n. We conclude that R∗ observes no failures, since
otherwise, by (A1) and (A4), we have that

cπ(R∗) + f(R∗) ≥ −n+
M

B2
> 0.

We close this section by combining all of the results seen so far. (To facilitate the reading,
we restate Theorem 1.)

Lemma 5. Let Iis = (H, t) be an instance of the independent set problem where H is a
connected graph with n ≥ 2 vertices and m ≥ n+ 1 edges. Let U be an independent set in H
with size t − 1. Then, for every recourse cost function f satisfying assumptions (A1)-(A4),
there exists an instance Iprc of (Prc(f)) satisfying the following.

(1) The instance Iprc can be constructed in polynomial time with respect to Iis and the size
of a unary encoding of Iprc is polynomial on the size of Iis; and

(2) Iis is a YES instance if and only if Iprc is also a YES instance.

Proof. Let Iprc = (Ivrpsd,R, π̄, γ̄) be the instance of (Prc(f)) shown in Section 4.1. It is
clear that Iprc satisfies the conditions of item (1). By Claim 1, we only need to show that
if R∗ is a q-route of G ∈ Ivrpsd with negative reduced cost, then there is an independent
set in H with larger size than U . Define U ′ := V (R∗) ∩ V (H). It follows from Claim 5 and
(A3) that f(R∗) = 0. Additionally, by Fact 1, U ′ is an independent set in H. Hence, by
Fact 3, cπ̄(R∗) = |U | − |U ′| < 0.
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Theorem 1. Let f be a recourse cost function satisfying assumptions (A1)-(A4), then
(Prc(f)) is strongly NP-hard.

Proof. Let Iis = (H, t) be an instance of the independent set problem with n := |V (H)| ≥
2, m := |E(H)| ≥ n + 1 and t ≤ n − 1. Suppose that we have an algorithm A that
solves (Prc(f)). We now describe an algorithm that maintains an independent set U and
uses A to increase U at each iteration (if possible). Clearly, this algorithm finishes with at
most t calls to A.

Start with U ← ∅. If |U | ≥ t, we return YES. Otherwise, we construct an instance Iprc =
(Ivrpsd,R, (π̄, γ̄)) using Lemma 5 and set U . If A(Iprc) returns NO, it follows from Lemma 5
that we can stop the algorithm and return NO. Otherwise, A(Iprc) returns a q-route R∗

with negative reduced cost. Hence, by Claim 5, R∗ is elementary and observes no failures.
Fact 1 then implies that U ′ = V (R∗) ∩ V (H) is an independent set in H larger than U .
Therefore, we update U to U ′ and repeat the procedure.

Remark 3. Suppose that instead of having f satisfying (A1)-(A4), we have the setting of
Corollary 2, where f satisfies (A1)-(A3) and (A4’) with constant α. Then we can simply
choose M ≥ 1

αnB2 when constructing instance Iprc in Section 4.1. The reduction is still
polynomial since α was assumed to be constant and the inequality in Claim 5 still holds. As
Claim 5 was the only step where we used assumption (A4), this proves Corollary 2.

5. Conclusion

In this paper, we proved novel hardness results for pricing problems that arise when
solving set partitioning formulations for the two-stage vehicle routing problem with stochastic
demands. More precisely, we have shown that, when the input probability distribution is given
by scenarios, for any choice of a recourse cost function that satisfies assumptions (A1)-(A4),
the corresponding VRPSD pricing problem is strongly NP-hard. Consequently, we show
that, for any choice of a route relaxation, there is no hope of designing a pseudo-polynomial
time algorithm for solving a VRPSD pricing problem, even if we allow the recourse cost to
be inexact at non-elementary q-routes. Furthermore, based on the work of Spliet (2023), we
have also shown that assuming an additional cost structure in the VRPSD pricing problem
— where the edge costs have the form of reduced costs whose dual variables come from a
restricted master problem — does not make the problem easier (at least from a computational
complexity perspective).

We believe that several research directions can be further explored. For example, although
many recourse policies have been proposed for the case where the customers have independent
probability distributions, it is still not clear how one should design recourse policies for the
case where the probability distribution is given by scenarios. It might be that in this case,
assumption (A3) is reasonable but restrictive. Another research direction is to study the
problem when additional structures are imposed on the input graph. For example, inspired
by the VRPSD instances used for computational studies (Laporte et al., 2002; Jabali et al.,
2014; Florio et al., 2022), we constructed our proof so that the input graph for the VRPSD
is complete, and the edge costs and demand values are strictly positive. However, some
VRPSD instances have even further structures in the input graph. For example, several
VRPSD instances use Euclidean graphs (Florio et al., 2020; Christiansen & Lysgaard, 2007).
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It could be interesting to analyze if, under such additional structures in the input graph, the
VRPSD pricing problem (with scenarios) is still strongly NP-hard. Finally, we mention that
it is not clear whether it is possible to reduce “typical pricing problems” (where the edge costs
are unrestricted) to “reduced cost pricing problems” (where the edge costs have the form of
reduced costs). In other words, given a pricing problem with an unrestricted cost vector w,
can we set up a corresponding feasible restricted master problem max{cTλ : Aλ ≤ b}, with
dual vector π and c ≥ 0, in a way that the reduced cost vector c−ATπ matches w? If such a
statement holds, then our proof can be simplified by just setting the edge costs appropriately.
(Quite possibly, the proof of Spliet (2023) would also be simplified by such a result.)

Overall, our results indicate that if one wants to design an exact column-generation based
algorithm for the VRPSD with scenarios, then one either has to cope with the strong NP-
hardness of the pricing problem (for example, like in Florio et al. (2022)); or has to resort
to other methods to precisely compute the recourse cost. For instance, one could ignore the
recourse cost in the objective function coefficient of a q-route and use the integer L-shaped
method (Laporte et al., 2002; Jabali et al., 2014; Hoogendoorn & Spliet, 2023) to capture the
recourse cost of a solution.
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