
Column Generation in Column-and-Constraint
Generation for Adjustable Robust Optimization

with Interdiction-Type Linking Constraints

Henri Lefebvre, Martin Schmidt, Johannes Thürauf

Abstract. Adjustable robust optimization (ARO) is a powerful tool to model
problems that have uncertain data and that feature a two-stage decision
making process. Computationally, they are often addressed using the column-
and-constraint generation (CCG) algorithm introduced by Zeng and Zhao
(2013). While it was empirically shown that the algorithm scales well if all
second-stage decisions are continuous, the presence of integer variables in the
second stage rapidly leads to challenging large-scale mixed-integer problems
within CCG. These problems can no longer be solved to global optimality
within reasonable time limits in general. In this work, we explicitly focus
on ARO problems with mixed-integer second-stage decisions and discuss the
main difficulties of successfully applying CCG to this problem class. We then
introduce, for a large set of problems with specific structural properties, a
stronger formulation, which can be used in place of the master problem in the
classic CCG algorithm. We show how this model can be effectively solved by
column generation (CG). Additionally, we introduce a new CG-based heuristic
that is able to generate new feasible points to speed up the overall method. We
apply this nested scheme, combining CCG and CG, to three problems from
logistics and scheduling. The numerical results show that the proposed method
significantly outperforms the classic CCG.

1. Introduction

In the last decades, robust optimization (RO) has emerged as a powerful tool to
tackle uncertain parameters in optimization problems. In contrast to probabilistic
approaches, very limited knowledge about the underlying distribution of the uncer-
tain data is required. Indeed, only a subset of the support of the density function is
needed to define a so-called uncertainty set. This set is then viewed as gathering
scenarios with equally unknown probability against which each decision is evaluated
from a worst-case perspective. Successful applications of RO are plethora and can
be found in transportation (Agra et al. 2013), finance (Xidonas et al. 2020), energy
systems (Sun and Conejo 2021), and machine learning (Ben-Tal et al. 2011), among
others.

While situations in which all decisions have to be taken “here and now”, i.e.,
before the realization of the uncertainty, are well understood, see, e.g., Ben-Tal et al.
(2009) and Gabrel et al. (2014), problems featuring a two-stage decision process are
considerably harder to analyze both from a theoretical as well as from a practical
point of view. In such problems, there is an additional decision-making phase
after the unknown parameters have been revealed. This leads to so-called “second-
stage decisions”, which actually depend on the revealed uncertainty. Following the

Date: January 30, 2025.
2020 Mathematics Subject Classification. 90-XX, 90C11, 90C17, 90C57.
Key words and phrases. Adjustable robust optimization, Column generation, Exact methods,

Optimization under uncertainty, Two-stage optimization.

1

2 H. LEFEBVRE, M. SCHMIDT, J. THÜRAUF

standard terminology of ARO, we also refer to second-stage decisions as “wait-and-see
decisions.”

To the best of our knowledge, such ARO problems have been, for the first time,
considered by Ben-Tal et al. (2004), who also showed NP-hardness for ARO problems,
even in the case of continuous wait-and-see decisions. For that reason, a vast majority
of works considered problems with continuous second-stage decisions only. Under this
assumption, Ben-Tal et al. (2004) introduced the idea of affine decision rules (ADR),
which consists in restricting the second-stage decisions to affinely depend on the
uncertain parameters. Doing so, they obtained “good” tractable approximations
for problems with fixed recourse, i.e., problems without matrix uncertainty. Later,
the approach has been extended to problems without fixed recourse when the
uncertainty set is an ellipsoid; see Ben-Tal et al. (2009). Unfortunately, such ADRs
generally lead to feasible points, which may not be globally optimal for the fully
adjustable problem; see, e.g., Bertsimas et al. (2010) or Bertsimas and Goyal (2011)
for optimality conditions of ADRs.

Further, the ADR approach cannot be applied to problems with integer restrictions
on the second-stage variables. To fill this gap, piecewise static decision rules,
also known as K-adaptability, have been introduced by Bertsimas and Caramanis
(2010). Further algorithms have been developed in Hanasusanto et al. (2015) and
Subramanyam et al. (2019). However, these methods do not guarantee global
optimality in general; see Kurtz (2023) for approximation guarantees.

Regarding exact approaches, Zhen et al. (2018) suggested to use Fourier–Motzkin
elimination to address ARO problems with a small number of continuous second-stage
decisions. For larger instances, the most prominent approach has been introduced
by Zeng and Zhao (2013), and is referred to in the literature as the column-and-
constraint generation (CCG) algorithm. In a nutshell, it iterates between the
solution of a (relaxed) master problem, in which only a limited number of scenarios
is considered, and a set-augmentation step, in which missing scenarios are identified
and added to the master problem. Because second-stage decisions depend on the
scenario in which they are taken, new variables and constraints must be added for
each scenario, hence the name of the method. The algorithm was empirically shown
to be “quite scalable” for a large variety of problems in which second-stage decisions
are continuous; see Bertsimas and Shtern (2018).

While the extension of CCG to problems with mixed-integer second-stage decisions
is possible, see Zhao and Zeng (2012), it becomes impractical quickly even for
medium-sized instances. The reason for this is the following: At each iteration of
the algorithm, a new set of integer variables is added to the master problem. This
rapidly leads to a large-scale mixed-integer program (MIP) for which finding good
lower and upper bounds gets harder and harder.

Under the assumption that only the objective function is uncertain and all
here-and-now decisions are binary, Kämmerling and Kurtz (2020) introduced a
branch-and-cut algorithm. Later, a similar approach based on CG was developed
by Arslan and Detienne (2022) with some restrictive assumptions on the linking
constraints between the here-and-now and the second-stage variables. In Detienne
et al. (2024), the authors extend this approach to more general but convex linking
constraints.

In this paper, we explicitly consider problems with mixed-integer second-stage
decisions and adapt the CCG algorithm to alleviate the discussed burdens. Our
main contributions are as follows:

(i) We shed light on the main weaknesses of CCG in the presence of mixed-
integer second-stage decisions.

COLUMN GENERATION FOR ADJUSTABLE ROBUST OPTIMIZATION 3

(ii) We introduce a new extended formulation for ARO problems with a specific
structure, which can be used to derive a new CCG-type algorithm. In
this new formulation, the wait-and-see decisions are no longer integer but
continuous variables and do not require any branching.

(iii) We discuss how to solve the new extended formulation, which can be used as
the master problem in CCG, by using CG techniques and branch-and-price
(B&P).

(iv) We introduce a new upper-bounding technique, which can be used through-
out the branch-and-price algorithm.

(v) We computationally assess the performance of the new CCG algorithm on
three applications in logistics and in job scheduling.

The remainder of this paper is organized as follows. In Section 2, we formally state
the class of problems considered in this paper and discuss the main assumptions.
In Section 3, we recall the classic CCG scheme and analyze its main issues in
presence of mixed-integer second-stage variables. Our main contribution, which
is a stronger formulation of the CCG master problem, is presented in Section 4.
Methods based on CG are also discussed in this section. In Section 5, we report on
two computational experiments showing the superiority of our approach compared
to the classic CCG algorithm before we finally conclude in Section 6.

Notation. For a convex set S, we denote its set of extreme points by ext(S). The
set of extreme rays of S is denoted by ray(S). For X := S ∩ (Rs × Zt), we denote
by cont(X) := S its continuous relaxation, i.e., the set obtained by dropping all
integrality requirements. The smallest convex set, which contains X is called its
convex hull and is denoted by conv(X), its closure is called cl(conv(X)). We let
cone(X) denote the conic hull of X, i.e., the smallest convex cone containing X.

For a given set C, we let M(C) be the set of all Lebesgue–Stieltjes measures defined
on C with a suitable σ-algebra. For a function f : Rn → R, its convex envelope is
denoted by vex(f). For a set of indices I ⊆ {1, . . . , n} and a vector x ∈ Rn, we let
xI denote the vector consisting of the components of x with indices in I (in the
same order).

2. Problem Statement

Let X ⊂ Rnx be a given set of feasible decisions to be taken here and now and
let Ξ ⊂ Rnξ be a given uncertainty set. For any here-and-now decision x ∈ X and
any scenario ξ ∈ Ξ, we denote by Y (x, ξ) ⊂ Rny the set of feasible second-stage
decisions. Additionally, c ∈ Rnx and d(ξ) ∈ Rny , ξ ∈ Ξ, are cost vectors for the
here-and-now and wait-and-see decisions.

We consider the class of problems given by

v∗ := min
x∈X

{
c⊤x+ sup

ξ∈Ξ
inf

y∈Y (x,ξ)
d(ξ)⊤y

}
. (ARO)

For the ease of presentation, we assume that (ARO) always has a solution if the
problem is feasible. Moreover, we suppose that the following assumptions are
satisfied.

Assumption 1. Problem (ARO) is bounded, i.e., v∗ > −∞.

Assumption 2. The uncertainty set Ξ is compact and its convex hull is a polyhedron
with rational extreme points.

Assumption 3. For any x̂ ∈ X, the value function

ξ 7→ Q(x̂, ξ) := inf
{
d(ξ)⊤y : y ∈ Y (x̂, ξ)

}
is quasi-convex or the uncertainty set Ξ is discrete.

4 H. LEFEBVRE, M. SCHMIDT, J. THÜRAUF

Assumption 4. For any x̂ ∈ X, an oracle for solving the adversarial problem

max
ξ∈Ξ

inf
y∈Y (x̂,ξ)

d(ξ)⊤y (1)

is at hand.

Note that the latter assumptions allow for writing “maxξ” instead of “supξ”, which
we do in what follows.

These are classic assumptions for CCG algorithms to ensure finite termination; see,
e.g., Zhao and Zeng (2012), Subramanyam (2022) and Lefebvre and Subramanyam
(2024). Assumption 1 is a mild assumption for problems in which the objective
function relates to costs or physical quantities. Note that we do not assume that
the problem is feasible. Assumption 2 discards convex but nonlinearly described
uncertainty sets from being used, yet allows for discrete, polyhedral, mixed-integer
uncertainty sets as well as uncertainty sets defined as unions of polyhedral sets.
Assumption 3 is a technical assumption, which is naturally satisfied by most of the
practical applications in ARO; see Zhao and Zeng (2012). The latter is true because
the value function of the second-stage problem typically is non-increasing in ξ.
Assumption 4 states that an oracle is available for identifying the worst-case scenario
in response to a given here-and-now decision. Note that the adversarial problem (1)
is a bilevel problem for which, in general, any suitable bilevel solver can be used.
This includes general mixed-integer bilevel solvers such as MibS (Tahernejad et al.
2020). Note, however, that these solvers require that all upper-level decisions, here ξ,
that actually parameterize Y are bounded integers. Hence, while the theoretical
developments of this paper apply to both the mixed-integer and purely continuous
case for the uncertainty sets, no code is available today for the latter case.

We now state two additional and non-standard assumptions, which we need for
our approach.

Assumption 5. There exists an index set I ⊆ {1, . . . , nx} such that x ∈ X implies
xI ∈ {0, 1}|I| and that, for any ξ̂ ∈ Ξ, there exists a set Z(ξ̂) such that

Y (x, ξ̂) = Z(ξ̂) ∩ {y ∈ Rny : 0 ≤ yi ≤ ui(1− xi), i ∈ I} , (2)

for some vector uI . For simplicity, we assume |I| ≤ ny.

Assumption 6. For any x̂ ∈ X and any

ξ∗ ∈ argmax{inf{d(ξ)⊤y : y ∈ Y (x̂, ξ)} : ξ ∈ Ξ}
returned by the oracle, the convex hull of Z(ξ∗) is closed.

Assumption 5 states that the only linking constraints between the here-and-now
and the wait-and-see decisions are interdiction-type constraints. These constraints
naturally arise in a large variety of applications in which, here-and-now, strategic
decisions have to be made to allow or interdict future decisions. This assumption is
similar to the one made by Arslan and Detienne (2022) for cost-uncertain problems.
Without loss of generality, we additionally assume that 0 ≤ yI ≤ uI is part of
the definition of Z(ξ). Assumption 6 is necessary for the correctness of our main
reformulation and is very mild, as explained in the following remarks.

Remark 1. Let W : Rnξ → Rmy×ny and h : Rnξ → Rmy be given Q-linear
mappings, i.e., there exists matrices W 1, . . . ,Wnξ ∈ Qmy×ny and h1, . . . , hnξ ∈ Qmy

such that

W (ξ) :=

nξ∑
k=1

ξkW
k and h(ξ) :=

nξ∑
k=1

ξkh
k,

and assume that Y (x, ξ) can be written as in (2) with

Z(ξ) =
{
y ∈ Zpy × Rny−py : W (ξ)y ≥ h(ξ)

}
(3)

COLUMN GENERATION FOR ADJUSTABLE ROBUST OPTIMIZATION 5

for any ξ ∈ Ξ. By Assumptions 1–3, it holds that, for any x̂ ∈ X, at least one
solution to the adversarial problem is an extreme point of the convex hull of Ξ.
Assumption 2 implies that these extreme points are rational. Thus, there always
exists

ξ∗ ∈ Qnξ ∩ argmax{inf{d(ξ)⊤y : y ∈ Y (x̂, ξ)} : ξ ∈ Ξ}.
By further assuming that such a point is returned by the oracle in Assumption 4, we
have that Z(ξ) can be expressed as a MIP with rational entries and thus, its convex
hull is closed; see Meyer (1974).

Remark 2. Assume that Z(ξ) is given as in (3) and that Ξ is a set of rational points,
possibly described by a set of linear constraints together with integer requirements,
then Assumption 6 is satisfied.

3. Column-and-constraint Generation With Integer Decisions

The column-and-constraint generation algorithm has been introduced by Zeng
and Zhao (2013) for robust problems in which second-stage decisions are continuous.
Later, it has been extended to the mixed-integer case by Zhao and Zeng (2012)
under Assumptions 1–3 by, notably, suggesting a way of fulfilling Assumption 4 in a
generic way. For the sake of completeness, we briefly recall the formal statement of
the algorithm as well as the key arguments for its finite termination.

3.1. Extended Formulation. The starting point of the CCG algorithm is a so-
called “extended formulation” of (ARO), which we state first. To this end, observe
that by Assumption 2 and 3, (ARO) is equivalent to

min
x∈X

c⊤x+max
ξ∈Ξ̂

inf
y∈Y (x,ξ)

d(ξ)⊤y, (4)

with Ξ̂ := vert(conv(Ξ)). Assumption 2 implies |Ξ̂| <∞ and the finite maximum
can be expressed by a finite set of constraints, leading to the model

min
x,θ

c⊤x+ θ

s.t. x ∈ X,

θ ≥ inf
y∈Y (x,ξ)

d(ξ)⊤y, ξ ∈ Ξ̂.

The extended formulation of (ARO) is obtained by introducing new vari-
ables yξ ∈ Y (x, ξ) for each ξ ∈ Ξ̂. Thus, the extended model reads

min
x,θ

inf
yξ

c⊤x+ θ (5a)

s.t. x ∈ X, (5b)

θ ≥ d(ξ)⊤yξ, ξ ∈ Ξ̂, (5c)

yξ ∈ Y (x, ξ), ξ ∈ Ξ̂. (5d)

Note that ξ is used as an index for the second-stage decisions y in scenario ξ.

3.2. Formal Statement of CCG. While Problem (5) is now a standalone opti-
mization problem instead of a trilevel one, it typically contains a large number of
variables and constraints. Moreover, the enumeration of points inside Ξ̂ is, usually,
impractical for real-world and large-scale applications. The key idea behind CCG is
to initially remove variables and constraints in (5c) and (5d) from the problem and

6 H. LEFEBVRE, M. SCHMIDT, J. THÜRAUF

to iteratively generate them on the fly. Thus, at each iteration t ∈ N, only a subset
of scenarios Ξt ⊆ Ξ̂ is considered and the following master problem is solved:

min
x,θ

inf
yξ

c⊤x+ θ (6a)

s.t. x ∈ X, (6b)

θ ≥ d(ξ)⊤yξ, ξ ∈ Ξt, (6c)

yξ ∈ Y (x, ξ), ξ ∈ Ξt. (6d)

Generating new variables and constraints from (5c) and (5d) is then done by solving
the adversarial problem using the oracle in Assumption 4. A formal statement of
the procedure is given in Algorithm 1.

Algorithm 1 Standard CCG method

1: Input: an instance of (ARO) and an initial set Ξ0 ⊂ Ξ̂ such that (6) is bounded
for t = 0.

2: Set LB← −∞, UB← +∞, and t← 0.
3: while UB > LB do
4: Solve the master problem (6).
5: if it is infeasible then
6: Return “Problem (ARO) is infeasible.”
7: end if
8: Let vtMP denote its objective value and (xt, θt) its associated solution.
9: Set LB← vtMP.

10: Solve the adversarial problem (1) with x̂ = xt.
11: Let vtADV be its objective value and ξt its associated solution.
12: Set UB← min{UB, c⊤xt + vtADV}.
13: Set Ξt+1 ← Ξ̂t ∪ {ξt} and t← t+ 1.
14: end while

In Line 1, it is asked for an initial set of scenarios such that (6) is bounded. To
obtain this, note that it is enough, as per Assumption 1, to solve the adversarial
problem (1) for an arbitrary x̂ ∈ X. Indeed, if Problem (6) would be unbounded
with such an initial scenario, this would mean that x̂ is feasible and has an objective
value of −∞, which would contradict the assumption. Moreover, in a practical
implementation, the stopping condition in Line 3 can also be checked after Line 9
so as to potentially terminate earlier.

The main argument for finite terminate is that, in the worst case, all scenarios
in Ξ̂ will be generated after T := |Ξ̂| iterations with vTMP = c⊤xT + vTADV, i.e.,
UB = LB. The interested reader is referred to the original papers by Zeng and Zhao
(2013) and Zhao and Zeng (2012) for the details.

3.3. Computational Challenges. We now turn our attention to the computational
behavior of CCG in case of mixed-integer second-stage variables. While in the
continuous setting, generating new scenarios is not too harmful for the solution
time of the master problem (as done at each iteration in Line 4 of Algorithm 1), it
may have a dramatic impact in the mixed-integer case. Indeed, at each iteration, a
new set of mixed-integer variables and constraints is added to the master problem,
rapidly making it a large-scale MIP. Solving the lower-bounding problem (6) then
becomes intractable quickly.

Indeed, plotting the empirical cumulative distribution function (ECDF) of compu-
tation times over a given test set of significant size, one can easily observe a similar
curve as the one depicted in Figure 1. In this plot, one observes that instances

COLUMN GENERATION FOR ADJUSTABLE ROBUST OPTIMIZATION 7

0 1000 2000 3000
0

0.2

0.4

0.6

0.8

1

computation time (s)
%

of
in

st
an

ce
s

Figure 1. A typical ECDF of computation times of CCG over a
fictitious set of test instances

that are solved within the time limit (here, fixed to 3600s for the example) are
rapidly solved, while the other instances cannot be solved within the time limit.
This behavior can be observed, e.g., in Lefebvre et al. (2023) on a facility location
problem, and will be confirmed in Section 5. Roughly speaking, solved instances are
those instances for which only a small number of iterations is needed to converge,
while unsolved ones need a larger number of scenarios, and therefore end up with a
larger optimization problem to solve.

To the best of our knowledge, this fact was first commented on by Subramanyam
(2022), who wrote “the solution of [larger] instances is limited more by the lower
bounding problem in the column-and-constraint generation algorithm, than by the
computation of worst-case parameter realizations.”

For simplicity, let us briefly assume that the second-stage’s feasible space Y (x, ξ)
is described by a parameterized convex mixed-integer nonlinear program and let us
consider a generic iteration t ≥ 0. Then, solving Problem (6) is typically done by
using branch-and-bound techniques based on continuous relaxations for obtaining
valid lower bounds at each node. The issue with CCG for mixed-integer second-
stage variables is that the root-node relaxation is obtained by dropping integrality
requirements on both the here-and-now and wait-and-see decisions. This amounts
to replace the nonconvex cuts

θ ≥ inf
y∈Y (x,ξ)

d(ξ)⊤y =: Q(x, ξ),

which exactly reflect the objective function in (4), by the convex cuts

θ ≥ inf
y∈cont(Y (x,ξ))

d(ξ)⊤y =: Q̄(x, ξ), (7)

which do not completely reflect it. Indeed, it is well known that the continuous
relaxation of a mixed-integer problem can be arbitrarily bad w.r.t. the original
problem. While being computationally attractive (convex vs. nonconvex), the cuts
in (7) have the clear disadvantage that, even if a feasible point (x̂, θ̂) ∈ X × R is
found during the exploration, we typically have

θ̂ = max
ξ∈Ξt
Q̄(x̂, ξ) < max

ξ∈Ξt
Q(x̂, ξ),

i.e., a feasible here-and-now decision does not necessarily lead to a valid upper bound
of the problem. Thus, branching decisions in the x-space, which are driven by Q̄
instead of Q, are based on a potentially wrong feedback regarding the second-stage
problems. While these surrogate problems can be made tight by branching on
second-stage decisions, it is likely to generate a large number of nodes.

Moreover, it is not trivial to decide which second-stage variable should be selected
for branching. Indeed, because θ stands for the finite maximum of second-stage

8 H. LEFEBVRE, M. SCHMIDT, J. THÜRAUF

problems over the set of scenarios, many branching decisions will not have an impact
on θ and, thus, on the lower bound. On the contrary, always branching on variables
associated to the same scenario, say on an arbitrarily chosen ξ̂, may lead to open
nodes where the here-and-now decisions are such that cont(Y (x, ξ)) ̸= ∅ holds while
Y (x, ξ) = ∅ holds for some ξ ∈ Ξt\{ξ̂}. Thus, one would dive in the direction of an
infeasible sub-problem.

In the next section, using Assumptions 5 and 6, we introduce a new extended
formulation, akin to (5), but having a much stronger relaxation, and which does
not require branching on second-stage decisions. In particular, we will show that
cuts defined in terms of Q are replaced, at the root node, by ones defined in terms
of vex(Q).

4. A Stronger Formulation For Column-and-constraint Generation

We now state our main contribution, which is a new CCG algorithm. To this
end, a new and stronger extended formulation of (ARO) is presented in Section 4.1.
In Section 4.2, we show how its continuous relaxation can be solved using CG
techniques and, in Section 4.3, we embed this relaxation in a branch-and-bound
algorithm. A CG-based heuristic to find feasible points during the tree search is
introduced in Section 4.4. Finally, the new CCG algorithm is formally stated in
Section 4.5.

4.1. A New Extended Formulation. Recall that the starting point of CCG is
the equivalence between (ARO) and the extended formulation (4). By linearity
of the objective function, it is also equivalent to replace the feasible space of the
second-stage problem by its convex hull; see Tardella (2004). This leads to

min
x∈X

{
c⊤x+max

ξ∈Ξ̂
inf

y∈conv(Y (x,ξ))
d(ξ)⊤y

}
with Ξ̂ = vert(conv(Ξ)) as before. With similar considerations as those in Section 3,
we directly obtain the new extended formulation

min
x,θ

inf
yξ

c⊤x+ θ (8a)

s.t. x ∈ X, (8b)

θ ≥ d(ξ)⊤yξ, ξ ∈ Ξ̂, (8c)

yξ ∈ conv(Y (x, ξ)), ξ ∈ Ξ̂. (8d)

The motivation for this formulation is that, in contrast to (5), second-stage vari-
ables yξ need not to take integer values. The drawback, however, lies in handling
Constraint (8d). Such constraints require that yξ belongs to the convex hull of a
decision-dependent set. While this is hard to deal with in general due to the inherent
nonconvexity of (8d), a convex reformulation can be derived under Assumption 5.
This has been done, e.g., by Arslan and Detienne (2022) and Detienne et al. (2024)
for ARO problems with objective uncertainty. Later, it has also been extended
in Lefebvre et al. (2023) for adjustable problems with discrete uncertainty sets.
Based on these results, we now introduce our main theorem. This theorem is the
foundation for the CCG algorithm introduced later.

Theorem 1. Let Y (·, ·) as well Z(·) be defined as in Assumption 5 and let S be any
subset of Ξ. Define Vξ := ext(cl(conv (Z(ξ)))) as well as Rξ := ray(cl(conv (Z(ξ))))
for each ξ ∈ S and assume that at least one of the two following conditions hold:

(i) For any point ξ ∈ S, the convex hull of Z(ξ) is closed.
(ii) For any x̂ ∈ X and any ξ̂ ∈ S, the relative interior of Y (x̂, ξ̂) is non-empty.

COLUMN GENERATION FOR ADJUSTABLE ROBUST OPTIMIZATION 9

Then, the optimization problem

min
x,θ,yξ

c⊤x+ θ (9a)

s.t. x ∈ X, (9b)

θ ≥ d(ξ)⊤yξ, ξ ∈ S, (9c)
yξ ∈ cl(conv (Y (x, ξ))), ξ ∈ S, (9d)

is equivalent to

min
x,θ

inf
αξ(·),βξ(·)

c⊤x+ θ (10a)

s.t. x ∈ X, (10b)

θ ≥ d(ξ)⊤

(∫
Vξ

y dαξ(y) +

∫
Rξ

y dβξ(y)

)
, ξ ∈ S, (10c)∫

Vξ

yi dαξ(y) ≤ ui(1− xi), i ∈ I, ξ ∈ S, (10d)∫
Vξ

dαξ(y) = 1, ξ ∈ S, (10e)

αξ ∈M(Vξ), ξ ∈ S, (10f)
βξ ∈M(Rξ) ξ ∈ S, (10g)

in the sense that any feasible point of the one can be mapped to a feasible point of
the other with the same objective function value. Moreover, if Condition (i) holds,
then

cl(conv
(
Y (x̂, ξ̂)

)
) = conv

(
Y (x̂, ξ̂)

)
holds for any ξ̂ ∈ Ξ̂ and any x̂ ∈ X.

Before giving a proof of Theorem 1, let us first discuss its interpretation. As
a first remark, we would like to emphasize the difference between the extended
formulation (8) and Model (9). In the first, we consider the convex hull of Y (x, ξ)
for all ξ ∈ Ξ and x ∈ X, while we consider its closure in the second. Thus,
Theorem 1 treats a relaxation of (8) under the special case in which S = Ξ̂ since
conv(Y (x, ξ)) ⊆ cl(conv(Y (x, ξ))). This is further exploited later in this paper.

To ease our discussion, let us assume that the continuous relaxation of X is convex.
Note that Constraints (9d) are nonconvex since both yξ and x are decision variables.
For a complete discussion on this type of constraints, we refer to Arslan and Detienne
(2022); in particular to Figure 2 and the related comments. Thus, Theorem 1 states
the equivalence between (9), whose continuous relaxation is a nonconvex optimization
problem, and another optimization problem, whose continuous relaxation is convex.
This is computationally attractive. However, this is obtained by moving from the
vector space Rny to the space of measures M(Vξ) and M(Rξ) defined on Vξ and Rξ.
Yet, a direct connection between these spaces can be found. To this end, let ξ ∈ S
be fixed, and consider a measure αξ ∈M(Vξ) satisfying (10e). Then, the integral∫
Vξ

y dαξ(y) simply denotes a convex combination of points in Vξ and thus belongs
to Rny . Similarly, consider βξ ∈M(Rξ). Then,

∫
Rξ

y dβξ(y) is a nonnegative sum
of points in Rξ. Indeed, one easily shows that∫

Vξ

y dαξ(y) +

∫
Rξ

y dβξ(y) ∈ conv(Vξ) + cone(Rξ) ⊆ Rny (11)

holds for any feasible αξ and βξ in (10). Thus, (11) can be understood as a Dantzig–
Wolfe reformulation of cl(conv(Z(ξ))), i.e., it is expressed as the set of convex

10 H. LEFEBVRE, M. SCHMIDT, J. THÜRAUF

combinations of its extreme points and nonnegative sum of its extreme rays. The
use of Lebesgue–Stieltjes measures allows us to consider cases in which Vξ and Rξ

are potentially uncountable but reduces to the classic result if Vξ and Rξ are finite.
All in all, Theorem 1 claims the equivalence between (9) and (10), where the

last model is derived thanks to a Dantzig–Wolfe reformulation of the closure of the
convex hull of Z(ξ). We now prove Theorem 1.

Proof of Theorem 1. For the ease of presentation, let us first define the set-valued
map L via L(x) := {y ∈ Rny : 0 ≤ yi ≤ ui(1− xi), i ∈ I}, i.e., the set of points that
satisfy the linking constraints. Recall that, by Assumption 5, we have

Y (x, ξ) = Z(ξ) ∩ L(x).

Thus, by Theorem A.1 in Lefebvre et al. (2023), it holds1

conv (Y (x, ξ)) = conv (Z(ξ)) ∩ L(x),

for any x ∈ X and ξ ∈ Ξ. We then have two cases. First, assume that Condition (i)
is satisfied. By the latter, it holds that cl(conv (Z(ξ))) = conv (Z(ξ)), showing that
conv (Y (x, ξ)) is closed due to Assumption 5, and thus, equals its closure. Second,
assume that the Condition (ii) is satisfied. Then, Y (x, ξ) ̸= ∅ implies that Z(ξ) and
L(x) have at least one point in common. By Theorem 6.5 of Rockafellar (1970), it
then holds

cl(conv (Y (x, ξ))) = cl (conv (Z(ξ)) ∩ L(x)) = cl(conv (Z(ξ))) ∩ L(x).

The final result is achieved by using an internal representation of cl(conv (Z(ξ))),
i.e., a Dantzig–Wolfe reformulation, expressing it as the set of convex combinations
of extreme points of Vξ and the nonnegative sum of extreme rays in Rξ. Indeed, by
Theorem 18.5 of Rockafellar (1970), we have

cl(conv (Z(ξ))) = conv(Vξ) + cone(Rξ).

Note that, since yI is upper bounded by uI in Z(ξ), any y ∈ Rξ satisfies yI = 0. The
claimed result is obtained by expressing conv(Vξ) and cone(Rξ) through measures
defined over Vξ and Rξ. Indeed, we have that y is in the convex hull of Vξ if and
only if there exists a probability measure αξ defined over Vξ such that (see § 2.1.4
in Boyd and Vandenberghe (2004))

y =

∫
Vξ

y′ dαξ(y
′).

Similar arguments can be used for cone(Rξ). □

The extended models (9) and (10) can be seen as a relaxation of (8), and, thus,
of (ARO). Indeed, in general, it may be that the inclusion S ⊆ Ξ̂ is strict or
that conv(Y (x, ξ)) ⊂ cl(conv(Y (x, ξ))) holds. In the next proposition, we give a
condition under which (9), (10), and (ARO) are equivalent.

Proposition 2. Let Assumptions 2–6 hold, and assume that points in S have been
generated by the oracle in Assumption 4. Then, Condition (i) of Theorem 1 holds.
If, moreover, S = Ξ̂, then (9), (10), and (ARO) are equivalent in the sense that they
have the same optimal objective value and the same set of here-and-now solutions.

1Note that Theorem A.1 in Lefebvre et al. (2023) requires the boundedness of Y (x, ξ) but can
be easily adapted to the case in which only interdicted variables need to be bounded, which is the
case in our setup.

COLUMN GENERATION FOR ADJUSTABLE ROBUST OPTIMIZATION 11

Proof. By assumption, any point in S has been generated by the oracle in Assump-
tion 4. Thus, by Assumption 6, the convex hull of Z(ξ) is closed. This proves the
first statement. Note that, by Theorem 1, we already have that (9) and (10) are
equivalent and that the convex hull of Y (x̂, ξ̂) is closed for any x̂ ∈ X and any ξ̂ ∈ S.
It is now sufficient to show that (9) and (ARO) are equivalent if S contains all the
extreme points of the convex hull of Ξ. This is implied by the quasi-convexity of Q
(see Assumption 3), and the polyhedral nature of conv(Ξ); see Assumption 2. □

Consequently, Problem (10) can be used in place of (6) in the standard CCG
so as to obtain an exact algorithm for Problem (ARO); see Algorithm 1. However,
effectively solving (10) still poses some computational challenges. Indeed, it is a
large-scale and potentially semi-infinite optimization problem—even if S is finite.
This will be treated in the next section.

4.2. Solving the Master Problem. In this section, we show how Problem (10)
can be solved (possibly to ε-optimality) by using CG techniques. More precisely,
we derive a CG algorithm for solving its continuous relaxation. In the next section,
we discuss how this can be embedded in a branch-and-bound algorithm so as to
enforce integrality requirements. For simplicity, we assume that S is finite and that
the continuous relaxation of X is given by

cont(X) = {x ∈ Rnx : Ax ≥ b}.

The key idea behind CG is to replace the sets Vξ and Rξ by proper finite subsets V̂ξ

and R̂ξ. By doing so, one obtains a so-called restricted master problem (RMP) with
a reasonable and, most importantly, finite number of columns. Thus, the RMP
leads to an upper bound on the original full problem. In our case, the RMP reads

min
x,θ,αξ,βξ

c⊤x+ θ (RMP.a)

s.t. Ax ≥ b, (RMP.b)

θ ≥ d(ξ)⊤

∑
v∈V̂ξ

αξ,vv +
∑
r∈R̂ξ

βξ,rr

 , ξ ∈ S, (RMP.c)

∑
v∈V̂ξ

αξ,vvi ≤ ui(1− xi), i ∈ I, ξ ∈ S, (RMP.d)

∑
v∈V̂ξ

αξ,v = 1, ξ ∈ S, (RMP.e)

αξ,v ≥ 0, v ∈ V̂ξ, ξ ∈ S, (RMP.f)

βξ,r ≥ 0, r ∈ R̂ξ, ξ ∈ S. (RMP.g)

Then, new points in V̂ξ and R̂ξ are sequentially generated so as to decrease the
upper bound until some stopping criterion is satisfied.

Following the standard CG approach (Desrosiers and Lübbecke 2005), one con-
siders the dual of (RMP) to derive the pricing problem (PP) to identify missing

12 H. LEFEBVRE, M. SCHMIDT, J. THÜRAUF

columns, i.e., points in Vξ and Rξ in the RMP. The dual problem is given as

max
γ,µξ,λξ,πξ

b⊤γ +
∑
ξ∈S

(
πξ + u⊤

I λξ

)
(13a)

s.t.
∑
ξ∈S

µξ = 1, (13b)

A⊤γ −
∑
ξ∈S

(
0

uI ◦ λξ

)
= c, (13c)

γ ≥ 0, (13d)

πξ ≤ d(ξ)⊤vµξ − v⊤I λξ, v ∈ V̂ξ, ξ ∈ S, (13e)

0 ≤ d(ξ)⊤rµξ, r ∈ R̂ξ, ξ ∈ S, (13f)
µξ ≥ 0, ξ ∈ S, (13g)
λξ ≤ 0, ξ ∈ S. (13h)

Here, “◦” denotes the Hadamard product of two vectors and we assume that the
variables indexed by I are the last ones in the variable vector x. Constraints (13b)
and (13c) are the dual constraints associated to the here-and-now variables θ and x,
respectively, while the constraints in (13e) and (13f) are associated to second-stage
decisions αξ,v and βξ,r. Then, identifying missing columns amounts to identifying
missing dual constraints, which can be done by separation. We now discuss how
points in Vξ and Rξ are generated.

4.2.1. Generating Extreme Points from Vξ. Consider, for now, that R̂ξ = Rξ, i.e.,
all extreme rays of the closure of the convex hull of Z(ξ) are present in the RMP.
Thus, that only extreme points in Vξ need to be generated. This reduces to identify
a dual constraint

πξ ≤ d(ξ)⊤vµξ − v⊤I λξ

for some ξ ∈ S, which is missing in the dual problem (13), i.e., to find v ∈ Vξ\V̂ξ.
To this end, let (γ∗, µ∗

ξ , λ
∗
ξ , π

∗
ξ) be a given solution of (13). Pricing requires to solve,

for each ξ ∈ S,

ρ∗ξ := min
y∈Vξ

ρ(y;µ∗
ξ , λ

∗
ξ , π

∗
ξ) := d(ξ)⊤yµ∗

ξ − y⊤I λ
∗
ξ − π∗

ξ ,

which is called the reduced cost of y. If, for all ξ ∈ S, ρ∗ξ is nonnegative, then all
points in Vξ, which are necessary for (10) to fully represent (9), are already present
in V̂ξ and the algorithm can stop—though, most typically, conv(V̂ξ) = cl(conv(Z(ξ)))

does not hold. Otherwise, there exists a scenario ξ̂ ∈ S with ρ∗
ξ̂
< 0, and the point y∗

ξ̂

realizing the minimum represents a violated constraint. Hence, it must be added
to V̂ξ. In the primal, this amounts to a new column being generated, associated to
a variable αξ̂,y∗

ξ̂

≥ 0.

Recall that Vξ denotes the set of extreme points of the closure of the convex
hull of Z(ξ). Thus, by linearity of the objective function, pricing a new column
(for ξ ∈ S) reduces to solving

inf
y∈Z(ξ)

ρ(y;µ∗
ξ , λ

∗
ξ , π

∗
ξ). (14)

Thus, pricing a new column can be done by solving |S| optimization problems
over Z(ξ), which is a non-interdicted version of the second-stage problem, under
scenario ξ. We would like to point out that these problems can be solved in parallel
to speed-up the overall scheme.

COLUMN GENERATION FOR ADJUSTABLE ROBUST OPTIMIZATION 13

4.2.2. Generating Extreme Rays from Rξ. Dropping the assumption that R̂ξ = Rξ

holds possibly leads to situations in which the pricing problem (14) is unbounded,
i.e., ρ∗ξ = −∞ holds for some ξ ∈ Ξ. In this case, there exists an extreme ray y∗ of
cl(conv (Z(ξ))) pointing in the direction of unboundedness. A new constraint of the
form

0 ≤ d(ξ)⊤y∗µξ

is then added to R̂ξ. In the primal, a column associated to a variable βξ,y∗ ≥ 0 is
generated.

4.2.3. Computing Lower Bounds. Whenever a pricing operation leads to the genera-
tion of a point in Vξ, a lower bound on the value of (9) can be computed. Indeed, it
always holds

v∗RMP +
∑
ξ∈Ξ̂

ρ∗ξ ≤ v̄∗ ≤ v∗RMP, (15)

where v∗RMP denotes the current value of the RMP and v̄∗ denotes the optimal
objective value of the continuous relaxation of (9), obtained by replacing X by
cont(X). The interested reader is referred to Desrosiers and Lübbecke (2005) for
more details. This result can be used to obtain an ε-optimal solution for the
continuous relaxation of (10).

The complete CG algorithm is stated in Algorithm 2. In our implementation, we
use2

gap(LB,UB) :=
UB− LB

10−10 + |UB|
.

Proofs of convergence of the algorithm can be found in Wolsey (1998) for cases in
which cont(X) is a polyhedron and in García et al. (2003) for more general cases.

Algorithm 2 Column Generation for (10)

1: Input: ε ≥ 0 and an initial set of points V̂ξ and R̂ξ such that (RMP) is feasible.
2: Set LB← −∞ and UB← +∞.
3: while gap(LB,UB) > ε do
4: Solve (RMP).
5: Let v∗RMP denote its objective value and (γ∗, µ∗

ξ , λ
∗
ξ , π

∗
ξ) its dual solution.

6: Set UB← v∗RMP.
7: for ξ ∈ Ξ̂ do
8: Solve the pricing problem (14) associated to ξ.
9: Let ρ∗ξ denote its objective value.

10: if ρ∗ξ > −∞ then
11: Let v be a point realizing the infimum of (14).
12: Set V̂ξ ← V̂ξ ∪ {v}.
13: else
14: Let r be a direction of unboundedness of (14).
15: Set R̂ξ ← R̂ξ ∪ {r}.
16: end if
17: end for
18: Set LBiter ← v∗RMP +

∑
ξ∈Ξ̂ ρξ.

19: Set LB← max{LB,LBiter}.
20: end while

2This is motivated by
https://www.ibm.com/docs/en/icos/22.1.1?topic=parameters-relative-mip-gap-tolerance.

https://www.ibm.com/docs/en/icos/22.1.1?topic=parameters-relative-mip-gap-tolerance

14 H. LEFEBVRE, M. SCHMIDT, J. THÜRAUF

Remark 3. Algorithm 2 requires initial sets V̂ξ and R̂ξ such that (RMP) is feasible.
Note that it is always possible to find such initial sets by working on a feasibility
variant of (RMP) using slack variables. This is similar to Phase-I of the simplex
method to find a first basic solution of an LP. In some more specific cases, e.g., when
the RMP is formulated as a conic program, Farkas pricing can also be used; see,
e.g., Achterberg (2009). Note that both approaches can be used to detect infeasible
problems.

Remark 4. By Assumption 1 and Equation (15), the RMP is always bounded from
below.

4.3. Branch-and-Price. In the previous section, we discussed how the continuous
relaxation of (10) can be solved by CG. By doing so, one obtains a solution
(x∗, θ∗, α∗

ξ,v, β
∗
ξ,r) for which x∗ ∈ cont(X) holds. If x∗ ∈ X holds, then x∗ solves (9).

Otherwise, x∗ is not a feasible point of (9) for two reasons: (i) some integrality
requirements of X are not fulfilled or (ii) the inclusion conv(Y (x, ξ)) ⊆ Z(ξ) ∩ L(x)
is strict. However, we have that the value, i.e., c⊤x∗ + θ∗, is a valid lower bound
on v∗.

These considerations are the key ingredients for embedding the lower bounding
problem (9) in a branch-and-bound algorithm. We start by solving the root-node
problem in which all integrality requirements are dropped. If the problem is
infeasible, the algorithm stops, and (9), thus (ARO), is infeasible. Otherwise, we
let (x0, θ0, α0

ξ , µ
0
ξ) denote its solution. If x0 ∈ X, then the algorithm stops, and x0

solves (9) with v∗ = c⊤x0 + θ0. Otherwise, we perform branching. To this end, we
let L← {0} be the set of active nodes, and set the best known lower bound LB to
c⊤x0 + θ0. The best upper bound is initially set to ∞.

Then, a node q is selected and removed from L. A variable index j ∈ {1, . . . , nx}
with xq

j /∈ Z is chosen, giving rise to two new nodes. These new nodes, noted ℓ

and r, are such that x ≤ ⌊xq⌋ in ℓ and x ≥ ⌈xq⌉ in r are added. We solve both
nodes and check for feasibility. If a node is infeasible, it is discarded. If xℓ ∈ X (or
xr ∈ X), a new feasible point has been found and we let UB← min{UB, c⊤xℓ+ θℓ},
or c⊤xr + θr. Otherwise, we add them to L. The best lower bound can be updated
using the node q′ with q′ ∈ argmin{c⊤xk + θk : k ∈ L}. If no such node exists, i.e.,
L = ∅, the algorithm stops, and the incumbent solution solves (9). If no incumbent
has been found, the problem is infeasible. The algorithm can also be stopped
whenever gap(LB,UB) ≤ ε for some ε ≥ 0.

It is important to highlight that branching is only performed on the x variables
and not on yξ variables. This is in contrast to classic applications of Dantzig–Wolfe
reformulations (or discretization approaches) used for solving large-scale MIP. The
reason for this is the specific nature of the reformulation stated in Theorem 1.

4.4. A CG-Based Heuristic. Empirical evidence shows that the performance
of branch-and-bound algorithms highly depends on the availability of good lower
bounds at the root node and on the early detection of good feasible points. While
improving the quality of the lower bound (compared to the classic CCG) is the main
motivation behind Theorem 1, we derive as a by-product of this theorem a simple
heuristic to compute good feasible points throughout the algorithm.

Consider a node q such that some integer variables xj have fractional value and
let (V̂ q

ξ)S and (R̂q
ξ)S be the set of generated columns in node q. The following model

COLUMN GENERATION FOR ADJUSTABLE ROBUST OPTIMIZATION 15

can be used to obtain a feasible point of (9) or (10):

min
x,θ,αξ,v,βξ,r

c⊤x+ θ (16a)

s.t. x ∈ X, (16b)

θ ≥ d(ξ)⊤

∑
v∈V̂ q

ξ

αξ,vv +
∑
r∈R̂q

ξ

βξ,rr

 , ξ ∈ S, (16c)

∑
v∈V̂ q

ξ

αξ,vvi ≤ ui(1− xi), i ∈ I, ξ ∈ S, (16d)

∑
v∈V̂ q

ξ

αξ,v = 1, ξ ∈ S, (16e)

αξ,v ≥ 0, v ∈ V̂ q
ξ , ξ ∈ S, (16f)

βξ,r ≥ 0, r ∈ R̂q
ξ , ξ ∈ S. (16g)

In this model, the generated columns are kept and used to approximate conv(Z(ξ)).
Moreover, integrality requirements are applied, i.e., we have x ∈ X instead of
x ∈ cont(X). This model is then solved as a MIP. Assume that it is feasible and
let (xH, θH, αH

ξ,v, µ
H
ξ,r) be its solution. Clearly, xH is feasible for (10). However, we

typically have
θH > max

ξ∈S
min

y∈Y (xH,ξ)
d(ξ)⊤y.

If the resulting problem is infeasible, no feasible point is computed, and the heuristic
stops.

4.5. Formal Statement of the Procedure. In this section, we formally state the
CCG algorithm enhanced with CG. Its correctness directly follows from Theorem 1
and from the closedness of conv(Z(ξ)) for all ξ ∈ Ξ̂ generated by the adversarial
problem. Finite termination is then implied by the finite termination of the CG
procedure and the finite size of the branch-and-bound tree. The proposed scheme is
formally stated in Algorithm 3.

Algorithm 3 CCG+CG

1: Input: an instance of (ARO) and initial set Ξ0 ⊆ Ξ̂ such that (9) is bounded if
S = Ξ0.

2: Set LB← −∞, UB← +∞, and t = 0.
3: while UB > LB do
4: Solve the master problem (9) with S = Ξt using a B&P algorithm.
5: if it is infeasible then
6: Return “Problem (ARO) is infeasible.”
7: end if
8: Let vtMP denote its objective value and (xt, θt) its associated solution.
9: Set LB← vtMP.

10: Solve the adversarial problem (1) with x̂ = xt.
11: Let vtADV be its objective value and ξt its associated solution.
12: Set UB← min{UB, c⊤xt + vtADV}.
13: Set Ξt+1 ← Ξ̂t ∪ {ξt} and t← t+ 1.
14: end while

Theorem 3. Suppose that Assumptions 1–6 hold. Then, Algorithm 3 terminates
after a finite number of iterations T with xT solving (ARO) and v∗ = UB.

16 H. LEFEBVRE, M. SCHMIDT, J. THÜRAUF

5. Computational Results

We now apply the CCG algorithm to three different applications. The first one is
a facility location problem with facility disruption, the second one is a generalized
assignment problem introduced by Bodur et al. (2024), and the third one is a
scheduling problem, which is a variant of the 1|rj |

∑
wjUj scheduling problem; see

Pinedo (2008). This means that the latter problem is about minimizing the weighted
number of tardy jobs and the job processing times are uncertain.

5.1. Experimental Setting. To assess the computational benefits of the method,
we compare it with the standard CCG approach as described by Zeng and Zhao
(2013) and Zhao and Zeng (2012). The latter approach is denoted by CCG+Gurobi
in this section. Additionally, we denote by CCG+CG the algorithm introduced in
this paper in which the master problem is solved by branch-and-price without the
CG-based heuristic, i.e., the heuristic presented in Section 4.4 is not used. The
overall algorithm obtained by additionally using the CG-based heuristic is denoted
by CCG+CG+H.

5.2. Implementation. The methods are implemented in C++17 using Gurobi
(Gurobi Optimization, LLC 2023) version 11.0.0 for solving all appearing op-
timization problems in both methods, i.e., the master problem and the ad-
versarial problem in standard CCG as well as the restricted master prob-
lem and the pricing problem in CG. The branch-and-price algorithm is im-
plemented using the open-source library idol (Lefebvre 2023). Our code
and instances are publicly available online at https://github.com/hlefebvr/
AE-using-column-generation-in-column-and-constraint-generation.

At each node of the branch-and-price tree, CG is stabilized using dual-price
smoothing as described by Pessoa et al. (2013). During each pricing step, for each
scenario, a maximum of 20 columns are added to the restricted master problem.
Only columns with negative reduced costs are added. The pricing problems are
always solved to global optimality using Gurobi. Whenever the restricted master
problem is infeasible, Farkas pricing is used to identify missing columns or to prove
infeasibility of the node. When applicable, and for feasible nodes only, the heuristic
introduced in this paper is called at every node of the branch-and-price tree whenever
a point violating integrality requirements is found. Nodes are selected according
to the “best bound first” rule, i.e., a node with the largest lower bound is selected.
Variables are selected according to the “most infeasible” rule, i.e., a variable with
fractional part closest to 0.5 is selected. No sub-tree exploration is performed.

In all three applications, the separation problem is solved by a branch-and-cut
algorithm which makes use of interdiction cuts as described in Fischetti et al. (2019).
This method was implemented in Gurobi using lazy constraint callbacks.

All experiments were conducted on a single core Intel Xeon Gold 6126 at 2.6 GHz
with 16 GB of RAM. We use the default settings of Gurobi except for the maximum
number of threads, which is set to 1, i.e., the parameter Threads is set to 1. Hence,
all underlying optimization problems are solved with an optimality gap of 10−4. We
used the same tolerance for solving the master problem by column generation.

5.3. Facility Location Problem with Facility Disruption.

5.3.1. Problem Statement. We consider the robust facility location problem (FLP)
as introduced by Lefebvre et al. (2023). We let V1 be the set of candidates for
opening facilities and let V2 be the set of customers to be served. Each connection
between a site i ∈ V1 and a customer j ∈ V1 is associated to a transportation cost
denoted by cij > 0. For each site i ∈ V1, we let its maximum capacity be qi > 0 and
its fixed cost for opening a facility be fi > 0. Each client j ∈ V2 is associated to a

https://github.com/hlefebvr/AE-using-column-generation-in-column-and-constraint-generation
https://github.com/hlefebvr/AE-using-column-generation-in-column-and-constraint-generation

COLUMN GENERATION FOR ADJUSTABLE ROBUST OPTIMIZATION 17

demand dj and a profit pj , which is earned if and only if the customer is served by
a facility. Customers must be served by a unique facility, i.e., no demand split is
possible.

In this application, facilities are subject to random disruptions making them un-
usable for delivery. We let Ξ ⊆ {0, 1}|V1| be the set of all possible disruptions. In line
with the Γ-robust approach, we account for the fact that, most likely, not all facilities
will be disrupted at the same time by limiting the maximum number of disrupted
facilities to a fixed value Γ ∈ N with Γ ≤ |V1|; see Bertsimas and Sim (2004).

Now, let ξ ∈ Ξ be a given disruption scenario with the interpretation that ξi = 1
if and only if facility i ∈ V1 is disrupted. The deterministic FLP then reads

min
x,y

∑
i∈V1

fixi +
∑
i∈V1

∑
j∈V2

(cij − pj)yij (17a)

s.t.
∑
i∈V1

yij ≤ 1, j ∈ V2, (17b)

∑
j∈V2

djyij ≤ qixi(1− ξi), i ∈ V1, (17c)

yij ∈ {0, 1}, i ∈ V1, j ∈ V2, (17d)
xi ∈ {0, 1}, i ∈ V1. (17e)

Here, variables x are to be interpreted such that, for a location i ∈ V1, xi = 1 holds
if and only if a facility i is opened. For each location i ∈ V1 and each customer
j ∈ V2, yij is a binary variable indicating if facility i serves customer j. Thus, the
constraints in (17b) ensure that each customer is served by at most one facility.
The constraints in (17c) make sure that the capacity of each facility is not exceeded.
Moreover, they link the opening and routing decisions and account for potential
disruptions of facilities.

We derive the ARO version of this problem by letting the set of here-and-now
decisions be the opening decisions, i.e., we set X = {0, 1}|V1|, and define the set of
feasible wait-and-see decisions as

Y (x, ξ) =
{
y ∈ {0, 1}|V1|×|V2| : (17b)–(17c)

}
,

where x ∈ X is a fixed here-and-now decision and ξ ∈ Ξ is a given disruption
scenario. Thus, the ARO problem considered is given by

min
x∈X

∑
i∈V1

fixi +max
ξ∈Ξ

min
y∈Y (x,ξ)

∑
i∈V1

∑
j∈V2

(cij − pj)yij

 .

5.3.2. Instances. The instances are randomly generated according to Lefebvre et al.
(2023). The number of facility locations and the number of customers are taken as
input. Then, for each facility location i ∈ V1, the capacity qi is drawn uniformly
between 10 and 160. The opening cost fi is computed as fi = αi + βi

√
qi, where

αi ∈ [0, 90] and βi ∈ [100, 110] are randomly generated numbers. Demands are
uniformly generated and scaled so that

∑
i∈V1

qi/
∑

j∈V2
dj = µ holds with µ being

a given parameter. To compute transportation costs, a point in the unit square
is randomly assigned to each facility location and each customer. Then, each pair
(i, j) ∈ V1 × V2 is associated to a transportation cost tij equal to ten times the
Euclidean distance between i and j. The profit for serving a customer j ∈ V2 is set
to pj = 4×median{tij : i ∈ V1}.

For our test set, we choose µ ∈ {2, 3}, the number of facility locations is taken
in {10, 15}, whereas the number of customers take the value 20, 30, or 40. For
each combination of these parameters, 5 instances are generated, producing a set

18 H. LEFEBVRE, M. SCHMIDT, J. THÜRAUF

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

·104

0

20

40

60

80

Computation time (in seconds)

%
of

so
lv

ed
in

st
an

ce
s

CCG+Gurobi
CCG+CG
CCG+CG+H

Figure 2. ECDFs of computation times for the FLP

of 60 nominal instances. Each instance is then solved by considering a disruption
budget Γ ∈ {3, 4} leading to 120 robust instances.

5.3.3. Discussion of the Results. For a time limit of 3 hours, Figure 2 depicts the
ECDF of computation times over our test set, for all three methods. First, it can be
seen that using CCG+Gurobi is beneficial for those instances that can be solved in less
than 1 hour. However, CCG+Gurobi is not able to solve harder instances within the
time limit. This is in line with the observation made in Section 3 and, in particular,
Figure 1. In contrast, it can be seen that using CCG+CG and CCG+CG+H allows
to solve more instances. Indeed, while the standard CCG+Gurobi approach solves
around 75 % of the instances within the time limit, CCG+CG is able to solve more
than 80 %. Moreover, the impact of the CG-based heuristic developed in Section 4.4
is clearly shown since it outperforms both CCG+Gurobi and CCG+CG for those
instances which require more than 1 hour to be solved.

Figure 3 depicts the ECDF of memory used in percentage w.r.t. the maximum
memory available of 16GB. Clearly, both CCG+CG and CCG+CG+H outperform
the standard version CCG+Gurobi. This can be explained by smaller sizes of the
search trees when solving the master problems during the execution of the CCG
algorithm. Hence, this shows that the quality of the dual bound at every iteration is
stronger when column generation is used instead of simply Gurobi. However, solving
each node is more demanding in terms of computation time.

More detailed statistics are reported in Table 1 and Table 2 depending on how
the master problem is solved during the CCG, i.e., by CCG+Gurobi, CCG+CG, or
CCG+CG+H. Table 1 regards those instances which could be solved within the time
limit. In particular, “|V1|” is the number of facilities, “ |V2|” the number of customers,
“Γ” the uncertainty budget, “Total (s)” the average total time, “Master (s)” the
average time solving the master problem, “Adversarial (s)” the average time solving

COLUMN GENERATION FOR ADJUSTABLE ROBUST OPTIMIZATION 19

T
ot

al
(s

)
M

as
te

r
(s

)
A

dv
er

sa
ri

al
(s

)
It

er
at

io
ns

C
ou

nt

C
C
G

+
..

.
C
C
G

+
..

.
C
C
G

+
..

.
C
C
G

+
..

.
C
C
G

+
..

.

|V
1
|
|V

2
|

Γ
G

ur
ob

i
C
G

C
G

+
H

G
ur

ob
i

C
G

C
G

+
H

G
ur

ob
i

C
G

C
G

+
H

G
ur

ob
i

C
G

C
G

+
H

G
ur

ob
i

C
G

C
G

+
H

10
20

3
19

.9
41

7.
7

51
3.

5
15

.1
41

2.
4

50
8.

2
2.

8
2.

6
2.

6
9.

4
9.

4
9.

4
10

10
10

10
20

4
7.

3
17

8.
5

17
2.

1
3.

9
17

4.
7

16
8.

5
2.

5
2.

6
2.

5
7.

6
7.

6
7.

6
10

10
10

10
30

3
44

.8
46

4.
6

41
6.

3
32

.2
45

1.
5

40
2.

5
9.

6
9.

7
10

.3
8.

2
8.

2
8.

2
10

10
10

10
30

4
40

.8
63

4.
2

55
8.

4
23

.7
61

6.
6

54
0.

2
12

.6
11

.9
12

.9
12

.8
12

.7
12

.7
10

10
10

10
40

3
67

.7
66

4.
4

48
1.

2
45

.3
62

6.
3

44
4.

5
18

.3
28

.3
27

.4
9.

4
9.

1
9.

1
8

10
10

10
40

4
23

.9
85

1.
3

74
4.

6
15

.4
80

3.
9

69
3.

2
6.

5
31

.4
33

.9
9.

1
10

.5
10

.5
8

10
10

15
20

3
50

1.
9

11
55

.4
90

9.
3

48
4.

6
11

36
.9

89
1.

4
14

.8
14

.2
14

.0
9.

3
9.

6
9.

5
9

9
10

15
20

4
10

7.
4

26
18

.5
24

97
.9

77
.1

25
80

.1
24

61
.0

26
.9

30
.1

29
.6

10
.3

11
.4

11
.4

7
9

9
15

30
3

36
6.

8
25

41
.2

19
05

.4
27

5.
0

24
44

.5
17

41
.7

75
.3

80
.4

14
7.

8
10

.7
9.

5
9.

5
7

6
6

15
30

4
56

7.
0

40
10

.3
28

62
.5

44
2.

7
38

56
.0

27
02

.8
10

9.
2

13
3.

4
13

9.
1

12
.4

12
.0

12
.4

5
5

5
15

40
3

18
3.

9
53

72
.8

37
14

.3
93

.0
52

80
.1

35
51

.7
85

.7
84

.2
15

2.
6

9.
2

9.
2

8.
8

5
5

6
15

40
4

99
5.

1
43

76
.4

25
83

.5
63

9.
1

41
03

.1
23

15
.3

30
7.

1
23

5.
0

23
0.

2
8.

3
8.

5
9.

0
3

4
4

T
a
bl

e
1.

So
lv

ed
In

st
an

ce
s

fo
r

th
e

F
L
P.

Fr
om

le
ft

to
ri

gh
t:

th
e

av
er

ag
e

to
ta

lt
im

e,
th

e
av

er
ag

e
ti

m
e

sp
en

t
so

lv
in

g
th

e
m

as
te

r
pr

ob
le

m
,
th

e
av

er
ag

e
ti

m
e

sp
en

t
so

lv
in

g
th

e
ad

ve
rs

ar
ia

l
pr

ob
le

m
,
th

e
av

er
ag

e
nu

m
be

r
of

it
er

at
io

ns
,
an

d
th

e
nu

m
be

r
of

so
lv

ed
in

st
an

ce
s.

20 H. LEFEBVRE, M. SCHMIDT, J. THÜRAUF

0 10 20 30 40 50 60 70 80 90 100
40

50

60

70

80

90

100

Memory used (% out of 16 GB)

%
of

so
lv

ed
in

st
an

ce
s

CCG+Gurobi
CCG+CG
CCG+CG+H

Figure 3. ECDFs of used memory for the FLP

Iterations Count

CCG+. . . CCG+. . .

|V1| |V2| Γ Gurobi CG CG+H Gurobi CG CG+H

10 40 3 5.5 — — 2 — —
10 40 4 9.0 — — 2 — —
15 20 3 11.0 5.0 — 1 1 —
15 20 4 11.7 15.0 15.0 3 1 1
15 30 3 12.7 13.5 14.3 3 4 4
15 30 4 13.8 13.2 13.4 5 5 5
15 40 3 7.2 7.6 10.0 5 5 4
15 40 4 7.9 8.8 11.2 7 6 6

Table 2. Unsolved Instances for the FLP. From left to right: the
average number of iterations, and the number of unsolved instances.

the adversarial problem, “Iterations” the average number of generated scenarios
instances, and “Count” the number of unsolved instances. Table 2 regards those
instances which could not be solved within the time limit.

While the average total time for CCG+Gurobi seems impressively small compared
to other approaches, it should be kept in mind that a larger number of instances
is solved by CCG+CG and CCG+CG+H. In fact, as commented earlier in Section
3, the classic approach is limited to instances that require only a small number
of scenarios to prove global optimality. For such problems, the computation time
is very small. For example, for instances of size (10, 40) and Γ = 3, the average
computation time is 67.7 seconds for CCG+Gurobi and 664.4 seconds for CCG+CG.

COLUMN GENERATION FOR ADJUSTABLE ROBUST OPTIMIZATION 21

However, CCG+Gurobi is unable to solve 2 such instances, with an average number
of iterations of 5.5, while CCG+CG solves all instances with an average number of
9.1 iterations. This means that a lot more iterations are executed in the latter than
in the first approach. This is also shown by a larger amount of time spent solving
the adversarial problem in CCG+CG and CCG+CG+H compared to CCG+Gurobi.
However, as usual, we see that a vast majority of the computation time is still spent
on solving the master problem.

Finally, we can see that the use of the heuristic from Section 4.4 is beneficial
for accelerating the computation time of the overall method since the average
total computation time of CCG+CG+H represents 56 % of the one of CCG+CG for
instances of size (15, 40) with Γ = 4 while both methods can solve the same number
of instances.

5.4. Generalized Assignment Problem.

5.4.1. Problem Statement. We consider a variant of the robust generalized assign-
ment problem (GAP) introduced in Bodur et al. (2024). Let M be a set of machines
and T be a set of tasks to be assigned to the machines. Each machine m ∈M has a
maximum capacity bm. For each task t ∈ T , we let wt denote its weight and pt its
profit. The deterministic GAP can be modeled as

max
y

∑
m∈M

∑
t∈T

ptymt (18a)

s.t.
∑
t∈T

wtymt ≤ bm, m ∈M, (18b)∑
m∈M

ymt ≤ 1, t ∈ T, (18c)

ymt ∈ {0, 1}, m ∈M, t ∈ T. (18d)

Here, Constraints (18b) ensure that the capacity of each machine is not exceeded.
Constraints (18c) enforce that a given task is assigned to at most one machine,
while the objective function (18a) maximizes the profit for assigning the tasks to
the machines.

We now consider an uncertain setting in which some assignments may become
infeasible over time. Still, the decision maker aims to identify a set of potential
machine-task pairings from which the actual assignments can be made once infeasible
pairings become known. This situation can arise when there is a need to pre-
condition the machines to perform a given task, if ever performed. Following Bodur
et al. (2024), we assume to have a cardinality constraint limiting the number of
pre-identified pairings. A model for the robust GAP reads

max
x∈X

min
ξ∈Ξ

max
y

∑
m∈M

∑
t∈T

ptymt (19a)

s.t.
∑
t∈T

wtymt ≤ bm, m ∈M, (19b)∑
m∈M

ymt ≤ 1, t ∈ T, (19c)

ymt ≤ xmt(1− ξmt), m ∈M, t ∈ T, (19d)
ymt ∈ {0, 1}, m ∈M, t ∈ T, (19e)

with

X :=

{
x ∈ {0, 1}|M |×|T | :

∑
m∈M

∑
t∈T

xmt ≤ β

}
,

22 H. LEFEBVRE, M. SCHMIDT, J. THÜRAUF

for a given budget β. Constraint (19d) ensures that only pre-identified pairings that
remain feasible in a given scenario ξ ∈ Ξ can be chosen. Here, Ξ is a set of scenarios
chosen so that ξmt = 1 if and only if the pairing (m, t) is infeasible in scenario ξ.
More precisely, we consider

Ξ :=

{
ξ ∈ {0, 1}|M |×|T | :

∑
m∈M

∑
t∈T

ξmt ≤ Γ

}
,

where Γ controls the maximum number of assignments that can become infeasible
in a given scenario.

5.4.2. Instances. The instances are randomly generated in the same way as for
the facility location application where facilities are interpreted as machines and
tasks as clients. We consider instances with |M | ∈ {10, 15} and |T | ∈ {20, 30, 40}.
Additionally, we set β = 0.6× |M | × |T | and Γ ∈ {4, 5, 10}.

5.4.3. Discussion of the Results. For a time limit of 3 hours, Figure 4 depicts the
ECDF of computation times over our test set for all three methods. It can be seen
that both CCG+CG and CCG+CG+H outperform the classic CCG+Gurobi approach.
Indeed, while the latter solves around 45 % of the test set, the CCG+CG+H approach
solves around 57% of the instances within the time limit. The impact of the
CG-based heuristic is also demonstrated since roughly 47% of the instances are
solved by CCG+CG. Similarly to the previous section, Figure 5 depicts the ECDF
of memory used by each approach out of the 16GB available. Again, it can be
seen that using column generation to solve the master problem is less demanding in
terms of memory usage than when using Gurobi. This seems to indicate that smaller
search trees are needed when CG is used at every iteration.

Table 4 and Table 3 are analogous to Table 2 and Table 1 for the FLP application.
Here, |M | is the number of machines and |T | the number of tasks. In column “Count”
of Table 4, we reported between parentheses the number of instances which hit the
memory limit. Note that running out of memory occurs when a too large search
tree is needed to solve that instance. Hence, the chances of solving that instance
with a larger amount of memory is also small. Clearly, using CCG+CG+H yields the
best performance. This is exemplified by those instances with 10 machines, 30 tasks,
and an uncertainty budget Γ = 10. For those instances, CC+Gurobi can solve only
4 instances out of 10 while CCG+CG+H solves 7 instances within the time limit.
Moreover, the average time spent solving the master problem is more than 13 times
worse for Gurobi than with column generation and its heuristic.

5.5. Job Scheduling with Uncertain Processing Time.

5.5.1. Problem Statement. We now consider a scheduling application based on the
deterministic problem denoted 1|rj |

∑
wjUj in the literature (Pinedo 2008). This

problem considers a single machine on which a set of jobs with release and due
dates have to be scheduled while minimizing the weighted number of tardy jobs. To
formally state this problem, let us consider a finite set of jobs J . For each job j ∈ J ,
let pj denote its processing time, rj its release date, dj its due date, and wj its
weight, which is the penalty to be paid if the job is performed tardily. Following the
approach in Detienne (2014), we model the deterministic version of the problem as a
MIP. This MIP formulation is based on that jobs with agreeable time windows can
be scheduled according to the earliest-deadline-first rule, i.e., if for two jobs i, j ∈ J
it holds ri ≤ rj and di ≤ dj , then there is an optimal schedule for 1|rj |

∑
wjUj such

that i is scheduled before j. The key idea is then to reformulate the scheduling
problem into the problem of selecting jobs with agreeable time windows. To this
end, for each pair of job (i, j) ∈ J2 such that i and j do not have agreeable time

COLUMN GENERATION FOR ADJUSTABLE ROBUST OPTIMIZATION 23

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

·104

0

10

20

30

40

50

60

Computation time (in seconds)

%
of

so
lv

ed
in

st
an

ce
s

CCG+Gurobi
CCG+CG
CCG+CG+H

Figure 4. ECDFs of computation times for the GAP

0 10 20 30 40 50 60 70 80 90 100

20

40

60

80

100

Memory used (% out of 16 GB)

%
of

so
lv

ed
in

st
an

ce
s

CCG+Gurobi
CCG+CG
CCG+CG+H

Figure 5. ECDFs of used memory for the GAP

24 H. LEFEBVRE, M. SCHMIDT, J. THÜRAUF

T
ot

al
(s

)
M

as
te

r
(s

)
A

dv
er

sa
ri

al
(s

)
It

er
at

io
ns

C
ou

nt

C
C
G

+
..

.
C
C
G

+
..

.
C
C
G

+
..

.
C
C
G

+
..

.
C
C
G

+
..

.

|M
|
|T
|

Γ
G

ur
ob

i
C
G

C
G

+
H

G
ur

ob
i

C
G

C
G

+
H

G
ur

ob
i

C
G

C
G

+
H

G
ur

ob
i

C
G

C
G

+
H

G
ur

ob
i

C
G

C
G

+
H

10
20

4
13

3.
9

13
5.

6
13

5.
2

2.
7

1.
0

1.
0

12
6.

9
11

0.
2

11
0.

0
25

.4
11

.2
11

.2
10

10
10

10
20

5
—

34
79

.0
24

79
.2

—
76

4.
5

9.
0

—
26

72
.1

24
51

.2
—

66
.1

50
.4

—
8

7
10

20
10

59
6.

9
65

1.
4

25
1.

9
40

.2
51

1.
6

1.
8

53
7.

2
13

8.
1

24
7.

7
52

.3
15

.0
19

.3
9

4
10

10
30

4
14

77
.0

33
7.

4
34

4.
7

45
9.

0
0.

1
0.

1
91

0.
4

33
7.

3
34

4.
6

10
2.

4
2.

0
2.

0
9

10
10

10
30

5
—

80
68

.0
79

27
.3

—
0.

1
0.

1
—

80
67

.8
79

27
.1

—
3.

0
3.

0
—

2
2

10
30

10
80

8.
5

29
9.

4
18

30
.5

33
.0

26
.7

2.
5

74
8.

0
27

1.
5

18
23

.1
47

.5
11

.0
22

.0
4

1
7

10
40

4
46

12
.7

16
47

.5
16

72
.8

23
83

.1
0.

1
0.

1
18

58
.1

16
47

.4
16

72
.7

18
8.

0
2.

0
2.

0
3

10
10

10
40

10
55

38
.2

—
82

85
.5

22
.3

—
3.

3
54

93
.5

—
82

75
.6

44
.0

—
24

.0
4

—
3

15
20

4
53

.1
45

.5
45

.7
0.

4
0.

1
0.

1
51

.5
45

.4
45

.6
12

.1
2.

0
2.

0
10

10
10

15
20

5
89

1.
6

99
2.

8
99

5.
0

1.
0

0.
1

0.
1

88
7.

5
99

2.
7

99
4.

9
19

.3
2.

0
2.

0
10

10
10

15
20

10
36

7.
5

31
5.

9
18

8.
5

0.
7

29
2.

7
1.

6
36

4.
5

22
.8

18
4.

0
17

.0
5.

0
15

.5
2

1
2

15
30

4
45

9.
3

44
2.

9
44

1.
5

1.
3

0.
1

0.
1

45
4.

5
44

2.
8

44
1.

4
17

.1
2.

0
2.

0
10

10
10

15
30

5
28

85
.1

59
25

.8
59

27
.3

5.
8

0.
1

0.
1

28
68

.3
59

25
.7

59
27

.1
29

.7
2.

0
2.

0
3

1
1

15
40

4
32

09
.1

25
27

.6
25

22
.8

2.
0

0.
1

0.
1

32
01

.9
25

26
.1

25
21

.3
17

.8
2.

3
2.

3
10

10
10

T
a
bl

e
3.

So
lv

ed
In

st
an

ce
s

fo
r

th
e

G
A

P.
Fr

om
le

ft
to

ri
gh

t:
th

e
av

er
ag

e
to

ta
lt

im
e,

th
e

av
er

ag
e

ti
m

e
sp

en
t

so
lv

in
g

th
e

m
as

te
r

pr
ob

le
m

,
th

e
av

er
ag

e
ti

m
e

sp
en

t
so

lv
in

g
th

e
ad

ve
rs

ar
ia

l
pr

ob
le

m
,
th

e
av

er
ag

e
nu

m
be

r
of

it
er

at
io

ns
,
an

d
th

e
nu

m
be

r
of

so
lv

ed
in

st
an

ce
s.

COLUMN GENERATION FOR ADJUSTABLE ROBUST OPTIMIZATION 25

Iterations Count

CCG+. . . CCG+. . .

|M | |T | Γ Gurobi CG CG+H Gurobi CG CG+H

10 20 5 319.6 187.5 189.0 10 (9) 2 (1) 3 (2)
10 20 10 320.0 20.0 — 1 (1) 6 —
10 30 4 261.0 — — 1 (1) — —
10 30 5 256.3 43.1 43.1 10 (8) 8 8
10 30 10 183.8 20.0 12.3 6 (3) 9 3
10 40 4 225.0 — — 7 (7) — —
10 40 5 225.3 31.3 30.8 10 (10) 10 10
10 40 10 137.8 22.9 23.1 6 (1) 10 7
15 20 10 190.1 70.2 75.6 8 (2) 9 8
15 30 5 30.7 2.0 2.0 7 9 9
15 30 10 108.1 52.1 51.7 10 (1) 10 10
15 40 5 57.3 1.9 1.9 10 (2) 10 (1) 10 (1)
15 40 10 35.8 37.7 37.8 10 10 10

Table 4. Unsolved Instances for the GAP. From left to right: the
average number of iterations, and the number of unsolved instances.
Between parenthesis, the number of instances which went out of
memory.

windows, a new job occurrence k is created, with dk = dj , rk = ri, pk = pi, and
wk = 0, which yields that i is scheduled before j. The original job is also added
to the set of job occurrences with a weight of 0. We let J̃ be the set of all job
occurrences and Gj be the set of all job occurrences related to a given job j ∈ J .
Minimizing the weighted number of tardy jobs can then be seen as selecting, for
each job j ∈ J , a job occurrence k ∈ Gj or paying a penalty cost of wj . We refer
the interested reader to Detienne (2014) for more details. The corresponding MIP
model reads

min
x,y,t

∑
j∈J

wjxj (20a)

s.t.
∑
k∈Gj

yk = 1− xj , j ∈ J, (20b)

tk ≤ dk, k ∈ J̃ , (20c)
tk − tk−1 − pjyk ≥ 0, k ∈ Gj , j ∈ J, (20d)
tk − pjyk −Mkyk ≥ rk −Mk, k ∈ Gj , j ∈ J, (20e)
yk ∈ {0, 1}, tk ≥ 0, k ∈ Gj , j ∈ J, (20f)
xj ∈ {0, 1}, j ∈ J. (20g)

Here, variables x are used to model tardy executions of tasks, i.e., for each job j ∈ J ,
xj = 1 holds if and only if j is executed tardily. Variables y are used to represent
the selection of a job occurrence while t is used for computing the termination
time of a job. Constraints (20b) enforce that a job occurrence must be selected if
and only if the job is scheduled on time. Constraints (20c) force scheduled jobs
to terminate before their deadlines while Constraints (20d) enforce release dates.
Finally, Constraints (20e) make sure that no overlapping of jobs occurs in a feasible
schedule.

26 H. LEFEBVRE, M. SCHMIDT, J. THÜRAUF

We now introduce uncertainty to this scheduling problem. To this end, the set of
jobs to be performed has to be decided here and now, while the exact processing
time of the jobs is not perfectly known. Formally, we assume that each job j ∈ J
may have a processing time pj being randomly increased by δj . More formally, we
rely on the Γ-uncertainty set Ξ := {ξ ∈ {0, 1}|J| :

∑
j∈J ξj ≤ Γ}, where for any

ξ ∈ Ξ, ξj = 1 means that job j ∈ J has a processing time of pj + δj and pj otherwise.
The goal is to select a subset of jobs to be performed so as to minimize the penalties.
Performing a job j ∈ J on time is associated to a reward of fj , while performing it
tardily implies a penalty of wj .

The ARO version of the problem reads

min
x∈{0,1}|J|

∑
j∈J

wjxj + max
ξ∈Ξ

min
y∈Y (x,ξ)

∑
j∈J

−(wj + fj)
∑
k∈Gj

yk

 ,

in which Y (x, ξ) is chosen so that y ∈ Y (x, ξ) holds if and only if there exists t ∈ R|J̃|

satisfying ∑
k∈Gj

yk ≤ xj , j ∈ J,

tk ≤ dk, k ∈ J̃ ,

tk − tk−1 − (pj + δjξj)yk ≥ 0, k ∈ Gj , j ∈ J,

tk − (pj + δjξj)yk −Mkyk ≥ rk −Mk, k ∈ Gj , j ∈ J,

yk ∈ {0, 1}, tk ≥ 0, k ∈ Gj , j ∈ J.

This problem can be seen as a variant of the adjustable robust problem studied
in Clautiaux et al. (2023). However, the problem we consider is different both w.r.t.
its mathematical structure and its interpretation. In Clautiaux et al. (2023), it is
assumed that jobs may fail in such a way that the reward of a job is decreased.
Restoring the “full” nominal reward is possible by increasing the processing time
of the job. This is interpreted as “repairing” the failed task and must be decided.
Mathematically, it is an ARO problem with uncertain cost and a continuous uncer-
tainty set. In our problem, the processing time of a job is directly affected by the
uncertainty, which is modeled using a discrete set. Thus, a major difference from
the computational viewpoint is that our problem has uncertain constraints. Finally,
note that our problem is easily shown to be ΣP

2 -hard by reduction to the knapsack
interdiction problem (Caprara et al. 2016), while Clautiaux et al. (2023) showed
NP-completeness of their problem.

5.5.2. Instances. All instances are randomly generated according to Dauzère-Pérès
and Sevaux (2002) using the parameters N , R, and D defined as the number of
jobs, the control for dispersion of release dates, and the control for dispersion of
deadlines, respectively. For each job j ∈ J , the processing time pj and the weight wj

are uniformly generated between 0 and 100. The maximum increase in processing
time δj is set to 20% × pj . The release date rj is drawn from [0, NR] while the
deadline dj is set to rj + pj +∆j , where ∆j is a random number uniformly drawn
from [0, ND].

Our test set consists of instances with 30 and 40 jobs with R and D taking
the values {1, 5, 10, 20}. For each combination of these parameters, we generate
10 instances, yielding a total of 160 nominal instances. Each instance is considered
with an uncertainty budget Γ ∈ {3, 6} leading to 320 robust instances.

5.5.3. Discussion of the Results. For a time limit of 3 hours, Figure 6 depicts the
ECDF of computation times over the set of instances for all three methods. Contrary

COLUMN GENERATION FOR ADJUSTABLE ROBUST OPTIMIZATION 27

T
ot

al
(s

)
M

as
te

r
(s

)
A

dv
er

sa
ri

al
(s

)
It

er
at

io
ns

C
ou

nt

C
C
G

+
..

.
C
C
G

+
..

.
C
C
G

+
..

.
C
C
G

+
..

.
C
C
G

+
..

.
|J
|

Γ
G

ur
ob

i
C
G

C
G

+
H

G
ur

ob
i

C
G

C
G

+
H

G
ur

ob
i

C
G

C
G

+
H

G
ur

ob
i

C
G

C
G

+
H

G
ur

ob
i

C
G

C
G

+
H

30
3

15
8.

5
20

10
.1

18
21

.5
13

0.
2

19
86

.2
17

98
.7

28
.2

23
.0

22
.2

8.
5

7.
2

7.
1

71
62

61
30

6
56

0.
3

14
81

.4
13

94
.1

80
.4

12
39

.0
11

29
.5

47
9.

9
24

1.
8

26
4.

1
6.

7
6.

6
6.

7
59

53
52

40
3

31
5.

3
14

69
.2

15
33

.4
20

7.
9

14
38

.3
15

05
.4

10
7.

2
29

.6
27

.0
10

.5
7.

8
7.

8
48

19
19

40
6

29
9.

5
17

64
.4

14
71

.4
19

7.
6

17
46

.9
14

54
.2

10
1.

8
15

.0
15

.7
9.

3
8.

3
8.

3
30

24
24

T
a
bl

e
5.

So
lv

ed
In

st
an

ce
s

fo
r

th
e

JS
P.

Fr
om

le
ft

to
ri

gh
t:

th
e

av
er

ag
e

to
ta

l
ti

m
e,

th
e

av
er

ag
e

ti
m

e
sp

en
t

so
lv

in
g

th
e

m
as

te
r

pr
ob

le
m

,
th

e
av

er
ag

e
ti

m
e

sp
en

t
so

lv
in

g
th

e
ad

ve
rs

ar
ia

l
pr

ob
le

m
,
th

e
av

er
ag

e
nu

m
be

r
of

it
er

at
io

ns
,
an

d
th

e
nu

m
be

r
of

so
lv

ed
in

st
an

ce
s.

28 H. LEFEBVRE, M. SCHMIDT, J. THÜRAUF

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

·104

0

10

20

30

40

50

60

70

80

Computation time (in seconds)

%
of

so
lv

ed
in

st
an

ce
s

CCG+Gurobi
CCG+CG
CCG+CG+H

Figure 6. ECDFs of computation times for the JSP

Iterations Count

CCG+. . . CCG+. . .

|J | Γ Gurobi CG CG+H Gurobi CG CG+H

30 3 6.9 6.1 6.5 9 18 19
30 6 8.6 6.1 6.0 21 27 28
40 3 8.9 5.7 5.8 32 61 61
40 6 6.5 3.8 3.9 50 56.00 56.00

Table 6. Unsolved Instances for the JSP. From left to right: the
average number of iterations, and the number of unsolved instances.

to the previous two applications, it can be seen that the classic CCG+Gurobi approach
outperforms the CG-enhanced approaches. Indeed, while Gurobi is able to solve 65 %
of the instance set, CCG+CG only solves 50 % of the instances within the time limit.
This can be explained by at least two factors. First, the pricing problem in the
scheduling application is harder to solve than those in the FLP or GAP applications.
For instance, both the pricing problem for the FLP and that of the GAP are purely
binary problems while that of the JSP is a mixed-integer problem. Moreover, the
number of variables and constraints are linear in the size of the instance for the FLP
and the GAP while it is quadratic for the JSP application; recall that |J̃ | ∈ O(|J |2).
Hence, even though the dual bound associated to the CG-based approaches are
stronger, solving each node within the branch-and-price algorithm becomes very
challenging. Second, the master problem solved at each step of CCG+CG suffers
from a high dual degeneracy, resulting in a lot of columns which needs to be added
to make progress in the CG algorithm. Indeed, for a fixed scenario, many columns

COLUMN GENERATION FOR ADJUSTABLE ROBUST OPTIMIZATION 29

can be seen as equivalent since columns are associated to specific orderings of the
jobs while costs only reflects jobs which are effectively scheduled on time, regardless
of their ordering. More details are given in Table 5 and Table 6 which are similar to
the previous tables presented for the FLP and the GAP application.

6. Conclusion

In this paper, we introduced a new and stronger formulation of the master
problem used in the classic CCG method, which is a standard approach in ARO.
We showed how this model can be solved by exploiting CG techniques to obtain an
efficient method for a specific but large class of problems. We numerically evaluated
the novel method applied to three different applications. While for two out of them,
the novel CG-based approaches outperform the vanilla CCG method, this is not
the case for the scheduling application. However, our discussion of the potential
reasons for this may give the user a hint to decide when or when not to use our
novel approaches.

Let us conclude with some remarks regarding the limitations of the novel approach
and some potential future research directions. A clear limitation of the method
presented in this paper is Assumption 5. Indeed, it is necessary to prove the main
theorem and is therefore essential for the exactness of the overall algorithm. We
would like to point out that Assumption 5 can theoretically be relaxed by a weaker
assumption, which just claims that there exists an index set I ⊆ {1, . . . , nx} such
that x ∈ X implies xI ∈ {0, 1}|I| and that Y (x, ξ) = Y (xI , ξ) holds. Under the
latter assumption, one can still apply our derivations by working on a reformulated
problem, which is given by

min
x∈X

{
c⊤x+max

ξ∈Ξ
min

y∈Y +(x,ξ)
d(ξ)⊤y

}
with

Y +(x, ξ) =
{
y : ∃x′ ∈ [0, 1]|I| with y ∈ Y (x′, ξ), x′ ≤ x, x′ ≥ x

}
.

Indeed, we then have

{xI} × conv(Y +(x, ξ)) = conv(Y ([0, 1]|I|, ξ)) ∩ {(x′, y) : x′ = xI}
for any x ∈ X. This has been suggested by Arslan and Detienne (2022), who
work with a similar assumption in the context of cost-uncertain ARO. It has also
been used by Sherali and Fraticelli (2002) in the context of two-stage stochastic
optimization. Unfortunately, some preliminary computational experiments showed
poor performance of this approach, which can be explained by the increased difficulty
of the pricing problem within CG. Indeed, the pricing problem is now expressed in
a higher-dimensional space, which considerably slows down its solution time and,
thus, the total computation time. As a result, the benefit of using CG to solve the
master problem vanishes.

Consequently, a possible future research direction is to study efficient methods to
handle constraints such as “y ∈ conv(Y (x, ξ))” using weaker assumptions. Moreover,
let us point out that our method is designed for problems with mixed-integer
second-stage decisions. While our method can be applied as-is to problems with
purely continuous second-stage decisions, it is unlikely to perform better than the
usual CCG in this case. This is because convex problems do not suffer from the
computational challenges discussed in Section 3, which are due to the quality of the
continuous relaxation of the underlying ARO problem, which is much stronger if no
integer variables appear in the second stage.

Another important aspect for future work is to develop solvers for bilevel problems
of the type in (1); see Assumption 4. While this is out of the scope of this paper,

30 H. LEFEBVRE, M. SCHMIDT, J. THÜRAUF

any progress in this direction will also improve the applicability of the CG-based
approaches discussed in this paper.

Finally, there are many other highly relevant problem classes such as k-resilience
problems (Pfetsch and Schmitt 2023) or fortification games (Leitner et al. 2023;
Lozano and Smith 2017) to which our method might be extended to since they have
a structure similar to the one studied in this paper.

Acknowledgements

We acknowledge the support by the German Bundesministerium für Bildung
und Forschung within the project “RODES” (Förderkennzeichen 05M22UTB). The
computations were executed on the high performance cluster “Elwetritsch” at the
TU Kaiserslautern, which is part of the “Alliance of High Performance Computing
Rheinland-Pfalz” (AHRP). We kindly acknowledge the support of RHRK.

References

Achterberg, T. (2009). “SCIP: solving constraint integer programs.” In: Mathematical
Programming Computation 1.1, pp. 1–41. doi: 10.1007/s12532-008-0001-1.

Agra, A., M. Christiansen, R. Figueiredo, L. M. Hvattum, M. Poss, and C. Requejo
(2013). “The robust vehicle routing problem with time windows.” In: Computers
& Operations Research 40.3. Transport Scheduling, pp. 856–866. doi: 10.1016/
j.cor.2012.10.002.

Arslan, A. N. and B. Detienne (2022). “Decomposition-Based Approaches for a Class
of Two-Stage Robust Binary Optimization Problems.” In: INFORMS Journal on
Computing 34.2, pp. 857–871. doi: 10.1287/ijoc.2021.1061.

Ben-Tal, A., A. Goryashko, E. Guslitzer, and A. Nemirovski (2004). “Adjustable
robust solutions of uncertain linear programs.” In: Mathematical Programming
99.2, pp. 351–376. doi: 10.1007/s10107-003-0454-y.

Ben-Tal, A., S. Bhadra, C. Bhattacharyya, and J. Saketha Nath (2011). “Chance
constrained uncertain classification via robust optimization.” In: Mathematical
Programming 127.1, pp. 145–173. doi: 10.1007/s10107-010-0415-1.

Ben-Tal, A., L. E. Ghaoui, and A. Nemirovski (2009). Robust Optimization. Princeton
University Press. doi: 10.1515/9781400831050.

Bertsimas, D. and C. Caramanis (2010). “Finite Adaptability in Multistage Linear
Optimization.” In: IEEE Transactions on Automatic Control 55.12, pp. 2751–
2766. doi: 10.1109/tac.2010.2049764.

Bertsimas, D. and V. Goyal (2011). “On the power and limitations of affine policies in
two-stage adaptive optimization.” In: Mathematical Programming 134.2, pp. 491–
531. doi: 10.1007/s10107-011-0444-4.

Bertsimas, D., D. A. Iancu, and P. A. Parrilo (2010). “Optimality of Affine Policies
in Multistage Robust Optimization.” In: Mathematics of Operations Research
35.2, pp. 363–394. doi: 10.1287/moor.1100.0444.

Bertsimas, D. and S. Shtern (2018). A Scalable Algorithm for Two-Stage Adaptive
Linear Optimization. doi: 10.48550/ARXIV.1807.02812.

Bertsimas, D. and M. Sim (2004). “The Price of Robustness.” In: Operations Research
52.1, pp. 35–53. doi: 10.1287/opre.1030.0065.

Bodur, M., T. C. Y. Chan, and I. Y. Zhu (2024). Network Flow Models for Robust
Binary Optimization with Selective Adaptability. doi: 10.48550/ARXIV.2403.
19471.

Boyd, S. and L. Vandenberghe (2004). Convex Optimization. Cambridge University
Press. doi: 10.1017/CBO9780511804441.

https://doi.org/10.1007/s12532-008-0001-1
https://doi.org/10.1016/j.cor.2012.10.002
https://doi.org/10.1016/j.cor.2012.10.002
https://doi.org/10.1287/ijoc.2021.1061
https://doi.org/10.1007/s10107-003-0454-y
https://doi.org/10.1007/s10107-010-0415-1
https://doi.org/10.1515/9781400831050
https://doi.org/10.1109/tac.2010.2049764
https://doi.org/10.1007/s10107-011-0444-4
https://doi.org/10.1287/moor.1100.0444
https://doi.org/10.48550/ARXIV.1807.02812
https://doi.org/10.1287/opre.1030.0065
https://doi.org/10.48550/ARXIV.2403.19471
https://doi.org/10.48550/ARXIV.2403.19471
https://doi.org/10.1017/CBO9780511804441

REFERENCES 31

Caprara, A., M. Carvalho, A. Lodi, and G. J. Woeginger (2016). “Bilevel Knap-
sack with Interdiction Constraints.” In: INFORMS Journal on Computing 28.2,
pp. 319–333. doi: 10.1287/ijoc.2015.0676.

Clautiaux, F., B. Detienne, and H. Lefebvre (2023). “A two-stage robust approach
for minimizing the weighted number of tardy jobs with objective uncertainty.” In:
Journal of Scheduling 26.2, pp. 169–191. doi: 10.1007/s10951-022-00775-1.

Dauzère-Pérès, S. and M. Sevaux (Dec. 2002). “Using Lagrangean relaxation to
minimize the weighted number of late jobs on a single machine.” In: Naval
Research Logistics (NRL) 50.3, pp. 273–288. doi: 10.1002/nav.10056.

Desrosiers, J. and M. E. Lübbecke (2005). “A Primer in Column Generation.” In:
Column Generation. Springer-Verlag, pp. 1–32. doi: 10.1007/0-387-25486-2_1.

Detienne, B. (2014). “A mixed integer linear programming approach to minimize
the number of late jobs with and without machine availability constraints.” In:
European Journal of Operational Research 235.3, pp. 540–552. doi: 10.1016/j.
ejor.2013.10.052.

Detienne, B., H. Lefebvre, E. Malaguti, and M. Monaci (2024). “Adjustable robust
optimization with objective uncertainty.” In: European Journal of Operational
Research 312.1, pp. 373–384. doi: 10.1016/j.ejor.2023.06.042.

Fischetti, M., I. Ljubić, M. Monaci, and M. Sinnl (2019). “Interdiction Games and
Monotonicity, with Application to Knapsack Problems.” In: INFORMS Journal
on Computing 31.2, pp. 390–410. doi: 10.1287/ijoc.2018.0831.

Gabrel, V., C. Murat, and A. Thiele (2014). “Recent advances in robust optimization:
An overview.” In: European Journal of Operational Research 235.3, pp. 471–483.
doi: 10.1016/j.ejor.2013.09.036.

García, R., A. Marín, and M. Patriksson (2003). “Column Generation Algorithms
for Nonlinear Optimization, I: Convergence Analysis.” In: Optimization 52.2,
pp. 171–200. doi: 10.1080/0233193031000079856.

Gurobi Optimization, LLC (2023). Gurobi Optimizer Reference Manual. url: https:
//www.gurobi.com.

Hanasusanto, G. A., D. Kuhn, and W. Wiesemann (2015). “K-Adaptability in Two-
Stage Robust Binary Programming.” In: Operations Research 63.4, pp. 877–891.
doi: 10.1287/opre.2015.1392.

Kämmerling, N. and J. Kurtz (2020). “Oracle-based algorithms for binary two-stage
robust optimization.” In: Computational Optimization and Applications 77.2,
pp. 539–569. doi: 10.1007/s10589-020-00207-w.

Kurtz, J. (2023). Approximation Algorithms for Min-max-min Robust Optimization
and K-Adaptability under Objective Uncertainty. arXiv: 2106.03107 [math.OC].

Lefebvre, H. (2023). idol: Generic decomposition methods for mathematical pro-
gramming. publicly available online. url: https://hlefebvr.github.io/idol/
(visited on 09/18/2023).

Lefebvre, H., E. Malaguti, and M. Monaci (2023). “Adjustable Robust Optimization
with Discrete Uncertainty.” In: INFORMS Journal on Computing. doi: 10.1287/
ijoc.2022.0086.

Lefebvre, H. and A. Subramanyam (2024). Correction to: A Lagrangian dual method
for two-stage robust optimization with binary uncertainties. arXiv: 2411.04307
[math.OC].

Leitner, M., I. Ljubić, M. Monaci, M. Sinnl, and K. Tanınmış (2023). “An exact
method for binary fortification games.” In: European Journal of Operational
Research 307.3, pp. 1026–1039. doi: 10.1016/j.ejor.2022.10.038.

Lozano, L. and J. C. Smith (2017). “A Backward Sampling Framework for Inter-
diction Problems with Fortification.” In: INFORMS Journal on Computing 29.1,
pp. 123–139. doi: 10.1287/ijoc.2016.0721.

https://doi.org/10.1287/ijoc.2015.0676
https://doi.org/10.1007/s10951-022-00775-1
https://doi.org/10.1002/nav.10056
https://doi.org/10.1007/0-387-25486-2_1
https://doi.org/10.1016/j.ejor.2013.10.052
https://doi.org/10.1016/j.ejor.2013.10.052
https://doi.org/10.1016/j.ejor.2023.06.042
https://doi.org/10.1287/ijoc.2018.0831
https://doi.org/10.1016/j.ejor.2013.09.036
https://doi.org/10.1080/0233193031000079856
https://www.gurobi.com
https://www.gurobi.com
https://doi.org/10.1287/opre.2015.1392
https://doi.org/10.1007/s10589-020-00207-w
https://arxiv.org/abs/2106.03107
https://hlefebvr.github.io/idol/
https://doi.org/10.1287/ijoc.2022.0086
https://doi.org/10.1287/ijoc.2022.0086
https://arxiv.org/abs/2411.04307
https://arxiv.org/abs/2411.04307
https://doi.org/10.1016/j.ejor.2022.10.038
https://doi.org/10.1287/ijoc.2016.0721

32 REFERENCES

Meyer, R. R. (1974). “On the existence of optimal solutions to integer and mixed-
integer programming problems.” In: Mathematical Programming 7.1, pp. 223–235.
doi: 10.1007/bf01585518.

Pessoa, A., R. Sadykov, E. Uchoa, and F. Vanderbeck (2013). “In-Out Separation
and Column Generation Stabilization by Dual Price Smoothing.” In: Experimental
Algorithms. Springer Berlin Heidelberg, pp. 354–365. doi: 10.1007/978-3-642-
38527-8_31.

Pfetsch, M. E. and A. Schmitt (2023). “A generic optimization framework for
resilient systems.” In: Optimization Methods and Software 38.2, pp. 356–385. doi:
10.1080/10556788.2022.2142581.

Pinedo, M. (2008). Scheduling: Theory, Algorithms, and Systems. Prentice Hall
international series in industrial and systems engineering. Springer. doi: 10.
1007/978-1-4614-2361-4.

Rockafellar, R. T. (1970). Convex Analysis. Princeton University Press. doi: 10.
1515/9781400873173.

Sherali, H. D. and B. M. Fraticelli (2002). “A modification of Benders’ decomposition
algorithm for discrete subproblems: An approach for stochastic programs with
integer recourse.” In: Journal of Global Optimization 22.1, pp. 319–342. doi:
10.1023/A:1013827731218.

Subramanyam, A. (2022). “A Lagrangian dual method for two-stage robust op-
timization with binary uncertainties.” In: Optimization and Engineering 23.4,
pp. 1831–1871. doi: 10.1007/s11081-022-09710-x.

Subramanyam, A., C. E. Gounaris, and W. Wiesemann (2019). “K-adaptability in
two-stage mixed-integer robust optimization.” In: Mathematical Programming
Computation 12.2, pp. 193–224. doi: 10.1007/s12532-019-00174-2.

Sun, X. A. and A. J. Conejo (2021). Robust Optimization in Electric Energy Systems.
Springer International Publishing. doi: 10.1007/978-3-030-85128-6.

Tahernejad, S., T. K. Ralphs, and S. T. DeNegre (2020). “A branch-and-cut algorithm
for mixed integer bilevel linear optimization problems and its implementation.”
In: Mathematical Programming Computation 12.4, pp. 529–568. doi: 10.1007/
s12532-020-00183-6.

Tardella, F. (2004). “On the existence of polyhedral convex envelopes.” In: Nonconvex
Optimization and Its Applications. Springer US, pp. 563–573. doi: 10.1007/978-
1-4613-0251-3_30.

Wolsey, L. (1998). Integer Programming. Wiley Series in Discrete Mathematics and
Optimization. Wiley. doi: 10.1002/9781119606475.

Xidonas, P., R. Steuer, and C. Hassapis (2020). “Robust portfolio optimization:
a categorized bibliographic review.” In: Annals of Operations Research 292.1,
pp. 533–552. doi: 10.1007/s10479-020-03630-8.

Zeng, B. and L. Zhao (2013). “Solving two-stage robust optimization problems using
a column-and-constraint generation method.” In: Operations Research Letters
41.5, pp. 457–461. doi: 10.1016/j.orl.2013.05.003.

Zhao, L. and B. Zeng (2012). An Exact Algorithm for Two-stage Robust Optimization
with Mixed Integer Recourse Problems. url: https://optimization-online.
org/2012/01/3310/.

Zhen, J., D. den Hertog, and M. Sim (2018). “Adjustable Robust Optimization via
Fourier–Motzkin Elimination.” In: Operations Research 66.4, pp. 1086–1100. doi:
10.1287/opre.2017.1714.

(H. Lefebvre, M. Schmidt, J. Thürauf) Trier University, Department of Mathematics,
Universitätsring 15, 54296 Trier, Germany

Email address: lefebvre@uni-trier.de
Email address: martin.schmidt@uni-trier.de

https://doi.org/10.1007/bf01585518
https://doi.org/10.1007/978-3-642-38527-8_31
https://doi.org/10.1007/978-3-642-38527-8_31
https://doi.org/10.1080/10556788.2022.2142581
https://doi.org/10.1007/978-1-4614-2361-4
https://doi.org/10.1007/978-1-4614-2361-4
https://doi.org/10.1515/9781400873173
https://doi.org/10.1515/9781400873173
https://doi.org/10.1023/A:1013827731218
https://doi.org/10.1007/s11081-022-09710-x
https://doi.org/10.1007/s12532-019-00174-2
https://doi.org/10.1007/978-3-030-85128-6
https://doi.org/10.1007/s12532-020-00183-6
https://doi.org/10.1007/s12532-020-00183-6
https://doi.org/10.1007/978-1-4613-0251-3_30
https://doi.org/10.1007/978-1-4613-0251-3_30
https://doi.org/10.1002/9781119606475
https://doi.org/10.1007/s10479-020-03630-8
https://doi.org/10.1016/j.orl.2013.05.003
https://optimization-online.org/2012/01/3310/
https://optimization-online.org/2012/01/3310/
https://doi.org/10.1287/opre.2017.1714

REFERENCES 33

(J. Thürauf) University of Technology Nuremberg (UTN), Department Liberal Arts
and Social Sciences, Discrete Optimization Lab, Dr.-Luise-Herzberg-Str. 4, 90461
Nuremberg, Germany

Email address: johannes.thuerauf@utn.de

	1. Introduction
	2. Problem Statement
	3. Column-and-constraint Generation With Integer Decisions
	3.1. Extended Formulation
	3.2. Formal Statement of CCG
	3.3. Computational Challenges

	4. A Stronger Formulation For Column-and-constraint Generation
	4.1. A New Extended Formulation
	4.2. Solving the Master Problem
	4.3. Branch-and-Price
	4.4. A CG-Based Heuristic
	4.5. Formal Statement of the Procedure

	5. Computational Results
	5.1. Experimental Setting
	5.2. Implementation
	5.3. Facility Location Problem with Facility Disruption
	5.4. Generalized Assignment Problem
	5.5. Job Scheduling with Uncertain Processing Time

	6. Conclusion
	Acknowledgements
	References

