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The minimization of non-lower semicontinuous functions is a difficult topic that has been minimally studied.
Among such functions is a Heaviside composite function that is the composition of a Heaviside function
with a possibly nonsmooth multivariate function. Unifying a statistical estimation problem with hierarchi-
cal selection of variables and a sample average approximation of composite chance constrained stochastic
programs, a Heaviside composite optimization problem is one whose objective and constraints are defined
by sums of possibly nonlinear multiples of such composite functions. Via a pulled-out formulation, a pseudo
stationarity concept for a feasible point was introduced in an earlier work as a necessary condition for a
local minimizer of a Heaviside composite optimization problem. The present paper extends this previous
study in several directions: (a) showing that pseudo stationarity is implied by, thus weaker than, a sharper
subdifferential based stationarity condition which we term epi-stationarity; (b) introducing a set-theoretic
sufficient condition, which we term local convexity-like property, under which an epi-stationary point of a
possibly non-lower semicontinuous optimization problem is a local minimizer; (c) providing several classes
of Heaviside composite functions satisfying this local convexity-like property; (d) extending the epigraphical
formulation of a nonnegative multiple of a Heaviside composite function to a lifted formulation for arbitrarily
signed multiples of the Heaviside composite function, based on which we show that an epi-stationary solution
of the given Heaviside composite program with broad classes of B-differentiable component functions can in
principle be approximately computed by surrogation methods.
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1. Introduction. In this work, we examine a class of minimization problems featured by
objective and/or constraint functions that do not exhibit lower semicontinuity. Analyzing and solv-
ing such problems present considerable challenges because the desirable points, such as global/local
solutions, stationary points, or even feasible solutions, might not be easily accomplished. A broad
class of such problems is the following composite Heaviside problem:

minimize
x∈Rn

fHSC(x) ≜
J0∑
j=1

ψ0j(x)1( 0,∞ )(ϕ0j(x)),

subject to XHSC ≜

{
x ∈ P

∣∣∣∣∣
Ji∑
j=1

ψij(x)1( 0,∞ )(ϕij(x)) ≤ bi, i = 1, · · · ,m

}
,

(1)

where the (open) Heaviside function 1( 0,∞ )(t) ≜

{
1 if t > 0

0 otherwise
is the indicator function of the

(open) interval ( 0,∞ ); P ⊆Rn is a given polyhedron, m and {Ji}mi=0 are positive integers, {bi}mi=1
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are scalars, and ψij and ϕij : O ⊆ Rn → R are some given functions (which are usually contin-
uous). While the Heaviside function 1(0,∞)(t) exhibits lower semicontinuity for t ∈ R, the lower
semicontinuity can be destroyed when multiplied by functions ψij that are not consistently non-
negative. We refer to the reference [7] which has presented the modeling breadth of the HSC
constraint set XHSC. In particular, the Heaviside function is central to the treatment of chance
constraints in stochastic programming; see [8] for a comprehensive study of such a treatment. In
turn, to model conjunctive/disjunctive events, the random functionals in the chance constraints
involve pointwise minimum/maximum operations that render them nondifferentiable. Furthermore,
decision-dependent multiples of the Heaviside composite functions are used in treatment problems
to describe rewards conditional on variable outcomes [12, 22]. As a unification of these special
cases, the class of additive Heaviside composite optimization problems along with the concept of
pseudo stationarity were introduced in [7]. The latter concept has its origin in [14] for the sparse
optimization problem and is defined by a fixed-point property of a “pulled-out” formulation.

Originated from a statistical estimation problem with sparsity [15], a special case of the composite
Heaviside optimization problem is the problem with affine sparsity constraints (ASCs) that was
introduced in [10] as a computational framework for rigorously solving estimation problems with
structured sparsity (i.e., logical sparsity conditions). Such constraints define the following set:

XASC ≜

{
x ∈ P

∣∣∣∣∣
n∑

j=1

aij |xj |0 ≤ bi, i = 1, · · · ,m

}
, (2)

where | t |0 ≜

{
1 if t ̸= 0

0 otherwise
is the sparsity function that is closely related to the Heaviside func-

tion(s). For example, to model the hierarchical selection among three variables, such that x3 can
only be selected if at least one of x1 or x2 is chosen, the following inequality can be employed:

|x3 |0 ≤ |x1 |0 + |x2 |0.

An optimization problem over ASCs is a generalization of cardinality constrained problems, whose
continuous relaxations have been extensively studied in the existing literature [2, 17, 3, 18]. It
is known from [10] that XASC may not be a closed set when the coefficients aij have negative
signs, such as in the above example. When it comes to optimization problems over these sets, a
sign restriction on the multiplier functions is a key requirement in their study [10, 7]. A main
contribution of our work herein is to address problems not satisfying such a sign condition for both
sets XHSC and XASC.

In addressing non-lower semicontinuous functions within objectives and constraints that lead in
particular to non-closed feasible sets, an immediate strategy is to consider the closures of these
sets. However, this approach might not be ideal for the following reasons:

• Given that the epi-limit [23, Definition 7.1] (see also [25, 24]) of a function sequence is always
lower semicontinuous, it is thus not possible to construct approximating functions that exhibit epi-
convergence to the original non-lower semicontinuous functions. This absence of epi-convergence in
the approximating functions, either within the objective or constraints, can impede the convergence
of the global minimizers, let alone stationary solutions, for the approximating problems, among
many difficulties.

• The best convergence in terms of the epi-limit one can achieve from the approximating functions
is to the closure of the lower semicontinuous function. However, in the realm of logical implications
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and structured variable selections, the closure of a given constraint can potentially compromise its
expressiveness. Consider, for instance, the constraint (see [10, Example 1])

|x1 |0 ≤ |x2 |0 ⇐⇒ 1(0,+∞)(|x1|) ≤ 1(0,+∞)(|x2|).

The feasible set for this constraint is ((0,+∞)×R) ∪ ((−∞,0)×R) ∪ {(0,0)}. This constraint
expresses the logical implication: x1 ̸= 0 =⇒ x2 ̸= 0. Yet, the closure of this set is equal to the
entire space R2, which clearly does not (even approximately) model the desired logical conditions
accurately.

• On top of the difficulties mentioned above, when there are multiple constraints, it is a demanding

task to construct the closure of
m⋂
i=1

Cm when m> 1 and at least one Ci is non-closed. This closure

can be significantly smaller than
m⋂
i=1

closure{Ci}.

Since there is a simple linear structure in the ASC constraint setXASC and the only combinatorial
aspect of the set is due to the ℓ0-function that has a well-known integer description, a natural
question is whether the non-closedness of XASC is indeed a challenging issue to deal with, per the
advances in integer optimization. We approach this question from the perspective of mixed integer
linear representability of XASC, obtaining in particular a representation of the closure of XASC that
extends [10, Proposition 4], from which we can deduce a “big-M” integer description of the closure.
Deepening the analysis in this reference where the side set P in XASC is the entire space, i.e., for
an unconstrained ASC system, the extended analysis elucidates the general difficulty associated
with a mixed-signed combination of multiple ℓ0-functions in that while an integral formulation
of the closure of the set XASC aids the understanding of its structure, an integer approach for
dealing with this set is primarily of conceptual value at the present time; the efficient solution of
an optimization problem over this set would require much further research for the approach to be
practically viable.

For a general optimization problem, stationary conditions are necessary for local optimality
(often requiring constraint qualifications). For problems where a minimizer, local or global, is
impractical to be computed, a stationary solution is a realistic goal one can hope to obtain in
practical computation. The advances in variational analysis [23] have led to the definitions of
many notions of subgradients of extended-valued functions, each of which can be used to define
a stationarity concept. Among these, the regular subgradients [23, Definition 8.3] lead to a sharp
stationarity concept that in principle is applicable to a general constrained optimization problem
without regard to the properties of the defining functions and constraints. However, while offering
convenience for mathematical analysis, such an extended-valued, subdifferential based stationarity
concept has a major drawback; namely, it hides the constraints in the objective, rendering the
identification of a subgradient a very difficult task due to the potential failure of the chain rule. In
contrast, by exposing the constraints as given, tangents to the constraint set, even if the latter is not
closed, can often be more easily described and lead to constructive approaches to compute sharp
stationary solutions. This approach of treating the constraints as they appear is inspired by the
motivation of practical computation that dictates its focus and sets the framework for subsequent
algorithmic developments elsewhere.

There are several fundamental issues associated with the stationarity concepts of a minimiza-
tion problem lacking lower semicontinuity. Foremost is the question of how the previously defined
pulled-out based pseudo-stationarity [7] is related to regular subdifferential based stationarity as
the latter is known to be the sharpest among many stationarity concepts for the very broad class
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of “Bouligand differentiable” (abbreviated as B-differentiable) problems; see [9, Proposition 6.1.8]
where the term Bouligand stationarity was used. Although a Heaviside composite function is not
B-differentiable, we are able to demonstrate that pseudo-stationarity is a weaker notion than the
subdifferential based stationarity, which we term “epi-stationarity” for reasons to be made clear
later and will formally define in Section 4. A follow-up question is whether there are classes of prob-
lems whose epi-stationary points are local minimizers. This question has its origin in differentiable
problems (extendable to B-differentiable problems) for which the class of pseudo-convex functions
introduced by Mangasarian [19, 20] provides an answer. Specifically, for a convex-constrained opti-
mization problem with a differentiable pseudo-convex objective function, a first-order stationary
point must be a global minimizer. As an extension to nonsmooth functions, the property of (local)
convexity-like of a B-differentiable function at the given point, initially defined in the study of piece-
wise quadratic programming [6] and subsequently expanded in [8, Section 4.2], provides a sufficient
condition for a B-stationary solution of a Bouligand differentiable problem to be a local minimizer.
It should be noted, however, that unlike the well-known quasi-convex functions which yield convex
level sets, the level set of a locally convex-like function may not be convex. A further question is
whether there are constructive procedures to (approximately) compute an epi-stationary point of
a non-lower semicontinuous Heaviside composite program. We answer this question via lifting the
problem to one with additional variables, and then resorting to the family of surrogation methods
[9, Chapter 7] when the functions in the lifted program are “surrogatable” (difference-of-convex,
e.g.). Details of such an algorithmic development are not addressed in the present work; these are
best left for a separate computational study.

1.1. Organization and contributions. After a brief summary of the notations and some
relevant background materials in Section 2 for the study of the problem (1), we organize the rest
of this paper along with the main contributions as follows.

(A) In Section 3, we first extend [10, Proposition 4] that addresses an unconstrained ASC system
(i.e., the set XASC with the polyhedron P being the entire space) to the constrained case (i.e., when
P is a proper polyhedral subset of Rn). Specifically, Proposition 1 provides an algebraic description
of the closure of XASC. Based on a classical result, we derive a necessary and sufficient condition
for XASC to have a mixed integer linear representation, enhanced by a more detailed description
of the representation by exploiting the structure of XASC; see Proposition 2. It follows from the
latter result that a closed ASC system has a conceptual “big M” mixed-integer representation
(Corollary 1) whose practical utilisation remains to be further investigated.

(B) We formally define epi-stationarity for an optimization problem lacking lower semicontinuity
in Section 4 (see Definition 1) and establish several important properties of an epi-stationary
solution. First, epi-stationarity is a necessary condition for local minimization (Proposition 3); epi-
stationarity has an equivalent description in terms of a suitable subderivative (Proposition 4); for
a B-differentiable problem, epi-stationariy recovers B-stationarity (Proposition 5); finally, for the
HSC-constrained optimization problem (1), epi-stationarity is sharper than the pulled-out pseudo-
stationarity (Proposition 6).

(C) In Section 5, we generalize the functional convexity-like condition to a set-theoretic local
convexity-like property and establish its sufficiency for local minimization of an epi-stationary
point (Proposition 10). Being the local version of the classical result of pseudo convexity implying
global optimality for a differentiable problem, our result is for a non-lower semicontinuous program
with a possibly nonconvex feasible set. The terminology of epi-stationarity sufficiency is borrowed
from “minimum principle sufficiency” [13] which aims to answer a related but different question
pertaining to the characterization of the set of optimal solutions of a convex differentiable program
in terms of the minimum principle of the program at a given optimal solution.
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(D) In Section 6, based on the the algebraic descriptions of tangent vectors of various cases of an
HSC set, we summarize in Theorem 2 when such a set has the local convexity-like property, thereby
obtaining the equivalence of epi-stationarity with local optimality for these classes of Heaviside-
defined optimization problems.

(E) In Section 7 where we assume, for simplicity, that the objective function is B-differentiable,
we introduce through several steps a lifted formulation of the problem (1) and show that the
B-stationary points of this lifted formulation, where all functions in the lifted space are B-
differentiable, yield pseudo stationary points of (1), through projecting the B-stationarity points
from the lifted domain onto the original space; see Proposition 16. Bouligand stationarity can be
obtained from the lifting under a further assumption; see Proposition 17. Both results are estab-
lished without any sign condition on the multiplier functions {ψij}.

2. Notations and Background. Parallel to the notation Rn for the n-dimensional Euclidean
space of real numbers, we denote the set of n-dimensional integers and positive integers by Zn and
Zn

+, respectively. The superscript n is omitted if it equals to 1. For a given set S, we denote its
closure by cl(S), convex hull by conv(S), recession cone by S∞, and distance to a point x∈Rn by
dist(x,S)≜ inf{∥x−y∥∞ : y ∈ S}. For any vector x∈Rn, we write its support as supp(x), and |x |0
for the vector whose components are |xi|0 for i= 1, · · · , n.
To prepare for the analysis of the Heaviside-defined optimization problem (1), we review some

background pertaining to a general constrained optimization problem in finite dimensions:

minimize
x∈X

f(x), (3)

where X is a nonempty subset of Rn (which is not necessarily closed) and f :O→R is a function
defined on the open set O that contains X. It is common in variational analysis to consider the
unconstrained formulation of (3):

minimize
x∈Rn

fX(x) ≜ f(x)+ δX(x)

by hiding the constraint setX using the extended-valued indicator function: δX(x)≜

{
∞ if x ̸∈X
0 if x∈X.

It is known from [23, Theorem 10.1] that if x̄ ∈X is a local minimizer of (3), then 0 ∈ ∂̂fX(x̄),
where

∂̂fX(x̄) ≜

{
v ∈ Rn | lim inf

x( ̸=x̄)→x̄

fX(x)− fX(x̄)− v⊤(x− x̄)

∥x− x̄∥
≥ 0

}
[23, Definition 8.3]

=
{
v ∈ Rn | v⊤w ≤ dfX(x̄)(w) for all w ∈ Rn

}
[23, Exercise 8.4]

with dfX(x̄)(v) ≜ lim inf
w→v; τ ↓0
x̄+τw∈X

f(x̄+ τw)− f(x̄)

τ
[23, Definition 8.1]

= lim inf
τ−1(x′−x̄)→0; τ ↓0

x′+τv∈X

f(x′ + τv)− f(x̄)

τ
under the equality: x̄+ τw= x′ + τv.

Following [23, Definition 6.1], we define the tangent cone of X at x̄∈X as

T (x̄;X)≜

{
v ∈ Rn | ∃ {xν} ⊂X converging to x̄ and {τν} ↓ 0 such that v = lim

ν→∞

xν − x̄

τν

}
.
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It is easy to see that dfX(x̄)(v) =−∞ if v /∈ T (x̄;X), i.e., the domain of the subderivative dfX(x̄)(•)
is a subset of the tangent cone of of X at x̄. According to the cited reference, ∂̂fX(x̄) and dfX(x̄)(v)
are respectively, the constrained regular subdifferential and the subderivative of the pair (f,X)
at the vector x̄ ∈X. The difference between the two limit infima in dfX(x̄)(v) is that in the first
liminf, the vector x̄ is fixed in the first term f(x̄+ τw) and the direction w is allowed to vary near
the given direction v, whereas in the second, the direction v is fixed in the same term f(x′ + τv)
and the vector x′ is allowed to vary near x̄. While the subdifferential ∂̂fX(x̄) is very convenient
for analysis, the fact that the set X is hidden in the extended-valued function fX complicates
the design of solution methods; indeed unwrapping the elements therein to expose the set X is
invariably needed to take advantage of there properties.

When f is a B-differentiable function [9, Definition 4.1.1] at x̄ ∈X, i.e., f is locally Lipschitz
continuous near x̄ and directionally differentiable there, so that the one-sided directional derivatives

f ′(x̄;v) ≜ lim
τ↓0

f(x̄+ τv)− f(x̄)

τ

exist for all v ∈ Rn, the vector x̄ is said to be a B-stationary point of (3) [9, Definition 6.1.1] if

f ′(x̄;v) ≥ 0, ∀v ∈ T (x̄;X).

The closedness of the set X is not needed for the definition of the tangent cone or for B-stationarity;
nevertheless the directional differentiability of the objective is needed for the latter. It is clear
that B-stationarity is a necessary condition for a local minimizer. Moreover, it is shown in [9,
Proposition 6.1.8] that if f is B-differentiable at x̄ and X is a closed convex set, then x̄ is a B-
stationary point of f on X if and only if 0 ∈ ∂̂fX(x̄); additionally, if f ′(x̄;•) is a convex function
and X is a convex set, then these stationarity properties are further equivalent to the condition
that 0∈ ∂̂f(x̄)+N (x̄;X), where N (x̄;X) is the normal cone of the convex set X at x̄ as in classical
convex analysis. A B-differentiable function f is said to be Clarke regular at a point x̄ in its domain
[4, Definition 2.3.4] if

f ′(x̄;v) = f ◦(x̄;v) ≜ limsup
x→x̄
τ↓0

f(x+ τv)− f(x)

τ
, v ∈ Rn,

where f ◦(x̄;v) is the Clarke directional derivative of f at x̄ along the direction v.

3. Mixed-Integer Linear Representability of XASC. In this section, we discuss sufficient
and necessary conditions for the ASC constraint set XASC to be mixed-integer linear representable
(MILR). Needless to say, the challenge in dealing with this set is the ℓ0 function | • |0. To address
this function, the integer programming community often employs an indicator variable z ∈ {0,1}n
to represent the support of the continuous variable x∈Rn (see, e.g., [1, 11]). The constraint z = |x |0
is further relaxed to −Mz ≤ x≤Mz via the standard big-M technique, enabling a more tractable
formulation. This yields the following mixed-integer set that contains XASC (assumed bounded):{

x∈ P

∣∣∣∣∣ ∃ z ∈ {0,1}n such that −Mz ≤ x ≤ Mz and
n∑

j=1

aijzj ≤ bi, i = 1, · · · ,m

}
,

where M > 0 is chosen to be sufficiently large to ensure XASC ⊆ {x∈Rn | ∥x∥∞ ≤M}. It is known
that such a relaxation is exact provided that all the coefficients aij are nonnegative. However,
complexities arise when A does not meet the sign condition. A set S is termed MILR if there exist
rational matrices A, B and C, and a rational vector d, all of appropriate dimensions, such that

S = {x ∈ Rn | ∃ (y, z) ∈ Rn ×Zq such that Ax+By+Cz ≤ d} .
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The following classical result [5, Theorem 4.47] provides geometric conditions under which a subset
S of Rn is MILR. It is important to note that the intcone in the expression (4) is an “integer cone”
that consists of nonnegative integral combinations of integer vectors; in particular, this cone is not
necessarily polyhedral.

Theorem 1. A set S ⊆Rn is MILR if and only if there exist rational polytopes P1, · · · , Pk ⊆Rn

and vectors r1, · · · , rm ∈Zn such that

S =
k⋃

i=1

Pi + intcone{r1, . . . , rm}, (4)

where intcone{ r1, · · · , rm } ≜

{
m∑
i=1

λir
i : λ ∈ Zm

+

}
. □

Note that a MILR set must be closed. Indeed, a set S is closed if and only if S∩{x : ∥x∥2 ≤ τ} is
closed for any scalar τ > 0. If S is MILR, then by Theorem 1, the set S ∩{x : ∥x∥2 ≤ τ} is a finite
union of compact sets and is thus closed. This implies that XASC is not MILR in general. In [10,
Section 3], the issue of closedness of XASC with P = Rn and the identification of its closure have
been studied; the result below generalizes this previous study to the case where the polyhedron P
is a proper subset of Rn.

Proposition 1. Let P ⊆Rn be a polyhedron. There exist a matrix Ã≥ 0 and a {0,1}-vector
b̃ such that cl(XASC) = {x∈ P | Ã|x |0 ≤ b̃}.
Proof. Let S ≜ {z ∈ {0,1}n | z = |x |0, x∈XASC} be the set of possible supports of the feasible

region. Let Ŝ ≜
⋃
z∈S

{y ∈ {0,1}n | y≤ z} be the downward closure generated by S. Since Ŝ ⊆ {0,1}n,

one has Ŝ = conv(Ŝ)∩ {0,1}n. We claim that conv(Ŝ) = {z ≥ 0 | Ãz ≤ b̃} for some matrix Ã≥ 0
and {0,1}-vector b̃. For this purpose, we first show that y ∈ conv(Ŝ) if and only if y ≥ 0 and
y⊤u ≤max

z∈Ŝ
u⊤z for all u ≥ 0. The “only if” assertion is obvious. For the “if” assertion, suppose

that 0 ≤ y ̸∈ conv(Ŝ) is such that y⊤u ≤ max
z∈Ŝ

u⊤z for all u ≥ 0. Since conv(Ŝ) is a polytope, by

separation, there exist a vector ũ and a scalar γ such that y⊤ũ > γ ≥ max
z∈conv(Ŝ)

ũ⊤z. For any vector

z ∈ Ŝ, the vector z̃ obtained by zeroing out the components of z corresponding to the negative
components of ũ remains an element of Ŝ. Thus, with ũ+ denoting the nonnegative part of the
vector ũ, we have

y⊤ũ+ ≥ y⊤ũ > z̃⊤ũ = z⊤ũ+,

which is a contradiction. This completes the proof of the description of a vector y ∈ conv(Ŝ). Next,
we note that y⊤u≤max

z∈Ŝ
u⊤z for all u≥ 0 is equivalent to

y⊤u≤ α for all u≥ 0, α≥max
z∈Ŝ

u⊤z ⇐⇒

y
⊤u≤ 1 for all u≥ 0 such that max

z∈Ŝ
u⊤z ≤ 1

y⊤u≤ 0 for all u≥ 0 such that max
z∈Ŝ

u⊤z ≤ 0

⇐⇒

{
y⊤u≤ 1 ∀u∈ P1 ≜ {u | u≥ 0, u⊤z ≤ 1, ∀z ∈ Ŝ }

y⊤u≤ 0 ∀u∈ P0 ≜ {u | u≥ 0, u⊤z ≤ 0, ∀z ∈ Ŝ }.

Since P0 and P1 are polytopes, one has Pi = conv{uij | j = 1, . . . , ki} for certain finite families of
vectors {uij}kij=1 ⊆Rn

+, for i= 1,2. Therefore, y ∈ conv(Ŝ) if and only if y belongs to the set

{y | y ≥ 0, (u1j)⊤y ≤ 1, (u2ℓ)⊤y ≤ 0, ∀j = 1, · · · , k1, ℓ= 1, · · · , k2},
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completing the proof of the claimed polyhedral representation of conv(Ŝ).

It remains to show that cl(XASC) = X̃ ≜
{
x∈ P | Ã|x |0 ≤ b̃

}
. Note that X̃ is a closed set due

to Ã≥ 0. It is evident that cl(XASC)⊆ X̃. To prove the converse inclusion, consider an arbitrary
x ∈ X̃. One has |x |0 ∈ Ŝ, which implies that there exists x̂ ∈XASC such that | x̂ |0 ≥ |x |0 by the
construction of Ŝ. Let x(ε) = εx̂+(1−ε)x for ε∈ [0,1]. Clearly x(ε) belongs to P and for almost all
ε∈ (0,1], |x(ε) |0 = | x̂ |0. Since A| x̂ |0 ≤ b, one can deduce that for almost all ε∈ (0,1], x(ϵ)∈XASC.
The proof is now complete since lim

ε↓0
x(ε) = x. □

The proof of Proposition 1 indicates that if x∈ cl(XASC) and |x |0 is the maximal element in the
support set {z ∈ {0,1}n | z = |x |0, x∈XASC}, then x ∈ XASC. This fact is useful when searching
for a point in XASC to approximate elements in cl(XASC). Specifically, consider the case where
the matrix Ã in Proposition 1 is known. Take any point x̄ ∈ cl(XASC) and let z̄ = | x̄ |0 ∈ {0,1}n.
Given Ã ≥ 0, it is easy to identify a maximal element ẑ ∈ {0,1}n in the support set such that
z̄ ≤ ẑ. Following this, one can determine a point x̂ ∈ cl(XASC) such that | x̂ |0 = ẑ by solving linear
programs over {x∈ P | xi(1− ẑi) = 0, i= 1, · · · , n}. Consequently, we have x̂∈XASC, which implies
that εx̂+(1− ε)x̄∈XASC for almost all ε∈ (0,1].

However, it is worth noting that while the existence of Ã is guaranteed by Proposition 1, unfortu-
nately, the effective construction of Ã remains unclear. Consequently, this proposition is primarily
of conceptual significance. In the following, we show that for the set XASC, the integer cone in
Theorem 1 can be replaced with a polyhedral cone that is given by any maximal element from the
support set. We start with a technical lemma.

Lemma 1. Let r ∈Rn and x̄∈XASC. If XASC is closed and there exists a nonnegative sequence
{tk}→∞ such that x̄+ tkr ∈XASC for all k, then the ray {x̄+ tr : t≥ 0} ⊆XASC.

Proof. Since XASC is closed, by Proposition 1, one can assume A≥ 0. Observe that there exists
t0 > 0, such that as t > t0, supp(x̄+ tr) = supp(x̄) ∪ supp(r). If in addition x(t)≜ x̄+ tr ∈XASC,
then for any y= λx̄+(1−λ)x(t) and λ∈ [0,1], one has y ∈ P and |y |0 ≤ |x(t) |0, which implies that
A|y |0 ≤ A|x(t) |0 ≤ b. Therefore, we have y ∈XASC. The conclusion follows from the assumption
that t→∞. □

The noteworthy point of the MILR of XASC in the result below is twofold: one, the cone in
(4) can be made polyhedral; two, its generators are recession vectors of the base polyhedron P
whose nonzero components correspond to those of a maximal element of the set Ŝ in the proof of
Proposition 1.

Proposition 2. Assume P is a polyhedron defined by rational data. ThenXASC is MILR if and
only if there exist nonempty rational polytopes {Pi}ki=1 and a polyhedral cone R such that XASC =
k⋃

i=1

Pi +R. Furthermore, the recession cone R takes the form {r ∈ P∞ | ri = 0, ∀ i /∈ supp(zmax)},

where zmax is any maximal element of {z ∈ {0,1}n | z = |x |0, x∈XASC}.

Proof. Thanks to Proposition 1, we can assume that matrix, denoted as A, of the coefficients
aij in the definition of XASC are all nonnegative, without loss of generality.

Necessity. Suppose XASC is MILR. By Theorem 1, there exist rational polytopes P1, . . . , Pk ⊆ Rn

and vectors r1, . . . , rm ∈ Zn such that XASC =
k⋃

i=1

Pi + intcone{r1, . . . , rm}. For an arbitrary vector

r=
m∑
i=1

λir
i with λ∈Zm

+ and an arbitrary point x∈XASC, it holds that x+ tr ∈XASC for all t∈Z+.
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Thus, one can deduce from Lemma 1 that x+ tr ∈XASC for all t ≥ 0. This further implies that

x+ t
m∑
i=1

µir
i ∈XASC for all µ ∈Rm

+ that is rational, all t ∈R+, and x ∈XASC since we can always

scale r by a positive integer to make µ integral. Since XASC is closed, it follows that x+ r ∈XASC

for all r in the cone generated by the vectors {ri}mi=1, which we denote by R.

Sufficiency. Since Pi are polytopes,
k⋃

i=1

Pi is MILR by Theorem 1. Since a polyhedral set is always

MILR and the Minkowski sum of two MILR sets is MILR, we can deduce that XASC =
k⋃

i=1

Pi +R

is MILR.

It remains to prove the representation of the cone R. Let R̃≜ {r ∈ P∞ | ri = 0, ∀ i /∈ supp(zmax)}.
By the definition of zmax, there exists x̄∈XASC such that supp(zmax) = supp(x̄). Note that for any
r ∈ R̃, supp(r)⊆ supp(x̄). Thus, for any t≥ 0, A| x̄+ tr |0 ≤A| x̄ |0 ≤ b. Hence x̄+ tr ∈XASC for any
t≥ 0; thus r ∈R by the above proof for the first statement of this proposition. Hence, R̃⊆R. If

there exists r ∈R\ R̃, then x̄+ tr ∈XASC and | x̄+ tr |0 > zmax for t large enough, contradicting the
maximality of zmax. This proves R̃=R. □

If XASC ≜ {x ∈ P | A|x |0 ≤ b} is MILR with A nonnegative, one can readily obtain a maximal

element zmax in the support set and the resulting recession cone R. In this favorable case, XASC

admits a big-M extended reformulation. The result is formally stated below.

Corollary 1. Assume that A≥ 0 is rational and XASC ≜ {x ∈ P | A|x |0 ≤ b} is MILR with

the recession cone R. Then there exists M ≥ 0 such that

XASC = {x∈Rn | ∃ (y, z, r)∈ P ×{0,1}n ×R such that Az ≤ b; −Mz ≤ y≤Mz, andx= y+ r } .

Proof. TakeM large enough such that in the statement of Proposition 2, it holds that P̂ ≜
k⋃

i=1

Pi

is contained in {x : ∥x∥∞ ≤M}. If x∈XASC, then there exists y and r such that y ∈ P̂ ⊆XASC and

r ∈R. Thus, y ∈ P and A|y |0 ≤ b. This shows that the XASC is a subset of the right-hand set in

the claim. Conversely, suppose (x, y, z, r) satisfies the inequality system in the right-hand set in the

claim. Then z ≥ |y |0 and A≥ 0 imply that A|y |0 ≤ b, from which we can deduce that y ∈XASC.

Since XASC +R⊆XASC, the conclusion follows. □

4. Epi-stationarity. It is trivial to cast the problem (3) as one with a B-differentiable objec-

tive function by “epigraphicalizing” the function f ; this maneuver leads to the lifted problem with

an auxiliary variable:

minimize
(x,t)∈Rn+1

t subject to (x, t) ∈ Z ≜ epi(f) ∩ (X ×R ), (5)

where epi(f)≜ { (x, t) ∈O×R : f(x) ≤ t} is the epigraph of f . In this form, we can speak of a pair

(x̄, t̄)∈Z with t̄≜ f(x̄) as being a B-stationary point of (5). When f is not lower semicontinuous,

its epigraph epi(f) is not closed. Nevertheless, we can formally introduce the following concept.

Definition 1. A vector x̄ ∈ X is an epi-stationary solution of (3) if the pair (x̄, f(x̄)) is a

B-stationary solution of the lifted problem (5). □
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Unwrapping the B-stationarity condition in the lifted formulation based on the tangent cone of
Z, we remark that x̄∈X is an epi-stationary point of f on X if the following implication holds: lim

(xk,tk)∈ epi(f)∩ (X×R )

(xk,tk)→(x̄,t̄), τk ↓0

(xk, tk)− (x̄, t̄)

τk
= (v, dt)

 ⇒ dt ≥ 0. (6)

The following simple result shows that epi-stationarity is a necessary condition for locally mini-
mizing; the noteworthy point of the result is that no assumption is required of the pair (f,X).

Proposition 3. If x̄ is a local minimizer of (3), then x̄ is an epi-stationary point of (3).

Proof. We need to verify the implication (6). With the conditions beneath the limit, we have
tk ≥ f(xk)≥ f(x̄). Thus it follows readily that dt≥ 0 as desired. □

For the purpose to connect epi-stationarity with regular subdifferential based stationarity, we
first establish a lemma.

Lemma 2. Let x̄∈X. It holds that

lim inf
x̄ ̸=x(∈X)→x̄

f(x)− f(x̄)

∥x− x̄∥
= inf

v∈T (x̄;X);∥v∥=1
dfX(x̄)(v) (7)

with the values ±∞ allowed. In particular, if x̄ is an isolated vector in X, then the two values are
both equal ∞.

Proof. Let {xk} ⊂X \ {x̄} be a sequence converging to x̄ such that

lim inf
x̄ ̸=x(∈X)→x̄

f(x)− f(x̄)

∥x− x̄∥
= lim

k→∞

f(xk)− f(x̄)

∥xk − x̄∥
.

Without loss of generality, we may assume that the normalized sequence

{
wk ≜

xk − x̄

∥xk − x̄∥

}
con-

verges to a tangent vector v∞ ∈ T (x̄;X), which must have unit norm. Letting τk ≜ ∥xk − x̄∥, we
have xk = x̄+ τkw

k; hence

lim inf
x̄ ̸=x(∈X)→x̄

f(x)− f(x̄)

∥x− x̄∥
= lim

k→∞

f(x̄+ τkw
k)− f(x̄)

τk

≥ lim inf
w→v∞; τ ↓0
x̄+τw∈X

f(x̄+ τw)− f(x̄)

τ

= dfX(x̄)(v
∞) ≥ inf

v∈T (x̄;X);∥v∥=1
dfX(x̄)(v).

Conversely, let v∈ T (x̄;X) be an arbitrary vector with unit norm. We have

dfX(x̄)(v) = lim inf
w→v; τ ↓0
x̄+τw∈X

f(x̄+ τw)− f(x̄)

τ ∥w ∥
≥ lim inf

x̸̄=x(∈X)→x̄

f(x)− f(x̄)

∥x− x̄∥
.

Hence, the equalities in (7) hold. □

The following result establishes the equivalence of epi-stationarity with the nonnegativity of the
subderivative dfX(x̄) on T (x̄;X), provided that the latter subderivative is finite valued, and with
regular subdifferential based stationarity.
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Proposition 4. Let f :Rn →R be an arbitrary function and X be an arbitrary subset of Rn.
Let x̄∈X be given. The following statements hold:

(a) If dfX(x̄)(v)≥ 0 for all v ∈ T (x̄;X), then x̄ is an epi-stationary point of f on X.

(b) Conversely, if dfX(x̄) is finite valued (e.g., if f is locally Lipschitz continuous near x̄) and if x̄
is an epi-stationary point of f on X, then dfX(x̄)(v)≥ 0 for all v ∈ T (x̄;X).

(c) If 0∈ ∂̂fX(x̄), then x̄ is an epi-stationary point of f on X.

(d) Conversely, if dfX(x̄) is finite valued on T (x̄;X) and x̄ is an epi-stationary point of f on X,
then 0∈ ∂̂fX(x̄).

Proof. To prove (a), let {xk}, {tk}, {τk} and dt satisfy the conditions in the left-hand limit of
(6). Then v ∈ T (x̄;X); furthermore,

dt ≥ limsup
k→∞

f(xk)− f(x̄)

τk
≥ lim inf

w→v; τ ↓0
x̄+τw∈X

f(x̄+ τw)− f(x̄)

τ
= dfX(x̄)(v) ≥ 0,

where the last inequality holds because dfX(x̄)(v)≥ 0 by assumption. Conversely, suppose x̄ ∈X
is an epi-stationary point of f on X. Let v ∈ T (x̄;X) be arbitrary. Let {wk}→ v and {τk} ↓ 0 be
sequences such that x̄+ τkw

k ∈X for all k and

dfX(x̄)(v) = lim
k→∞

f(x̄+ τkw
k)− f(x̄)

τk
.

Let xk ≜ x̄+ τkw
k and tk ≜ f(xk). Provided that dfX(x̄)(v) is finite, it follows that the sequences

{xk}, {tk} and {τk} satisfy the conditions in the left-hand limit of (6) with dt= dfX(x̄)(v). Thus
this subderivative is nonnegative.

Statement (c) follows readily by combining the definition of ∂̂fX(x̄), the equalities (7), and part
(a). Finally, statement (d) follows similarly by invoking part (b) instead of (a). □

Remark 1. While the proof of Proposition 4 is closely related to [23, Proposition 8.2], which
asserts that the tangent cone of the epigraph of an extended-valued function g at the pair (x̄, g(x̄))
with g(x̄) finite is equal to the epigraph of the (unconstrained) subderivative dḡX(x̄) of ḡX ≜ g+δX ,
the main point of the proposition is on the restatement of epi-stationarity in terms of subderivatives.
□

We next show that the new concept of epi-stationarity coincides with the old concept of B-
stationarity when the objective function f is B-differentiable,

Proposition 5. Let f be B-differentiable near x̄∈X. Then x̄ is a B-stationary point of (3) if
and only if x̄ is epi-stationary.

Proof. “Only if”. The proof is the same as that of part (a) of Proposition 4. Indeed, with the
previous set-up, we have

dt ≥ lim
k→∞

f(xk)− f(x̄)

τk
= f ′(x̄;v) ≥ 0,

where the equality holds by the B-differentiability of f at x̄.

“If”. We need to show that f ′(x̄;v) ≥ 0 for all v ∈ T (x̄;X). There exist sequences {xk} ⊂ X

converging to x̄ and {τk} ↓ 0 such that v = lim
k→∞

xk − x̄

τk
. Let tk ≜ f(xk) and dt≜ f ′(x̄;dx). Then

(v, f ′(x̄;v)) ∈ T (z̄;Z), where z̄ ≜ (x̄, f(x̄)) and Z is given in (5). By the epi-stationarity of x̄, it
follows that f ′(x̄;v)≥ 0. □
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Referring to the HSC-constrained optimization problem (1), we say that a vector x̄ in XHSC is a
pseudo stationary point of this problem if x̄ is an epi-stationary point of the “pulled out” problem:

minimize
x∈P

∑
j∈J0,+(x̄)

ψ0j(x)

subject to for all i= 0,1, · · · ,m∑
j∈Ji,+(x̄)

ψij(x) ≤ bi (with b0 =∞)

ϕij(x) ≥ 0, for all j ∈Ji,+(x̄)

and ϕij(x) ≤ 0, for all j ∈Ji,≤(x̄),

(8)

where Ji,≤(x̄)≜ { j | ϕij(x̄)≤ 0} and Ji,+(x̄)≜ { j | ϕij(x̄)> 0} for i= 0,1, · · · ,m. We also define
Ji,0(x̄)≜ { j | ϕij(x̄) = 0}. We remark that in [7, Definition 3], the definition of pseudo-stationarity

assumes that all the functions
{
{ψij, ϕij}Jij=1

}m

i=0
are B-differentiable; here these functions can be

arbitrary.

The pseudo-stationarity definition provides one way to resolve the challenge caused by the Heav-
iside composite functions 1( 0,∞ )(ϕij(x)), by exposing the inner functions relative to the reference

vector x̄, instead of at the variable vector x. Provided that the functions
{
{ψij, ϕij}Jij=1

}m

i=0
have

favorable properties (e.g., difference-of-convexity), the resulting problem (8) is computationally
tractable [21] and enables the verification of the stipulated fixed-point condition on the candidate
solution x̄. The paper [7] has provided constructive ways to approximately compute an B-stationary
point of (8) under some sign conditions on the functions ψij; see also [14, 16] for a special quadratic
sparse optimization problem involving the ℓ0-function.

In the following, we show that for the problem (1), epi-stationarity is sharper than pseudo-
stationarity. Note that (8) is a restriction of the original problem (1) around x̄. Thus, the
global/local optimality of (8) are necessary conditions for the respective optimality of (1).

Proposition 6. If x̄ is an epi-stationary point of (1), then it is pseudo stationary.

Proof. Letting ψps
HSC and Xps

HSC denote the objective function and constraint set of (8), respec-
tively, and Zps

HSC ≜ epi(ψps
HSC) ∩ (Xps

HSC × R), and recalling the epigraphical set Z (see (5)) of the
problem (1), it suffices to show that if x is sufficiently close to x̄ and if (x, t) belongs to Z ps

HSC, then
(x, t)∈Z. This is indeed true because for such an x, it holds that

Ji,+(x) = {j | ϕij(x)> 0} = Ji,+(x̄)

for all i= 0,1, · · · ,m, which implies:

Ji∑
j=1

ψij(x)1( 0,∞ )(ϕij(x)) =
∑

j∈Ji,+(x)

ψij(x) =
∑

j∈Ji,+(x̄)

ψij(x) ≤ bi.

In particular, fHSC(x) =ψps
HSC(x). □

5. The Set-Theoretic Local Convexity-Like Property. To motivate the subsequent def-
inition, we recall that a B-differentiable function f is (locally) convex-like at a point x̄ in its domain
[8, Section 4.2] (see the earlier reference [6, Proposition 4.1] for a special case of this property) if
there exists a neighborhood N of x̄ such that

f(x) ≥ f(x̄)+ f ′(x̄;x− x̄), ∀x ∈ N . (9)
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Slightly generalizing the family of functions in [8, display (25)], a large class of convex-like functions
is given by the composition of convex functions and piecewise affine functions:

f = φ ◦ Θ ◦ ψ

where φ : RL → R is (multivariate) piecewise affine and isotone (i.e., φ(z) ≥ φ(z ′) for any two
L-dimensional vectors z ≥ z ′), Θ : Rm → RL is a vector-valued function such that each of its
component functions θℓ :Rm →R for ℓ= 1, · · · ,L is convex, and ψ :Rn →Rm is a piecewise affine
function. In classical nonlinear programming problems, the set X is often closed and takes the form

X ≜ {x ∈ P | fk(x) ≤ 0, k = 1, · · · ,K } (10)

for some integer K > 0, where P is a polyhedron and each fk :O→R is a B-differentiable function
near a given x̄∈X. We say that the Abadie constraint qualification (ACQ) holds at x̄ if

T (x̄;X) = {v ∈ T (x̄;P ) | f ′
k(x̄;v) ≤ 0, k ∈ A(x̄)} ≜ L(x̄;X),

where A(x̄) ≜ {k | fk(x̄) = 0} is the index set of the active constraints at x̄. The following is
proved in [8, Proposition 9(ii)].

Proposition 7. Let P be a polyhedron. Suppose that f and each fk for k = 1, · · · ,K are
locally convex-like near a B-stationary point x̄ of (3) with X given by (10). If the ACQ holds at
x̄, then x̄ is a local minimizer of f on X. □

The above is a B-stationarity sufficiency result, meaning that sufficient conditions are provided
under which a B-stationary point is a local minimum. We next introduce an important geometric
property of an arbitrary set that allows us to establish epi-stationarity sufficiency; i.e., the question
of when an epi-stationary point is a local minimizer.

Definition 2. A subset S ⊆RN is said to be locally convex-like at a vector z̄ ∈ S if there exists
a neighborhood N of z̄ such that S ∩ N ⊆ z̄+ T (z̄;S). □

Without involving stationarity, the next result shows that the functional convexity-like property
implies the set-theoretic convexity-like property, under a suitable constraint qualification.

Proposition 8. Let X ≜ {x∈Rn | fk(x)≤ 0, k = 1, · · · ,K } where each fk is B-differentiable
near x̄ ∈X. If each fk for k ∈ A(x̄) is locally convex-like near x̄ and the ACQ holds at x̄ for the
set X, then the set X is locally convex-like near x̄.

Proof. By the local convexity-like of each fk near x̄ for k ∈A(x̄), there exists a neighborhood N
of x̄ such that

fk(x) ≥ fk(x̄)+ f ′
k(x̄;x− x̄), ∀k ∈ A(x̄) and ∀x ∈ N .

Hence if x ∈ X ∩ N , the above inequalities imply that f ′
k(x̄;x− x̄) ≤ 0 for all k ∈ A(x̄). Hence

x− x̄∈ T (x̄;X) under the ACQ. Since x∈X∩N is arbitrary, it follows that X ∩ N ⊆ x̄+T (x̄;X),
establishing the local convexity-like of the set X near x̄. □

A further connection between locally convex-like functions and locally convex-like sets is pre-
sented in the next result.

Proposition 9. A B-differentiable function f :Rn →R near x̄ is locally convex-like at x̄ if and
only if its epigraph epi(f) is locally convex-like at (x̄, f(x̄)).
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Proof. By [23, Proposition 8.2], it holds that T ((x̄, f(x̄)); epi(f)) = epi(f ′(x̄;•)). Hence, with

h(x)≜ f(x̄)+ f ′(x̄;x− x̄), it follows that T ((x̄, f(x̄)); epi(f))+ {(x̄, f(x̄))}= epi(h). By definition,

f is locally convex-like at x̄ if and only if there exists a neighborhood N of x̄ such that f(x)≥ h(x)
for all x ∈N ; equivalently, epi(f)∩ N̂ ⊆ epi(h), where N̂ ≜N ×R. Hence, f is locally convex-like

at x̄ if and only if there exists a neighborhood N of x̄ such that

epi(f) ∩ N̂ ⊆ T ((x̄, f(x̄)); epi(f))+ {(x̄, f(x̄))},

which is the local convexity-like property of epi(f) at (x̄, f(x̄)). □

The next result establishes the promised epi-stationarity sufficiency, under the set-theoretic local

convexity-like property; it highlights the fundamental role of the latter property in the local opti-

mality theory of optimization problems lacking lower semicontinuity.

Proposition 10. If the set Z defined in (5) is locally convex-like at z̄ ≜ (x̄, f(x̄)) and x̄ is an

epi-stationary point of (3), then x̄ is a local minimizer of f on X.

Proof. Let N =Nx ×Nt be a neighborhood of z̄ such that Z ∩ N ⊆ z̄+ T (z̄;Z). It suffices to

show that f(x ′)≥ f(x̄) for all x ′ ∈X ∩Nx. By way of contradiction, assume that there exists x ′ ∈
X ∩Nx such that f(x ′)< f(x̄). Let t ′ ∈Nt be such that f(x ′)< t ′ < f(x̄). Then (x ′, t ′) ∈Z ∩ N .

Thus there exists (dx,dt)∈ T (z̄;Z) such that (x ′, t ′) = (x̄, f(x̄))+ (dx,dt). By epi-stationarity, we

have dt≥ 0. But then t ′ = f(x̄)+ dt≥ f(x̄), which is a contradiction. □

Clearly, convex sets are locally convex-like; although it is not too interesting from an optimiza-

tion perspective, we remark that open sets are always locally convex-like. The union of finitely

many locally convex-like sets at a common vector is locally convex-like at the vector; the Cartesian

product of finitely many locally convex-like sets is locally convex-like. In general, the intersection

of locally convex-like sets is not necessarily locally convex-like, unless a suitable constraint quali-

fication holds so that the tangent cone of the intersection of these sets is equal to the intersection

of the respective tangent cones of the sets. This is illustrated in the following example.

Example 1. Define f(t) = log(t+1). Consider

X1 =
⋃

n∈[N ]

{
(x, y) | y = 2nf

(
1

2n

)
x, x ∈

[
0,

1

2n

]}

X2 =
⋃

n∈[N ]

{
(x, y) | y= (2n+1)f

(
1

2n+2

)
x, x ∈

[
0,

1

2n+1

]} ⋃

⋃
n∈[N ]


(x, y) | y= f

(
1

2n+2

)
+

f

(
1

2n

)
− f

(
1

2n+2

)
1

2n
− 1

2n+1

(
x− 1

2n+1

)

x ∈
[

1

2n+1
,
1

2n

]


.

Then

X1 ∩ X2 =
⋃

n∈[N ]

{(
1

2n
, f

(
1

2n

))} ⋃
{ (0,0)}

is a closed set but not locally convex-like at (0,0). See Figure 1 for the illustration.



Han, Cui and Pang: Analysis of a Class of Minimization Problems Lacking Lower Semicontinuity
Article submitted to Mathematics of Operations Research; manuscript no. (Please, provide the manuscript number!) 15

Figure 1. Intersection of two locally convex-like sets: X1 and X2 consist of the red and blue line segments respec-
tively; their intersection is represented by the black points.

The following example shows that unlike (quasi-)convex functions, the sublevel set of a locally

convex-like function is generally not locally convex-like.

Example 2. Consider the two sets X1 and X2 given in Example 1. Let R0 = {(t, t) : t≥ 0} and

R1 = {(t,0), t ≥ 0} be two rays. Define Yi = Xi ∪R0 ∪R1, i = 1,2. Note that Y1 and Y2 are two

closed convex-like sets. Define fi(x) = dist(x,Yi) for i= 1,2. If f1 and f2 are locally convex-like and

B-differentiable, then so is max{f1, f2}. However, the sublevel set {x : max{f1, f2}(x)≤ 0}= Y1∩Y2

is not locally convex-like for the similar reason as in Example 1.

Next, we prove that f1 is indeed locally convex-like and B-differentiable. Note that X1 =
⋃

iLi,

where each Li is a line segment as shown in Figure 2. Thus, f1(x) =min
{
min

i
hi(x), r0(x), r1(x)

}
where hi(x) ≜ dist(x,Li), i = 1,2, . . . , and rj = dist(x,Rj), j = 1,2. Let S = conv(Y1) and r(x) =

dist(x,S). Consider an arbitrary x̄∈Rn. There are four cases.

� x̄∈Rn \S. In this case, f1(x̄) = r(x̄).

� x̄ is a inner point of S. In this case, the set of active pieces {i : f(x) = hi(x)} ⊆ {i : f(x̄) = (x̄)}
is finite near x̄.

� x̄∈ (R0 ∪R1) \ {0}. In this case, f1(x) = r0(x) or r1(x) near x̄.

� x̄= 0.

In the first three cases, it can be seen easily that f1 is a pointwise minimum of a finite number

of convex functions near x̄, which implies f1 locally convex-like and B-differentiable at x̄; see

Figure 2 for illustration. It remains to show that f1 is convex-like and directionally differentiable

at x̄= 0. Define a closed set R= {r : r = tx, t≥ 0, x ∈ Y1} as the cone generated by Y1. Note that

f ′(0;d) = dist(d,R). Indeed, if d= (1,1), then f ′(0;d) = dist(d,R) = 0. If d is not a scalar multiple

of (1,1), then since Y1 is locally a finite union of line segments near td for t > 0 small enough,

f ′(0;d) = dist(d,R). Since X1 ⊆R, we have f ′
1(0;d)≤ f1(d) and thus, f1 is locally convex-like at 0.

The above arguments can be extended to prove that f2 is a locally convex-like function in a similar

way. We omit the details. □



Han, Cui and Pang: Analysis of a Class of Minimization Problems Lacking Lower Semicontinuity
16 Article submitted to Mathematics of Operations Research; manuscript no. (Please, provide the manuscript number!)

Figure 2. Illustration of Example 2. X1 and R consists of the red line segments and orange rays respectively. The
set S is represented by the shaded region.

It turns out that the gap between the everywhere local convexity-like property and the global
convexity is the Clarke regularity, as can be seen from the following proposition.

Proposition 11. Let f :Rn →R be locally convex-like at every point in Rn. Then f is Clarke
regular at every point in Rn if and only if it is convex on Rn.

Proof. Taking an arbitrary reference point x̄ ∈Rn and an arbitrary direction d ∈Rn, we define
a univariate function g(t) = f(x̄+ td). Note that g is convex like by definition. It suffices to prove
that g is convex, which amounts to g(t)≥ g(t̄)+ g′(t̄; t− t̄) for all t, t̄∈R. Assume for contradiction
that there exist t1 and t0 such that g(t1)< g(t0)+g

′(t0; t1− t0). Let h(t) = g(t)−g′(t0; t− t0)−g(t0).
Without loss of generality, we also assume t1 > t0. Define S = argmax{h(t) : t0 ≤ t≤ t1} which is
a compact set. Let t∗ = max{t : t ∈ S}. Then by construction h(t) < h(t∗) for t∗ < t ≤ t1. Since
h(t0) = 0> h(t1), one has t∗ < t1. Thus, we have either t∗ = t0 or t0 < t∗ < t1. These two cases are
addressed below.

• Case 1: t∗ = t0. In this case, h′(t∗; 1) = h′(t0; 1) = 0. By the local convexity-like property of h
over (t0,∞), an ε > 0 exists such that for t∗ ≤ t < t∗+ ε, one has h(t)≥ h(t∗)+h

′(t∗; t− t∗) = h(t∗).
However, this contradicts h(t)<h(t∗) for all t∗ < t≤ t1.

• Case 2: t0 < t∗ < t1. Since h(t) < h(t∗) for all t∗ < t ≤ t1, one can deduce that h′(t∗; 1) ≤ 0. If
h′(t∗; 1) = 0, we can repeat the same argument in the first case to draw a contradiction. For this
reason, we assume h′(t∗; 1)< 0. Since h(t) = g(t)− (t− t0)g

′(t0; 1)− g(t0) for t≥ t0 by the Clarke
regularity of g, it follows that h ′(t∗;•) is convex, thus h ′(t∗; 1) + h ′(t∗;−1)≥ h ′(t∗; 0) = 0, which
implies h ′(t∗;−1) > 0. However, this indicates that h(t) > h(t∗) for all t smaller than but close
enough to t∗, contradicting the fact that t∗ ∈ S. □

Assume X ≜ {x∈Rn | fk(x)≤ 0, k = 1, · · · ,K }, where each fk is a locally convex-like function.
Proposition 11 implies that if X is a locally convex-like but not convex set, then at least one
fk is nondifferentiable. Another immediate consequence of this proposition is that if f is a PC1

function with convex element functions, i.e., if f is continuous and there exist finitely many convex
differentiable functions {fi}Ii=1 such that f(x) ∈ {fi(x)}Ii=1 for all x ∈Rn, then f is convex if and
only if it is Clarke regular. This is because such a function f must be locally convex-like at every
point in Rn.

6. Tangents of Heaviside Composite Constraints. As the tangent cone plays an impor-
tant role in the local convexity-like property and is of independent interest, it would be useful to
describe the tangent vectors of the set XHSC. Such descriptions will be instrumental to demon-
strate the local convexity-like property of XHSC at x̄∈XHSC, under appropriate assumptions of the
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defining functions; see Table 1. We start with the ASC set XASC whose tangent cone at a vector
x̄∈XASC is known [10, Proposition 10]. Specifically, we have

T (x̄;XASC) = cl


v ∈ T (x̄;P )

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∑
j ̸∈β̄

aij |vj |0 ≤ bi −
n∑

j=1

aij | x̄j |0,︸ ︷︷ ︸
= bi −

∑
j∈β̄

aij ≥ 0

i = 1, · · · ,m


, (11)

where β̄ ≜ {i | x̄i ̸= 0}≜ supp(x̄) is the support of the vector x̄. [Remark: although the proof of this
representation in the reference has the side polyhedron P being the entire space, the proof therein
applies to P being a proper polyhedral set.] The closure on the right-hand cone in (11) can be
removed if all the coefficients aij are nonnegative as this cone itself is closed in this case. Based on
the above representation, the following result is easy to prove.

Proposition 12. Let P be a polyhedron. The set XASC is locally convex-like at every x̄ in
XASC.

Proof. Let N be a neighborhood of x̄ such that xj ̸= 0 for all j ∈ β̄ and all x ∈ N . Let x ∈
XASC ∩ N . Then we have

bi ≥
n∑

j=1

aij |xj |0 =
∑
j ̸∈β̄

aij |xj |0 +
∑
j∈β̄

aij |xj |0

=
∑
j ̸∈β̄

aij |xj − x̄j |0 +
∑
j∈β̄

aij.

Thus bi −
∑
j∈β̄

aij ≥
∑
j ̸∈β̄

aij |xj − x̄j |0 for all i= 1, · · · ,m. Hence x− x̄∈ T (x̄;XASC). □

As a preliminary result for the set XHSC, we consider the case where each function ψij is affine
and ϕij is piecewise affine. First, we derive an explicit expression of the tangent cone of XHSC at
an arbitrary vector x̄ ∈XHSC and use this expression to show: (a) XHSC is locally convex-like at
x̄ and (b) epi-stationarity of a B-differentiable objective function on the set XHSC is sharper than
pseudo B-stationarity.

Proposition 13. Let P be a polyhedron. Let each ψij be an affine function and ϕij be a
piecewise affine function for all j = 1, · · ·Ji and i= 1, · · · ,m. For x̄∈XHSC, it holds that

T (x̄;XHSC) ⊇ closure of

v ∈ T (x̄;P )

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

for all i= 1, · · · ,m:∑
j∈Ji,0(x̄)

ψij(x̄)1( 0,∞ )(ϕ
′
ij(x̄;v))+

∑
j∈Ji,+(x̄)

ψij(x̄) ≤ bi

and if
∑

j∈Ji,0(x̄)

ψij(x̄)1( 0,∞ )(ϕ
′
ij(x̄;v))+

∑
j∈Ji,+(x̄)

ψij(x̄) = bi, then

∑
j∈Ji,0(x̄)

[
∇ψij(x̄)

⊤v
]
1( 0,∞ )(ϕ

′
ij(x̄;v))+

∑
j∈Ji,+(x̄)

∇ψij(x̄)
⊤v ≤ 0



.
(12)
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Conversely, if the following two conditions hold for all i= 1, · · · ,m:

(A) for all j ∈Ji,0(x̄),

[v ∈ T (x̄;P ) and ϕ ′
ij(x̄;v) > 0 ] ⇒ ∇ψij(x̄)

⊤v ≥ 0;

(B) for all j ∈Ji,+(x̄), ∇ψij(x̄)∈ T (x̄;P )∗, where T (x̄;P )∗ is the dual of T (x̄;P ),

then equality holds in (12).

Proof. Let v ∈ T (x̄;P ) satisfy the functional conditions in the right-hand set. We claim that v
belongs to T (x̄;XHSC) by showing that x̄τ ≜ x̄+ τv ∈ XHSC for all τ > 0 sufficiently small that
depends on v. Once this is shown, the one-side inclusion ⊇ of the two cones in (12) follows. Since
P is a polyhedron, we have xτ ∈ P for all τ > 0 sufficiently small. Moreover, by continuity of ϕij,
we have

[ϕij(x̄) > 0 ⇒ ϕij(x̄
τ ) > 0 ] and [ϕij(x̄) < 0 ⇒ ϕij(x̄

τ ) < 0 ]

for all τ > 0 sufficiently small. Hence,

Ji∑
j=1

ψij(x̄
τ )1( 0,∞ )(ϕij(x̄

τ )) =
∑

j∈Ji,0(x̄)

ψij(x̄
τ )1( 0,∞ )(ϕij(x̄

τ ))+
∑

j∈Ji,+(x̄)

ψij(x̄
τ ).

Since ϕij is piecewise affine, it follows that if τ > 0 is sufficiently small, we have

ϕij(x̄
τ ) = ϕij(x̄)+ τ ϕ ′

ij(x̄;v) = τ ϕ ′
ij(x̄;v), if j ∈Ji,0(x̄).

Therefore, we can further derive that

Ji∑
j=1

ψij(x̄
τ )1( 0,∞ )(ϕij(x̄

τ )) =
∑

j∈Ji,0(x̄)

ψij(x̄)1( 0,∞ )(ϕ
′
ij(x̄;v))+

∑
j∈Ji,+(x̄)

ψij(x̄)

+ τ

 ∑
j∈Ji,0(x̄)

[
∇ψij(x̄)

⊤v
]
1( 0,∞ )(ϕ

′
ij(x̄;v))+

∑
j∈Ji,+(x̄)

∇ψij(x̄)
⊤v

 .

Hence, with v as specified, it follows that for τ > 0 sufficiently small, which depends on v, we have
Ji∑
j=1

ψij(x̄
τ )1( 0,∞ )(ϕij(x̄

τ ))≤ bi for all i. Thus, x̄
τ ∈XHSC.

Conversely, let v ∈ T (x̄;XHSC). Let {xν} ⊂XHSC be a sequence converging to x̄ and {τν} ↓ 0 such

that v= lim
ν→∞

wν , where wν ≜
xν − x̄

τν
clearly belongs to T (x̄;P ). Moreover, we have ϕij(x

ν)> 0 for

all ν sufficiently large, all j ∈Ji,+(x̄), all i= 1, · · · ,m. We have for all i= 1, · · · ,m,

bi ≥
Ji∑
j=1

ψij(x
ν)1( 0,∞ )(ϕij(x

ν))

=
∑

j∈Ji,0(x̄)

ψij(x
ν)1( 0,∞ )(ϕij(x

ν))+
∑

j∈Ji,+(x̄)

ψij(x
ν)

=
∑

j∈Ji,0(x̄)

[
ψij(x̄)+∇ψij(x̄)

⊤(xν − x̄)
]
1( 0,∞ )(ϕ

′
ij(x̄;x

ν − x̄))+
∑

j∈Ji,+(x̄)

[
ψij(x̄)+∇ψij(x̄)

⊤(xν − x̄)
]
.
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Hence, we obtain that

bi −
∑

j∈Ji,0(x̄)

ψij(x̄)1( 0,∞ )(ϕ
′
ij(x̄;w

ν))−
∑

j∈Ji,+(x̄)

ψij(x̄)

≥ τν

 ∑
j∈Ji,0(x̄)

[
∇ψij(x̄)

⊤wν
]
1( 0,∞ )(ϕ

′
ij(x̄;w

ν))+
∑

j∈Ji,+(x̄)

∇ψij(x̄)
⊤wν

 .

Under the two assumed conditions (A) and (B), the right side of the above expression is nonnegative
because wν ∈ T (x̄;P ); hence so is the left-hand side which shows that wν satisfies∑

j∈Ji,0(x̄)

ψij(x̄)1( 0,∞ )(ϕ
′
ij(x̄;w

ν))+
∑

j∈Ji,+(x̄)

ψij(x̄) ≤ bi, ∀ i = 1, · · · ,m.

Moreover, if for some i, it holds that∑
j∈Ji,0(x̄)

ψij(x̄)1( 0,∞ )(ϕ
′
ij(x̄;w

ν))+
∑

j∈Ji,+(x̄)

ψij(x̄) = bi,

then ∑
j∈Ji,0(x̄)

[
∇ψij(x̄)

⊤wν
]
1( 0,∞ )(ϕ

′
ij(x̄;w

ν))+
∑

j∈Ji,+(x̄)

∇ψij(x̄)
⊤wν = 0.

Hence wν belongs to the right-hand set in (12) without the closure. Since v is the limit of {wν}, it
follows that v belongs to the closure of this set. Hence, equality holds in (12). □

Remark 2. In fact, the piecewise affinity assumption of each ϕij in Proposition 13 can be
relaxed to the local convexity-like property at x̄ in a straightforward manner. □

Clearly, conditions (A) and (B) hold trivially if each ψij is a constant function. Hence, for the
set XAHC with piecewise affine ϕij, the result in Proposition 13 directly extends the tangent cone
of XASC with the ℓ0-function replaced by the Heaviside function composed with a piecewise affine
function. We have the representation

T (x̄;XAHC) = cl

v ∈ T (x̄;P )

∣∣∣∣∣∣
∑

j∈Ji,0(x̄)

aij 1( 0,∞ )(ϕ
′
ij(x̄;v))+

∑
j∈Ji,+(x̄)

aij ≤ bi, i = 1, · · · ,m

 .

Like T (x̄;XASC) in (11), the closure operation can be dropped if the coefficients aij are all nonneg-
ative. Note also that the above representation of T (x̄;XAHC) and that of the T (x̄;XASC) require
no “constraint qualifications”, although both the ℓ0 function and the Heaviside function are dis-
continuous. The local convexity-like property of the set XAHC follows readily from its tangent-cone
representation and the proof of the converse part of Proposition 13; no proof is needed.

Corollary 2. Let P be a polyhedron. If each function ϕij is piecewise affine, then the set
XAHC is locally convex-like near every x̄∈XAHC. □

We next give a full description of the tangent cone T (x̄;XHSC) under a sign restriction on the
functions {ψij} for j ∈ [Ji ] ≜ {1, · · · , Ji } and i = 1, · · · ,m. Let Ξ(x̄) and Ξ c(x̄) be families of
complementary index tuples α≜ (αi )

m
i=1 and α c ≜ (α c

i )
m
i=1, respectively, where each αi ⊆Ji,0(x̄)

for i= 1, · · · ,m and α c
i is the complement of αi in Ji,0(x̄). For each tuple α∈Ξ(x̄) with complement

α c ∈Ξ c(x̄), define the set

Sα(x̄) ≜

x ∈ P

∣∣∣∣∣∣∣
∑
j∈αi

ψij(x)+
∑

j∈Ji,+(x̄)

ψij(x) ≤ bi, i =,1, · · · ,m

ϕij(x) ≤ 0, j ∈ α c
i , i = 1, · · · ,m

 ,
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which may or may not contain the vector x̄. Let Ξ(x̄) be the subfamily of Ξ(x̄) consisting of tuples
α for which x̄ ∈ Sα(x̄). Under a nonnegativity condition on the functions ψij, the following result
gives a complete description of T (x̄;XHSC) in terms of the sets Sα(x̄) for all tuples α ∈ Ξ(x̄);
in turn, this can be used to obtain a characterization of epi-stationarity of (3) without f being
B-differentiable.

Proposition 14. Let each ϕij and ψij be continuous near x̄. If ψij is nonnegative in a neigh-
borhood of x̄ for all j ∈Ji,0(x̄), then

T (x̄;XHSC) =
⋃

α∈Ξ(x̄)

T (x̄;Sα(x̄)). (13)

Hence, if for all α∈Ξ(x̄), the set Sα(x̄) is locally convex-like at x̄, then so is XHSC. In particular,
this holds if all ϕij and ψij are convex with the latter being nonnegative also.

Proof. We first show that there exists a neighborhood N of x̄ such that

XHSC ∩ N =

 ⋃
α∈Ξ(x̄)

Sα(x̄)

 ∩ N . (14)

We choose N to be such that ψij is nonnegative in N and

[ϕij(x̄) > 0 ⇒ ϕij(x) > 0 ] and [ϕij(x̄) < 0 ⇒ ϕij(x) < 0 ], ∀x ∈ N .

For a vector x in the left-hand intersection of (14), it is clear that x∈ Sα(x̄), where

αi ≜ { j ∈ Ji,0(x̄) | ϕij(x)> 0}, i = 1, · · · ,m.

Conversely, suppose x ∈ Sα(x̄)∩N for some tuple α ∈Ξ(x̄), then by the nonnegativity of ψij in
N , we have, since Ji,+(x)⊆ αi ∪Ji,+(x̄),

bi ≥
∑
j∈αi

ψij(x)+
∑

j∈Ji,+(x̄)

ψij(x) ≥
∑

j∈Ji,+(x)

ψij(x), i = 1, · · · ,m,

showing that x∈XHSC. Thus (14) holds. To see how (14) implies (13), we note that the right-hand
union of tangent cones in (13) is necessarily a subcone of the left-hand cone. Conversely, for a
vector v in T (x̄;XHSC), let {xk} ⊂ XHSC be a sequence converging to x̄ and {τk} ↓ 0 such that

v = lim
k→∞

xk − x̄

τk
. By (14), we may assume with no loss of generality that there exists α ∈ Ξ(x̄)

such that xk ∈ Sα(x̄) for all k. Such an index tuple α must necessarily be an element of Ξ(x̄), by
continuity of ψij. This shows that v ∈ T (x̄;Sα(x̄)) for an index tuple α ∈ Ξ(x̄), completing the
proof of (13). The next-to-last statement of the proposition is clear because the union of finite
number of convex-like sets each containing a common vector (which in this case is x̄) is locally
convex-like near the vector. □

Remark 3. The expression (14) shows that for any closed set S ⊆ N , the set XHSC ∩ S is
closed, provided that the functions ψij and ϕij are continuous and ψij is nonnegative. □

The example below shows that the nonnegativity assumption on ψij is essential for the equality
(13) to hold and that the piecewise affine property of the ϕij functions is essential for the validity
of Proposition 15.
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Example 3. Let

X = { (x1, x2) ∈ R2 | −x1 −1( 0,∞ )(x
2
1 +x2

2 − 1) ≤ −1}.

Then X = {(1,0)} ∪ { (x1, x2) ∈ R+×R | x2
1+x

2
2 > 1}. With x̄= (1,0), we have T (x̄;X) =R+×R;

it is easy to see that X is not convex-like near x̄. Thus the equality (13) cannot hold. □
We next give a different set of assumptions of the component functions ψij and ϕij for the set

XHSC to be locally convex-like. On one hand, we replace the nonnegativity of ψij by its convexity;
on the other hand, we restrict ϕij to be piecewise affine. This combination therefore generalizes the
setting of Corollary 2; the proof employs a subset of each Sα(x̄) in which the piecewise structure
of each ϕij can be easily exposed.

Ŝα(x̄) ≜
m⋂
i=1

x ∈ P

∣∣∣∣∣∣∣∣∣∣

∑
j∈αi

ψij(x)+
∑

j∈Ji,+(x̄)

ψij(x) ≤ bi

ϕij(x) > 0, ∀ j ∈ αi

ϕij(x) ≤ 0, ∀ j ∈ α c
i

 ,

α ∈ Ξ(x̄),where the

pair (αi, α
c
i ) partitions the

index set Ji,0(x̄) for i∈ [m].

We note that Ŝα(x̄)⊆XHSC ∩ Sα(x̄); yet x̄ ̸∈ Ŝα(x̄) as long as αi is nonempty for some i.

Proposition 15. Let P be a polyhedron. If each function ψij is convex and each function ϕij

is piecewise affine, then the set XHSC is locally convex-like at every one of its elements.

Proof. Let x̄ ∈XHSC be arbitrary. With the same neighborhood N of x̄ as defined in the proof
of Proposition 14, it can similarly be proved that (no sign restriction on ψij is needed)

XHSC ∩ N =

 ⋃
α∈Ξ(x̄)

Ŝα(x̄)

 ∩ N .

Without loss of generality, we may assume that Ŝα(x̄) ̸= ∅ for all α∈Ξ(x̄). By the distributive laws
of unions and intersections and the piecewise affinity of the functions ϕij, each Ŝα(x̄) is the finite

union of nonempty convex (albeit not necessarily closed) sets, which we write as Ŝα(x̄) =
⋃
i∈Iα

S i
α,

where Iα is a certain finite index set, and each S i
α is a certain nonempty convex (not necessarily

closed) set. Thus,

XHSC ∩ N =

 ⋃
α∈Ξ(x̄)

⋃
i∈Iα

S i
α

 ∩ N .

The convexity of S i
α implies cl S i

α ⊆ x̄+ T (x̄; cl S i
α), provided that x̄ ∈ cl S i

α. We may restrict the
neighborhood N such that N ∩cl S i

α = ∅ for all i∈ Iα and all α∈Ξ(x̄) such that x̄ ̸∈ cl S i
α. Letting

I(x̄) be the collection of pairs (i,α) such that x̄∈ cl S i
α, we deduce

XHSC ∩ N =

 ⋃
(i,α)∈I(x̄)

S i
α

 ∩ N ,

which yields,
T (x̄;XHSC) =

⋃
(i,α)∈I(x̄)

T (x̄; cl S i
α).

Combining the last two expressions, we deduce

XHSC ∩ N ⊆
⋃

(i,α)∈I(x̄)

[
x̄+ T (x̄; cl S i

α)
]
= x̄+

⋃
(i,α)∈I(x̄)

T (x̄; cl S i
α).

Thus, XHSC ∩ N ⊆ x̄+ T (x̄;XHSC); hence XHSC is locally convex-like at x̄. □
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The discussion of the section is summarized in Table 6. Each entry is indexed by a combination
of convexity and piecewise affinity imposed over the functions ψij and ϕij and indicates whether the
nonnegativity of the latter functions is needed to ensure the local convexity-like property of XHSC.
For example, the first entry implies that if each ϕij is convex and each ψij is nonnegative and convex,
then XHSC is locally convex-like. The conclusion of the first column is given by Proposition 14.
Proposition 15 illustrates the entry (1,2). The conclusion corresponding to the last entry can be
proved using similar polyhedral decomposition techniques as in the proof of Proposition 15.

Theorem 2. The set XHSC is locally convex-like at every one of its elements if the assumptions
given by any entry of Table 6 are true. In particular, XASC is locally convex-like and XAHC is locally
convex-like if each ϕij is piecewise affine. □

ψij

ϕij convex piecewise affine

convex ψij ≥ 0 free
piecewise affine ψij ≥ 0 free

Table 1. Conditions for the local convexity-like property of XHSC

Combining Theorem 2 with Proposition 10, we obtain the following result for the Heaviside
constrained optimization problem (1)

Corollary 3. Let P be a polyhedron. If the assumptions given by any entry of Table 6
hold for the functions ψij and ϕij, then a point is a local minimizer of (1) if and only if it is an
epi-stationary point. □

7. Computation of Pseudo- and Epi-Stationary Points via Lifting. The results in the
last section are all derived under certain convexity/sign/piecewise affinity restrictions under which
tangents of the set XHSC are identified and its local convexity-like property is established. There
has been no discussion however about how pseudo- or epi-stationary points of the problem (1)
can potentially be computed. In this section, via lifting, we present formulations that make such
computation possible. One such lifted formulation was provided in a previous work [7, Section 6]

for the constraint

Ji∑
j=1

ψij(x)1( 0,∞ )(ϕij(x)) ≤ bi and under a sign restriction of the function ψij

on the zero-set of ϕij. It was shown therein that a B-stationary solution of the lifted problem
would yield a pseudo-stationary solution of the given HSC-constrained problem when the functions{
{ψij, ϕij}Jij=1

}m

i=1
are B-differentiable. The significance of the results in this section is twofold: (a)

the sign restriction can be removed via an alternative lifted formulation, and (b) a relaxation of
the latter formulation provides a constructive pathway to compute an epi-stationary solution.

7.1. Derivation of the lifted formulations. The derivation of the lifted formulations con-
sists of several steps, beginning with the expression of each function ψij =ψ+

ij−ψ−
ij as the difference

of its nonnegative and nonpositive parts, respectively: ψ±
ij ≜max(±ψij,0). Introducing an arbitrary

scalar ε≥ 0, we note that

XHSC =

{
x ∈ P |

Ji∑
j=1

ψ+;ε
ij (x)1( 0,∞ )(ϕij(x)) ≤

Ji∑
j=1

ψ−;ε
ij (x)1( 0,∞ )(ϕij(x))+ bi, i = 1, · · · ,m

}
,
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where ψ±;ε
ij ≜ ψ±

ij + ε. The first lifting of the set XHSC exploits the property that the func-
tion x 7→ ψ+;ε

ij (x)1( 0,∞ )(ϕij(x)) is lower semicontinuous (lsc) if both ψij and ϕij are lsc. Thus

we have the option of not lifting the sum

Ji∑
j=1

ψ+;ε
ij (x)1( 0,∞ )(ϕij(x)) and lift only the products

ψ−;ε
ij (x)1( 0,∞ )(ϕij(x)). This leads to the following lifting scheme:

• t-lifting:

X̂t;ε
HSC ≜


x ∈ P

tij ∈ [ 0,1 ]

all i, j

∣∣∣∣∣∣∣∣
Ji∑
j=1

ψ+;ε
ij (x)1( 0,∞ )(ϕij(x)) ≤

Ji∑
j=1

ψ−;ε
ij (x) tij + bi

tij ≤ 1( 0,∞ )(ϕij(x)), j = 1, · · · , Ji;

 i = 1, · · · ,m

 ,

which is connected to XHSC via the equivalence: x ∈XHSC if and only if there exists t such that

(x, t)∈ X̂t;ε
HSC.

Next, we note that,

tij ≤ 1( 0,∞ )(ϕij(x)) ⇔ ∃yij ≥ 0 such that tij ≤ min
(
ϕ+
ij(x)yij, 1

)
. (15)

Indeed, if the left-hand inequality holds, then we may let yij

{
≥ ϕij(x)

−1 if ϕij(x)> 0
= 0 otherwise.

Conversely,

suppose there is yij such that the right-hand conditions are satisfied. If ϕij(x)≤ 0, then the left-
hand inequality implies tij ≤ 0, which is the same as the right-hand inequality in this case. If
ϕij(x)> 0, then the left-hand inequality yields tij ≤ 1, which is the right-hand inequality in this
case. Substituting the right-hand conditions in (15) to replace the left-hand conditions for all (i, j)

in the set X̂t;ε
HSC, we obtain the next level of lifting:

• (t, y)-lifting:

X̂t,y;ε
HSC ≜


x ∈ P

tij ∈ [ 0,1 ], all i, j

yij ≥ 0, all i, j

∣∣∣∣∣∣∣∣∣∣∣

for all i= 1, · · · ,m:

Ji∑
j=1

ψ+;ε
ij (x)1( 0,∞ )(ϕij(x)) ≤

Ji∑
j=1

ψ−;ε
ij (x) tij + bi

tij ≤ ϕ+
ij(x)yij, j = 1, · · · , Ji


,

which is a closed set in the lifted (x, t, y)-space, provided that the functions ϕij and ψij are contin-
uous.

The last lifting is the product uij ≜ψ+;ε
ij (x)1( 0,∞ )(ϕij(x)). There are two ways to do this; one is

to apply the epigraphical approach [7, Section 7], particularly Proposition 7 therein, by considering
the relaxation uij ≥ ψ+;ε

ij (x)1( 0,∞ )(ϕij(x)) and replacing it using a piecewise composite function;
this leads to

• (t, y, u)-lifting:

X̂t,y,u;ε
HSC ≜



x ∈ P

tij ∈ [ 0,1 ], all i, j

yij ≥ 0, all i, j

uij ≥ 0, all i, j

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Ji∑
j=1

uij ≤
Ji∑
j=1

ψ−;ε
ij (x) tij + bi, i = 1, · · · ,m

and for all j = 1, · · · , Ji and i= 1, · · · ,m:

tij ≤ ϕ+
ij(x)yij, and

min
{
ψ+;ε

ij (x)−uij, ϕij(x)
}
≤ 0︸ ︷︷ ︸

equivalent to uij ≥ψ+;ε
ij (x)1( 0,∞ )(ϕij(x)), given uij ≥ 0


,
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which is also closed if ϕij and ψij are continuous; moreover if these functions are B-differentiable,

then all the inequalities in X̂t,y,u;ε
HSC are defined by B-differentiable function. Furthermore, if ϕij

and ψij are difference-of-convex or piecewise affine functions, then the constraints in X̂t,y,u;ε
HSC are

of the difference-of-convex kind; thus, optimization over this set can in principle be solved by the
difference-of-convex methods described in [21].

An alternative to the piecewise min/max lifting of ψ+;ε
ij (x)1( 0,∞ )(ϕij(x)) is derived from the

observation that
Ji∑
j=1

ψ+;ε
ij (x)1( 0,∞ )(ϕij(x)) =

Ji∑
j=1

ψ+;ε
ij (x)sij

where sij ∈ [0,1] satisfies ϕ+
ij(x)(1− sij) = 0. This leads to:

• (t, y, s)-lifting:

X̃t,y,s;ε
HSC ≜


x ∈ P

tij, sij ∈ [ 0,1 ], all i, j

yij ≥ 0, all i, j

∣∣∣∣∣∣∣∣∣∣∣

Ji∑
j=1

ψ+;ε
ij (x)sij ≤

Ji∑
j=1

ψ−;ε
ij (x) tij + bi, i = 1, · · · ,m

and for all j = 1, · · · , Ji and i= 1, · · · ,m:

tij ≤ ϕ+
ij(x)yij, ϕ+

ij(x) ( 1− sij ) = 0


.

In the case of an affine sparsity constraint system:

XASC ≜

{
x ∈ P :

n∑
j=1

aij |xj |0 ≤ bi, i = 1, · · · ,m

}

the resulting representations of the sets X̂t,y,u;ε
ASC and X̃t,y,s;ε

ASC simplify somewhat; for simplicity, we
give only the latter:

X̃t,y,s;ε
ASC ≜


x ∈ P

tj, sj ∈ [ 0,1 ], all j

yj ≥ 0, all j

∣∣∣∣∣∣∣∣∣∣

n∑
j=1

(a+ij + ε)sj ≤
n∑

j=1

(a−ij + ε) tj + bi, i = 1, · · · ,m

tj ≤ |xj|yj, j = 1, · · · , n

xj ( 1− sj ) = 0, j = 1, · · · , n

 ,

where the only nonlinear functional constraints are defined by products of two variables. A notewor-

thy remark about X̃t,y,s;ε
HSC is that both auxiliary variables sij and tij are introduced as a surrogate

for the same Heaviside composite term 1( 0,∞ )(ϕij(x)); their roles and constraints differ due to their
associations with the respective signed functions ψ±

ij .

The two lifted sets X̂t,y,u;ε
HSC and X̃t,y,s;ε

HSC offer a computationally tractable venue for the minimiza-
tion of a wide class of nonconvex nondifferentiable objective functions f over the non-closed set
XHSC, provided that f and all the functions ϕij and ψij are surrogatable by pointwise minima of
convex differentiable functions; see [9, Chapter 7]. We omit the algorithmic details.

7.2. Recovering pseudo stationarity. For simplicity, we assume that the objective function
f (omitting the subscript HSC) in (1) is B-differentiable so that it is not necessary to work with

the epigraphical formulation (5). We further assume that all the functions
{
{ϕij,ψij}Jij=1

}m

i=1
are

B-differentiable (which do not imply that the set XHSC is closed). In this subsection, we show that
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if (x̄, t̄, ȳ, s̄) is any B-stationary tuple of f on X̃t,y,s;ε
HSC , then x̄ is pseudo B-stationary of f on XHSC;

i.e., x̄ is a B-stationary point of the problem

minimize
x∈P

f(x)

subject to
∑

j∈Ji,+(x̄)

ψij(x) ≤ bi, i = 1, · · · ,m

and ϕij(x) ≤ 0, ∀ j ∈ Ji,≤(x̄), i = 1, · · · ,m,

(16)

whose feasible set is a subset ofXHSC. Note that for x sufficiently close to x̄, we must have ϕij(x)≥ 0
for all j ∈Ji,+(x̄); cf. the constraints in (8). By the definition of the pseudo B-stationarity of f on
XHSC, we know that x̄ must be feasible to XHSC that is possibly non-closed. We omit the analysis

for the set X̂t,y,u;ε
HSC that involves pointwise minimum constraints. The proof of the proposition below

is not straightforward as it requires the verification of significant details. Part of the challenge is

that the triple (t̄, ȳ, s̄) is quite arbitrary and is related to x̄ only through the constraints in X̃t,y,s;ε
HSC .

The scalar ε plays an important role for the validity of the result.

Proposition 16. Let P be a polyhedron and ε > 0 be arbitrary. Let the functions f , ϕij and

ψij be B-differentiable near x̄ ∈ P . If the tuple (x̄, t̄, ȳ, s̄) is a B-stationary point of f on X̃t,y,s;ε
HSC ,

then x̄ is a pseudo stationary point of f on XHSC.

Proof. We first show that x̄ is feasible to (16) by verifying:

ψ+;ε
ij (x̄)1( 0,∞ )(ϕij(x̄)) ≤ ψ+;ε

ij (x̄) s̄ij and ψ−;ε
ij (x̄)1( 0,∞ )(ϕij(x̄)) ≥ ψ−;ε

ij (x̄) t̄ij.

Indeed, if ϕij(x̄) > 0, then s̄ij = 1 and the first inequality hold; the second inequality also holds
because t̄ij ≤ 1. If ϕij(x̄)≤ 0, then the first inequality clearly holds; moreover, we must have t̄ij = 0.
It therefore follows that

Ji∑
j=1

ψ+;ε
ij (x)1( 0,∞ )(ϕij(x̄)) ≤

Ji∑
j=1

ψ−;ε
ij (x)1( 0,∞ )(ϕij(x̄))+ bi,

which is equivalent to
∑

j∈Ji,+(x̄)

ψij(x) ≤ bi. Thus x̄ is feasible to (16). It remains to show that x̄ is

a B-stationary point of (16). For this purpose, let {xk} be a sequence converging to x̄ and {τk} ↓ 0

such that each xk is feasible to (16) and lim
k→∞

xk − x̄

τk
= v. We need to show that f ′(x̄;v)≥ 0. It turn,

it suffices to show the existence of a corresponding sequence {(tk, yk, sk)} converging to (t̄, ȳ, s̄)

such that (xk, tk, yk, sk) belongs to X̃t,y,s;ε
HSC for all k sufficiently large and the three sequences:{

tk − t̄

τk

}
;

{
yk − ȳ

τk

}
; and

{
sk − s̄

τk

}
(17)

are bounded. Without loss of generality, we may assume that for all (i, j, k), ϕij(x
k) has the same

sign as ϕij(x̄) if the latter is nonzero. Furthermore, since xk is feasible to (16), we must have
ϕij(x

k)> 0 implies ϕij(x̄)> 0. Hence,

1( 0,∞ )(ϕij(x̄)) = 1( 0,∞ )(ϕij(x
k)), ∀k. (18)

Since the constraints in (16) are separable in i, for notational simplicity, we drop the index i in
the rest of the proof. Let

∆(•; x̄) ≜
J∑

j=1

ψj(•)1( 0,∞ )(ϕj(x̄))− b, (19)
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which is a B-differentiable function. Note that ∆(x̄; x̄)≤ 0. Let

S ≜ { j | ϕj(x̄) ≤ 0 < s̄j } and T ≜ { j | ϕj(x̄) > 0 > t̄j − 1}.

We have∑
j∈S

(ψ+
j (x̄)+ ε)s̄j +

∑
j∈T

(ψ−
j (x̄)+ ε)(1− t̄j)

=
J∑

j=1

(ψ+
j (x̄)+ ε) s̄j −

J∑
j=1

(ψ−
j (x̄)+ ε) t̄j −

∑
j:ϕj(x̄)>0

[
(ψ+

j (x̄)+ ε)s̄j − (ψ−
j (x̄)+ ε)

]
≤ b−

∑
j:ϕj(x̄)>0

[
(ψ+

j (x̄)+ ε)− (ψ−
j (x̄)+ ε)

]
= b−

∑
j:ϕj(x̄)>0

ψj(x̄) = −∆(x̄; x̄),

(20)

where the last inequality holds because (x̄, t̄, s̄, ȳ) ∈ X̃t,y,s;ε
HSC and s̄j = 1 for j such that ϕj(x̄) > 0.

Hence,
∆(x̄; x̄)+

∑
j∈S

(ψ+
j (x̄)+ ε)s̄j +

∑
j∈T

(ψ−
j (x̄)+ ε)(1− t̄j) ≤ 0.

Case I: Suppose that S ∪T ̸= ∅. Since ε > 0, the above inequality implies that

∆(x̄; x̄)+
∑
j∈S

(ψ+
j (x̄)+ ε)s̄j +

∑
j∈T

(ψ−
j (x̄)+ ε)(1− t̄j) < 0. (21)

We can write

∆(x̄; x̄) = −


∑
j∈S

 (ψ+
j (x̄)+ ε)s̄j + δ s

j︸ ︷︷ ︸
denoted ∆s

j ≥ 0

+
∑
j∈T

 (ψ−
j (x̄)+ ε)(1− tj)+ δ t

j︸ ︷︷ ︸
denoted ∆t

j ≥ 0




for some nonnegative scalars δ s
j and δ t

j . Define the nonnegative scalars:

∆s
j(x

k) ≜
∆(xk; x̄)

∆(x̄; x̄)
∆s

j and ∆s
j(x

k) ≜
∆(xk; x̄)

∆(x̄; x̄)
∆t

j.

Since ∆(•; x̄) is continuous, it follows that lim
k→∞

∆s
j(x

k) = ∆s
j and lim

k→∞
∆t

j(x
k) = ∆t

j. Next, we

construct a sequence (tk, yk, sk) such that (xk, tk, yk, sk)∈ X̃t,y,s;ε
HSC . Let

skj ≜

min

{
∆s

j(x
k)

ψ+
j (x

k)+ ε
, s̄j

}
if j ∈ S

s̄j otherwise;

1− tkj ≜

min

{
∆t

j(x
k)

ψ−
j (x

k)+ ε
, 1− t̄j

}
if j ∈ T

1− t̄j otherwise;

ykj ≜

max

{
tkj

ϕj(xk)
, ȳj

}
if ϕj(x

k)> 0 (⇔ ϕj(x̄)> 0 )

ȳj if ϕj(x
k)≤ 0.

(22)
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We need to verify the functional inequalities in X̃t,y,s;ε
HSC . These are done in the following 3 steps.

Step 1:. By a derivation similar to (20), we can verify the first equality in the following string of

derivations:

J∑
j=1

(ψ+
j (x

k)+ ε)skj −
Ji∑
j=1

(ψ−
j (x

k)+ ε) tkj

=
∑
j∈S

(ψ+
j (x

k)+ ε)skj +
∑
j ̸∈S

(ψ+
j (x

k)+ ε) s̄j −
∑
j∈T

(ψ−
j (x

k)+ ε) tkj −
∑
j ̸∈T

(ψ−
j (x

k)+ ε) t̄j

=
∑
j∈S

(ψ+
j (x

k)+ ε )skj +
∑
j∈T

(ψ−
j (x

k)+ ε ) (1− tkj )

+
∑

j :ϕj(x̄)>0

(ψ+
j (x

k)+ ε )−
∑

j :ϕj(x̄)>0

(ψ−
j (x

k)+ ε ) by properties of s̄j ( t̄j ) for j ̸∈ S (j ̸∈ T )

=
∑
j∈S

(ψ+
j (x

k)+ ε)skj +
∑
j∈T

(ψ−
j (x

k)+ ε) (1− tkj )+
J∑

j=1

ψj(x
k)1( 0,∞ )(ϕj(x̄))

≤
∑
j∈S

∆s
k(x

k)+
∑
j∈T

∆t
k(x

k)+∆(xk; x̄)+ b, by the definitions of the ∆’s; see (19) and (22)

≤ b, by (21) and the continuity of
∑
j∈S

∆s
k(•)+

∑
j∈T

∆t
k(•)+∆(•; x̄).

Step 2: If ϕj(x
k) > 0, we clearly have ϕj(x

k)ykj ≥ tkj by the definition of ykj . If ϕj(x
k) ≤ 0, then

ϕj(x̄)≤ 0; thus t̄j = 0. Moreover, j ̸∈ T ; hence tkj = t̄j = 0 and tkj ≤ ϕ+
j (x

k)ykj holds.

Step 3: If ϕj(x
k) > 0, then ϕj(x̄) > 0 by (18), and j ̸∈ S; hence skj = s̄j = 1. It follows that

ϕ+
j (x

k) (1− skj ) = 0. The latter clearly holds if ϕj(x
k)≤ 0.

We have therefore shown that (xk, tk, yk, sk)∈ X̃t,y,s;ε
HSC for all k. Next, for j ∈ S, we have

lim
k→∞

skj = min

{
lim
k→∞

∆s
j(x

k)

ψ+
j (x

k)+ ε
, s̄j

}
= min

{
∆s

j

ψ+
j (x̄)+ ε

, s̄j

}
= s̄j,

where the last equality holds because ∆s
j ≥ ψ+

j (x̄) + ε by the definition of ∆s
j . Hence lim

k→∞
skj = s̄j

for all j. Similarly, we can show that lim
k→∞

tkj = t̄j and lim
k→∞

ykj = ȳj for all j for all j. Since s
k
j and tkj

are either constants (s̄j or t̄j, respectively) or the pointwise minima of a B-differentiable fraction

of xk and a constant (s̄j or t̄j), they are therefore B-differentiable functions of xk, and hence so is

ykj . Therefore, the fractions
tkj − t̄j

τk
,
skj − s̄j

τk
and

ykj − ȳj

τk
are bounded.

Case II:: if S ∪ T = ∅, then define sk = s̄ and tk = t̄ for all k and ykj as above. A similar proof

applies. □

7.3. Recovering Bouligand stationarity. It turns out that by requiring the tuple

(x̄, t̄, ȳ, s̄)∈ X̃t,y,s;ε
HSC to be a B-stationary point of an enlargement of the lifted set X̃t,y,s;ε

HSC , it is pos-

sible to sharpen the conclusion of Proposition 16 to the stronger property of B-stationarity of f
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on XHSC. Specifically, consider the set with an additional scalar η > 0:

X̃t,y,s;ε
HSC;η ≜


x ∈ P

tij, sij ∈ [ 0,1 ], all i, j

yij ≥ 0, all i, j

∣∣∣∣∣∣∣∣∣∣∣

Ji∑
j=1

ψ+;ε
ij (x)sij ≤

Ji∑
j=1

ψ−;ε
ij (x) tij + bi, i = 1, · · · ,m

and for all j = 1, · · · , Ji and i= 1, · · · ,m:

tij ≤ ϕ+
ij(x)yij, ϕ+

ij(x) ( 1− sij ) ≤ η


.

We have the following result.

Proposition 17. Let the functions f , ϕij and ψij be B-differentiable near x̄ ∈ P . For an

arbitrary pair (ε, η)> 0, if (x̄, t̄, ȳ, s̄) ∈ X̃t,y,s;ε
HSC is a B-stationary point of f on X̃t,y,s;ε

HSC;η, then x̄ is a
B-stationary point of f on XHSC.

Proof. We proceed as in the proof of Proposition 16. Let {xk} be a sequence in XHSC converging

to x̄ and {τk} ↓ 0 such that lim
k→∞

xk − x̄

τk
= v. We need to show that f ′(x̄;v)≥ 0. It suffices to show

the existence of a corresponding sequence {(tk, yk, sk)} converging to (t̄, ȳ, s̄) such that (xk, tk, yk, sk)

belongs to X̃t,y,s;ε
HSC;η for all k sufficiently large and the three sequences:{

tk − t̄

τk

}
;

{
yk − ȳ

τk

}
; and

{
sk − s̄

τk

}
. (23)

are bounded. As before, we may assume that for all (i, j, k), ϕij(x
k) has the same sign as ϕij(x̄) if the

latter is nonzero. Furthermore, (18) is valid for all k except for a k such that ϕij(x̄) = 0<ϕij(x
k).

Defining (skj , t
k
j , y

k
j ) by (22), we see that the proof of Steps 1 and 2 in Proposition 16 is valid as

(18) is not used until the last step 3, which we analyze below.

Step 3: If ϕj(x
k)> 0, then ϕj(x̄)≥ 0. If ϕj(x̄)> 0, then j ̸∈ S and skj = s̄j = 1. If ϕj(x̄) = 0, then

ϕ+
j (x

k) (1− skj )≤ η for k sufficiently large.

Summarizing the 3 steps, we have established (xk, tk, yk, sk) ∈ X̃t,y,s;ε
HSC;η for all k sufficiently large.

The proof of the convergence of {(tk, yk, sk)} to (t̄, ȳ, s̄) and that of the boundedness of the sequences
in (23) are the same as before. □
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