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Abstract

At each iteration of the Safeguarded Augmented Lagrangian algorithm Algencan, a bound-
constrained subproblem consisting of the minimization of the Powell-Hestenes-Rockafellar aug-
mented Lagrangian function is considered, for which a minimizer with tolerance tending to zero is
sought. More precisely, a point that satisfies a subproblem first-order necessary optimality condi-
tion with tolerance tending to zero is required. In this work, based on the success of scaled stopping
criteria in constrained optimization, we propose a scaled stopping criterion for the subproblems of
Algencan. The scaling is done with the maximum absolute value of the first-order Lagrange multi-
pliers approximation, whenever it is larger than one. The difference between the convergence theory
of the scaled and non-scaled versions of Algencan is discussed and extensive numerical experiments
are provided.

Key words: Nonlinear optimization, augmented Lagrangian methods, subproblems, scaled stop-
ping criteria, convergence.

1 Introduction

We consider constrained optimization problems defined by

Minimize
x∈Rn

f(x) subject to h(x) = 0, g(x) ≤ 0, and ` ≤ x ≤ u, (1)

where f : Rn → R, h : Rn → Rm, and g : Rn → Rp are continuously differentiable and `, u ∈ Rn.
Algorithms for solving smooth constrained optimization problems (1) are iterative. In general,

finite termination is not expected, so suitable stopping criteria are necessarily employed. In practice
it is not possible (affordable) to verify whether the current iterate is a solution of the problem, so
one needs to rely on necessary optimality conditions. Moreover, exact necessary optimality conditions
rarely hold at a particular iterate, therefore stopping criteria are based on “approximate necessary
optimality conditions” that depend on user-given small tolerances.

Most constrained optimization solvers produce, at each iteration k, an estimation xk ∈ Rn for the
solution of (1) and estimates λk+1 ∈ Rm and µk+1 ∈ Rp+, the Lagrange multipliers corresponding to
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equality and inequality constraints, respectively. Thus, denoting by P[`,u](·) the projection onto the

box {x ∈ Rn | ` ≤ x ≤ u}, numerical algorithms for solving (1) generally stop when ` ≤ xk ≤ u,
λk+1 ∈ Rm, and µk+1 ∈ Rp+ are such that∥∥∥P[`,u]

(
xk −

[
∇f(xk) +∇h(xk)λk+1 +∇g(xk)µk+1

])
− xk

∥∥∥
∞
≤ εopt (2)

for a small tolerance εopt > 0 and, additionally, feasibility and complementarity conditions hold for a
small tolerances εfeas > 0 and εcompl > 0, i.e.

max{‖h(xk)‖∞, ‖g(xk)+‖∞} ≤ εfeas and min{−gj(xk), µk+1
j } ≤ εcompl for j = 1, . . . , p. (3)

Some authors (see, for example, [26, 15, 16]) consider that the approximate KKT condition (2,3)
is too strict and that the quality of numerical results is preserved if, instead of (2), we require the
scaled approximate KKT condition∥∥∥∥P[`,u]

(
xk − 1

max{1, ‖λk+1‖∞, ‖µk+1‖∞}

[
∇f(xk) +∇h(xk)λk+1 +∇g(xk)µk+1

])
− xk

∥∥∥∥
∞
≤ εopt.

(4)
The effect of the replacement of (2) with (4) as stopping criterion in the case of the safeguarded Aug-
mented Lagrangian algorithm Algencan [1, 12], keeping the subproblem stopping criterion unchanged,
has been reported in [5]. However, the architecture of Algencan is such that, at each iteration k, the
inequality ∥∥∥P[`,u]

(
xk −

[
∇f(xk) +∇h(xk)λk+1 +∇g(xk)µk+1

])
− xk

∥∥∥
∞
≤ εk, (5)

with εk → 0 (εk → εopt in practice), is satisfied. Therefore, if Algencan is ultimately asked to stop
when (4) is satisfied, it is natural to require, at each iteration k of Algencan, the scaled condition∥∥∥∥P[`,u]

(
xk − 1

max{1, ‖λk+1‖∞, ‖µk+1‖∞}

[
∇f(xk) +∇h(xk)λk+1 +∇g(xk)µk+1

])
− xk

∥∥∥∥
∞
≤ εk.

(6)
This is the proposal of the present work. It represents a tiny modification in the original Algencan
algorithm. Nevertheless, it defines a new algorithm whose properties need to be identified.

In the present paper, we analyze the modified algorithm from the theoretical point of view and,
more importantly, from the practical point of view. In Section 2, we analyze theoretical implica-
tions of the modification in the subproblem stopping criterion of Algencan. In Section 3, we discuss
implementation details of Algencan that help understanding the implications and possible effects of
changing the subproblems’ stopping criterion. In Section 4, we evaluate the impact of the proposed
modification on the practical performance of Algencan. Conclusions are presented in the last section.

Notation. If `, u ∈ Rn, we denote by [`, u] the box {x ∈ Rn | ` ≤ x ≤ u}. Given a, b ∈ R, we use [a, b]r

to denote the box {x ∈ Rr | a ≤ xi ≤ b, i = 1, . . . , r}. We denote by P[`,u](·) the projection operator
onto [`, u] and note that this is a non-expansive mapping, that is, ‖P[`,u](x)− P[`,u](y)‖∞ ≤ ‖x− y‖∞
for any x, y ∈ Rn, where we use ‖ · ‖∞ to denote the infinity norm. We use (·)+ = max{0, ·} to denote
the projection onto the non-negative reals R+ and if v ∈ Rr, v+ denotes the vector with components
(vi)+ for i = 1, . . . , r. If v, w ∈ Rr, min{v, w} denotes the vector with components min{vi, wi} for
i = 1, . . . , r.
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2 Algencan with scaled stopping criterion for the subproblems

Algencan is a well-established algorithm for constrained optimization based on safeguarded Augmented
Lagrangian principles [1, 12, 13]. The adjective “safeguarded” for this type of methods seems to be
due to [22].

The Augmented Lagrangian function [20, 24, 25] associated with problem (1) is defined by

Lρ(x, λ, µ) = f(x) +
ρ

2

[
m∑
i=1

(
hi(x) +

λi
ρ

)2

+

p∑
i=1

(
gi(x) +

µi
ρ

)2

+

]

for all x ∈ [`, u], ρ > 0, λ ∈ Rm, and µ ∈ Rp+.
The description of Algencan’s model algorithm, taken from [13], follows below.

Algorithm 2.1: Assume that x0 ∈ Rn, λmin < λmax, λ̄1 ∈ [λmin, λmax]m, µmax > 0, µ̄1 ∈ [0, µmax]p,
ρ1 > 0, γ > 1, 0 < τ < 1, and {εk}∞k=1 → 0+ are given. Initialize k ← 1.

Step 1. Find xk ∈ [`, u] as an approximate solution to

Minimize
x∈Rn

Lρk(x, λ̄k, µ̄k) subject to ` ≤ x ≤ u (7)

satisfying ∥∥∥P[`,u]

(
xk −∇Lρk(xk, λ̄k, µ̄k)

)
− xk

∥∥∥
∞
≤ εk. (8)

Step 2. Define

V k = min

{
−g(xk),

µ̄k

ρk

}
.

If k = 1 or
max

{
‖h(xk)‖∞, ‖V k‖∞

}
≤ τ max

{
‖h(xk−1)‖∞, ‖V k−1‖∞

}
, (9)

define ρk+1 = ρk. Otherwise, define ρk+1 = γρk.

Step 3. Compute

λk+1 = λ̄k + ρkh(xk) and µk+1 =
(
µ̄k + ρkg(xk)

)
+
. (10)

Compute λ̄k+1 ∈ [λmin, λmax]m and µ̄k+1 ∈ [0, µmax]p. Set k ← k + 1 and go to Step 1.

If we adopt the scaled KKT criterion at each iteration of Algencan, the only difference is that (8)
is replaced with ∥∥∥∥P[`,u]

(
xk − 1

max{1, ck}
∇Lρk(xk, λ̄k, µ̄k)

)
− xk

∥∥∥∥
∞
≤ εk, (11)

with ck = max{‖λ̄k + ρkh(xk)‖∞, ‖
(
µ̄k + ρkg(xk)

)
+
‖∞}. An immediate observation is that if the

stopping criterion (11) is satisfied at some iterate xk in the “new algorithm”, then the stopping
criterion (8) of the traditional Algencan is satisfied with tolerance max{1, ck}εk1. Hence, if {ck}∞k=1

is bounded, the new algorithm is a particular case of the traditional Algencan. Therefore the same
convergence and complexity results [13] are expected. So, meaningful differences could appear only
when {λk+1}∞k=1 or {µk+1}∞k=1 are not bounded. In the remainder of this session we will discuss the

1It is easy to check that the absolute value of each component of 1
α

(P[`,u](x + v) − x) is less than or equal to the
absolute value of the correspondent component of P[`,u](x+ 1

α
v)− x for any x, v ∈ Rn and α ≥ 1.
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main differences between the global convergence theory of Algorithm 2.1 and its scaled version with
(8) replaced with (11).

We start by noting that the scaled KKT criterion (4) on its own, in general, is not an adequate
tool for stopping constrained optimization algorithms. To see this, let us assume that ε > 0 and xk is
an iterate of a constrained optimization solver. Suppose that γ ∈ Rm+p is such that γ 6= 0, γm+j ≥ 0
for j = 1, . . . , p, and

m∑
i=1

γi∇h(xk) +

p∑
i=1

γm+i∇gi(xk) = 0. (12)

Then, for all c > 0,
m∑
i=1

cγi∇h(xk) +

p∑
i=1

cγm+i∇gi(xk) = 0. (13)

Moreover, if c is large enough we have that ‖cγ‖∞ > 1 and

‖∇f(xk)‖∞
max{1, ‖cγ‖∞}

≤ ε. (14)

By (13) and (14), defining λk+1
i = cγi for i = 1, . . . ,m and µk+1

i = cγi for i = 1, . . . , p, we have that

1

max{1, ‖λk+1‖∞, ‖µk+1‖∞}

∥∥∥∥∥∇f(xk) +
m∑
i=1

λk+1
i ∇hi(xk) +

p∑
i=1

µk+1
i ∇gi(xk)

∥∥∥∥∥
∞

≤ ε.

Therefore, from the non-expansiveness of the projection and noting that xk ∈ [`, u], condition (4)
holds with εopt = ε.

This means that an algorithm could stop at xk if (12) holds and, in addition, feasibility and com-
plementarity approximate conditions (3) take place. Equation (12) merely says that the gradients
of the constraints are positively linearly dependent at xk. So, if xk is feasible and γ satisfies com-
plementarity, the Mangasarian-Fromovitz Constraint Qualification (MFCQ) does not hold at xk. It
may be argued that positive linear dependence, although occurs frequently when xk is infeasible, is
an unusual anomaly for most feasible points. However this is not really true, since positive linear
dependence occurs at every feasible point if, for example, one of the constraints appears twice. Again,
it could be argued that users and preprocessing devices do not allow constraints appearing twice but,
again, this is not so clear when one has an enormous set of constraints coming, perhaps, from some
deep learning environment. Finally, situations of “almost” positive linear dependence could appear
frequently and unexpectedly in many constrained optimization problems.

Many variations of the situation presented above are possible, which show that stopping could
occur at undesirable points when one uses the scaled KKT criterion. Another reason that discourages
its use is that, in some problems, computing correct Lagrange multipliers is the main objective when
solving a constrained optimization problem. This is the case in energy dispatch problems in which
Lagrange multipliers are prices. In these cases, relaxing the fulfillment of the true KKT conditions
could lead, perhaps, to quite erroneous decisions.

In [8, §2], it has been proved that an arbitrary sequence {xk}∞k=1 (not necessarily generated by
an Augmented Lagrangian method) that satisfies (6) for some complementary approximate Lagrange
multipliers and that converges to a feasible point is such that the limit point fulfills the KKT conditions
only under the additional assumption that the limit point satisfies MFCQ. We will show that this result
can be improved in the case of a sequence generated by Algencan (even with (11) replacing (8)). This
is related to the fact that the convergence theory of Algencan to a KKT point can be proved under
considerably weaker constraint qualifications than MFCQ. For instance, the Constant Positive Linear
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Dependence (CPLD) condition was employed in [1], which is strictly weaker than both MFCQ and
the Constant Rank Constraint Qualification (CRCQ) [21].

The definition of CPLD is as follows, where we use {ei}i∈{1,...,n} to denote the canonical basis
of Rn.

Definition 2.1 A feasible point x̄ of (1) satisfies CPLD when, for any I ⊆ {1, . . . ,m}, J ⊆ {i ∈
{1, . . . , p} | gi(x̄) = 0}, and K ⊆ {i ∈ {1, . . . , n} | x̄i = `i or x̄i = ui}, if there exists γ ∈ Rm+p+n with
γm+i ≥ 0 for i = 1, . . . , p, γm+p+i ≤ 0 whenever x̄i = `i, γm+p+i ≥ 0 whenever x̄i = ui (i = 1, . . . , n),
and

∑
i∈I |γi|+

∑
i∈J γm+i +

∑
i∈K |γm+p+i| > 0 such that∑

i∈I
γi∇h(x̄) +

∑
i∈J

γm+i∇gi(x̄) +
∑
i∈K

γm+p+iei = 0,

then there exists a neighborhood B(x̄) of x̄ such that {∇hi(x)}i∈I ∪ {∇gi(x)}i∈J ∪ {ei}i∈K is linearly
dependent for all x ∈ B(x̄).

Let us now show that, similarly to Algencan, the global convergence of Algorithm 2.1 with (8)
replaced with (11) can also be proved under CPLD. In order to do this, it is enough to show that the
approximate Lagrange multipliers sequences are bounded. The proof follows the lines of [9].

Theorem 2.1 Let {xk}∞k=1 be a sequence generated by Algorithm 2.1 where (8) is replaced with (11)
and assume that x̄ is a feasible limit point. That is, there exists an infinite set of indices K such that

xk
k∈K→ x̄. If x̄ satisfies CPLD, then the sequences {λk+1}k∈K and {µk+1}k∈K are bounded.

Proof: We may rewrite (11) for suitable Lagrange multipliers νk ∈ Rn such that

1

max{1, ck}
∇Lρk(xk, λ̄k, µ̄k) +

n∑
i=1

νki ei → 0, (15)

where ck = max{‖λk+1‖∞, ‖µk+1‖∞}, νki ≤ 0 if xki = `i, ν
k
i ≥ 0 if xki = ui, and νki = 0 if `i < xki < ui,

i = 1, . . . , n. Let us assume that {ck}k∈K is unbounded. This implies by (10) that ρk → +∞.
Using (10), we may rewrite (15) as

1

max{1, ck}

(
∇f(xk) +

m∑
i=1

λk+1
i ∇hi(xk) +

p∑
i=1

µk+1
i ∇gi(xk)

)
+

n∑
i=1

νki ei → 0.

Take an infinite subset K2 ⊆ K such that ck → +∞ and (λk+1,µk+1)
max{1,ck}

k∈K2→ (λ, µ) 6= 0 with µ ≥ 0.

We may also assume that νk
k∈K2→ ν with νi ≤ 0 if x̄i = `i, νi ≥ 0 if x̄i = ui, and νi = 0 if

`i < x̄i < ui, since unboundedness of {νk}k∈K would contradict the linear independence of {ei}ni=1.
Take I = {i ∈ {1, . . . ,m} | λi 6= 0}, J = {i ∈ {1, . . . , p} | µi > 0}, and K = {i ∈ {1, . . . , n} | νi 6= 0}
and notice that |λk+1

i | k∈K2→ +∞, i ∈ I and µk+1
i

k∈K2→ +∞, i ∈ J . Notice also that gi(x̄) = 0 for all
i ∈ J since otherwise µk+1

i → 0 from (10). We conclude that∑
i∈I

λi∇hi(x̄) +
∑
i∈J

µi∇gi(x̄) +
∑
i∈K

νiei = 0

with I ∪ J 6= ∅. Let us assume without loss of generality that j0 ∈ J 6= ∅. We have

∇gj0(x̄) = −
∑
i∈I

λi
µj0
∇hi(x̄)−

∑
i∈J\{j0}

µi
µj0
∇gi(x̄)−

∑
i∈K

νi
µj0

ei.
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By Carathéodory’s Lemma [10, Exercise B.1.7], there exist I ′ ⊆ I, J ′ ⊆ J\{j0}, and K′ ⊆ K, and
new scalars λ′i, i ∈ I ′ such that λ′iλi > 0 for all i ∈ I ′, µ′i, i ∈ J ′ such that µ′iµi > 0 for all i ∈ J ′, and
ν ′i, i ∈ K′ such that ν ′iνi > 0 for all i ∈ K′ with the property that

∇gj0(x̄) = −
∑
i∈I′

λ′i
µj0
∇hi(x̄)−

∑
i∈J ′

µ′i
µj0
∇gi(x̄)−

∑
i∈K′

ν ′i
µj0

ei

and {∇hi(x̄)}i∈I′ ∪ {∇gi(x̄)}i∈J ′ ∪ {ei}i∈K′ is linearly independent. Considering the index sets I ′ ⊆
{1, . . . ,m}, J ′ ∪ {j0} ⊆ {i ∈ {1, . . . , p} | gi(x̄) = 0}, and K′ ⊆ {i ∈ {1, . . . , n} | x̄i = `i or x̄i = ui}
in the definition of CPLD we conclude that there exists a neighborhood B(x̄) such that the vectors
{∇hi(x)}i∈I′ ∪ {∇gi(x)}i∈J ′∪{j0} ∪ {ei}i∈K′ are linearly dependent for all x ∈ B(x̄). This implies
that ∇gj0(x) belongs to the subspace generated by {∇hi(x)}i∈I′ ∪ {∇gi(x)}i∈J ′ ∪ {ei}i∈K′ for all
x ∈ B(x̄). Now, by [9, Lem. 3.2], there exists a C1 function ϕ : N → R, where N is a neighborhood
of 0 ∈ R|I′|+|J ′|+|K′|, such that gj0(x) = ϕ({hi(x)}i∈I′ , {gi(x)}i∈J ′ , {ri(x)}i∈K′) for all x sufficiently
close to x̄, where ri(x) = `i − xi if x̄i = `i, and ri(x) = xi − ui if x̄i = ui, for all i ∈ K′, and

∇ϕ(0) = ({ λ
′
i

µj0
}i∈I′ , {

µ′i
µj0
}i∈J ′ , {

ν′i
µj0
}i∈K′). By noting that ri(x

k) = 0 for all i ∈ K′ and sufficiently

large k ∈ K2, we conclude by Taylor’s expansion that

gj0(xk) = −
∑
i∈I′

λ′i
µj0

hi(x
k)−

∑
i∈J ′

µ′i
µj0

gi(x
k) + o(‖({hi(xk)}i∈I′ , {gi(xk)}i∈J ′)‖∞), (16)

for sufficiently large k ∈ K2.
Notice that for all i ∈ I ′, λ′i 6= 0 has the same sign of λi 6= 0, which has the same sign of λk+1

i

for sufficiently large k ∈ K2, where |λk+1
i | k∈K2→ +∞. From (10), we have that hi(x

k) 6= 0 also has the
same sign of λ′i. Similarly, µ′i > 0 and gi(x

k) > 0 for all i ∈ J ′ ∪ {j0} and all sufficiently large k ∈ K2.
This contradicts (16). �

Theorem 2.1 implies that, under CPLD, iterations of the scaled version of Algencan can be recast
as iterations of the traditional Algencan. In particular, this implies that, whenever the scaled version
of Algencan reaches a feasible point, this must be a KKT point. As mentioned above, this does
not contradict our previous statement about the necessity of relying on MFCQ. The reason is that
the approximate Lagrange multipliers generated by the Augmented Lagrangian algorithm have some
structure which prevents them from getting too large, even when the set of Lagrange multipliers
is unbounded (that is, MFCQ fails). A similar study has been conducted for several interior point
methods, see [19].

The boundedness of the approximate Lagrange multipliers generated by Algencan is known to hold
under a constraint qualification weaker than CPLD known as quasinormality [2]. More recently, bound-
edness of this sequence has also been shown to hold under the so-called relaxed-quasinormality [4],
which implies that most constraint qualifications used in the global convergence analysis of Algencan
imply that the approximate Lagrange multipliers sequences are bounded. This is the case of the re-
laxed variants of CRCQ and CPLD [23, 6] and the Constant Rank of the Subspace Component (CRSC)
[7]. These results do not immediatelly apply to the scaled variant of Algencan, however, it is simple
to check that a small adaptation of the proofs of [2] and [4] actually gives the desired result; that
is, Theorem 2.1 actually holds with CPLD replaced by any of the constraint qualifications previously
mentioned.

The following example shows that the approximate Lagrange multipliers sequence can in fact be
unbounded, and in this case, the scaled algorithm may converge to a non-solution, while the tradi-
tional algorithm finds a solution.
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Consider the simple one-dimensional problem

Minimizex subject to x3 ≤ 0 and −M ≤ x ≤M, (17)

where M is a big number that will not enter in our calculations. The solution of this problem is
x = −M and the interesting point is x = 0, where the CPLD constraint qualification does not hold.
For any sequence {xk} that tends to zero the gradient of the objective function is 1 and the gradient
of the constraint is 3(xk)2, which tends to 0. Clearly, the KKT condition 1 + µ3x2 = 0 can not be
satisfied at x = 0 for any µ ≥ 0, but in addition, this condition does not hold even approximately
near x = 0 since it is not possible to find suitable approximate Lagrange multipliers µk ≥ 0 such that
1 + µk(3xk)2 → 0. Therefore, (8) can not be satisfied at xk when εk < 1. This means that a sequence
{xk} that tends to zero can not be generated by the traditional version of Algencan that uses (8).

However, the convergence of the scaled version of Algencan, in which (8) is replaced with (11), to
the spurious point x = 0 is not excluded by the theoretical results presented in this section. In fact,
we are going to see that the scaled version of Algencan can produce a sequence that tends to zero.

At iteration k of the scaled Algencan, given the penalty parameter ρk, we will show that, with
the approximate solution of the subproblem defined by xk = (ρk)

−1/4, the scaled criterion at the
k-th subproblem is satisfied for a sequence εk that tends to zero. For simplicity, let us consider
the safeguarded multiplier µ̄k = 0 at (10), which gives the estimated Lagrange multiplier µk+1 =

[ρk(x
k)3]+ = ρ

1/4
k . The gradient of the Augmented Lagrangian at iteration k is then given by 1 +

µk+13(xk)2 = 1 + 3ρ
−1/4
k . Therefore, dividing by max{1, µk+1} as in (11), we obtain that the scaled

stopping criterion below holds when ρk ≥ 1:

1 + 3ρ
−1/4
k

ρ
1/4
k

= ρ
−1/4
k + 3ρ

−1/2
k ≤ εk,

which is satisfied by εk = ρ
−1/4
k + 3ρ

−1/2
k , which tends to zero provided that ρk tends to infinity. In

order to guarantee that ρk tends to infinity it is enough to choose a sufficiently small parameter τ ,
which is used in (9). More precisely, let us define τ < min{10−3/4, γ−3/4} and assume x0 = 1 and
ρ1 = 10. Then we will have that x1 = 10−1/4. The quotient between the constraint at x1 and
the constraint at x0 is 10−3/4. Then, if τ < 10−3/4 we will have that ρ2 = 10γ. Proceeding in an
inductive way, suppose that ρk = 10γk−1, then xk = 10−1/4γ−(k−1)/4 and (xk)3 = 10−3/4γ−3(k−1)/4.
Analogously, (xk−1)3 = 10−3/4γ−3(k−2)/4. Therefore (xk)3/(xk−1)3 = γ−3/4. So, since τ < γ−3/4, we
will have by (9) that ρk+1 = γρk and the result follows. In particular ρk tends to infinity.

We end this session by summing up the main theoretical difference between the traditional al-
gorithm and the scaled one. The traditional algorithm always finds an Approximate-KKT point in
the sense defined in [3], whenever it finds a feasible point, independently of the fulfillment of con-
straint qualifications; that is, (5) holds for suitable complementary approximate Lagrange multipliers,
even when these multipliers are unbounded. On the other hand, the scaled algorithm must rely on
a constraint qualification at the limit point (say, CPLD or the relaxed-quasinormality) to ensure
boundedness of the sequence of approximate Lagrange multipliers in order for a meaningful necessary
optimality condition to be present (in this case, a KKT point is found), possibly failing to satisfy the
Approximate-KKT condition when the constraint qualification does not hold.

3 Discussion

In the next section, we will examine numerical experiments done for the purpose of analyzing the
practical impact of using the scaled stopping criterion on both the Algencan subproblems and the
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main problem. It is likely that the modification will cause Algencan to stop sooner and, therefore, it
can be said that, by definition, the modified version of Algencan should be more efficient. Therefore,
the experiments aim to measure how much more efficient the modified version is and to verify to what
extent this increased efficiency is accompanied by a loss of effectiveness.

As stated in [12, Ch.14], we consider that a solution xA obtained by an Algorithm A is better than
a solution xB found by another Algorithm B in two situations:

• xA is feasible and xB is not;

• both xA and xB are feasible and f(xA) < f(xB).

If xA and xB are feasible and f(xA) = f(xB), we say that the solutions are equivalent. If both are
infeasible, we say that they are not comparable. However, as reaching exact feasibility is almost always
impossible, an admissible level of infeasibility must be established in order to compare xA and xB. In
the same way, a small tolerance could be admitted to consider that two different values of the objective
function can be considered equivalent. In the present comparison, we adopted this criterion based on
feasibility and functional value to compare solutions obtained by algorithms. However, we must warn
that in some situations the accuracy of Lagrange multipliers approximations is also relevant. In these
situations stopping criteria based on traditional approximate KKT conditions will generally produce
better solutions than scaled ones, for obvious reasons.

Before going into the comparison, some details of Algencan should be discussed so that the results
can be better understood. Algorithm 2.1 corresponds to the augmented Lagrangian strategy that
constitutes the main Algencan algorithm, but Algencan also implements three supplemental strategies
that deserve to be mentioned.

3.1 Desperate attempt for feasibility

In addition to the stopping criterion related to satisfying a KKT condition approximately, the aug-
mented Lagrangian method has additional criteria related to maximum iterations, too large penalty
parameter, or consecutive failures when trying to solve subproblems. If, when the augmented La-
grangian iterations stop, a feasible point was not found, then Algencan neglects the objective function
and, by minimizing the sum of squared infeasibilities subject to the bound constraints, tries to at
least find a feasible point. This does not occur if the augmented Lagrangian iterations are interrupted
by hitting an imposed CPU time limit. So, an earlier stop of Algencan, due to the use of the scaled
stopping criterion, can help this last desperate alternative to be executed in cases where the version
of Algencan that does not use the scaled stopping criterion is interrupted by reaching the CPU time
limit.

3.2 Accelerating by solving a KKT system

The acceleration strategy was introduced in [11] and its most recent version is described in [13, §5.1].
The strategy basically consists of trying to solve, by Newton’s method, a KKT system of dimension
3n+m+ p that has as unknowns the primal variables x, the multipliers λ and µ of the equality and
inequality constraints, respectively, and multipliers ν` and νu associated with the bound constraints.
(When doing that, bound constraints are subject to be satisfied with precision εfeas, while the iterates
of the augmented Lagrangian method satisfy the bound constraints exactly.) If the acceleration is well
succeeded in its purpose, it will find an approximate KKT point, not a scaled one. This means that,
when the solution returned by the modified version of Algencan is the product of an acceleration,
an eventual deterioration in the value of the objective function that could have been caused by a
premature stop with the scaled KKT criterion is not expected.
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3.3 Robustness and “the best is not always to be the final”

The main Algencan stopping criterion is satisfied if, for some k ≥ 0, (xk, λk+1, µk+1), with xk ∈ [`, u],
satisfies (2,3), while in the modified version of Algencan (4,3) is required. As mentioned above, before
the execution of iteration k, for any k ≥ 1, (xk−1, λk, µk), accompanied by suitable values for ν`

and νu, is used as the starting point for an acceleration attempt. The acceleration will be considered
successful if it finds a point (xkaccel, λ

k+1
accel, µ

k+1
accel, ν

`
accel, ν

u
accel) such that

max {‖h(x)|‖∞, ‖g(x)+‖∞, ‖(`− x)+‖∞, ‖(x− u)+‖∞} ≤ εfeas

(18)∥∥∥∥∥∥∇f(x) +
m∑
j=1

λj∇hj(x) +

p∑
j=1

µj∇gj(x)− ν` + νu

∥∥∥∥∥∥
∞

≤ εopt

(19)

max

{
max
j=1,...,p

{[min{−g(x), µ}]j} , max
i=1,...,n

{
[min{x− `, ν`}]i

}
, max
i=1,...,n

{[min{u− x, νu}]i}
}
≤ εcompl

(20)

holds with (x, λ, µ, ν`, νu) = (xkaccel, λ
k+1
accel, µ

k+1
accel, ν

`
accel, ν

u
accel). The main point here is that Algencan

does not necessarily stop if the acceleration strategy is successful. Algencan only stops if the starting

point of the acceleration process, i.e. (xk−1, λk, µk), satisfies (2,3) with ε
1/2
opt , ε

1/2
feas, and ε

1/2
compl rather

than εopt, εfeas, and εcompl, respectively. The reason for this is that, as the acceleration ignores the
objective function and some variables are arbitrarily fixed in their bounds during the acceleration
process, points that are found by the acceleration process and satisfy the KKT conditions may not
be “good minimizers” if the initial point of the acceleration process was far from being a point to
which the iterates of the augmented Lagrangian algorithm would converge. But does that mean that
a KKT point could be discarded by Algencan? Well, in fact Algencan uses KKT as a strategy, but,
in line with what we said at the beginning of the section, what Algencan aims at is to find a feasible
point with the best possible objective function value. So, whenever a new triple (xk, λk+1, µk+1) or
(xkaccel, λ

k+1
accel, µ

k+1
accel) is calculated, its feasibility and its objective function value are inspected and

Algencan updates a triple (xbest, λbest, µbest) that it considers to be the best and that will be returned
at the end, regardless of whether it was the one that made Algencan stop or not.

The strategy described above is clearly a conservative option, favoring robustness at the expense
of efficiency. It would be trivial to modify it to favor efficiency. Since the proposed modification at
Algencan favors efficiency over robustness, it will be critical to verify whether it in any way affects its
robustness.

4 Numerical evaluation

In this section we aim to analyze the practical impact of using the scaled criterion to stop solving
the subproblems, and the original problem, in Algencan. In the numerical experiments, we considered
Algencan 4.0.0 [13], which we call Algencan hereafter, and its modified version that replaces (8)
with (11) to stop subproblems and (2,3) with (4,3) in the main stopping criterion. The modified
version of Algencan will be called scaled Algencan from now on. Algencan and scaled Algencan
were run with all their default parameters values, that include εopt = εfeas = εcompl = 10−8 and

εk = max{εopt,
√
εopt

10k−1 }, k ≥ 1. Algencan and scaled Algencan are implemented in Fortran 90. All tests
reported below were conducted on a computer with a 5.1 GHz Intel Core i9-12900K processor and
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128GB 32000MHz DDR4 RAM memory, running Ubuntu 22.04.3 LTS. Codes were compiled by the
GNU Fortran compiler of GCC (version 11.4.0) with the -O3 optimization directive enabled.

The two versions of Algencan were compared using all problems from the CUTEst collection [18],
with their default dimensions. More specifically, the exact set of problems that was considered in [13],
corresponding to the most updated version of the CUTEst collection at the time [13] was written, was
considered. In this version, there are 217 unconstrained problems, 144 bound-constrained problems,
157 feasibility problems, and 740 nonlinear programming problems. Feasibility problems are solved
by Algencan by minimizing the sum of the squared infeasibilities restricted to the bound constraints.
As the two methods we intended to compare are identical when applied to unconstrained and bound-
constrained problems, it only makes sense that we compare them on the 740 nonlinear programming
problems.

A CPU time limit of 10 minutes was imposed for each pair method/problem. Large tables with
a detailed description of the output of each method in the 740 problems can be found at http:

//www.ime.usp.br/~egbirgin/. For the reasons outlined in the discussion section, which were in fact
corroborated by the numerical experiments, it is interesting to compare the performance of Algencan
and scaled Algencan considering (default option in Algencan) and without considering the acceleration
strategy. We show below those two comparisons in separate sections.

4.1 Algencan versus Algencan scaled with the use of the acceleration strategy

There are 43 problems in which Algencan’s augmented Lagrangian iterations stopped, by a criterion
different from reaching the CPU time limit, without finding a feasible point. In those 43, the sum of
squared infeasibilities subject to the bound constraints was minimized and in 14 problems a feasible
point, with εfeas tolerance, was found. (Success rate slightly greater than 32%.) On the other hand,
there are 21 problems in which the Algencan augmented Lagrangian iterations were interrupted by
hitting the CPU time limit. Of those 21 problems, there are 16 in which a feasible point was not found.
But as time ran out, the strategy to try to find a feasible point could not be applied. Considering
the strategy success rate of 32%, there is potential here for scaled Algencan to find feasible points
in 5 problems in which Algencan did not. Unfortunately, that projection did not materialize. The
problems in which scaled Algencan stopped by reaching the time limit correspond to 20 out of the 21
problems in which Algencan stopped for the same reason and, like Algencan, scaled Algencan did not
find feasible points in 16 out of the 20 problems. There was only one problem in which Algencan
stopped by reaching the time limit and Algencan scaled did not. In that problem, Algencan found
a feasible point, result of an acceleration. Scaled Algencan stopped its iterations of the augmented
Lagrangian without finding a feasible point, which was later found with the desperate strategy for
feasible points. As expected, the feasible point found by Algencan has a lower objective function value.

The two methods behaved as if they were the same method in 503 out of the 740 problems
considered. Therefore, we restrict the comparison hereafter to the remaining 237 problems. Of those
237 problems, Algencan returned as the best point a point that is a result of the acceleration process in
171 problems, while scaled Algencan did the same in 165 problems. Since in both cases this represents
something around 70% of the problems, significant differences in the objective function values found
by the two methods are not expected. This difference in the final value of the objective function would
be expected if the best point found by Algencan and scaled Algencan corresponded to an augmented
Lagrangian iterate. The number of problems in which that occurred is small. Algencan returned as
best point an iterate of augmented Lagrangians in 26 problems, while scaled Algencan did the same
in 30 problems.

Summarizing what we have seen so far, it is not expected that there is a significant difference
in robustness between the two methods, mainly because the two methods behave identically in 503
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problems and, in those in which they do not behave identically, they mostly returned points found
by the acceleration process, which satisfy KKT (non-scaled) conditions. We will now compare the
efficiency of the two methods in those problems in which both converged to equivalent solutions.

Both Algencan and scaled Algencan found feasible points with tolerance εfeas in 204 problems, of
the total of 237 in which they did not behave identically. In these problems we need to compare the
objective function values. For a given problem, let f1 be the value of the objective function at the
point found by Algencan, let f2 be the value of the objective function at the point found by scaled
Algencan, and let fmin = min{f1, f2}. Table 1 shows in how many problems, out of the 204 problems,
it holds

fi ≤ fmin + ftol max{1, |fmin|} for i = 1, 2

with ftol ∈ {0.1, 10−2, . . . , 10−8, 0}. The analysis of the table confirms that, regardless of the tolerance
that is used to consider that one function value is better than the other, the two methods practically
always find the same number of best solutions.

ftol 0.1 10−2 10−3 10−4 10−5 10−6 10−7 10−8 0

Algencan 203 203 203 202 201 199 194 190 133
scaled Algencan 202 202 201 201 200 200 197 197 134

Table 1: Number of best solutions each method found with tolerance ftol ∈ {0.1, 10−2, . . . , 10−8, 0},
considering the set of 204 problems in which the two methods did not behave identically and found
feasible points with tolerance εfeas.

If we (arbitrarily) consider ftol = 10−8, there are 183 problems in which the two methods did
not behave identically and found feasible points with tolerance εfeas and equivalent objective function
values with tolerance ftol. In these problems, we can compare the efficiency of the two methods.
Figure 1 shows the performance profile [17] that considers, as performance measure, the CPU time
spent by each method. In the figure, for i ∈M ≡ {Algencan, scaled Algencan},

Γi(κ) =
| {j ∈ {1, . . . , q} | tij ≤ κmins∈M{tsj}} |

q
,

where |S| denotes the cardinality of the set S, q = 183 is the number of considered problems, and
tij is the performance measure (CPU time) of method i applied to problem j. The left side of the
figure shows that Algencan is faster in 30% of the problems while scaled Algencan is faster in 70% of
the problems. If we consider the value of the curves at κ = 2, we have that ΓAlgencan(2) ≈ 0.97 and
Γscaled Algencan(2) = 1. This shows that in 97% of the 183 problems, Algencan never takes more than
twice the time scaled Algencan takes. It is important to stress that this figures refer to 183 problems,
that correspond to approximately 15% of whole set of 1,257 problems in the CUTEst collection. In
the remaining 85% of the problems, both methods behave identically. In any case, the conclusion is
that, when the acceleration strategy is being used, the scaled KKT criterion used to stop both the
subproblems and the original problem does not result in a loss of robustness and brings an increase
in efficiency in a relatively small proportion of problems.

4.2 Algencan versus Algencan scaled without the use of the acceleration strategy

The acceleration strategy used by Algencan requires that second derivatives of f , g and h are avail-
able, as well as a linear algebra routine for solving linear systems (Algencan uses the MA57 routine
from HSL [27]). When any of these things are not available, the acceleration strategy cannot be used.
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Figure 1: Performance profiles comparing the CPU time spent by Algencan and scaled Algencan in
the 183 problems in which the two methods did not behave identically and found feasible points with
tolerance εfeas = 10−8 and equivalent objective function values with tolerance ftol = 10−8.

Therefore, it makes sense to compare Algencan and scaled Algencan without the use of the accelera-
tion strategy. Because in this case the returned points are almost always iterates of the augmented
Lagrangian method, some difference in the values of the objective function is expected. (Without ac-
celeration, the returned point is not an iterate of augmented Lagrangians only in the case in which the
augmented Lagrangian method is interrupted by some stopping criterion other than hitting the CPU
time limit, without having found a feasible point. In this case, the desperate strategy for feasibility is
used).

Without the acceleration, the two methods behaved as if they were the same method in 480 out
of the 740 problems considered. Therefore, we restrict the comparison hereafter to the remaining 260
problems. It is interesting to note that Algencan stopped by finding an approximate KKT point in 113
problems and stopped by successive failures in solving the subproblems in 107 problems. On the other
hand, scaled Algencan stopped by finding an approximate scaled KKT point in 174 problems and by
successive failures in solving the subproblems in 47 problems. That means that there was a transfer
of almost 60 problems from the criterion “successive failures in solving subproblems” to “finding an
approximate scaled KKT point”. There were also 9 problems in which Algencan stopped by reaching
the CPU time limit without having found a feasible point. Scaled Algencan did not stop for the same
reason in any problem. That means that, in those 9, scaled Algencan had the chance to execute the
desperate attempt for finding a feasible point. It was successful in 7 out of the 9 problems. That is,
this time, without the acceleration, the efficiency of scaled Algencan resulted in an improvement of
its robustness. This is the reason why, out of the 260 problems we are considering (which are those in
which the two methods did not behave identically), Algencan found feasible points with tolerance εfeas
in 226 and scaled Algencan found feasible points in 7 more problems, i.e. 233 problems.

Let us now consider the 226 problems in which the two methods found feasible points with tol-
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erance εfeas. In these problems, we compare the values of the objective function. Table 2 shows
the comparison. The analysis of the table shows that the two methods found nearly the same num-
ber of best solutions, with the exception of the case where we consider zero tolerance, i.e. ftol = 0.
This clearly shows that the chosen way of scaling the KKT conditions does not produce a significant
deterioration in the value of the objective function of the solution found.

ftol 0.1 10−2 10−3 10−4 10−5 10−6 10−7 10−8 0

Algencan 225 225 225 224 223 219 216 211 147
scaled Algencan 225 225 223 223 221 217 213 213 101

Table 2: Number of best solutions each method (Algencan and scaled Algencan without the accelera-
tion process) found with tolerance ftol ∈ {0.1, 10−2, . . . , 10−8, 0}, considering the set of 226 problems
in which the two methods did not behave identically and found feasible points with tolerance εfeas.

If we (arbitrarily) consider ftol = 10−8, there are 198 problems in which the two methods did
not behave identically and found feasible points with tolerance εfeas and equivalent objective function
values with tolerance ftol. In these problems, we can compare the efficiency of the two methods.
Figure 2 shows the performance profile that considers, as performance measure, the CPU time spent
by each method. The analysis of the figure shows without a doubt that scaled Algencan is much more
efficient than Algencan on the set of problems in which the methods are being compared. We can
conclude that, if acceleration is not used, Algencan and scaled Algencan behave identically in two
thirds of the problems. In the third of the problems where they behave differently, scaled Algencan is
much more efficient, to the point that the higher efficiency results in higher robustness. And all this
without any relevant loss in the quality of the solutions found.

5 Conclusions

This paper dealt with the application of scaled KKT conditions for redefining and stopping the Safe-
guarded Augmented Lagrangian method implemented in Algencan. We discussed pros and cons of
the resulting modifications.

On the one hand, we showed that the scaled approximate KKT stopping criterion could be satisfied
at any feasible point at which the gradients of active constraints are positively linearly dependent,
which is an undesirable feature for any constrained optimization algorithm. Thus, we do not advocate
the use of the scaled KKT conditions for stopping other constrained optimization algorithms when the
problem does not satisfy MFCQ, unless the algorithm is built in such a way that additional properties
are satisfied at the Lagrange multipliers approximations that guarantee their boundedness. This is
the case of Algencan and some interior point methods, but not all of them [19].

On the other hand, we showed that the undesirable premature stopping is unlike to occur when
the scaled Algencan algorithm defined in the present paper is used. The reason is the following: If
a subsequence generated by this algorithm converges to a feasible limit point that satisfies a weak
constraint qualification (as CPLD, and others), then the corresponding sequence of multipliers gener-
ated by the method is bounded. Consequently, the scaled Algencan can be analyzed as an instance of
the traditional Algencan and the limit point satisfies the KKT conditions. It is interesting to observe
that this property holds even if the gradients of active constraints at the limit point are positively
linearly dependent (i.e. MFCQ does not need to be satisfied). This theoretical result concerns the
infinite sequence generated by the method saying, essentially, that in most cases the limit point is
good. However, it remains to be possible that, for a particular (bad) iterate xk generated by the
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Figure 2: Performance profiles comparing the CPU time spent by Algencan and scaled Algencan
without acceleration in the 198 problems in which the two methods did not behave identically and
found feasible points with tolerance εfeas = 10−8 and equivalent objective function values with tolerance
ftol = 10−8.

same sequence, the scaled criterion is met with a very small tolerance. In order to verify whether
such premature stopping occurs in practice, we performed a careful numerical experimentation. The
numerical experiments showed that, in the considered set of problems, there is a gain in efficiency
without losing robustness with the employment of scaled KKT conditions in Algencan.

Last but not least, there are applications in which an accurate Lagrange multiplier is sought. In
this cases, scaling is not recommended. It is also the case that without scaling, Algencan possesses
the property of always generating a sequence which satisfies a very natural approximation of the KKT
conditions [3] (whenever a feasible point is reached), without assuming any constraint qualification,
which is very appealing. Summing up, although numerical results suggest that the employment of
the scaled stopping criterion associated with the scaled Augmented Lagrangian method is generally
effective, and the algorithm finds a KKT point under weak constraint qualifications, the existence
of families of problems in which premature stopping occurs cannot be discarded. Therefore, when
solving a specific problem, scaling should be used with caution. The validity of the positive results
presented in this study concerning using scaled KKT conditions in Algencan will be the subject of
future research with respect to other constrained optimization algorithms.
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