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Abstract

In proton therapy treatment planning, the aim is to ensure tumor con-
trol while sparing the various surrounding risk structures. The biological
effect of the irradiation depends on both physical dose and linear energy
transfer (LET). In order to include LET alongside physical dose in plan
creation, we propose to formulate the proton treatment planning problem
as a particularly structured multi-criteria bi-level optimization problem,
which we call hierarchical.

We show that the hierarchical multi-criteria bi-level problem can be
reduced to a standard multi-criteria optimization (MCO) problem em-
ploying a specific domination cone. As the unfavorable properties of this
cone prohibit a direct application of standard MCO solution methods, we
further illustrate how a more convenient approximate cone can be con-
structed.

Based on the found reduction to a standard MCO problem, we then
describe a novel approach to calculate a Pareto front representation for
the hierarchical multi-criteria bi-level problem. As a point of reference,
we also discuss a second, more brute-force approach. We apply both
approaches to a prostate and a head and neck case, and compare the
results.
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1 Introduction

In external radiation therapy, a target area is irradiated from the outside in an at-
tempt to destroy cancerous cells through radiation induced damage. At the same
time, nearby risk structures must be spared as much as possible in order to avoid
side effects. Finding the best balance between tumor control and risk sparing moti-
vates the application of multi-criteria optimization (MCO) methods. Over the last two
decades, MCO methodology has been successfully established for both photon and pro-
ton treatment planning [Küfer et al., 2002], [Küfer et al., 2003], [Monz et al., 2008],
[Craft et al., 2012], [Breedveld et al., 2019]. The general idea behind these approaches
is as follows. Firstly, a set of Pareto efficient plans is calculated that covers the range
of clinically feasible treatment options (plan creation). Subsequently, the plan set can
be interactively searched by the planner for the most preferable compromise (decision
making).

Compared to photons, proton radiation is more complex, resulting in a less
straightforward relationship between physical dose and biological effect. One way
to more accurately reflect the biological effect of protons is to integrate linear energy
transfer (LET) into the plan optimization, as higher LET leads to increased biological
effectiveness [Paganetti and van Luijk, 2013], [Chaudhary et al., 2014]. A straightfor-
ward method to integrate LET into plan optimization - which we will apply as well -
is to include objectives that evaluate the product LETxD of LET and physical dose
[Unkelbach et al., 2016], [Bai et al., 2020], [Gu et al., 2021].

A complete integration of LET into multi-criteria proton treatment plan optimiza-
tion has not yet been described. In [Giantsoudi et al., 2013], the authors depict a way
to retroactively include LET into the decision making for an already optimized plan
set, but do not consider LET in the plan creation.

In this work, we discuss how to properly include LET into multi-criteria proton
treatment plan optimization. To this aim, we propose to use bi-level optimization as
a mathematical framework. Let X denote the set of feasible treatment plans, let φ
denote a vector-valued objective measuring the plan quality in terms of LETxD, and
let F denote a vector-valued objective measuring the plan quality in terms of physical
dose. Then the bi-level problem

min
x∈X

φ(x)

s.t. Fi(x) ≤ Fi(z∗), i = 1, ..., n

z∗ ∈ argmin{F (z) : z ∈ X}

. (1)

reflects our aim to improve LETxD without sacrificing aspects of the physical dose
distribution. Note that if both φ and F were real-valued, solving (1) would be equiv-
alent to a lexicographic approach. In the multi-criteria setting however, the problem
has not been extensively studied.

In a previous work, Unkelbach et al. treated optimization of physical dose and LET
as a two-step problem [Unkelbach et al., 2016]. After finding a desirable dose distribu-
tion, achieved objective values were incorporated in the constraints and - in a second
step - LETxD in the organs at risk was minimized. However, a fixed scalarization
was employed in both steps, resulting in a straightforward lexicographic procedure.
In contrast, we integrate dose and LETxD objectives into a unitary multi-criterial
problem formulation and then find a representation of the whole Pareto front.

One conceptual idea to solve (1) is the following: Find a domination cone and the
corresponding induced order relation such that the solution set of a standard multi-
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criteria optimization problem under this ordering coincides with the solution set of the
original bi-level problem. Then solve this standard MCO problem using established
Pareto front approximation methods. In our case, the bi-level problem (1) is a multi-
criteria optimization problem in both levels, but it has additional properties that are
conductive to such a reformulation.

The first ones to follow such an approach were Fliege and Vincente in
[Fliege and Vicente, 2006]. They reformulated specific bi-level problems - namely
those with one objective in each level, and where the upper level constraints do not
depend on the lower level variables - to bi-criteria problems, and they found an order
relation such that the solutions of both problems were the same. To find a fitting cone,
they approximated the original order relation with a weaker one such that the set of
non-dominated points with regards to the approximate weaker relation was a subset
of the original non-dominated points. Due to the properties of their cone, a linear
scalarization was not necessarily sufficient to find the solutions of the multi-criteria
problem. They proposed to use quadratic mappings instead.

In [Ivanenko and Plyasunov, 2008] the authors extended the ideas from
[Fliege and Vicente, 2006] to problems where the upper level constraints depend on
the lower level variables. They considered bi-level problems with a single objective in
each level, thus the results are not directly applicable to our problem. They focused
on relations and did not construct a cone, nor specified how the relation can be used
for numerical optimization.

Ruuska, Miettinen and Wiecek [Ruuska et al., 2012] also generalized the approach
from [Fliege and Vicente, 2006]. They considered multi-criteria problems in both lev-
els, but again with the restriction that the feasible set of the upper variable does not
depend on the lower level variable. They obtained a relation and a standard MCO
problem whose efficient solutions coincide with those of the original bi-level problem.
However, the obtained relation was not transitive. They proposed a weaker one in-
stead and showed that there are cases where this weaker relation is transitive, but this
does not hold for the general case. A generating cone was not found, and they did not
elaborate on how to efficiently use the relation in numerical optimization routines.

In contrast to the above, problem (1) motivates us to investigate bi-level problems
where the lower level problem is independent of the upper level variable, but the
feasible set of the upper level problem depends on the lower level function value. We
will show that this special structure enables us to find a particular order relation and a
generating cone to identify the solutions of the bi-level problem with those of an MCO
problem. Additionally, the problem structure allows us to define an approximate cone
that is polyhedral and whose dual has non-empty interior. This two properties can be
exploited in numerical optimization routines, as we will demonstrate.

Our paper is organized as follows. In the theoretical part of our paper (Section
2), we formally introduce this particular type of bi-level problem and investigate its
theoretical properties. In particular, we show how the problem can be reformulated
into a standard MCO problem by defining a specific domination cone. We then discuss
two algorithmic approaches to solve the problem. The first algorithm draws on the
approach from [Unkelbach et al., 2016] for proton treatment planning, generalizing
it to the multi-criteria setting. The second algorithm exploits the aforementioned
reformulation to a standard MCO problem. In the results part (Section 3) we apply
both algorithms to two real-world proton planning problems and compare the results.
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2 Materials and Methods

2.1 Terms and Definitions

First, we will introduce some general notations and definitions that will be used
throughout the paper. The interior of a set S is denoted by int(S), and the boundary
by bnd(S). For two sets S1 and S2, S1 + S2 refers to their Minkowski sum, and for a
point s and a set S the sum s+ S is the Minkowski sum between {s} and S. Further,
the dual of a cone C is denoted by C∗.

The following Definitions 2.1 to 2.4 as well as Lemma 1 introduce fundamental concepts
from the theory of multi-criteria optimization.

Definition 2.1. A multi-criteria optimization problem is an optimization problem
with a vector valued objective function. It can be written as

min F (x) = (F1(x), ..., Fn(x))

s.t. x ∈ X
(MCO)

where F : X → Rn and X ⊆ Rm is the feasible set.

If the objective functions F1, ..., Fn and the feasible set X are convex, the MCO
problem is convex. We denote the image of F as F (X) = Y. Typically, not all
objective functions can take their minimal possible value at the same time. Instead,
the best possible compromises between the objectives are considered the solutions to
the problem.

To define a minima with respect to the vector-valued evaluation F , an order rela-
tion on Y must be defined that determines if a vector is smaller than another one. An
order relation is a relation that is reflexive, anti-symmetric and transitive. A convex,
pointed and salient cone C is called proper and induces an order relation. This conic
order relation is defined as x 4C y ⇔ y−x ∈ C. The cone is referred to as domination
cone. A prominent domination cone is Rn≥0, also called the standard domination cone.
For this cone x 4Rn

≥0
y ⇔ xi ≤ yi ∀i = 1, ..., n. If Rn≥0 is employed, we denote the

induced order relation simply as x ≤ y. The concept can also be applied to matrices,
where, if not defined otherwise, the relation is understood element-wise as well.

The following definition explains when a solution is considered a best possible
compromise.

Definition 2.2. [Ehrgott, 2005][Def 2.1] A point x ∈ X is called Pareto efficient or
Pareto optimal if there is no other x̃ ∈ X such that F (x̃) 4C F (x). The point F (x) in
the image space is called non-dominated. The set of non-dominated points is

PC = {F (x)|x ∈ X, @x̃ ∈ X : F (x̃) 4C F (x))} (2)

and referred to as Pareto front.

We will write C −min to refer to the operator for the non-dominated points of a
MCO problem with regards to cone C. For the standard domination cone we will use
min. A non-dominated point can be understood as a point such that no other point is
equally good or better in all objectives. A weakly non-dominated point is one where
no other point is truly better in all objectives.

Definition 2.3. [Ehrgott, 2005][Def 2.24] A point F (x) is weakly non-dominated if
there is no other point F (x̃) such that F (x̃) ∈ F (x)− int(C).
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One way to find the Pareto efficient solutions of an MCO problem (MCO) is to
scalarize it, i.e. to transform it into a parametrized standard optimization problem
with a real-valued objective. The scalarized problem can then be solved with standard
optimization methods such as gradient descent.

Definition 2.4. The weighted sum scalarization of (MCO) is

min

n∑
i=1

wiFi(x)

s.t. x ∈ X
(WS)

with w ∈ R≥0 \ {0}.

If the weights for (WS) are chosen from the dual cone C∗, one can solve (WS) to
obtain a (weakly) non-dominated point of (MCO). The proof for the following lemma
from [Serna, 2012] can be found in the appendix.

Lemma 1. [Serna, 2012][Lemma 1.23] If the weights w of (WS) are from C∗\{0} and∑n
i=1 wiFi(x

∗) = min{
∑n
i=1 wiFi(x) | x ∈ X}, then F (x∗) is a weakly non-dominated

point of (MCO) with regards to C. If w ∈ int(C∗), F (x∗) is a non-dominated point.

Since commonly the Pareto front cannot be calculated explicitly, some Pareto
points are calculated and used to approximate the whole set. For convex MCO prob-
lems, the convex hull of the calculated points of the Pareto front is used as inner
approximation and the intersection of the positive half spaces of the hyperplanes sup-
porting the Pareto points

⋂
{z : wT z ≥

∑n
i=1 wiFi(x

∗)} as outer approximation of
PC +C. Since the true Pareto front is in between the inner and outer approximation,
their distance can be used as upper threshold of the approximation error. Algorithms
that use an inner and outer approximation are called sandwiching algorithms. Their
aim is to find an approximation with as few solves as possible. For this they calculate
the next weight to be used for (WS) such that the newly calculated point reduces the
maximal approximation error as far as possible. For a pseudo code formulation of the
sandwiching algorithm, see [Bokrantz and Forsgren, 2012] Algorithm 3.1.

In the remainder of this section, we introduce the bi-level problem as a special kind
of optimization problem. An optimization problem is a bi-level problem if the con-
straints of the so-called upper level problem include an optimization problem, the
so-called lower level problem. In particular, the upper level optimization variable xu
is a parameter in the lower level problem.

Definition 2.5. A bi-level problem can be formulated as

min
xu∈Xu,xl∈Xl

φ(xu, xl)

s.t. xl ∈ argmin{F (xu, xl) : Gi(xu, xl) ≤ 0, i = 1, ..., I}
ψj(xu, xl) ≤ 0, j = 1, ..., J.

(BLP)

A bi-level problem can be a multi-criteria problem in either level. This means φ or
F can be vector-valued. Then finding a Pareto point of the upper level requires two
decisions, one for the lower level and one for the upper level once the lower level is
decided. Depending on the setting there are several scenarios possible. Stemming from
game theory, two are common in literature. One is where the lower level will decide so
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the upper level can find the best points. This is called the optimistic approach. The
opposite, where the lower level is decided such that the upper level will get the worst
result, is the pessimistic approach.

As motivated in the introduction, our aim is to solve the particular multi-criteria
bi-level problem (1). This problem has certain special properties. Firstly, the upper
level objectives φ are only dependent on xu and not on xl. Secondly, the upper level
constraints ψ are only dependent on the lower level objectives values, not on the
variables themselves. We call bi-level problems with these properties hierarchical. We
will refer to the domination cone for the lower level problem of (HBP) as CL and for
the one of the upper level as CU . A hierarchical bi-level problem can be formalized as

CU −min
xu

φ(xu)

s.t. ψj(xu, F (xl)) ≤ 0, j = 1, ..., J

xl ∈ CL − argmin
z
{F (z) : Gi(z) ≤ 0, i = 1, ..., I}.

(HBP)

Since the function value of the lower level is deterministic for the feasible set of the
upper one, not the chosen efficient point itself, a hierarchical bi-level problem will
automatically lead to the optimistic approach.

2.2 Theoretical properties of the hierarchical bi-level prob-
lem

Following the concept originally introduced in [Fliege and Vicente, 2006] and discussed
in the introduction, we may try to reduce the hierarchical bi-level problem (HBP) to
a standard MCO problem by finding a suitable domination cone. In the following, we
introduce such a problem reformulation, and we show that all Pareto efficient solutions
of this reformulation can be identified with a Pareto efficient solution of (HBP) and
the corresponding solution of the lower level problem. We call such a reformulation a
single level reduction of the hierarchical bi-level problem. The single level reduction
uses the objectives and constraints from both levels of (HBP) as congenial objectives
and constraints, respectively.

Definition 2.6. The single level reduction of (HBP) is

CSLR − min
xu,xl

φ(xu), F (xl)

s.t. ψj(xu, F (xl)) ≤ 0, j = 1, ..., J

Gi(xl) ≤ 0, i = 1, ..., I.

(SLR)

To achieve an identification of the Pareto front of (HBP) and (SLR) we define the
cone for the single level reduction as follows.

Definition 2.7. The single level reduction cone is

CSLR(CU , CL) = {(u, l) ∈ Rn1+n2 : l ∈ CL \ {0} ∨ (l = 0, u ∈ CU )}. (3)

If the used cones are clear, we will simply write CSLR. The properties required
for a domination cone to ensure that it induces an order relation mostly transfer from
CU and CL to CSLR.
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Lemma 2. If CU and CL are pointed/salient cones, then CSLR(CU , CL) is also
pointed/salient. If CU and CL \ {0} are convex cones, then CSLR(CU , CL) is also
convex.

The proof can be found in the appendix. Notably, the requirement that CL \{0} is
convex implies the convexity of CL. Henceforth, it will be assumed that both CL and
CU fulfill the perquisites of Lemma 2. The following theorem shows how the Pareto
front of (HBP) with regards to CL and CU is connected to the Pareto front of (SLR)
with regards to CSLR(CU , CL).

Theorem 2.1. Consider a (HBP) with regards to pointed, salient, convex domination
cones and for the cone of the lower level it additionally holds that CL \ {0} is convex.

i Then, for any non-dominated point (φ, F )(x∗u, x
∗
l ) of (SLR) with regard to the

single level reduction cone, φ(x∗u) is a point of the Pareto front of (HBP) that
is obtained if the chosen solution of the lower level is F (x∗l ), as long as for any
x∗l the feasible region of the upper level of HBP is not empty.

ii For any non-dominated point φ(x∗u) of (HBP) with the lower level solution
F (x∗l ), (φ, F )(x∗u, x

∗
l ) is a point of the Pareto front of the corresponding sin-

gle level reduction with regards to the single level reduction cone.

Proof. Denote the Pareto front of (HBP) with regards to CL and CU as

PHBP =
{
φ(xu) : ψ(xu, F (xl)) ≤ 0, (4a)

xl ∈ CL − argmin
z
{F (z) : G(z) ≤ 0}, (4b)

@yu : φ(yu) 4CU φ(xu), φi(yu) < φi(xu) for some i, (4c)

ψ(yu, F (xl)) ≤ 0
}
. (4d)

The Pareto front of (SLR) with regards to CSLR is

PSLR =

{(
φ(xu)
F (xl)

)
: G(xl) ≤ 0, ψ(xu, F (xl)) ≤ 0, (5a)

@(yu, yl) : G(yl) ≤ 0, ψ(yu, F (yl)) ≤ 0, (5b)[(
F (yl) 4CL\{0} F (xl)

)
(5c)

∨
(
F (yl) = F (xl), φ(yu) 4CU φ(xu), (5d)

∃j : φj(yu) < φj(xu)
)]}

.

First, to show [i], let

(
φ(x∗u)
F (x∗l )

)
∈ PSLR. From (5a) one obtains that x∗l fulfills the

constraints of the lower level problem. (5a) to (5c) mean that for a fixed u, xl is an
efficient point of

CL −min
x
{F (x) : G(x) ≤ 0, ψ(u, F (x)) ≤ 0}. (6)

Contrary, for PHBP xl is part of a vector from the set
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{(u, xl) : xl ∈ CL − argmin
z
{F (z) : G(z) ≤ 0}} ∩ {(u, xl) : ψ(u, F (xl)) ≤ 0}. (7)

Clearly, the feasible region of (6) is a subset of the feasible region of the optimization
problem in (7) and the minima of (7) is smaller or equal than the one of (6). Hence,
if a point is in the set described by (7), it is also in (6). But the desired direction is
the other way round. Assume that a point (u, x) fulfills (6) but not (7). Then there is
a Pareto optimal point F (yl) of (7) that would dominate the optimal solution of (6)
but does not fulfill the constraints. By assumption any solution xl of the lower level
problem leads to a non empty feasible region of the upper level. This means that there
is a point (yu, yl) that fulfills (7). As reasoned above, this point is also in (6). This
means there exists a (yu, yl) that was forbidden in (5b) and (5c).

Next, set (yu, yl) in (5b) to (yu, x
∗
l ). Hence, there cannot be a yu that fulfills

ψ(yu, F (x∗l )) ≤ 0 and (5d). This implies (4c) and (4d). Consequently, φ(x∗u) is in
PHBP and the lower level solution chosen for this point is F (x∗l ).

For the other direction assume that φ(x∗u) ∈ PHBP and the corresponding chosen
lower level solution is x∗l . Then (4a) and (4b) imply (5a). Next, assume that there
is a (yu, yl) such that (5b) and (5c) hold. Then G(yl) ≤ 0 and F (yl) 4CL\{0} F (x∗l )
contradict the assumption that x∗l is an efficient point of the lower level problem, thus
such a (yu, yl) cannot exists. Next, we have to exclude the existence of a point fulfilling
(5b) and (5d). For yl = x∗l this follows directly from (4c) and (4d). Assume there is
an yl 6= x∗l such that F (yl) = F (x∗l ). There cannot be an yu such that (4c) and (4d)
hold. If (5d) is violated so is (4c). Violation of ψ(yu, F (x∗l )) ≤ 0 also means violation
of ψ(yu, F (yl)) ≤ 0 and thus also transfers directly to (5b).

This theorem relies on the specific structure of the hierarchical bi-level problem.
Especially the last step requires that the lower level variable does only occur in the
upper level constraints as evaluation of the lower level objective. Otherwise it could
happen that there is a non-dominated point of the lower level problem that belongs to
more than one efficient solution of the lower level problem. Then PHBP will include
the upper level Pareto point with regard to whichever point was set in the lower level,
or if all lower level Pareto points are considered it will include the upper Pareto points
belonging to all of them - even if in the upper level one dominates the other and the
lower levels are the same. On the other hand, in PSLR only the point that leads to
the better upper level value would be included. The independence required in (HBP)
prevents this case from happening. Efficient points of the lower level that belong to
the same non-dominated point will result in the same non-dominated points in the
upper level.

For Theorem 2.1[i] we required the set (7) to be nonempty for any efficient point xl
of the lower level problem. If this is not the case, PHBP would not include a solution
for these xl, whereas PSLR would include a point that is not Pareto optimal in the
sense of the lower level problem, but the best that can be found with the additional
constraints. As long as the constraints of the upper level only ensure that the lower
level objectives evaluated at xu are close enough to F (xl) the assumption will always
hold since xu = xl would be feasible.

To calculate a Pareto optimal point of a MCO problem a common method is
to solve a corresponding weighted sum problem with weights from the dual cone of
the domination cone. The obtained solution is weakly non-dominated (see Lemma
1). Unfortunately, due to the construction of CSLR the set of weakly non-dominated
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points is far too large to be usable as solution of the optimization problem, since all
points that are weakly non-dominated in the lower level are weakly non-dominated
with regards to CSLR, independent of their upper level value. To distinguish points
that are the same in the lower level but different in the upper level is the conceptual idea
behind the hierarchical bi-level problem. Hence, the weakly non-dominated solutions
are insufficient for all use cases. The points of interest are the non-dominated ones.
However, as the interior of C∗SLR is empty, there are no weights in C∗SLR that guarantee
true Pareto optimality with regards to CSLR. Consequently, the cone is unfit for
calculations. CSLR can be reformulated as

CSLR = (CL \ {0} × Rn2) ∪ ({0} × CU ) . (8)

If CL and CU are the standard domination cone, one obtains

CSLR(Rn1
≥0, R

n2
≥0) =

(
Rn1
≥0 \ {0} × Rn2

)
∪
(
{0} ×Rn2

≥0

)
=
(
Rn1
≥0 × Rn2

)
\
(
{0} × (Rn2

≥0)
′)
,

(9)

where (Rn2
≥0)
′

denotes the complement of Rn2
≥0 in Rn2 . To get more non-dominated

points we need a smaller approximation cone. The idea of the approximation cone is

to exclude slightly more than
(
{0} × (Rn2

≥0)
′
)

.

Definition 2.8. Let In be a unit matrix of Dimension n×n and 0n×m a matrix with
only zeros of size n×m and let L describe the dimension of the lower level problem, i.e.
F (xl) ∈ RL, and U the dimension of the upper level problem. Then the approximation
cone CB(E) of CSLR(RU≥0,RL≥0) is the set

CB(E) = {Qλ, λ ≥ 0}, (10)

with

Q =

(
IU 0U×L −IU

0L×U IL E

)
, (11)

where E ∈ RL×U>0 is a matrix with entries εi,j that describe the required derivation in
direction lj for a negative step in direction ui.

Notice how the blocks from Q stem from the lower and upper level domination
cones, with the concept that a point where the upper level part is outside of CU leads
to costs in the lower level.

We will write λ as (λu, λl, λB) ∈ RU≥0×RL≥0×RU≥0 to refer to the entries of λ that
are multiplied with the respective blocks of Q. This means a point in CB(E) can be
written as 

λu1 − λB1

...
λuU − λBU

λl1 +
∑U
k=1 εk1λBk

...

λlL +
∑U
k=1 εkLλBk


. (12)
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The next step is to show that for E → 0 the Pareto front PCB(E) converges towards
PSLR(RU

≥0
,RL
≥0

). To do so let us define amin for a point x = (xu, xl) as

amin = inf

{
a ∈ R≥0 :

(
xu
0

)
+ a

(
0
xl

)
∈ CB(E)

}
. (13)

With amin it is possible to construct an approximation cone such that an arbitrary
fixed point that is not in PSLR is not in PCB .

Lemma 3. Let s be the mapping s : Y → Yl, s : (u, l) 7→ l. Assume that for any y ∈
bnd(Y + CB(E)) there is no b = (bu, bl) ∈ RU+L with ∃i, j, k : bui < 0, blj > 0, blk = 0
such that

s(y + b) ∈ bnd(YL + CL) and (14)

y + b ∈ bnd(Y + CB(E)). (15)

Let z ∈ PSLR and v /∈ PSLR, v ∈ PCB(E) be two points such that z dominates v with
regards to CSLR. Then for x = v − z equation (13) has a solution amin <∞.

Proof. It is to show that there is an a ∈ R≥0 such that

(
xu
a · xl

)
∈ CB(E). This

means there has to be a λ ≥ 0 such that

(
xu
a · xl

)
=



λu1 − λB1

...
λuU − λBU

λl1 +
∑U
k=1 εk1λBk

...

λlL +
∑U
k=1 εkLλBk


. (16)

Since z dominates v with regards to CSLR, the point x is in CSLR and consequently
xl ∈ CL = RL≥0. If xl = 0, it follows that xu ≥ 0. But then z also dominates v with
regards to CB(E) and v /∈ PCB(E) . Hence, xl ≥ 0 and ∃j such that xlj > 0. Clearly, if
xu ≥ 0, v would not be in PCB(E) . Assume there is an i such that xui < 0. For xuk ≥ 0
choose λuk = xuk and λBk = 0. For xuk < 0 choose λuk = 0 and λBk = −xuk . For
(16) to have a solution, it has to hold ∃ a ∈ R≥0 : a · xlj ≥

∑U
i=1 εkjλBk ∀j = 1, ..., L.

The only case where this might not be the case is if there exists j such that xlj = 0.
This would contradict the prerequisites.

From now on we will assume that the prerequisites of Lemma 3 hold. Notably,
Lemma 3 does not necessarily require (14). This prerequisite is there to not exclude
too many cases, since it ensures that (15) only has to hold for points that have the
possibility of beeing non-dominated. Clearly, if one would solve (13) for a point v /∈
PCB(E) because it is dominated by z, one would obtain amin ≤ 1. This can be used to
construct an approximation cone such that v is not on the corresponding Pareto front.

Lemma 4. Let z and v be two points as described in Lemma 3. Further, let amin be
the solution of (13) for v− z with regards to CB(E). Then z dominates v with regards
to CB( E

amin
).
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Proof. Clearly, amin > 1. Further, amin · xlj ≥
∑U
i=1 εkjλBk∀j = 1, ..., L. Thus,

xlj ≥
∑U
i=1

εkj

amin
λBk∀j = 1, ..., L and consequently v − z ∈ CB( E

amin
).

We have shown that for any point that is on the Pareto front of an approximation
cone, but not on the actual Pareto front, a bigger approximation cone can be found
such that the point is not on its front anymore. This can be used to show that for
E → 0 the approximated Pareto front converges towards the true Pareto front.

Theorem 2.2. If (SLR) is a convex problem, for E → 0 the set PCB(E) converges
towards PSLR.

Proof. For a series of ε−matrices (En)∞n=1 with En ≥ En+1 it follows that CB(En) ⊆
CB(En+1) and thus PB(En) ⊇ PB(En+1). Denote PB(En) as Pn and notice that (Pn)∞n=1 is
a monotonous decreasing sequence of sets. Such sequences always converge. To show
that the limit is PSLR, let Bδ(PSLR) for some δ > 0 be an open δ-ball around PSLR.
Consider the set V of points v ∈ Pn, v /∈ Bδ(PSLR) with dHaus(v, PSLR) = δ, where
dHaus is the Hausdorff metric. For each of these points amin(v) < ∞. Consequently,
k = maxv∈V amin(v) < ∞ and can be used to scale the E matrix for the next step
in the sequence. Choose En+1 = En

k
. Then Pn+1 and all subsequent elements of the

set sequence have a Hausdorff distance from PSLR smaller than δ. This construction
works for every arbitrary small δ > 0. Thus, limn→∞ Pn = PSLR.

While the weakly non-dominated points with regards to CB(E) still include all
points that are weakly non-dominated in the lower level independent of the upper
level, the interior of the dual cone C∗B(E) is not empty. Thus, contrary to CSLR it is
possible to calculate truly non-dominated points with CB(E). In the next section, we
introduce the reduction approach as one of two methods to calculate the Pareto front
of HBP. The reduction approach makes use of all theoretic findings presented in this
section.

2.3 Solving the hierarchical bi-level problem

In this section, we introduce two different approaches to solve the multi-criteria hier-
archical bi-level problem (HBP). To work properly, both approaches require that all
functions defining the bi-level problem are convex. For the remainder of this section,
we therefore require the following assumption to hold.

Assumption 2.1. For the hierarchical bi-level problem (HBP), we assume that the
lower level objectives Fk (k = 1, ..., nl), the lower level constraints Gi (i = 1, ..., I), the
upper level objectives φk (k = 1, ..., nu) and the upper level constraints ψj (j = 1, ..., J)
are all convex.

The performance of these two methods will later be compared in the results sec-
tion when applied to specific proton treatment planning examples. As a subrou-
tine, both methods use the sandwiching algorithm described in [Serna, 2012] and
[Bokrantz and Forsgren, 2012]. The pseudo code for the sandwiching algorithm can
be found in [Bokrantz and Forsgren, 2012] Algorithm 3.1. For our purposes, we define
a stopping criterion for the sandwiching algorithm that is met if either the approxima-
tion error reaches a given target value δ, or the number of computed solutions reaches
a given maximum number N . We employ the following signature

X∗ = Sandwiching(M, δ,N,C := Rn≥0) (17)
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where X∗ is the set of calculated Pareto efficient solutions and M is the problem
instance. C denotes the domination cone, which can be any proper cone. In the
standard case, C is the positive orthant Rn≥0.

2.3.1 Two stage approach

The first algorithm can be seen as a generalization of the approach of
[Unkelbach et al., 2016]. It operates in two stages. In the first stage, a set of Pareto
efficient solutions Z = z1, ...zN to the (multi-criterial) lower level problem

min
z

F (z)

s.t. Gi(z) ≤ 0, i = 1, ..., I.
. (18)

is calculated using the sandwiching algorithm. In the second stage, for each solution
zk from the first stage, the Pareto front of the problem

min
xu

φ(xu)

s.t. ψj(xu, F (zk)) ≤ 0, j = 1, ..., J
. (19)

is computed, again using the sandwiching algorithm. Problem (19) is the upper level
problem of (HBP), where the lower level variable xl is fixed to zk. In Algorithm 1 the
pseudo code for the two-stage approach is depicted.

Algorithm 1 Two stage approach

input:
• a multi-criteria hierarchical bi-level problem (HBP)
• a target approximation quality δ1 ≥ 0 and a maximal number of solutions
N1 ≥ 0 (for first stage)

• a target approximation quality δ2 ≥ 0 and a maximal number of solutions
N2 ≥ 0 (for second stage)

output:
• a set of Pareto efficient solutions X∗ to (HBP)

Start
Z = z1, ..., zN ← Sandwiching((18), δ1, N1)
for all zk ∈ Z do

X∗,k ← Sandwiching((19), δ2, N2)
end for
return

⋃N
k=1X

∗,k

End

2.3.2 Reduction approach

The theoretical findings of Section 2.2 motivate a second, potentially more efficient
method for solving (HBP). As shown in Theorem 2.1, it is possible to reformulate
the multi-criteria hierarchical bi-level problem (HBP) to the standard multi-criteria
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problem (MCO) by defining a specific domination cone. As the sandwiching algorithm
can be applied using any proper cone [Serna, 2012][Bokrantz and Forsgren, 2012], this
allows the direct application of the Sandwiching algorithm to the reformulated prob-
lem.

Unfortunately, while the cone CSLR in the reformulation described in 2.1 is indeed
proper, the dual cone of CSLR has empty interior. As a result, the Sandwiching algo-
rithm can - in general - only produce weakly Pareto-efficient solutions. Creating only
weakly Pareto-efficient solutions is however not a satisfying outcome when optimizing
in any real-world scenario.

Fortunately, Definition 2.8 describes a proper cone CB(E) that approximates
CSLR(Rn1

≥0,R
n2
≥0) and whose dual has non-empty interior. We can, therefore, apply

the Sandwiching algorithm to the reformulation using the approximate proper cone
CB(E) instead of CSLR(Rn1

≥0,R
n2
≥0). Moreover, because of the convergence result from

Theorem 2.2, we can expect to obtain a set of solutions which approximates the Pareto
front of HBP reasonably well provided that the entries of E are chosen suitably small.
We call this the reduction approach. In Algorithm 2 the pseudo code for the reduction
approach is depicted.

Algorithm 2 Reduction approach

input:
• a multi-criteria hierarchical bi-level problem (HBP)
• a target approximation quality δ ≥ 0 and a maximal number of solutions
N ≥ 0

output:
• a set of feasible solutions X to (HBP) whose images approximate the

Pareto front of (HBP)

Start
Reformulate (HBP) to (MCO) according to Theorem 2.1
Choose suitably small ε > 0
Define the domination cone CB(E) of 2.8 with εi,j := ε
return Sandwiching((MCO), δ,N,CB(E))

End

3 Results

In this section, we apply the two algorithms from 2.3 - the two-stage approach and the
reduction approach - to calculate the Pareto front for two realistic proton treatment
planning problems. The problems were taken from matRad [Cisternas et al., 2015],
an open source software for radiation treatment developed by the German Cancer
Research Center. For both approaches, we employ the commercially available nonlin-
ear optimization solver knitro [Byrd et al., 2006] to solve the weighted sum problems
within the Sandwiching subroutine.

As motivated in the introduction, we conceptualize the treatment planning problem
as a multi-criteria bi-level problem of the form (1), which is a special case of of the
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multi-criteria hierarchical bi-level problem (HBP). Each upper level objective φi, each
lower level objective Fi, and each constraint defining the feasible set X - in addition to
the physical constraint of positive irradiation - employs one of the following evaluation
functions to evaluate the dose distribution (physical or LETxD) in a given volume V ,
which can be a target or risk structure.

The underdose, penalizing any voxel dose below the reference value d
ref

:

UD(d) =
∑
v∈V

(max
{

0, d
ref
− dv

}
)2. (20)

The overdose, penalizing any voxel dose above the reference value

OD(d) =
∑
v∈V

(max
{

0, dv − d
ref
}

)2. (21)

The generalized equivalent uniform dose for an exponent p ≥ 1:

gEUD(d) =
∑
v∈V

dpv. (22)

3.1 Prostate case

Our first example was a prostate case. The target was irradiated from two proton
beams from opposing sides (90◦ and 270◦). There is a primary tumor (PTV 68) with
prescription dose of 68 Gy and a larger surrounding target (PTV 56) with prescription
dose of 56 Gy. The relevant risk structures were the rectum, the bladder, and the left
and right femoral head, see Figure 1.

Figure 1: Geometry of the prostate case. PTV 56 (rose), PTV 68 (blue), bladder
(pink), rectum (olive), left femoral head (black), right femoral head (orange).

We investigated an optimization model with two upper level objectives measuring
the LETxD in bladder and rectum, and two lower level objectives measuring the
physical dose in bladder and rectum. Target coverage, the sparing of the femoral
heads and the unclassified tissue (Body) was ensured by constraints. The optimization
model is depicted in Table 1.

We ran the two-stage approach with N1 = N2 = 5 and the reduction approach
with N = 25. We also set all target approximation qualities to 0, such that for both
approaches, the output set consisted of exactly 25 solutions. For the approximating
cone in the reduction approach, we employed both ε = 0.1 and ε = 0.05.
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volume evaluation function dose type

upper level objectives

Rectum gEUD, p = 2 LETxD
Bladder gEUD, p = 2 LETxD

lower level objectives

Rectum gEUD, p = 2 physical
Bladder gEUD, p = 2 physical

lower level constraints

PTV 68 UD, d
ref

= 68, ≤ 10 physical

PTV 68 OD, d
ref

= 73, ≤ 5 physical

PTV 56 UD, d
ref

= 56, ≤ 10 physical

PTV 56 OD, d
ref

= 61, ≤ 5 physical
Rt femoral head gEUD, p = 2, ≤ 250 physical
Lt femoral head gEUD, p = 2, ≤ 250 physical

Body OD, d
ref

= 30, ≤ 10 physical

Table 1: The optimization problem for the prostate case.

The total computation time on a Lenovo T490s laptop was 9510 seconds for the
two stage approach, while for the reduction approach the computation times were 5901
seconds (ε = 0.1) and 5293 seconds (ε = 0.05), respectively. One reason for the longer
calculation time of the two stage approach is that in the first stage, 5 additional plans
have to be optimized. Also, the individual optimization runs took longer on average
for the two stage approach. One likely reason for this is that the tight constraints
imposed on the second stage optimization problems make them more challenging to
solve numerically. The calculation overhead on top of the individual optimization runs
is negligible for both approaches and creates no meaningful difference in calculation
time.

Figure 2 shows the objective space images of the calculated solution sets. On the
left side, the points are projected on the lower level objectives evaluating the physical
dose, while on the right side, their projections on the upper level objectives evalu-
ating LETxD are displayed. Recall that the two-stage approach guarantees Pareto
optimality with respect to the lower level objectives, while the points obtained from
the reduction approach only create an approximation that improves with decreasing
ε. This is confirmed in Figure 2, showing the lower level objective evaluations to be
worse for the reduction approach. However, the difference between the point sets from
the two approaches gets much smaller when employing ε = 0.05 instead of ε = 0.1.

On the other hand, the points obtained from the reduction approach reach better
values for the upper level objectives, as can be seen in the right side plots of Figure
2. The reason for this is that for the reduction approach, but not the two-stage
approach, some trade-off between lower and upper level objectives is allowed. Again,
the difference between the point sets gets smaller when switching from ε = 0.1 to
ε = 0.05.

Figure 3 shows the dose volume histogram and the dose averaged LET distribution
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(a) ε = 0.1: lower level (b) ε = 0.1: upper level

(c) ε = 0.05: lower level (d) ε = 0.05: lower level

Figure 2: The objective space images of the solution sets obtained with the two-stage
approach and the reduction approach for the prostate case, shown as projection views.
Left: Projection on the lower level dose objectives for bladder and rectum. Right:
Projection on the upper level LETxD objectives for bladder and rectum. The upper
plots show the points obtained from the reduction approach for ε = 0.1, the lower
plots for ε = 0.05. The points from the two-stage approach are the same in all plots.
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Figure 3: Two similar optimized plans for the prostate case, one obtained from
the two-stage approach (left), one from the reduction approach (right). Top: Dose
volume histogram showing, on the y-axis, the relative volume of a structure that
receives at least the amount of dose on the x-axis. Bottom: Dose-averaged LET
volume histogram, showing the relative volume of a structure that exhibits a dose
averaged LET of at least the value on the x-axis.

for two comparable plans, one originating from the two-stage approach and one from
the reduction approach.

3.2 Head and neck case

As a second example, we looked at a head and neck case with two beams from 45◦

and 315◦ respectively. There is a primary tumor (PTV 70) with prescription dose of
70 Gy and a larger surrounding target (PTV 63) with prescription dose of 63 Gy. The
relevant risk structures are the left and right parotid, brain stem, cerebellum, spinal
cord and larynx, see Figure 4.

Again, we investigated an optimization model with two upper level objectives, this
time measuring LETxD in the left and right parotid, and two lower level objectives,
measuring the physical dose in the left and right parotid. Target coverage and the
sparing of brain stem, spinal cord, cerebellum and unclassified tissue (Skin) is ensured
by constraints. The optimization model is given in Table 2.

Again, we ran the two-stage approach with N1 = N2 = 5 and the reduction
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Figure 4: Geometry of the head and neck case: PTV 70 (pink), PTV 63 (blue), right
parotid (light blue), left parotid (white), cerebellum (orange), brain stem (brown).

approach with N = 25 to obtain exactly 25 solutions with both approaches. For the
approximating cone in the reduction approach, we employed both ε = 0.1 and ε = 0.01.

For the head and neck case, the total computation time was 14934 seconds for the
two stage approach. Using the reduction approach, the calculation times were 8054
seconds (ε = 0.1) and 5468 seconds (ε = 0.01), respectively. Hence, as in the prostate
case, the reduction approach was significantly faster than the two-stage approach.

Figure 5 shows the objective space images of the calculated solution sets as projec-
tions on the lower (left) and upper (right) level objectives. As in the prostate example,
and corresponding to theory, the lower level objective evaluations are worse for the re-
duction approach while the upper level objective evaluations are better. As expected,
the difference between the point sets shrinks significantly when switching from ε = 0.1
to ε = 0.01.

Figure 6 shows the dose volume histogram and the dose averaged LET distribution
for two comparable plans obtained from the two different approaches.

4 Discussion

In this work, we described a concise and novel way of including LET in the plan
optimization for proton treatment planning. To this aim, we defined a particular type
of bi-level optimization problem which we called a hierarchical bi-level problem. We
showed how this type of problem can be reduced to a standard multi-criteria problem,
and how this reduction can be utilized to calculate a Pareto front representation.
For two examplary proton planning problems, we observed a significant advantage in
calculation time for this reduction approach compared to a second, more brute-force
approach.

For hierarchical bi-level problems with convex objectives and constraints, the most
significant advantage of the reduction approach lies in the direct application of the
Sandwiching algorithm. By its use of inner and outer approximation, the Sandwiching
algorithm is uniquely effective in creating a good representation of the Pareto front
with very few weighted sum optimizations. In this paper, we did not investigate how
effectively the calculated points represent the true Pareto front, as this would be have
been a computationally intractable task for the rather large exemplary problems we
discussed. However, as a future research topic, a computational study on a set of
benchmark problems with analytically characterized Pareto fronts could provide this
insight.
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(a) ε = 0.1: lower level (b) ε = 0.1: upper level

(c) ε = 0.01: lower level (d) ε = 0.01: upper level

Figure 5: The objective space images of the solution sets obtained with the two-stage
approach and the reduction approach for the head and neck case, shown as projection
views. Left: Projection on the lower level dose objectives for left and right parotid.
Right: Projection on the upper level LETxD objectives for left and right parotid. The
upper plots show the points obtained from the reduction approach for ε = 0.1, the
lower plots for ε = 0.01. The points from the two-stage approach are the same in all
plots.
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Figure 6: Two similar optimized plans for the head and neck case, one obtained
from the two-stage approach (left), one from the reduction approach (right). Top:
Dose volume histogram showing, on the y-axis, the relative volume of a structure that
receives at least the amount of dose on the x-axis. Bottom: Dose-averaged LET volume
histogram, showing the relative volume of a structure that exhibits a dose averaged
LET of at least the value on the x-axis.
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volume evaluation function dose type

upper level objectives

Left parotid gEUD, p = 2 LETxD
Right parotid gEUD, p = 2 LETxD

lower level objectives

Left parotid gEUD, p = 2 physical
Right parotid gEUD, p = 2 physical

lower level constraints

PTV 70 UD, d
ref

= 70, ≤ 10 physical

PTV 70 OD, d
ref

= 75, ≤ 10 physical

PTV 63 UD, d
ref

= 63, ≤ 20 physical

PTV 63 OD, d
ref

= 68, ≤ 10 physical

Skin OD, d
ref

= 30, ≤ 200 physical

Skin OD, d
ref

= 80, ≤ 0 physical
Brain stem gEUD, p = 2, ≤ 10 physical
Cerebellum gEUD, p = 2, ≤ 25 physical
Spinal cord gEUD, p = 2, ≤ 100 physical
Larynx gEUD, p = 2, ≤ 750 physical

Table 2: The optimization problem for the head and neck case.

An extension of the reduction approach to hierarchical problems with non-convex
objectives and constraints is another interesting topic for research. Under these cir-
cumstances, the Sandwiching algorithm cannot be applied and would need to be re-
placed by an approximation algorithm suited for non-convex Pareto fronts, e.g. an
epsilon constraint, hyperboxing or hypervolume method. The single level reduction
itself, as presented in this work, does not require convex objectives nor constraints.
However, convexity is indeed required to show the convergence of the Pareto fronts
induced by a sequence of approximation cones towards the original front. Whether an
approximation cone can be used in the case of non-convexity, and if so, how it can be
defined, is a point of further investigation. For proton treatment plan optimization, an
extension of the reduction approach to non-convex objectives and constraints would
allow for a wider variety of dose evaluation functions, in particular the widely used
dose-volume objective [Halabi et al., 2006].

Finally, we observe that the reduction approach can be extended to multi-level
problems. Lemma 2 showed that the domination cone CSLR needed for the single-
level reduction retains many properties from the domination cone CU of the upper
level and the domination cone CL of the lower level. If additionally CU \{0} is convex,
so is CSLR \ {0}. This means that CSLR has all the required properties of CL. Hence,
if all domination cones except the one of the highest level are convex even if {0}
is excluded, multi-level problems can recursively be reduced to a single-level problem
with the presented approach. For this, repeatedly the two inner most levels are reduced
and then form the new inner most level.
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5 Appendix

5.1 Proof of lemma 1

Proof. [Serna, 2012][Lemma 1.23] Assume that for a w ∈ C∗ \ {0}, z is an optimal
solution of min{

∑n
i=1 wiFi(x) s.t. x ∈ X}. Further, assume z is not weakly non-

dominated. This means ∃z̃ ∈ F (X) : z̃ ∈ z−int(C). Hence, there is a point a ∈ int(C)
such that z̃ = z − a. With the properties of the dual cone it follows

wT z̃ = wT (z − a) = wT z − wT a︸︷︷︸
>0

< wT z,

which contradicts the assumption. Likewise, for w̄ ∈ int(C∗), assume that z is an
optimal solution of the weighted sum but not non-dominated. Thus, there is an b ∈ C
and z̃ ∈ F (X) such that z̃ = z − b. Again, this implies w̄T z̃ < w̄T z and consequently
contradicts the assumption.

5.2 Proof of Lemma 2

Proof. • CSLR includes all points that are zero for the dimensions corresponding
to the lower level and arbitrary values for u ∈ CU . Thus, if CU is pointed then
CSLR is pointed.

23



• Assume d = (du, dl) ∈ CSLR. Then −d = (−du,−dl). If there is an i such that
dli 6= 0 then −dl /∈ CL and consequently −d /∈ CSLR. If dl = 0 and there is a j
such that duj 6= 0 then −du /∈ CU and thus d /∈ CSLR.

• Assume CL \ {0} and CU to be convex. Let a, b ∈ CSLR. Clearly, if al, bl ∈
CL \ {0}, so is their sum and if al = bl = 0 and au, bu ∈ CU , then au + bu ∈ CU .
Without loss if generality assume al ∈ CL \ {0}, bl = 0 and bu ∈ CU . Then
al + bl = al + 0 = al ∈ CL \ {0}. Hence, a+ b ∈ CSLR.
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