
Computing an approximation of the nondominated
set of multi-objective mixed-integer nonlinear

optimization problems

Gabriele Eichfelder∗, Leo Warnow∗

November 30, 2023

Abstract

In practical applications, one often has not only one, but several objectives
that need to be optimized simultaneously. What is more, modeling such real
world problems usually involves using both, continuous and integer variables.
This then results in multi-objective mixed-integer optimization problems, which
are in focus of this paper. We present an approximation concept, called enclo-
sure, for the nondominated set of such optimization problems and discuss how
this concept arises as a natural extension of approximation concepts from single-
objective global optimization. Further, we show how to practically compute such
an enclosure for multi-objective mixed-integer convex optimization problems us-
ing the Hybrid Patch Decomposition algorithm (HyPaD). We demonstrate how
exploiting the structure of this kind of optimization problems allows the HyPaD
algorithm to operate almost entirely in the criterion space. This is not only in
contrast to most algorithms for multi-objective nonconvex optimization prob-
lems, but also makes the algorithm’s performance, at least to some extent, inde-
pendent of the number of optimization variables. Moreover, we exploit the gap
between theoretical and practical performance evaluation of solution algorithms,
especially with regard to the HyPaD algorithm. More precisely, we present sev-
eral realizations of the procedures that have originally been treated as black
boxes in the theoretical evaluation of the algorithm. Finally, we provide numer-
ical results for selected test instances. More precisely, we evaluate the different
realizations of the black box procedures in terms of computation time, provide
insights on the influence of the quality parameter chosen for the enclosure, and
compare the HyPaD algorithm as a criterion space based method to the MOMIX
algorithm as a decision space based method.

Key Words: multi-objective optimization, mixed-integer optimization, global optimization,
approximation algorithm, enclosure

Mathematics subject classifications (MSC 2010): 90C11, 90C26, 90C29
∗Institute of Mathematics, Technische Universität Ilmenau, Po 10 05 65, D-98684 Ilmenau, Ger-

many, {gabriele.eichfelder,leo.warnow}@tu-ilmenau.de

1

1 Introduction
In this paper, we focus on a special class of multi-objective nonconvex optimization
problems. More precisely, we consider multi-objective mixed-integer optimization prob-
lems where the nonconvexities arise due to integrality constraints on some of the vari-
ables. These optimization problems can be formally described as

min
x

f(x)
s.t. g(x) ≤ 0q,

x ∈ X := XC × XI

(MOMIP)

where f = (f1, . . . , fp) : Rn+m → Rp denotes a vector of p ∈ N objective functions
fi : Rn+m → R, i ∈ [p] and g = (g1, . . . , gq) : Rn+m → Rq denotes a vector of q ∈ N
inequality constraint functions gj : Rn+m → R, j ∈ [q] with [n] := {1, . . . , n} repre-
senting the set of the first n ∈ N natural numbers. Further, 0q ∈ Rq denotes the
all-zeros vector, XC := [lC , uC] ⊆ Rn denotes a nonempty box with lC , uC ∈ Rn, and
XI := [lI , uI]∩Zm denotes a (finite) nonempty subset of Zm with lI , uI ∈ Zm. We write
x = (xC , xI) for all x ∈ X to distinguish between the continuous and integer variables
of our optimization problem (MOMIP). The feasible set of (MOMIP) is denoted by S
and is assumed to be nonempty.
There exists a large variety of practical applications that can be modeled as multi-
objective mixed-integer optimization problems. The multi-objective aspect arises due
to the different and often conflicting goals that a decision maker wants to achieve.
A classic example for this is portfolio optimization where one wants to maximize the
expected returns while simultaneously minimizing the risk of the investment. Since
usually only some of the decision variables represent continuous parameters while oth-
ers are discrete, many of these optimization problems are also mixed-integer. Let
us consider portfolio optimization again. Several assets, for instance public stocks and
(crypto-)currencies, can be bought and sold in any fraction. Thus, these can be modeled
using continuous variables. Other assets, like real estate and physical products (e.g.,
luxury watches, cars, wine), can only be included in a portfolio in discrete amounts.
Hence, these can be modeled as integer variables and the overall problem becomes a
multi-objective mixed-integer optimization problem. Besides portfolio optimization,
see for instance [48], there are several other classes of application problems that can
be modeled as (MOMIP). These include medical applications [23, 44], supply chain
problems such as water distribution and allocation [40, 47], and industrial applications
[49] to only name a few.
As mentioned above, the p > 2 objective functions that are minimized simultaneously in
(MOMIP) are usually conflicting. This means that, in general, there exists no feasible
point x ∈ S that minimizes all of them at the same time. In particular, there exists
no unique optimal value as in single-objective optimization. Thus, a new optimality
concept is needed. The concept that we focus on in this paper and which is used
most of the time in multi-objective optimization is the concept of nondominance. A
point y ∈ f(S) is called a nondominated point of (MOMIP) if one cannot improve in
one objective without deteriorating another. This means that for any y′ ∈ f(S) with
y′ ≤ y, i.e., y′

i ≤ yi for all i ∈ [p], it must already hold y′ = y. We denote by N ⊆ f(S)
the set of all nondominated points of (MOMIP). An illustration of this concept is
provided in Figure 1.

2

Since, in general, there exists an infinite number of nondominated points of (MOMIP),
solving this optimization problem usually means computing an approximation of the
nondominated set (or the so-called efficient set E ⊆ Rn+m, which is its decision space
equivalent). There exist mainly two categories of corresponding approximation ap-
proaches in multi-objective optimization: representation approaches and coverage ap-
proaches. The output of representation approaches is a finite subset of the nondomi-
nated set, whereas coverage approaches compute a superset of the nondominated set.
We provide a more detailed overview and comparison of both approaches in Section 2.
While there exists a long track of research for multi-objective (continuous) optimiza-
tion problems, see also the surveys [14, 42], this is not the case for multi-objective
mixed-integer optimization problems. The first algorithm that explicitly exploits the
mixed-integer structure of (MOMIP) was presented in 1998 by Mavrotas and Diak-
oulaki [33]. This branch-and-bound algorithm, as well as an improved version pre-
sented in 2005 [34], focuses on multi-objective mixed-integer linear optimization prob-
lems. These are optimization problems (MOMIP) where all objective and constraint
functions are assumed to be linear. In fact, most of the early literature regarding multi-
objective mixed-integer optimization focuses on that linear case. The reason for this
is presumably that the nondominated set of such multi-objective mixed-integer linear
optimization problems can be computed exactly. For instance, in the bi-objective set-
ting, the nondominated set basically consists only of isolated points and line segments,
where the latter can be fully represented by their end points as well. For an illustrative
example, see Figure 1 (a). This property is exploited by many of the corresponding
solution algorithms. For bi-objective mixed-integer linear optimization problems these
include the Triangle Splitting Method [2] and also the more recent Boxed Line Method
[37]. Also the algorithms from [1, 45, 46] address specifically bi-objective mixed-integer
linear optimization problems.

f1

f2

f(S)

N

y

(a) Bi-objective mixed-integer linear op-
timization problem

f1

f2

f(S)

N

y

(b) Bi-objective mixed-integer nonlinear
optimization problem

Figure 1: A nondominated point y ∈ R2 (highlighted in teal) and the nondominated set
N ⊆ R2 (highlighted in orange) for a bi-objective mixed-integer linear and nonlinear
optimization problem

3

Already for multi-objective mixed-integer linear optimization problems with an arbi-
trary number of objective functions there exists noticeably less literature. In particular,
most algorithms, like those from [38, 51] do no longer compute the exact nondominated
set. Instead, they focus on the subset of so-called supported nondominated extreme
points. One exception to this is the GoNDEF algorithm [39] presented in 2019. We
refer to [28] for a more exhaustive survey on solution algorithms for multi-objective
mixed-integer linear optimization problems.
In this paper, we focus on multi-objective mixed-integer nonlinear optimization prob-
lems. These are optimization problems (MOMIP) where at least one of the objective
or constraint functions is nonlinear. The most important difference of these prob-
lems compared to the linear ones is that the nondominated set can, in general, no
longer be computed exactly. This holds already for bi-objective mixed-integer nonlin-
ear optimization problems and in particular for (MOMIP) with an arbitrary number
of objective functions. This is one of the reasons why, in general, it is not possible to
transfer or generalize techniques from multi-objective mixed-integer linear optimiza-
tion to multi-objective mixed-integer nonlinear optimization. Hence, new approaches
are needed. For an illustration of the nondominated set of a bi-objective mixed-integer
nonlinear optimization problem, see Figure 1 (b).
Most algorithms for multi-objective mixed-integer nonlinear optimization problems fo-
cus on the particularly interesting subclass of multi-objective mixed-integer convex
optimization problems. This means that all objective and constraint functions of
(MOMIP) are assumed to be convex. Hence, not only the mixed-integer structure,
but also the convexity can be exploited by the corresponding solution algorithms.
The first algorithm that was able to solve multi-objective mixed-integer convex opti-
mization problems with an arbitrary number of objective functions was the MOMIX
algorithm presented 2020 in [8]. In fact, this was the first algorithm that specifically
addressed multi-objective mixed-integer convex optimization problems at all. While in
this paper the focus is on algorithms that compute a coverage of the nondominated
set, the algorithm from [8] computes a coverage of the efficient set, which is its decision
space equivalent. Nonetheless, at least for such instances of (MOMIP) with convex
quadratic objective and constraint functions, a coverage of the nondominated set can
be derived from the coverage of the efficient set, see [8, Theorem 3.13].
The first algorithms to directly compute a coverage of the nondominated set of multi-
objective mixed-integer convex optimization problems, namely from [5] and [10], focus
on the bi-objective setting. Since they rely heavily on the bi-objective structure, their
techniques cannot directly be extended to multi-objective mixed-integer convex opti-
mization problems with an arbitrary number of objective functions. The first algorithm
to compute a coverage of the nondominated set of multi-objective mixed-integer con-
vex optimization problems with an arbitrary number of objective functions was the
Hybrid Patch Decomposition algorithm (HyPaD) [22] presented in 2023. This is also
the algorithm in focus of this paper, see Section 3.
For completeness, we want to mention that also first algorithms for multi-objective
mixed-integer nonconvex optimization problems exist. These include [31] for quadrat-
ically constrained problems and [18] for arbitrary multi-objective mixed-integer opti-
mization problems.

4

The remaining part of this paper is structured as follows: In Section 2, we provide
a brief overview of the different approximation concepts for the nondominated set in
multi-objective optimization. We discuss how the so-called enclosure, a special kind of
coverage, arises as a natural extension of approximation concepts from single-objective
optimization and provide one method to compute it. We then briefly present the
HyPaD algorithm from [22] in Section 3. We explain how it exploits the specific
structure of multi-objective mixed-integer convex optimization problems and how this
allows the algorithm to rely solely on criterion space based techniques, which is in
contrast to algorithms that simply consider (MOMIP) as a multi-objective nonconvex
optimization problem. In Section 4, we demonstrate how to adjust the algorithm
for practical use without losing any of its theoretically guaranteed properties. More
precisely, we describe how to practically realize certain subroutines of the HyPaD
algorithm that are mainly treated as black boxes in [22]. To underline the implications
of the suggested adjustments, we conclude the paper with numerical results for different
realizations of the HyPaD algorithm in Section 5. We also compare it against the
decision space based MOMIX algorithm from [8].

2 Selecting an approximation concept
In general, it is not possible to compute the nondominated set of a multi-objective non-
linear optimization problem exactly. Consequently, solving such optimization problems
usually means computing an approximation of the nondominated set of prescribed qual-
ity. This holds for multi-objective continuous as well as multi-objective mixed-integer
optimization problems. There exist several approximation concepts in multi-objective
optimization. They can be divided in two main categories: representation approaches
and coverage approaches. Representation approaches aim to compute a finite subset
of the nondominated set and coverage approaches aim to compute a superset of the
nondominated set. Figure 2 provides an example for the output of both approaches for
a bi-objective mixed-integer nonlinear optimization problem.
In this paper, we focus on computing a coverage of the nondominated set of (MOMIP)
instead of a representation. One reason for this is that, especially in the mixed-integer
setting, the quality of a representation is hard to evaluate. In the literature, various
quality measures for representations have been presented, see [24] for a survey. A
commonly used quality criterion is the distance between different elements of the rep-
resentation. This includes, for instance, the concepts called coverage and uniformity
presented in [43]. Especially for multi-objective mixed-integer optimization problems,
there can be gaps and also isolated points in their nondominated set, see Figure 2
again. Hence, a representation with equal distance between adjacent elements is not
necessarily a good approximation of the nondominated set. Moreover, it is hard to
guarantee that a representation contains the isolated points of the nondominated set
since these can usually only be obtained by solving subproblems for a very specific
choice of parameters within the corresponding solution algorithms.

5

f1

f2

f(S)

N

(a) A representation of the nondomi-
nated set consisting of four nondom-
inated points (highlighted in teal)

f1

f2

f(S)

N

(b) A coverage/enclosure of the non-
dominated set (shaded in teal)

Figure 2: Comparison of a representation and a coverage/enclosure of the nondom-
inated set N ⊆ R2 (highlighted in orange) of a bi-objective mixed-integer convex
optimization problem

The above mentioned issues for gaps and isolated points in the nondominated set do
not occur within coverage approaches. Since a coverage, by definition, is a superset
of all nondominated points, isolated points are usually treated just like any other
nondominated point. Hence, there is no need for a special technique to detect gaps or
isolated points in the nondominated set. Another strong argument in favor of coverage
approaches is that they are a very natural extension of approximation concepts used
in single-objective global optimization. This holds especially for the concept of the
so-called enclosure.

2.1 Enclosure
In order to select an approximation concept for the nondominated set of multi-objective
mixed-integer optimization problems, we briefly recall what is done in single-objective
global optimization, which includes single-objective mixed-integer optimization. The
optimal value for this class of optimization problems is usually not computed exactly
but approximately. In most cases, this means that the corresponding solution algo-
rithms compute a lower bound l ∈ R and an upper bound u ∈ R for the optimal
value ȳ ∈ R of the optimization problem such that l ≤ ȳ ≤ u. The gap ε := u − l
between these two bounds then usually determines the quality of the approximation.
More precisely, for every feasible point x of the single-objective optimization problem
with l ≤ f(x) ≤ u it holds that |f(x) − ȳ| ≤ ε. Thus, x is an ε-optimal solution of the
optimization problem.
We remark that this kind of approximation approach for the optimal value indeed also
appears in classic solution techniques from single-objective mixed-integer optimization.

6

This includes, for instance, the well-known outer approximation technique as presented
in [3, 11, 25].
The condition l ≤ ȳ ≤ u from above for the optimal value ȳ ∈ R of a single-objective
optimization problem can be rewritten as {ȳ} ⊆ ({l} +R+) ∩ ({u} −R+). This can be
naturally generalized for our multi-objective setting as

N ⊆ (L + Rp
+) ∩ (U − Rp

+) (2.1)

where L, U ⊆ Rp denote two nonempty sets. This immediately leads to the concept
of a so-called enclosure of the nondominated set N ⊆ Rp of (MOMIP) as presented in
[17]. We use here a slightly modified and extended version of this concept.
Definition 2.1 Let L, U ⊆ Rp be two nonempty and finite sets. Then the set

C = C(L, U) := (L + Rp
+) ∩ (U − Rp

+) =
⋃
l∈L

⋃
u∈U

[l, u]

is called (box) coverage given L and U . If it holds that N ⊆ C then we call C ⊆ Rp an
enclosure of N ⊆ Rp with lower bound set L ⊆ Rp and upper bound set U ⊆ Rp.
Within Definition 2.1, and within this paper in general, [l, u] := ({l}+Rp

+)∩({u}−Rp
+)

denotes the closed box (also called p-dimensional interval) with lower bound l ∈ Rp and
upper bound u ∈ Rp. For l, u ∈ Rp with li > ui for some index i ∈ [p] we consequently
obtain [l, u] = ∅. While allowing l ̸≤ u might seem counterintuitive at this point, it
will be beneficial later on.
So far, we have generalized the approximation concept from single-objective global
optimization to multi-objective global optimization. Next, we provide a generalization
of the corresponding quality measure. Recall that in single-objective optimization the
quality of an approximation of the optimal value ȳ ∈ R is determined by the gap
ε := u − l. This is a suitable quality measure, since any feasible point x ∈ S of the
single-objective optimization problem with y = f(x) ∈ [l, u] is ε-optimal. Hence, a
natural extension of this quality concept for enclosures C ⊆ Rp of the nondominated
set N ⊆ Rp of (MOMIP) should ensure that any attainable point y ∈ f(S) with y ∈ C
is ε-nondominated with ε > 0 representing the quality of the enclosure.
Let L, U ⊆ Rp be two finite and nonempty sets such that C(L, U) ⊆ Rp is an enclosure
of the nondominated set of (MOMIP). Further, recall that y ∈ f(S) is called ε-
nondominated if there exists no y′ ∈ f(S) with y′ ≤ y − εe and y′ ̸= y − εe, where
e ∈ Rp denotes the all-ones vector. Then y − εe ̸∈ C(L, U) is a sufficient criterion
for y ∈ f(S) ∩ C(L, U) to be ε-nondominated. Thus, we can define the quality of the
enclosure C(L, U) ⊆ Rp to be the largest ε > 0 such that there exists y ∈ C(L, U) with
y − εe ∈ C(L, U). In fact, this is exactly the definition of the width w(C(L, U)) ∈ R of
a nonempty enclosure C(L, U) ⊆ Rp which was introduced and proposed as a quality
measure in [17]. More precisely, the width of an enclosure C(L, U) ̸= ∅ is defined there
as the optimal value of

max
y,t

∥(y + te) − y∥
√

p
s.t. y ∈ C(L, U),

y + te ∈ C(L, U),
t ∈ R+.

(2.2)

In [17, Lemma 3.1] it is also formally proven that, for any enclosure C(L, U) ⊆ Rp of
the nondominated set N ⊆ Rp of (MOMIP), w(C(L, U)) < ε implies that all attainable
points y ∈ C(L, U) ∩ f(S) are indeed ε-nondominated.

7

As shown in [17, Lemma 3.2], there exists an equivalent formulation of (2.2) that can be
evaluated only using the sets L, U ⊆ Rp of lower and upper bounds. What is more, this
equivalent formulation also allows to extend the width concept to general coverages.

Definition 2.2 Let L, U ⊆ Rp be two nonempty and finite sets. Then the width
w(C(L, U)) ∈ R of the (potentially empty) coverage C(L, U) ⊆ Rp is defined as the
optimal value of

max
l,u

s(l, u)
s.t. l ∈ L, u ∈ U

(2.3)

where s(l, u) := min
i∈[p]

(ui − li) denotes the shortest edge of the box [l, u] ⊆ Rp.

We remark that the optimal value w(C(L, U)) ∈ R of (2.3), and hence the width of the
coverage, always exists. This is because, by definition, the sets L, U ⊆ Rp are assumed
to be nonempty and finite.
At first, it might seem surprising that one needs to make use of the shortest edge
length in (2.3) and not of the largest. However, this does not contradict the well-
known quality concept of the largest gap between lower and upper bounds from single-
objective global optimization. In particular, in case p = 1 the shortest edge length
s(l, u) = u − l is just the usual gap between the lower bound l ∈ R and the upper
bound u ∈ R. Consequently, the width would then denote the largest gap between
all lower and upper bounds, i.e., w(C(L, U)) = max{u − l | l ∈ L, u ∈ U}. Since
in single-objective global optimization there usually exists only a single upper bound
u ∈ U := {u}, this equals the well-known quality measure w(C(L, U)) = max{u − l |
l ∈ L} = u − min{l ∈ L} where L ⊆ R denotes some set of partial lower bounds, e.g.,
corresponding to subproblems obtained by a branch-and-bound scheme.
Finally, we remark that the shortest edge length and the width allow us to detect empty
boxes and coverages. More precisely, for boxes [l, u] ⊆ Rp we have s(l, u) < 0 in case
l ̸≤ u and conversely s(l, u) ≥ 0 in case l ≤ u. Hence, the shortest edge length allows us
to detect empty boxes. Analogously, since [l, u] = ∅ if and only if s(l, u) < 0, we obtain
that C(L, U) = ∅ if and only if w(C(L, U)) < 0. So the width can be used to detect
empty coverages. This property is particularly useful for developing an algorithmically
tractable discarding strategy.

2.2 Computation of lower and upper bounds
All the properties presented and discussed in Section 2.1 hold for arbitrary coverages
C(L, U) as long as L, U ⊆ Rp are nonempty and finite sets. At the same time, a coverage
is fully determined by these two sets. This means that the computation of a coverage,
and in particular of an enclosure C(L, U) of the nondominated set of (MOMIP), is fully
determined by the computation of the lower and upper bound sets.
Recall that several solution algorithms for single-objective global optimization problems
make use of a single upper bound. This upper bound typically represents the best value
f(x) ∈ R for some feasible point x ∈ S that has been found so far. Additionally, they
use a set L ⊆ R of lower bounds that consists of underestimators of the objective
function on certain subsets S ′ ⊆ S, for instance obtained by a branch-and-bound
scheme. In this section, we present a generalization of this idea for the multi-objective
setting and in particular for (MOMIP).

8

Let ȳ ∈ R be the unique optimal value of a single-objective global optimization problem.
Then for every feasible point x ∈ S of that same problem we have that ȳ ≤ f(x) and
hence f(x) is a valid global upper bound on the optimal value. We can rewrite this as

ȳ ∈ {f(x)} − R+. (2.4)

We can also rewrite ȳ ≤ f(x) as ȳ ̸> f(x) which is the same as

ȳ ̸∈ {f(x)} + int(R+). (2.5)

For multi-objective optimization problems there no longer exists a unique optimal
value, but an (in general) infinite set N ⊆ Rp of nondominated points. Nonetheless,
we still have that for any nondominated point ȳ ∈ N and for any attainable point
f(x) ∈ f(S) ⊆ Rp it holds that

ȳ ̸∈ {f(x)} + int(Rp
+) (2.6)

which is a straightforward generalization of (2.5). However, this does not necessarily
imply that ȳ ∈ {f(x)} − Rp

+. Fortunately, there exists a method that, given a set
N ⊆ f(S), computes a set U(N) ⊆ Rp such that for every nondominated point ȳ ∈ N
it holds that

ȳ ∈ U(N) − Rp
+. (2.7)

This is not only a proper generalization of (2.4), but also equivalent to N ⊆ U(N)−Rp
+

which is exactly the condition from Definition 2.1 that makes U(N) a (global) upper
bound set for an enclosure of the nondominated set of (MOMIP). This method is
presented in [30] and introduces U(N) as the so-called local upper bound set. In
fact, some of these ideas already appeared in [13]. The concepts from [30] are used
within a variety of literature. In particular, this includes literature related to so-called
hyperboxing approaches or techniques that make use of the so-called hypervolume as
a quality measure. This includes, for instance, the hyperboxing algorithm for multi-
objective optimization problems from [12] as well as the approaches presented in [35]
and [50]. We provide here not the classic definition of local upper bounds from [30],
but a slightly generalized version based on [21, Definition 4.1].

Definition 2.3 Denote by A ⊆ Rp an arbitrary area of interest and let N ⊆ Rp be a
finite set. Then the lower search region for N is defined as

s(N) := {y ∈ int(A) | y′ ̸≤ y for every y′ ∈ N}

and the lower search zone for some u ∈ Rp is defined as

c(u) := {y ∈ int(A) | y < u} .

A set U = U(N) ⊆ Rp is called local upper bound set given N if

(i) s(N) = ⋃
u∈U(N) c(u),

(ii) {u1} − int(Rp
+) ̸⊆ {u2} − int(Rp

+) for all u1, u2 ∈ U(N), u1 ̸= u2.

Each point u ∈ U(N) is called a local upper bound (LUB).

9

f1

f2

z

Z

y1

y2

u1

u2

u3

c(u2)

s(N)

(a) A local upper bound set U(N) =
{u1, u2, u3}, the lower search region
s(N), and the lower search zone
c(u2)

f1

f2

z

Z

y1

y2

l1

l2

l3

C(l2)

S(N)

(b) A local lower bound set L(N) =
{l1, l2, l3}, the upper search region
S(N), and the upper search zone
C(l2)

Figure 3: A local upper and local lower bound set for N = {y1, y2} and the area of
interest A = [z, Z]

For an in-depth discussion and comparison of this generalized version and the classic
local upper bound concept from [30], we refer to [21]. An illustration of a local upper
bound set is provided in Figure 3 (a).
In order for U(N) to be an upper bound set for an enclosure of the nondominated
set of (MOMIP), we need N ⊆ Rp to be a set of attainable points (or overestimators
of such) and A ⊆ Rp to be an enclosure with N ⊆ int(A). The latter is more of a
technical assumption that is needed for certain correctness proofs, see [21]. In case one
is only interested in computing a coverage of a certain nonempty subset N ′ ⊆ N , it
is possible to replace the assumption N ⊆ int(A) by N ′ ⊆ int(A). All concepts and
results would then remain valid with respect to N ′.

Assumption 2.4 The area of interest A ⊆ Rp is given as an enclosure

A := C(L′, U ′) = (L′ + Rp
+) ∩ (U ′ − Rp

+)

where L′, U ′ ⊆ Rp denote two finite sets of lower and upper bounds. Further, it holds
that N ⊆ int(A).

We obtain the following result that formalizes the relation between local upper bound
sets and upper bound sets for an enclosure of the nondominated set, see [21, Lemma
4.7].

Proposition 2.5 Let A ⊆ Rp satisfy Assumption 2.4 and let N ⊆ f(S) + Rp
+ be a

finite set. Further, let U(N) ⊆ Rp be some finite local upper bound set. Then U(N) is
an upper bound set for an enclosure of the nondominated set of (MOMIP).

10

While in [30] only the concept of (classic) local upper bounds was introduced, the idea
can easily be transferred to also obtain a lower bounding concept. Consequently, the
corresponding lower bound sets are called local lower bound sets, see for instance [19,
Definition 3.4]. Again, we present here a slightly generalized version of this concept
based on [21, Definition 4.2] and provide an illustration of it in Figure 3 (b).

Definition 2.6 Denote by A ⊆ Rp an arbitrary area of interest and let N ⊆ Rp be a
finite set. Then the upper search region for N is defined as

S(N) := {y ∈ int(A) | y′ ̸≥ y for every y′ ∈ N}

and the upper search zone for some l ∈ Rp is defined as

C(l) := {y ∈ int(A) | y > l} .

A set L = L(N) ⊆ Rp is called local lower bound set given N if

(i) S(N) = ⋃
l∈L(N) C(l),

(ii) {l1} + int(Rp
+) ̸⊆ l2 + int(Rp

+) for all l1, l2 ∈ L(N), l1 ̸= l2.

Each point l ∈ L(N) is called a local lower bound (LLB).

The main question at this point is how to choose the set N ⊆ Rp such that a local lower
bound set L(N) is actually a lower bound set for an enclosure of the nondominated set
of (MOMIP). Recall that in single-objective global optimization a global lower bound
l ∈ R of the unique optimal value ȳ ∈ R needs to satisfy l ≤ ȳ. We can rewrite this as
l ̸> ȳ which is the same as

l ̸∈ {ȳ} + int(R+) ⊆ f(S) + int(R+). (2.8)

The multi-objective equivalent of the very same condition (2.8) is sufficient to obtain
a relation between local lower bound sets and lower bound sets for an enclosure of
the nondominated set of (MOMIP). Analogously to Proposition 2.5, we obtain the
following result based on [21, Lemma 4.7].

Proposition 2.7 Let A ⊆ Rp satisfy Assumption 2.4 and let N ⊆ Rp\(f(S)+int(Rp
+))

be a finite set. Further, let L(N) ⊆ Rp be some finite local lower bound set. Then L(N)
is a lower bound set for an enclosure of the nondominated set of (MOMIP).

Finally, we can combine Propositions 2.5 and 2.7 in order to obtain a result that states
how to obtain valid upper and lower bound sets for an enclosure of the nondominated
set of (MOMIP), see also [21, Lemma 4.7].

Theorem 2.8 Let A ⊆ Rp satisfy Assumption 2.4 and let

N1 ⊆ f(S) + Rp
+ and

N2 ⊆ Rp \ (f(S) + int(Rp
+))

be two finite sets. Further, let U(N1), L(N2) ⊆ Rp be some corresponding finite local
upper and local lower bound sets. Then the coverage C(L(N2), U(N1)) ⊆ Rp is an
enclosure of the nondominated set N of (MOMIP) with upper bound set U(N1) and
lower bound set L(N2).

11

3 The Hybrid Patch Decomposition algorithm
In this section, we present one particular algorithm, namely the Hybrid Patch De-
composition algorithm (HyPaD) from [22], for solving multi-objective mixed-integer
convex optimization problems (MOMIP). Hence, from now on we assume all objective
functions fi, i ∈ [p] and all constraint functions gj, j ∈ [q] to be once continuously
differentiable and convex.
The HyPaD algorithm computes an enclosure of the nondominated set of (MOMIP)
and uses the local upper and local lower bound concepts. What is more, it perfectly
demonstrates the advantages of exploiting the structure of (MOMIP), i.e., its mixed-
integer structure and the convexity of all objective and constraint functions. In partic-
ular, this allows the algorithm to perform its computations almost entirely in the crite-
rion space. This is in contrast to most algorithms for general multi-objective nonconvex
optimization problems that rely on at least some decision space based techniques, e.g.,
branch-and-bound, in order to handle the nonconvexities.
As its name already suggests, the HyPaD algorithm is based on a decomposition
approach. More precisely, it decomposes the mixed-integer optimization problem
(MOMIP) into several purely continuous subproblems

min
xC

f(xC , x̂I)
s.t. g(xC , x̂I) ≤ 0q,

xC ∈ XC

(P(x̂I))

where x̂I ∈ SI := {xI ∈ Zm | ∃ xC ∈ Rn : (xC , xI) ∈ S} denotes some feasible integer
assignment. These so-called patch problems (P(x̂I)), also referred to as slice problems
in [45], serve two purposes. First of all, they are used to compute attainable points
of (MOMIP). A corresponding local upper bound set U(N) then serves as the global
upper bound set for the enclosure of the nondominated set of (MOMIP).
The attainable points are computed by solving the single-objective continuous convex
optimization problem

min
xC ,t

t

s.t. f(xC , x̂I) − l − t(u − l) ≤ 0p,
g(xC , x̂I) ≤ 0q,
xC ∈ XC , t ∈ R

(SUP(x̂I , l, u))

where [l, u] ⊆ Rp is some box with s(l, u) > ε > 0. Let (x̄C , t̄) be an optimal solution
of (SUP(x̂I , l, u)), which exists by [27, Proposition 2.3.4 and Theorem 2.3.1]. Then
y1 := f(x̄C , x̂I) ∈ f(S) is not only an attainable point of (MOMIP), but also a weakly
nondominated point of (P(x̂I)) by [36, Theorem 3.2]. Hence, we have that y2 :=
l + t̄(u − l) ̸∈ f(Sx̂I

) + int(Rp
+), where Sx̂I

= {x ∈ S | xI = x̂I}. This means that
the patch problems do not only allow to compute and update a set N1 ⊆ f(S) for a
global upper bound set U := U(N), see Proposition 2.5. They also allow to compute
and update a set N2 ⊆ Rp \ (f(Sx̂I

) + int(Rp
+)) and hence a patch level lower bound

set Lx̂I
:= L(N) for an enclosure of the nondominated set of (P(x̂I)), see Proposition

2.7.

12

In analogy to partial lower bounds in single-objective global optimization, these patch
level lower bound sets could be used to obtain a global lower bound set for an enclosure
of the nondominated set of (MOMIP) as

L :=
⋃

x̂I∈EI

Lx̂I
(3.1)

where EI := {xI ∈ XI | ∃ xC ∈ XC : (xC , xI) ∈ E} ⊆ SI denotes the set of so-
called efficient integer assignments. However, as already discussed in [22], such a lower
bounding strategy would in practice enforce the HyPaD algorithm to enumerate all
integer assignments xI ∈ XI . So while being a viable approach in theory, see also
[22, Lemma 6.3], this strategy is only practically relevant in case of sets XI of small
cardinality.
The main lower bounding technique in the HyPaD algorithm works directly on a global
level. More precisely, the global lower bound set L is computed by solving linear
relaxations

min
x,η

η

s.t. fi(x̂) + ∇fi(x̂)⊤(x − x̂) ≤ ηi ∀i ∈ [p] ∀x̂ ∈ X ,
gj(x̂) + ∇gj(x̂)⊤(x − x̂) ≤ 0 ∀j ∈ [q] ∀x̂ ∈ X ,
x ∈ X, η ∈ Rp

(R(X))

of (MOMIP), where X ⊆ Rn+m denotes a finite and nonempty set of linearization
points. Similarly to (SUP(x̂I , l, u)) on the patch level, optimal solutions (x̄, η̄, t̄) of the
single-objective mixed-integer linear optimization problem

min
x,η,t

t

s.t. η − l − t(u − l) ≤ 0p,
fi(x̂) + ∇fi(x̂)⊤(x − x̂) ≤ ηi ∀i ∈ [p] ∀x̂ ∈ X ,
gj(x̂) + ∇gj(x̂)⊤(x − x̂) ≤ 0 ∀j ∈ [q] ∀x̂ ∈ X ,
x ∈ X, η ∈ Rp, t ∈ R

(RSUP(X , l, u))

with [l, u] ⊆ Rp and s(l, u) > 0 yield a weakly nondominated point η̄ ∈ Rp of (R(X)).
In particular, we have that η̄ ̸∈ f(S) + int(Rp

+) and hence these points can be used to
compute and update a global lower bound set for an enclosure of the nondominated
set of (MOMIP), see Proposition 2.7. We use here the term global to clearly indicate
that the lower bound set L is a lower bound set for an enclosure of the nondominated
set of (MOMIP). This allows us to distinguish it from the patch level lower bound sets
Lx̂I

, x̂I ∈ SI from above. For those, it only holds that Nx̂I
⊆ Lx̂I

+Rp
+ and, in general,

not that N ⊆ Lx̂I
+ Rp

+.
In the end, the HyPaD algorithm computes an enclosure of the nondominated set
of (MOMIP) of prescribed width ε > 0 in finitely many steps, see [22, Theorems
6.5 and 6.7]. Thereby, it reduces solving the multi-objective mixed-integer convex
optimization problem (MOMIP) to solving single-objective continuous optimization
problems (SUP(x̂I , l, u)) and single-objective mixed-integer linear optimization prob-
lems (RSUP(X , l, u)). For both these classes of optimization problems fast and reliable
solvers are available. Beyond that, the HyPaD algorithm constantly alternates between
updating the lower bounds on a global level by solving (RSUP(X , l, u)) and updating
the global upper bound set as well as the patch level lower bound set for some x̂I ∈ SI

by solving (SUP(x̂I , l, u)). In particular, the optimal solutions of (RSUP(X , l, u)) de-
termine the integer assignment x̂I ∈ SI for (SUP(x̂I , l, u)).

13

This constant interplay of computations on the global level and on the patch level is the
reason why the algorithm is called hybrid. Also, iteratively performing updates on the
patch level allows the HyPaD algorithm to detect patches that do not contribute to the
overall nondominated set of (MOMIP) early on and to spend as little computational
effort as possible on these patches. In particular, usually only a small share of all
possible patches (P(x̂I)), x̂I ∈ SI is considered at all. This means that, in addition
to not requiring a priori knowledge of the set SI of feasible integer assignments, the
HyPaD algorithm also needs to compute only a small subset of those, see also the
numerical results in Section 5.3.
We provide the pseudocode of the HyPaD algorithm and all its subroutines in the
appendix at the end of this paper. An open source implementation of the algorithm is
publicly available on GitHub [20].

4 Implementation details
While theoretical analysis of solution algorithms, e.g., regarding finiteness, correctness,
and complexity, is important, there often exist different criteria which are used by de-
cision makers in practice to choose an algorithm for their particular problem. In par-
ticular, these end users are often not so much interested in the theoretical performance
analysis of an algorithm, but its performance for their specific type of optimization
problem. For instance, if one algorithm possesses a worse complexity bound than an-
other, it could still be preferred by the user if its computation times for their particular
optimization problem are better. Fortunately, most algorithms possess a certain degree
of freedom that allows to modify the algorithm without loosing the theoretical results
and guarantees. Hence, it is important to identify these degrees of freedom and to dis-
cuss possible modifications of the algorithm that could help to address the additional
criteria of the decision maker.
In this section, we discuss two aspects of the HyPaD algorithm that fall into this
category. They are mainly treated as a black box in the theoretical analysis in [22],
but could play an important role for the practical application of the algorithm. The
first aspect is the initialization of the overall algorithm as well as the initialization of
the patches, more precisely of the corresponding entries of the integer data structure.
The second aspect is the realization of the Search New Integer Assignment (SNIA)
procedure. This is a fallback procedure that forces the HyPaD algorithm to compute
a new integer assignment xI ∈ XI in case all previously computed integer assignments
are infeasible or inactive.

4.1 Initialization
For the initialization of the HyPaD algorithm (Algorithm 5), we need a starting point
x̂ ∈ X and an initial area of interest A ⊆ Rp that satisfies Assumption 2.4.
For consistency with [22] where the HyPaD algorithm has been introduced, we provide
A manually and do not compute it within MATLAB for our numerical experiments in
Section 5. More precisely, we choose it to be a box A := [z, Z] with z, Z ∈ Rp such
that f(S) ⊆ int(A). However, if one wants to include a mechanism to compute such an
initial box within MATLAB, then using interval arithmetic (for example via INTLAB
[41]) would be a suitable approach to do that.

14

For certain subclasses of (MOMIP), there also exist more sophisticated approaches
to compute an initial area of interest. An example for multi-objective mixed-integer
quadratic optimization problems is presented in [9].
To obtain a starting point for Algorithm 5, we solve the following single-objective
continuous convex optimization problem which is basically a scalarization of the integer
relaxed formulation of (MOMIP):

min
x,t

t

s.t. f(x) − z − t(Z − z) ≤ 0p,
g(x) ≤ 0q,
x ∈ XC × [lI , uI] ⊆ Rn+m, t ∈ R.

(Pinit)

We denote by (x̄, t̄) an optimal solution of (Pinit). Then we can split x̄ = (x̄C , x̄I) into
a first part with n components and a second part with m components. The starting
point x̂ ∈ X for Algorithm 5 is then obtained by rounding the last m components, i.e.,
x̂ = (x̄C , ⌊x̄I + 0.5e⌋) ∈ X.
Besides the initialization of the overall HyPaD algorithm, we also need to initialize new
entries of the integer data structure D whenever a new feasible integer assignment is
computed. For any such feasible integer assignment x̂I ∈ SI the entry D(x̂I) of the
integer data structure D is used within the HyPaD algorithm to collect and store data
obtained for the patch problem (P(x̂I)). More precisely, each entry D(x̂I) consists of
four components. The first one is a set of lower bounds for the nondominated set Nx̂I

of
(P(x̂I)), denoted by D(x̂I).L. The second one is a boolean value D(x̂I).S that indicates
whether further computations for the patch problem (P(x̂I)) are needed. For example,
this value is set to false in case it is recognized that Nx̂I

does not contribute to the
nondominated set N of (MOMIP), i.e., Nx̂I

∩ N = ∅. We call the integer assignment
x̂I active if D(x̂I).S is set to true and inactive otherwise. All weakly efficient points
x ∈ Sx̂I

of the subproblem (P(x̂I)) computed by the HyPaD algorithm are saved
in the set D(x̂I).E. Analogously, the final component D(x̂I).N contains the weakly
nondominated points y ∈ Rp of (P(x̂I)) that are computed within the algorithm.
In [22] the initialization of D(x̂I) is only roughly outlined. Hence, we show how the
first lower bound z ∈ Rp with f(Sx̂I

) ⊆ {z} + int(Rp
+) for the corresponding patch

problem is computed in more detail in this section. We present here the exact method
that we actually use for our numerical tests. This method is based on the computation
of the ideal point corresponding to (P(x̂I)). For i ∈ [p] we consider the single-objective
continuous convex optimization problem

min
xC

fi(xC , x̂I)
s.t. g(x) ≤ 0q,

xC ∈ XC .

(PI(x̂I , i))

Let x̄i
C be an optimal solution of (PI(x̂I , i)) and denote by z̄i := fi(x̄i

C , x̂I) the corre-
sponding optimal value. Then z̄ = (z̄1, . . . , z̄p) is called the ideal point for the patch
problem corresponding to the integer assignment x̂I ∈ SI . By using a small offset σ > 0,
this allows us to initialize the integer data structure D(x̂I) as shown in Algorithm 1.
One benefit of this particular initialization strategy is that it initializes not only
D(x̂I).L, but also D(x̂I).E and D(x̂I).N . Consequently, not only the patch level lower
bound set D(x̂I).L is initialized. We also obtain p attainable points of (MOMIP),
contained in D(x̂I).N , that can be used to update the global upper bound set U .

15

Algorithm 1 Initialization of D(x̂I) for a new integer assignment x̂I ∈ SI

Input: New integer assignment x̂I ∈ SI , offset σ > 0
Output: Initialized entry D(x̂I) of the integer data structure

1: procedure InitIDS(x̂I)
2: For all i ∈ [p] solve (PI(x̂I , i)) with optimal solution x̄i

C and
optimal value z̄i ∈ R

3: Compute z ∈ f(Sx̂I
) − int(Rp

+) with zi := z̄i − σ for all i ∈ [p]
4: Initialize D(x̂I).L = {z}, D(x̂I).E = {(x̄1

C , x̂I), . . . , (x̄p
C , x̂I)},

D(x̂I).N = {f(x̄1
C , x̂I), . . . , f(x̄p

C , x̂I)}, D(x̂I).S = true
5: end procedure

4.2 Fallback procedure for the computation of new integer
assignments

The HyPaD algorithm is basically an interplay of computing integer assignments xI ∈
XI by solving the single-objective mixed-integer linear problem (RSUP(X , l, u)) with
l, u ∈ Rp, l < u, ∅ ≠ X ⊆ Rn+m, and improving the coverages corresponding to patch
problems (P(x̂I)) for certain feasible integer assignments x̂I ∈ SI . The coverages of
all patches need to be improved only finitely often, see [22, Lemma 6.4]. This is
mainly because after finitely many improvement steps, see Algorithm 7, we have that
w(Lx̂I

, U) ≤ ε. Hence, it can happen that all integer assignments that have been
computed by the HyPaD algorithm at a certain point are either infeasible or inactive,
i.e., the corresponding coverages on the patch level need no further improvement. For
the correctness of the overall algorithm, one needs to ensure that the algorithm will
not get stuck in this situation. This can be achieved by forcing the HyPaD algorithm
to compute a new integer assignment that has not been computed yet. If we denote
by X a set such that

XI := {xI ∈ XI | x = (xC , xI) ∈ X }

contains all the integer assignments that have already been explored, the Search New
Integer Assignment procedure (SNIA), see Algorithm 2, computes such a new integer
assignment. More precisely, this is done in line 2 of the algorithm and this is the only
step that we consider in this section. For more details on the remaining steps and
details of Algorithm 2, we refer to [22].
Concerning the theory presented in [22], it is not important how the new integer as-
signment is computed in line 2 of Algorithm 2 as long as this is done within a finite
number of steps. However, in practice the method to compute a new integer assign-
ment can play an important role, for example in terms of the overall computation time
of the algorithm. In the following, we present and discuss three methods to realize line
2 of Algorithm 2. We make us of the assumption that XI is finite and basically given
as a box XI := [lI , uI] ∩ Zm with lI , uI ∈ Zm. The total number of possible integer
assignments is denoted by k := |XI |.

16

Algorithm 2 Search new integer assignment
Input: Linearization points X , integer data structure D
Output: Updated set X , integer data structure D (, bound sets L, U)

1: procedure SNIA(X , D)
2: Search new x̃ ∈ X such that there exists no x ∈ X with xI = x̃I

and D(x̃I) is not initialized
3: if no such x̃ exists then
4: Let L := {y ∈ D.L | y is nondominated given D.L w.r.t ≤}
5: Terminate HyPaD with output sets L, U
6: else if x̃I ∈ SI then
7: InitIDS(x̃I)
8: else
9: Solve (F(x̃I)) with optimal solution (x̄C , ᾱ)

10: Update linearization points: X = X ∪ {(x̄C , x̃I)}
11: end if
12: end procedure

4.2.1 Full enumeration

The first idea to discuss is a full enumeration of XI . Since there exists a bijection
between XI and [k] we can start with i = 1 and then count up to i = k with each
call of Algorithm 2. If the integer assignment belonging to i ∈ [k] has already been
computed, i.e., is contained in XI , then we just increment i further until we find an
assignment of i that corresponds to a new integer assignment or i > k which indicates
that all integer assignments have already been computed and the algorithm can be
terminated, see line 5 of Algorithm 2.
The full enumeration approach is the cheapest among the three methods presented
in this paper in terms of computation time of Algorithm 2. This is mainly because
this realization of the SNIA procedure avoids the computational overhead and effort of
more advanced procedures like creating certain substructures in the decision space, see
Sections 4.2.2 and 4.2.3. In particular, this makes full enumeration a very good choice
for two scenarios. The first one are problems (MOMIP) where the number k of integer
assignments is relatively small. Then a simple enumeration is just faster than any
other strategy that introduces additional overhead. The second one are such problems
(MOMIP) where promising candidates xI ∈ XI for feasible integer assignments are
known a priori. In that scenario, one could ensure that these candidates are explored
first. However, such specific knowledge regarding the set SI ⊆ XI is usually not given.
In particular, it could be that the feasible integer assignments are explored last by
the full enumeration approach. Especially if there exist only a few feasible integer
assignments and a large number k of possible integer assignments, this could be an
issue. For that reason, one might instead prefer approaches that are guaranteed to
explore the decision space and hence the set XI of integer assignments more evenly
in order to increase the chance to find feasible integer assignments early on. In the
following, we present two approaches that follow exactly this motivation.

17

4.2.2 Dynamic boxes

This approach is a branching technique and searches for a subbox of XI that contains
none of the visited integer assignments xI ∈ XI , see Algorithm 3. Since we adapt the
size of the considered boxes within the algorithm, we call this approach the dynamic
boxes approach. For that algorithm we assume that |XI | < k, which can be checked
beforehand.

Algorithm 3 Computing a new integer assignment by finding an empty subbox of XI

Input: Initial box XI := [lI , uI], set of visited integer assignments XI

Output: New integer assignment x̂I ∈ XI \ XI

1: procedure DynamicSNIA(XI , XI)
2: while true do
3: Compute edge lengths w = uI − lI and branching points b = lI + w/2
4: Compute index of a largest edge length j ∈ argmax({wi, i ∈ [m]})
5: Compute cl =

∣∣∣{xI ∈ XI

∣∣∣ xI j ≤ bj

}∣∣∣ , cg =
∣∣∣{xI ∈ XI

∣∣∣ xI j ≥ bj

}∣∣∣
6: if cl < cg then
7: Update upper bound: uI j = ⌊bj⌋
8: if cl < 1 then
9: break

10: end if
11: else
12: Update lower bound: lI j = ⌈bj⌉
13: if cg < 1 then
14: break
15: end if
16: end if
17: Update set of (relevant) visited integer assignments: XI = XI ∩ [lI , uI]
18: end while
19: Return new integer assignment x̂I = ⌊(lI + uI)/2 + 0.5e⌋
20: end procedure

The idea behind this approach is to search for new integer assignments in the “most
unexplored” areas of XI . This is only a heuristic, but works quite well in practice.
Moreover, since all objective and constraint functions are continuous it is reasonable to
expect that integer assignments that are “close” to each other will also lead to attainable
points in roughly the same area. Hence, in order to evenly explore the criterion space
it makes sense to search for new integer assignments using this approach.
Nevertheless, this method will need an increasing amount of computation time if the
overall number of integer assignments is quite large and XI already contains a lot of
them. This may imply that a lot of branching steps are needed in order to finally find
an empty box (in the sense that it contains no elements of XI) and hence a new integer
assignment.

18

4.2.3 Fixed boxes

This final approach combines the techniques from the previous two sections. More
precisely, it uses a technique to create a predefined number of subboxes of XI and then
computes new integer assignments within those subboxes using full enumeration. As
the number and size of boxes is predefined for this approach, we call it the fixed boxes
approach.

Algorithm 4 Dividing XI into a fixed number of subboxes
Input: Number of branching steps b ∈ N, initial box XI := [lI , uI]
Output: Set BI of subboxes

1: procedure InitSNIA(b, XI)
2: Compute edge lengths w = uI − lI
3: Initialize BI = {XI}
4: for i = 1 : b do
5: Compute index of a largest edge length j ∈ argmax({wi, i ∈ [m]})
6: if wj < 1 then
7: break
8: end if
9: Set B̂I = ∅, d = 0m, dj = ⌈wj/2⌉

10: for B = [l, u] ∈ BI do
11: B̂I = B̂I ∪ {[l, u − d], [l + d, u]}
12: end for
13: Update BI = B̂I , wj = ⌊wj/2⌋
14: end for
15: end procedure

Let b ∈ N be a number of branching steps. Then we compute 2b subboxes of XI

with equal edge lengths using the maximum edge length as branching criterion, see
Algorithm 4. When searching for a new integer assignment (Algorithm 2), we determine
a box BI ∈ BI with minimal |BI ∩ XI |. Within that box BI we search for a new integer
assignment by full enumeration as described in Section 4.2.1.
This approach is the one that is also used within [22] with b = 4. The advantage of this
technique is that the set of boxes BI has to be computed only once in the beginning of
the overall HyPaD algorithm, whereas the dynamic approach in Section 4.2.2 needs to
branch and compute new boxes with each call of Algorithm 2. However, in most cases
the difference between this approach and the dynamic boxes approach is negligible.
Nonetheless, the different approaches can result in very different integer assignments
as shown in Figure 4. In the example from that figure, the dynamic boxes approach
performs four branching/update steps as indicated by the dashed black lines in Figure
4 (a). This finally results in the box highlighted in orange which contains non of
the previously computed integer assignments xI ∈ XI . The new integer assignment
provided by the dynamic boxes approach is the one highlighted in orange.
Figure 4 (b) shows the result of the fixed boxes approach with b = 2, i.e., using
four boxes, for the exact same scenario. Since the box on the lower left contains the
least amount of integer assignments xI ∈ XI , this is the box where the new integer
assignment is computed. Assuming that the full enumeration within this box starts on
the lower left, the integer assignment highlighted in orange is the one that the fixed
boxes approach provides as its output.

19

XI XI

(a) Dynamic boxes approach

XI XI

(b) Fixed boxes approach with b = 2

Figure 4: Computation of a new integer assignment (highlighted in orange)

5 Numerical experiments
In this section, we present numerical results for 35 test instances, see Table 1. Most
test problems are taken from [8], which allows us to compare our algorithm with the
algorithms MOMIX and MOMIX light from that paper. The main motivation to
compare our algorithm with that from [8] is that, to the best of our knowledge, prior
to HyPaD, MOMIX and MOMIX light were the only algorithms that were also able
to solve multi-objective mixed-integer convex optimization problems with an arbitrary
number of objective functions without using a scalarization-first approach. We want
to point out that the instances from [8] are used as test instances in other literature
as well, see [4, 10]. We also included two new test problems (T9), (T10) and another
new scalable test problem (H1). All of the problem formulations can be found in the
appendix at the end of this paper. For a survey and characterization of these and
other test instances for multi-objective mixed-integer nonlinear optimization, we refer
to [16]. A generator for even more test instances is provided in [15].
All results in this section have been computed using MATLAB R2021a on a machine
with Intel Core i9-10920X processor and 32GB of RAM. The average of the results
of bench(5) is: LU = 0.2045, FFT = 0.2127, ODE = 0.3666, Sparse = 0.3919, 2-
D = 0.1968, 3-D = 0.2290. Please be aware that these results of MATLAB’s internal
benchmark function are version specific, see [32]. All single-objective continuous convex
subproblems, in particular (SUP(x̂I , l, u)), have been solved using fmincon. We also
tested other solvers such as IPOPT via the OPTI Toolbox [6], but this did not lead
to a significant difference concerning the overall performance of our algorithm. All
single-objective mixed-integer linear optimization problems (RSUP(X , l, u)) have been
solved using Gurobi 9.0.3 [26]. For all instances we set a time limit of 3600 seconds. If
this limit was exceeded, we indicate that by a “-” in the tables with the results.
For the initial box B = [z, Z] we provided z̃, Z̃ ∈ Rp as presented in Table 1 and chose
zi := z̃i − 10−3 ε, Zi = Z̃i + 10−3 ε for all i ∈ [p]. Here, ε > 0 denotes the upper bound
for the width of the enclosure, which is also provided in Table 1. With the exception
of the first subsection, all results for the HyPaD algorithm have been computed using
the SNIA procedure using fixed boxes (see Section 4.2.3) with b = 4.

20

number name n m ε z̃⊤ Z̃⊤

1 T3 2 1 0.10 (−2, −2) (2, 62)
2 T3 2 10 0.10 (−2, −2) (2, 80)
3 T3 2 20 0.10 (−2, −2) (2, 100)
4 T3 2 30 0.10 (−2, −2) (2, 120)
5 T4 2 1 0.10 (−3, −3) (3, 3)
6 T4 2 2 0.10 (−5, −5) (5, 5)
7 T4 2 3 0.10 (−7, −7) (7, 7)
8 T4 4 1 0.10 (−4, −4) (4, 4)
9 T4 2 10 0.10 (−21, −21) (21, 21)
10 T4 4 10 0.10 (−22, −22) (22, 22)
11 T4 8 10 0.10 (−24, −24) (24, 24)
12 T4 2 20 0.10 (−41, −41) (41, 41)
13 T4 2 20 0.50 (−41, −41) (41, 41)
14 T4 4 20 0.10 (−42, −42) (42, 42)
15 T4 2 30 0.10 (−61, −61) (61, 61)
16 T4 4 30 0.10 (−62, −62) (62, 62)
17 T4 8 30 0.10 (−64, −64) (64, 64)
18 T4 16 30 0.10 (−68, −68) (68, 68)
19 T5 3 1 0.50 (−3, −3, −1) (3, 3, 5)
20 T5 3 1 0.20 (−3, −3, −1) (3, 3, 5)
21 T5 3 1 0.10 (−3, −3, −1) (3, 3, 5)
22 T5 3 1 0.05 (−3, −3, −1) (3, 3, 5)
23 T9 4 4 0.10 (−3, 5) (13, 22)
24 T10 4 4 0.10 (−3, 5) (12, 22)
25 H1 4 10 0.10 (−14, −14) (34, 34)
26 H1 16 10 0.10 (−26, −26) (46, 46)
27 H1 64 10 0.10 (−74, −74) (94, 94)
28 T6 2 1 0.10 (−3, −1) (3, 8.5)
29 T6 2 1 0.05 (−3, −1) (3, 8.5)
30 T6 2 1 0.01 (−3, −1) (3, 8.5)
31 T4 200 2 0.10 (−14, −14) (14, 14)
32 T4 200 4 0.10 (−18, −18) (18, 18)
33 T4 200 6 0.10 (−22, −22) (22, 22)
34 T4 200 8 0.10 (−26, −26) (26, 26)
35 T4 200 10 0.10 (−30, −30) (30, 30)

Table 1: List of all test instances including the number n ∈ N of continuous and m ∈ N
of integer variables as well as the choice for the quality parameter ε > 0 and the lower
and upper bounds for the initial enclosure

21

An open source implementation of the HyPaD algorithm is publicly available on GitHub
[20]. For the results in this paper we used version 1.0 of the algorithm, which is the
same that was used for the numerical results in [22].

5.1 Comparison of fallback procedures for the computation of
new integer assignments

First, we compare the results for different realizations of the SNIA procedure, see also
Section 4.2. In Table 2 a comparison of the overall computation time, the number of
calls of the SNIA procedure, and the computation time needed for the SNIA procedure
for all three approaches from Section 4.2 is provided. A more detailed comparison of
the dynamic boxes and the fixed boxes approach that also contains the number of calls
of the subproblems (RSUP(X , l, u)) and (SUP(x̂I , l, u)) is shown in Tables 3 and 4.
We observe that for most instances there is almost no difference in terms of overall
computation time and the number of calls of SNIA between the full enumeration,
the dynamic boxes, and the fixed boxes approach. In fact, even the number of calls
of (RSUP(X , l, u)) and (SUP(x̂I , l, u)) is almost the same in most cases. This holds
for the dynamic and fixed boxes approach, see Tables 3 and 4, but also for the full
enumeration approach. A possible explanation for this could be that in most cases only
a small number of integer assignments is computed by the SNIA procedure (Algorithm
2), i.e., the procedure is called only a few times. In particular, there are only 3 instances
where more than 1% of the overall computation time of the HyPaD algorithm is spent
on the SNIA procedure. This indicates that in most cases this procedure can really be
considered as a fallback for the rarely occurring case that the HyPaD algorithm has no
more active integer assignments to work with. Hence, the results match the motivation
of the SNIA procedure as presented in [22].
The only instance with noticeable differences between the approaches is instance 17.
While the full enumeration and the dynamic boxes approach could solve that instance,
this was not the case for the fixed boxes approach. What is more, this is the only
instance with a noticeable difference in the number of calls of the SNIA procedure and
the overall computation time between the different approaches. In fact, the dynamic
boxes approach needs roughly three times as many calls of the SNIA procedure as
the full enumeration approach which results in roughly twice the overall computation
time. Nevertheless, that instance seems to be a rare exception in our experiments.
Consequently, the overall choice for one method over the other should not be based on
that one particular result. In fact, we decided to use the fixed boxes approach for all
the results in the remaining part of this paper and also in [22]. It is more predictable
than the dynamic boxes approach in the sense that we know exactly which and how
many boxes are created and it explores the decision space more evenly than the full
enumeration approach.

22

instance full enumeration dynamic boxes fixed boxes (b = 4)
time SNIA time SNIA time SNIA

calls time calls time calls time
1 3,48 2 0,01 3,80 3 0,03 3,42 2 0,01
2 14,01 0 0,00 13,35 0 0,00 13,33 0 0,00
3 391,31 0 0,00 374,66 0 0,00 373,15 0 0,00
4 - - - - - - - - -
5 1,59 1 0,00 1,53 1 0,00 1,48 1 0,00
6 3,57 2 0,03 3,39 2 0,03 3,37 2 0,03
7 5,89 7 0,08 5,47 6 0,07 5,53 7 0,08
8 1,97 1 0,00 1,90 1 0,00 1,87 1 0,00
9 21,51 16 0,16 19,56 12 0,12 19,67 11 0,12

10 31,81 20 0,22 30,92 23 0,25 30,96 23 0,25
11 - - - - - - - - -
12 62,31 30 0,29 60,28 30 0,30 60,61 30 0,31
13 10,06 0 0,00 9,46 0 0,00 9,48
14 105,27 48 0,51 103,51 48 0,52 103,50 48 0,52
15 161,76 60 0,63 160,19 52 0,53 159,89 52 0,59
16 213,62 59 0,68 212,60 58 0,64 213,74 59 0,71
17 304,07 62 0,76 741,70 189 2,18 - - -
18 - - - - - - - - -
19 1,23 3 0,03 1,16 3 0,03 1,06 3 0,03
20 3,44 3 0,03 3,15 3 0,03 3,20 3 0,03
21 9,22 3 0,03 8,74 3 0,03 8,78 3 0,03
22 28,32 3 0,03 27,00 3 0,03 27,22 3 0,03
23 5,85 0 0,00 5,13 0 0,00 5,11 0 0,00
24 5,08 29 0,49 4,80 28 0,49 4,82 28 0,48
25 133,10 0 0,00 202,93 0 0,00 203,08 0 0,00
26 302,17 0 0,00 407,82 0 0,00 406,87 0 0,00
27 1086,03 0 0,00 1378,83 0 0,00 1373,96 0 0,00
28 1,44 1 0,00 1,34 1 0,00 1,34 1 0,00
29 1,89 1 0,00 1,79 1 0,00 1,80 1 0,00
30 6,23 1 0,00 6,14 1 0,00 6,09 1 0,00
31 173,70 10 1,08 158,10 9 0,87 167,77 9 0,92
32 283,52 10 1,03 277,35 9 0,93 270,55 9 0,93
33 460,61 12 1,30 442,61 13 1,30 416,04 14 1,46
34 612,28 13 1,37 634,94 14 1,39 629,94 14 1,43
35 824,15 14 1,47 855,49 16 1,61 869,63 17 1,74

Table 2: Comparison of overall computation times (in seconds), the number of calls of
the SNIA procedure, and time (in seconds) spent on the SNIA procedure for all three
realizations of the SNIA procedure

23

in
st

an
ce

dy
na

m
ic

bo
xe

s
fix

ed
bo

xe
s

(b
=

4)
tim

e
#

(R
SU

P)
#

(S
U

P)
SN

IA
tim

e
#

(R
SU

P)
#

(S
U

P)
SN

IA
ca

lls
tim

e
ca

lls
tim

e
1

3.
80

15
15

3
0.

03
3.

42
15

15
2

0.
01

2
13

.3
5

21
8

15
0

0
13

.3
3

21
8

15
0

0.
00

3
37

4.
66

26
98

15
0

0
37

3.
15

26
98

15
0

0.
00

4
-

-
-

-
-

-
-

-
-

-
5

1.
53

30
45

1
0.

00
1.

48
30

45
1

0.
00

6
3.

39
70

98
2

0.
03

3.
37

70
98

2
0.

03
7

5.
47

11
1

15
1

6
0.

07
5.

53
11

2
15

1
7

0.
08

8
1.

90
30

62
1

0.
00

1.
87

30
62

1
0.

00
9

19
.5

6
33

4
46

0
12

0.
12

19
.6

7
33

5
46

0
11

0.
12

10
30

.9
2

38
7

67
9

23
0.

25
30

.9
6

38
8

68
4

23
0.

25
11

-
-

-
-

-
-

-
-

-
-

12
60

.2
8

66
2

90
5

30
0.

30
60

.6
1

66
4

90
8

30
0.

31
13

9.
46

19
0

81
0

0
9.

48
19

0
81

0
0.

00
14

10
3.

51
77

27
13

50
48

0.
52

10
3.

50
77

6
13

55
48

0.
52

15
16

0.
19

10
39

14
04

52
0.

53
15

9.
89

10
37

14
00

52
0.

59
16

21
2.

60
10

89
19

45
58

0.
64

21
3.

74
10

92
19

50
59

0.
71

17
74

1.
70

19
61

34
23

18
9

2.
18

-
-

-
-

-
18

-
-

-
-

-
-

-
-

-
-

Ta
bl

e3
:C

om
pa

ris
on

of
th

ed
yn

am
ic

bo
xe

sa
nd

th
efi

xe
d

bo
xe

sa
pp

ro
ac

h
fo

rt
he

SN
IA

pr
oc

ed
ur

er
eg

ar
di

ng
co

m
pu

ta
tio

n
tim

es
(in

se
co

nd
s)

an
d

th
e

nu
m

be
r

of
ca

lls
of

su
bp

ro
bl

em
s

an
d

su
br

ou
tin

es
(p

ar
t

1)

24

in
st

an
ce

dy
na

m
ic

bo
xe

s
fix

ed
bo

xe
s

(b
=

4)
tim

e
#

(R
SU

P)
#

(S
U

P)
SN

IA
tim

e
#

(R
SU

P)
#

(S
U

P)
SN

IA
ca

lls
tim

e
ca

lls
tim

e
19

1.
16

21
17

3
0.

03
1.

06
20

15
3

0.
03

20
3.

15
35

14
4

3
0.

03
3.

20
35

14
9

3
0.

03
21

8.
74

46
54

9
3

0.
03

8.
78

46
54

9
3

0.
03

22
27

.0
0

59
18

34
3

0.
03

27
.2

2
60

18
52

3
0.

03
23

5.
13

60
10

8
0

0
5.

11
60

10
8

0
0.

00
24

4.
80

66
71

28
0.

49
4.

82
66

71
28

0.
48

25
20

2.
93

63
4

36
3

0
0

20
3.

08
63

4
36

3
0

0.
00

26
40

7.
82

86
8

57
5

0
0

40
6.

87
86

8
57

5
0

0.
00

27
13

78
.8

3
94

0
91

2
0

0
13

73
.9

6
94

0
91

2
0

0.
00

28
1.

34
27

36
1

0.
00

1.
34

27
36

1
0.

00
29

1.
79

32
64

1
0.

00
1.

80
32

64
1

0.
00

30
6.

14
44

37
9

1
0.

00
6.

09
44

37
9

1
0.

00
31

15
8.

10
15

8
59

4
9

0.
87

16
7.

77
15

6
61

8
9

0.
92

32
27

7.
35

23
0

90
0

9
0.

93
27

0.
55

22
8

88
1

9
0.

93
33

44
2.

61
32

1
12

38
13

1.
30

41
6.

04
31

1
11

21
14

1.
46

34
63

4.
94

40
7

15
23

14
1.

39
62

9.
94

40
5

15
30

14
1.

43
35

85
5.

49
48

7
18

15
15

1.
61

86
9.

63
49

0
18

15
17

1.
74

Ta
bl

e4
:C

om
pa

ris
on

of
th

ed
yn

am
ic

bo
xe

sa
nd

th
efi

xe
d

bo
xe

sa
pp

ro
ac

h
fo

rt
he

SN
IA

pr
oc

ed
ur

er
eg

ar
di

ng
co

m
pu

ta
tio

n
tim

es
(in

se
co

nd
s)

an
d

th
e

nu
m

be
r

of
ca

lls
of

su
bp

ro
bl

em
s

an
d

su
br

ou
tin

es
(p

ar
t

2)

25

5.2 Influence of the choice of ε

In this section, we briefly discuss the effects of the choice of the quality parameter ε.
For this, we consider the tri-objective test problem (T5) from [8] that also appears in
[4]. We have computed an enclosure of the nondominated set of (T5) for four different
choices of ε ∈ {0.5, 0.2, 0.1, 0.05}, see instances 19–22 in Table 1.
Considering the computation time (see Table 5), we notice that halving ε roughly triples
the overall computation time. This also holds for the number of calls of fmincon within
the HyPaD algorithm that make up roughly 80% of the overall computation time. This
is not surprising since in this examples there are exactly five integer assignments, which
are all feasible integer assignments. All the corresponding patches contribute to the
nondominated set and hence, the algorithm basically explores all these integer assign-
ments in the first iterations and computes the overall enclosure of the nondominated
set as a combination of the coverages corresponding to the patches. Since this happens
almost entirely on the patch level, the calls of fmincon make up most of the com-
putation time. This behavior is quite typical for a small number of possible integer
assignments.

instance ε time |L| |U | fmincon
calls time

19 0.50 1.06 35 61 69 0.90
20 0.20 3.20 303 329 218 2.57
21 0.10 8.78 1103 1129 629 7.02
22 0.05 27.22 3709 3735 1946 20.90

Table 5: Results for (T5) with different choices of ε

Besides the overall computation time, another important aspect of the choice of ε is
the number of boxes at the end of the algorithm or, more precisely, the number of
lower and upper bounds that need to be computed. These numbers are also shown
in Table 5. Since the number of lower and upper bounds affects the loop sizes within
the HyPaD algorithm and its subroutines, one should be clear that each iteration of
the algorithm (i.e., each run of the main while loop) gets more expensive in terms of
computation time when the number of lower and upper bounds increases. Hence, there
is a noticeable trade-off between the quality of the enclosure and the computation time
of the HyPaD algorithm. A visualization of the enclosures for all four choices of ε is
given in Figure 5.

5.3 Number of explored patches
A key ingredient of the HyPaD algorithm is that, for instance compared to [5], it does
not assume prior knowledge of the set SI of feasible integer assignments. In fact, one
aim of the algorithm is to compute as few integer assignments as possible. This is also
the reason for the constant change between computations for the global lower bound
set by solving (RSUP(X , l, u)) and computations for the patch level lower bound sets
by solving (SUP(x̂I , l, u)) for some x̂I ∈ SI , see also the explanations in Section 3. In
the following, we provide numerical evidence that this strategy works out as expected.

26

(a) ε = 0.5 (b) ε = 0.2

(c) ε = 0.1 (d) ε = 0.05

Figure 5: Enclosure for (T5) computed by the HyPaD algorithm for different values of
the quality parameter ε

Table 6 shows both the absolute number P ∈ N and the share P/ |SI | of feasible
integer assignments computed by the HyPaD algorithm. The table contains the results
for all test instances with ε = 0.1 that have been solved within the time limit of
3600 seconds and where XI = SI . As shown in the survey and classification of test
instances from [16], the latter is satisfied for all instances of (T4), (T5), (T6), and (H1).
Since we only consider instances with XI = SI , the number P indeed represents the
number of all integer assignments computed by the HyPaD algorithm. In particular,
a small number of explored patches, i.e., feasible integer assignments computed by the
algorithm, cannot arise due to other influences such as a large number of infeasible
integer assignments that are computed first.
There are three key observations regarding the results from Table 6. The first obser-
vation is that while an increasing number |SI | can also result in an increasing number
P of explored patches, the share P/ |SI | usually decreases. The best example for this
are instances 31 to 35 where the share decreases from 76.00% for |SI | = 52 to less than
0.01% for |SI | = 510. In fact, the share for instance 35 is only 6.04 · 10−6.

27

instance problem n m |SI | flag time P P/ |SI |
5 T4 2 1 5 0 1.48 5 100.00%
6 T4 2 2 25 1 3.37 13 52.00%
7 T4 2 3 125 1 5.53 21 16.80%
8 T4 4 1 5 0 1.87 5 100.00%
9 T4 2 10 510 1 19.67 59 < 0.01%

10 T4 4 10 510 1 30.96 65 < 0.01%
12 T4 2 20 520 1 60.61 117 < 0.01%
14 T4 4 20 520 1 103.50 130 < 0.01%
15 T4 2 30 530 1 159.89 184 < 0.01%
16 T4 4 30 530 1 213.74 182 < 0.01%
21 T5 3 1 5 0 8.78 5 100.00%
25 H1 4 10 510 1 203.08 399 < 0.01%
26 H1 16 10 510 1 406.87 509 0.01%
27 H1 64 10 510 1 1373.96 492 0.01%
28 T6 2 1 5 0 1.34 5 100.00%
31 T4 200 2 25 1 167.77 19 76.00%
32 T4 200 4 625 1 270.55 28 4.48%
33 T4 200 6 56 1 416.04 40 0.26%
34 T4 200 8 58 1 629.94 48 0.01%
35 T4 200 10 510 1 869.63 59 < 0.01%

Table 6: Absolute number P and share P/ |SI | of feasible integer assignments computed
by the HyPaD algorithm, overall computation time (in seconds) and exitflag

28

The second observation is that for all instances with only five possible integer as-
signments, i.e., instances 5, 8, 21, and 28, all of these integer assignments have been
computed by the HyPaD algorithm. What is more, for these instances the lower bound
set for the enclosure of the overall nondominated set of (MOMIP) has indeed been com-
puted as a combination of the patch level lower bound sets. This is indicated in Table 6
by the value of the algorithm’s exitflag. It is 1 in case the HyPaD algorithm terminates
using the global lower bound set obtained by solving (RSUP(X , l, u)), see also line 8
of Algorithm 5, and 0 in case it terminates using the patch level lower bound sets for
the enclosure, see line 5 of Algorithm 2. Hence, for this particular kind of optimiza-
tion problems the HyPaD algorithm reduces the computation of the enclosure for the
nondominated set of the multi-objective mixed-integer convex optimization problem
(MOMIP) to mostly solving single-objective continuous convex optimization problems
(SUP(x̂I , l, u)).

(a) Results for m = 1 (test instance 5) (b) Results for m = 2 (test instance 6)

Figure 6: Comparison of the enclosure computed by the HyPaD algorithm for (T4)
with n = 2 continuous and m ∈ {1, 2} integer variables

In Figure 6 we provide a visual comparison of the enclosures computed by the HyPaD
algorithm for test instances 5 and 6. Both test instances correspond to (T4) with n = 2
continuous variables. While test instance 5 has only a single integer variable (m = 1)
and hence only five possible integer assignments, test instance 6 has m = 2 integer
variables and |XI | = |SI | = 25 possible integer assignments. In particular, for test
instance 5 the HyPaD algorithm terminates with exitflag 0 and computes the final lower
bound set using the patch level lower bound sets Lx̂I

. For test instance 6 it terminates
with exitflag 1 and uses the global lower bound set L, which is updated using weakly
efficient solutions of (R(X)). This also results in structural differences of the enclosures
as shown in Figure 7. For test instance 5 the coverages of the nondominated sets of the
patch problems are very homogeneous. This is mainly because all of the patch problems
possess a similar structure and their nondominated sets have no overlap. Hence, the
patch level lower bound sets are almost identical for all patch problems despite an offset
based on the corresponding integer assignments. In Figure 7 (b), one clearly sees that
for test instance 6 the lower bound set is computed globally. In particular, there is not
the same kind of similarity of the lower bounds with regard to the nondominated sets
of the different patch problems.

29

The special structure of the lower bound set for test instance 5 is related to the so-
called separable structure (also separability) of (T4). For more details on that, we
refer to [15]. An even broader classification of the properties of test instances for
multi-objective mixed-integer nonlinear optimization is provided in [16].

(a) Results for test instance 5 (m = 1) (b) Results for test instance 6 (m = 2)

Figure 7: Comparison of the enclosure structure for test instances 5 and 6 (visualization
of the criterion space restricted to [−2, 1]2)

The third observation with regard to the results from Table 6 is that, in general, only
a small number of feasible integer assignments needs to be computed by the HyPaD
algorithm. For most instances from Table 6, especially those with a large number
of feasible integer assignments, only 0.01% or even less of them had to be computed
by the HyPaD algorithm in order to compute an enclosure of the nondominated set of
prescribed quality. This also means that the global lower bounding strategy successfully
avoids the need of a full enumeration of all feasible integer assignments in order to
compute an enclosure. This was exactly the motivation to introduce this strategy in
[22], see also Section 3.

5.4 Comparison of HyPaD and MOMIX
In this final section, we compare the HyPaD algorithm with the MOMIX algorithm
from [8]. To make this comparison as fair as possible, we decided not to use the results
from [8], but to compute our own results using the MOMIX code provided on GitHub
[7]. Hence, both algorithms are using the same machine, the same solvers for the
subproblems and so on.
Before we present the actual results, we recap briefly the different properties and oper-
ation modes of MOMIX. The MOMIX algorithm includes a procedure to obtain tight
lower bounds by solving a single-objective mixed-integer convex optimization problem
that is basically of the same type as the original problem (MOMIP). For example,
if the original problem is quadratically constrained, this holds for the subproblems as
well. Most MIP solvers (e.g., Gurobi [26] or CPLEX [29]) can solve such optimiza-
tion problems as long as the objective and constraint functions are at least quadratic.
Since not all convex functions are quadratic functions, there is also a weaker version
of MOMIX, called MOMIX light, that uses another procedure for the computation of
lower bounds. That procedure is based on solving a single-objective continuous convex
optimization problem (using fmincon).

30

Both variants of the algorithm can use two different branching strategies, see [8, Section
4.1]. The strategy (br1) is an integer first branching strategy. The second strategy (br2)
uses the largest edge length as branching criterion, even if it is related to a continuous
variable. In total this leads to four different operation modes of the MOMIX algorithm
and we present the results for all of them.
One difference between MOMIX and the HyPaD algorithm is that MOMIX is a branch-
and-bound approach in the decision space while the HyPaD algorithm operates almost
entirely in the criterion space. Since MOMIX works in the decision space, it also
computes a coverage of the set of efficient solutions. This is not the case for the
HyPaD algorithm. This also leads to a difference with respect to the quality criteria.
While we use the width of the enclosure w(C), which is a criterion space based measure,
MOMIX uses the box width in the decision space as termination criterion. This box
width is limited by an input parameter δ > 0 in the same way that the width of the
enclosure computed by the HyPaD algorithm is limited by the parameter ε > 0. At
least for MOMIX (not MOMIX light) there is a result related to the width concept of
the enclosure C, see [8, Theorem 3.13]. For most instances we set ε = δ = 0.1 and for
instances 19–22 we fixed δ = 0.5 and varied the parameter ε to demonstrate that for
the overall qualitative comparison of the two algorithms this has no major impact.
Another difference between HyPaD and MOMIX is that the single-objective mixed-
integer subproblem (RSUP(X , l, u)) within the HyPaD algorithm is always linear, in-
dependently of the type of objective and constraint functions of (MOMIP). As a result,
it can always use standard MILP solvers (e.g., Gurobi [26] or CPLEX [29]) to solve
these subproblems, even if one of the objective or constraint functions is non-quadratic.
Since we include the results for both MOMIX and MOMIX light, we leave it to the
reader to decide which of them would make for the “fairest” comparison to the HyPaD
algorithm. All results are shown in Table 7.
First of all, MOMIX light has either high computation times or exceeds the time limit
of 3600 seconds for most of the instances. Thus, when MOMIX is not an option (e.g., in
case of non-quadratic objective or constraint functions), one should definitely consider
using HyPaD over MOMIX light. One perfect example for this setting is the test
problem (T6) (instances 28–30) which has a non-quadratic objective function. Even
if there are only n = 2 continuous variables and a single integer variable (m = 1),
MOMIX light needs more than 1000 seconds to solve the corresponding instance with
δ = 0.1. HyPaD on the other hand profits from the small number of possible integer
assignments and computes an enclosure in less than 10 seconds even for ε = 0.01. For
a visual comparison of the results see Figure 8.
Also MOMIX has its strengths when it can be applied, i.e., when all objective and
constraint functions are quadratic. For the instances of problem (T3) with 20 and
30 integer variables, i.e., instances 3 and 4, MOMIX with (br2) clearly outperforms
HyPaD. However, this is only one of two (considering only MOMIX and not MOMIX
light) possible configurations of MOMIX and it is an open question whether there
is a method to detect beforehand that this is the right configuration to choose. In
particular, MOMIX with (br2) is not always the best option, see for example instance
21. A visualization of the results for test instance 3 is given in Figure 9.

31

instance HyPaD MOMIX light MOMIX
(br1) (br2) (br1) (br2)

1 3.42 637.06 629.49 8.04 7.85
2 13.33 - - 13.86 13.53
3 373.15 - - 369.19 26.12
4 - - - - 45.19
5 1.48 171.48 128.03 22.65 24.41
6 3.37 2497.56 1980.76 129.13 135.79
7 5.53 - - 752.27 773.47
8 1.87 - - 1334.60 1318.00
9 19.67 - - - -

10 30.96 - - - -
11 - - - - -
12 60.61 - - - -
14 103.50 - - - -
15 159.89 - - - -
16 213.74 - - - -
17 - - - - -
18 - - - - -
21 8.78 - - 89.72 105.58
22 27.22 - - 89.72 105.58
28 1.34 - 1385.72
29 1.80 - 1385.72
30 6.09 - 1385.72
31 167.77 - - - -
32 270.55 - - - -
33 416.04 - - - -
34 629.94 - - - -
35 869.63 - - - -

Table 7: Comparison of computation times (in seconds) for HyPaD, MOMIX, and
MOMIX light

32

(a) Enclosure computed by HyPaD

-4 -2 0 2 4

f
1

-2

0

2

4

6

8

10

f 2

(b) Representation computed by
MOMIX

Figure 8: Results for test instance 30

(a) Enclosure computed by HyPaD

-2 -1 0 1

f
1

29

30

31

32

33

34
f 2

(b) Representation computed by
MOMIX

Figure 9: Results for test instance 3

Regarding the instances of problem (T4), i.e., instances 5–18 and 31–35, HyPaD is
performing better than MOMIX and is also able to solve more of the given instances
within the specified time limit of 3600 seconds. For a comparison of the results, see
the visualization of test instance 8 in Figure 10. Compared to instances 3 and 4 where
MOMIX was able to handle a large number of integer variables, this seems not to be
the case for problem (T4), see instances 9–18.
We also used (T4) to test the performance of HyPaD on instances with a large number
of variables. For this reason, we chose a large number of continuous variables (n = 200)
and varied the number of integer variables m ∈ {2, 4, 6, 8, 10}, see instances 31–35. We
also tested instances with m ∈ {10, 20, 30} integer variables and a smaller number
of continuous variables, see instances 9–18. First of all, we realize that all instances
with n = 200 continuous variables were solved within the time limit of 3600 seconds.
For m ∈ {10, 20, 30} the algorithm successfully solved those instances with n < 8
continuous variables, but for n = 8 it exceeded the time limit, see instances 11 and
17. In particular, the HyPaD algorithm was able to solve instance 35 with n = 200
and m = 10 within 869.63 seconds, but exceeded the time limit for instance 11 with

33

n = 8 and m = 10. A possible explanation for this could be that the nondominated set
of instance 11 has a more complex (more non-linear) shape than the one of instance
35. Thus the nondominated set of instance 35 is probably better approximated by the
nondominated set of the corresponding linearized problems (R(X)), which leads to a
faster convergence of the global lower bound set L towards the upper bound set U in
that setting.

(a) Enclosure computed by HyPaD

-4 -2 0 2 4

f
1

-4

-2

0

2

4

f 2

(b) Representation computed by
MOMIX

Figure 10: Results for test instance 8

Also for problem (T5) in instances 21 and 22 HyPaD is clearly ahead of MOMIX. The
HyPaD algorithm is able to solve the problem for ε = 0.1 within only 9 seconds and
even for ε = 0.05 this only increases to 27 seconds which is roughly a third of the best
performance obtained by MOMIX with (br1).

Acknowledgements
This work was funded by the Deutsche Forschungsgemeinschaft (DFG, German Re-
search Foundation) - Project-ID 432218631.

References
[1] N. Adelgren and A. Gupte, Branch-and-bound for biobjective mixed-integer

linear programming, INFORMS Journal on Computing, 34 (2022), pp. 909–933.

[2] N. Boland, H. Charkhgard, and M. Savelsbergh, A criterion space
search algorithm for biobjective mixed integer programming: The triangle split-
ting method, INFORMS Journal on Computing, 27 (2015), pp. 597–618.

[3] P. Bonami, L. T. Biegler, A. R. Conn, G. Cornuéjols, I. E. Gross-
mann, C. D. Laird, J. Lee, A. Lodi, F. Margot, N. Sawaya, and
A. Wächter, An algorithmic framework for convex mixed integer nonlinear pro-
grams, Discrete Optimization, 5 (2008), pp. 186–204.

34

[4] R. S. Burachik, C. Y. Kaya, and M. M. Rizvi, Algorithms for generating
pareto fronts of multi-objective integer and mixed-integer programming problems,
Engineering Optimization, 54 (2021), pp. 1413–1425.

[5] G. Cabrera-Guerrero, M. Ehrgott, A. J. Mason, and A. Raith, Bi-
objective optimisation over a set of convex sub-problems, Annals of Operations
Research, 319 (2022), pp. 1507–1532.

[6] J. Currie, OPTI toolbox. https://github.com/jonathancurrie/OPTI. Ac-
cessed 2023-02-23.

[7] M. De Santis, G. Eichfelder, J. Niebling, and S. Rocktäschel,
MOMIX. https://github.com/mariannadesantis/MOMIX. Accessed 2023-02-23.

[8] , Solving multiobjective mixed integer convex optimization problems, SIAM
Journal on Optimization, 30 (2020), pp. 3122–3145.

[9] M. De Santis, G. Eichfelder, D. Patria, and L. Warnow, Using dual
relaxations in multiobjective mixed-integer quadratic programming, Preprint 23303,
Optimization Online, 2023.

[10] E. Diessel, An adaptive patch approximation algorithm for bicriteria convex
mixed-integer problems, Optimization, 71 (2022), pp. 4321–4366.

[11] M. A. Duran and I. E. Grossmann, An outer-approximation algorithm for a
class of mixed-integer nonlinear programs, Mathematical Programming, 36 (1986),
pp. 307–339.

[12] K. Dächert and K. Teichert, An improved hyperboxing algorithm for calcu-
lating a Pareto front representation, Preprint 2003.14249, arXiv, 2020.

[13] M. Ehrgott and X. Gandibleux, Bound sets for biobjective combinatorial
optimization problems, Computers & Operations Research, 34 (2007), pp. 2674–
2694.

[14] G. Eichfelder, Twenty years of continuous multiobjective optimization in the
twenty-first century, EURO Journal on Computational Optimization, 9 (2021).
100014.

[15] G. Eichfelder, T. Gerlach, and L. Warnow, A test instance generator for
multiobjective mixed-integer optimization, Mathematical Methods of Operations
Research, (2023). DOI: 10.1007/s00186-023-00826-z.

[16] , Test instances for multiobjective mixed-integer nonlinear optimization,
Preprint 22458, Optimization Online, 2023.

[17] G. Eichfelder, P. Kirst, L. Meng, and O. Stein, A general branch-
and-bound framework for continuous global multiobjective optimization, Journal
of Global Optimization, 80 (2021), pp. 195–227.

[18] G. Eichfelder, O. Stein, and L. Warnow, A solver for multiobjective mixed-
integer convex and nonconvex optimization, Journal of Optimization Theory and
Applications, (2023). DOI: 10.1007/s10957-023-02285-2.

35

https://github.com/jonathancurrie/OPTI
https://github.com/mariannadesantis/MOMIX

[19] G. Eichfelder and L. Warnow, An approximation algorithm for multi-
objective optimization problems using a box-coverage, Journal of Global Optimiza-
tion, 83 (2022), pp. 329–357.

[20] , HyPaD. https://github.com/LeoWarnow/HyPaD, 2022. Accessed 2023-02-
23.

[21] , Advancements in the computation of enclosures for multi-objective optimiza-
tion problems, European Journal of Operational Research, 310 (2023), pp. 315–
327.

[22] , A hybrid patch decomposition approach to compute an enclosure for multi-
objective mixed-integer convex optimization problems, Mathematical Methods of
Operations Research, (2023). DOI: 10.1007/s00186-023-00828-x.

[23] S. Esmaeili, M. Bashiri, and A. Amiri, An exact criterion space search algo-
rithm for a bi-objective blood collection problem, European Journal of Operational
Research, 311 (2023), pp. 210–232.

[24] S. L. Faulkenberg and M. M. Wiecek, On the quality of discrete representa-
tions in multiple objective programming, Optimization and Engineering, 11 (2010),
pp. 423–440.

[25] R. Fletcher and S. Leyffer, Solving mixed integer nonlinear programs by
outer approximation, Mathematical Programming, 66 (1994), pp. 327–349.

[26] Gurobi Optimization LLC, Gurobi. https://www.gurobi.com/. Accessed
2023-04-17.

[27] A. Göpfert, H. Riahi, C. Tammer, and C. Zalinescu, Variational Methods
in Partially Ordered Spaces, Springer, 2003.

[28] P. Halffmann, L. E. Schäfer, K. Dächert, K. Klamroth, and
S. Ruzika, Exact algorithms for multiobjective linear optimization problems with
integer variables: A state of the art survey, Journal of Multi-Criteria Decision
Analysis, 29 (2022), pp. 341–363.

[29] IBM, CPLEX optimizer. https://www.ibm.com/analytics/cplex-optimizer.
Accessed 2023-04-17.

[30] K. Klamroth, R. Lacour, and D. Vanderpooten, On the representation of
the search region in multi-objective optimization, European Journal of Operational
Research, 245 (2015), pp. 767–778.

[31] M. Link and S. Volkwein, Adaptive piecewise linear relaxations for enclosure
computations for nonconvex multiobjective mixed-integer quadratically constrained
programs, Journal of Global Optimization, 87 (2023), pp. 97–132.

[32] MATLAB, Matlab bench documentation. https://www.mathworks.com/help/
matlab/ref/bench.html. Accessed 2023-04-17.

[33] G. Mavrotas and D. C. Diakoulaki, A branch and bound algorithm for mixed
zero-one multiple objective linear programming, European Journal of Operational
Research, 107 (1998), pp. 530–541.

36

https://github.com/LeoWarnow/HyPaD
https://www.gurobi.com/
https://www.ibm.com/analytics/cplex-optimizer
https://www.mathworks.com/help/matlab/ref/bench.html
https://www.mathworks.com/help/matlab/ref/bench.html

[34] , Multi-criteria branch and bound: A vector maximization algorithm for mixed
0-1 multiple objective linear programming, Applied Mathematics and Computa-
tion, 171 (2005), pp. 53–71.

[35] L. Paquete, B. Schulze, M. Stiglmayr, and A. C. Lourenço, Comput-
ing representations using hypervolume scalarizations, Computers & Operations
Research, 137 (2022). 105349.

[36] A. Pascoletti and P. Serafini, Scalarizing vector optimization problems,
Journal of Optimization Theory and Applications, 42 (1984), pp. 499–524.

[37] T. Perini, N. Boland, D. Pecin, and M. Savelsbergh, A criterion space
method for biobjective mixed integer programming: The boxed line method, IN-
FORMS Journal on Computing, 32 (2020), pp. 16–39.

[38] A. Przybylski, K. Klamroth, and R. Lacour, A simple and efficient
dichotomic search algorithm for multi-objective mixed integer linear programs,
Preprint 1911.08937, arXiv, 2019.

[39] S. A. B. Rasmi and M. Türkay, GoNDEF: an exact method to generate all
non-dominated points of multi-objective mixed-integer linear programs, Optimiza-
tion and Engineering, 20 (2019), pp. 89–117.

[40] R. Roozbahani, B. Abbasi, and S. Schreider, Optimal allocation of water
to competing stakeholders in a shared watershed, Annals of Operations Research,
229 (2015), pp. 657–676.

[41] S. R. Rump, INTLAB - INTerval LABoratory, in Developments in Reliable Com-
puting, T. Csendes, ed., Kluwer Academic Publishers, Dordrecht, 1999, pp. 77–
104.

[42] S. Ruzika and M. M. Wiecek, Approximation methods in multiobjective pro-
gramming, Journal of Optimization Theory and Applications, 126 (2005), pp. 473–
501.

[43] S. Sayın, Measuring the quality of discrete representations of efficient sets in mul-
tiple objective mathematical programming, Mathematical Programming, 87 (2000),
pp. 543–560.

[44] S. K. Singh and M. Goh, Multi-objective mixed integer programming and an
application in a pharmaceutical supply chain, International Journal of Production
Research, 57 (2018), pp. 1214–1237.

[45] B. Soylu and G. B. Yıldız, An exact algorithm for biobjective mixed inte-
ger linear programming problems, Computers & Operations Research, 72 (2016),
pp. 204–213.

[46] T. Stidsen and K. A. Andersen, A hybrid approach for biobjective optimiza-
tion, Discrete Optimization, 28 (2018), pp. 89–114.

[47] A.-J. Ulusoy, F. Pecci, and I. Stoianov, Bi-objective design-for-control of
water distribution networks with global bounds, Optimization and Engineering, 23
(2021), pp. 527–577.

37

[48] P. Xidonas, G. Mavrotas, and J. Psarras, Equity portfolio construction
and selection using multiobjective mathematical programming, Journal of Global
Optimization, 47 (2010), pp. 185–209.

[49] J. Xu and W. Yang, Multi-objective steel plate cutting optimization problem
based on real number coding genetic algorithm, Scientific Reports, 12 (2022). 22472.

[50] K. Yang, M. Emmerich, A. Deutz, and T. Bäck, Efficient computation of
expected hypervolume improvement using box decomposition algorithms, Journal of
Global Optimization, 75 (2019), pp. 3–34.

[51] Özgür Özpeynirci and M. Köksalan, An exact algorithm for finding extreme
supported nondominated points of multiobjective mixed integer programs, Manage-
ment Science, 56 (2010), pp. 2302–2315.

Appendix

Test problems
The following four test problems are taken from [8]. The first one is a bi-objective
optimization problem with quadratic objective and constraint functions. It has n = 2
continuous variables and an arbitrary number m ∈ N of integer variables.

min
(

x1, x2 +
2+m∑
i=3

10(xi − 0.4)2
)⊤

s.t.
2+m∑
i=1

x2
i ≤ 4,

xC ∈ [−2, 2]2,
xI ∈ [−2, 2]m ∩ Zm

(T3)

The next test problem is also bi-objective. It has linear objective functions but a
quadratic constraint function. The number m ∈ N of integer variables can be chosen
arbitrarily. The number n ∈ N of continuous variables has to be even.

min
n/2∑

i=1
xi +

n+m∑
i=n+1

xi,
n∑

i=n/2+1
xi −

n+m∑
i=n+1

xi

⊤

s.t.
n∑

i=1
x2

i ≤ 1,

xC ∈ [−2, 2]n,

xI ∈ [−2, 2]m ∩ Zm

(T4)

The following tri-objective problem has a fixed number of n = 3 continuous and m = 1
integer variables. It has a quadratic objective functions as well as a quadratic constraint
function.

min (x1 + x4, x2 − x4, x3 + x2
4)⊤ s.t.

3∑
i=1

x2
i ≤ 1,

xC ∈ [−2, 2]3,
xI ∈ [−2, 2] ∩ Z

(T5)

38

The last test problem from [8] is also quadratically constrained, but has a non-quadratic
objective function. Both, the number n = 2 of continuous and the number m = 1 of
integer variables are fixed.

min (x1 + x3, x2 + exp(−x3))⊤ s.t. x2
1 + x2

2 ≤ 1,

xC ∈ [−2, 2]2,
xI ∈ [−2, 2] ∩ Z

(T6)

The next two test problems are new and have been created to investigate the influence
of a quadratic over a non-quadratic objective function. Both problems have quadratic
constraint functions and a fixed number of n = 4 continuous and m = 4 integer
variables. The first problem is the one with purely linear (and thus quadratic) objective
functions.

min
(

x1 + x3 + x5 + x7
x2 + x4 + x6 + x8

)
s.t. x2

1 + x2
2 ≤ 1,

x2
3 + x2

4 ≤ 1,

(x5 − 2)2 + (x6 − 5)2 ≤ 10,

(x7 − 3)2 + (x8 − 8)2 ≤ 10,

xC ∈ [−20, 20]4,
xI ∈ [−20, 20]4 ∩ Z4

(T9)

Test problem (T10) is basically the same as (T9) just with a slightly changed first
objective function that is now non-quadratic.

min
(

x1 + x3 + x5 + exp(x7) − 1
x2 + x4 + x6 + x8

)
s.t. x2

1 + x2
2 ≤ 1,

x2
3 + x2

4 ≤ 1,

(x5 − 2)2 + (x6 − 5)2 ≤ 10,

(x7 − 3)2 + (x8 − 8)2 ≤ 10,

xC ∈ [−20, 20]4,
xI ∈ [−20, 20]4 ∩ Z4

(T10)

We want to mention that for both problems (T9) and (T10) the boxes XC and XI could
have been chosen smaller. However, we wanted the HyPaD algorithm to compute the
final approximation using the global lower bound set L that is computed using the
optimal solutions of the mixed-integer linear optimization problems (RSUP(X , l, u)).
This would not have happened if there was only a small number of possible integer
assignments (i.e., a small box XI).

39

The last test problem is a new scalable one with quadratic objective functions and a
quadratic constraint function. Both the number n ∈ N of continuous variables and the
number m ∈ N of integer variables have to be even.

min

n/2∑
i=1

xi +
n+m/2∑
i=n+1

x2
i −

n+m∑
i=n+m/2+1

xi

n∑
i=n/2+1

xi −
n+m/2∑
i=n+1

xi +
n+m∑

i=n+m/2+1
x2

i

 s.t.
n∑

i=1
x2

i ≤ 1,

xC ∈ [−2, 2]n,

xI ∈ [−2, 2]m ∩ Zm

(H1)

For a more extensive survey on test instances for multi-objective mixed-integer opti-
mization and a characterization and classification of all the test instances used in this
paper, we refer to [16]. We also remark that a generator for new test instances is
provided in [15].

HyPaD Algorithm
In this section, we include the pseudocode for the HyPaD algorithm and its main
subroutines from [22]. As a prerequisite we need to introduce the so-called feasibility
problem

min
xC ,α

α s.t. gj(xC , x̂I) ≤ α ∀j ∈ [q],
xC ∈ XC , α ∈ R

(F(x̂I))

where x̂I ∈ XI is an arbitrary integer assignment. This procedure allows to detect
whether an integer assignment obtained by an optimal solution of (RSUP(X , l, u)) is
feasible (and hence corresponds to a patch (P(x̂I))) or infeasible (and hence can be
excluded from future iterations).
The main procedure of HyPaD is shown in Algorithm 5. The improvement step, which
also includes the SNIA procedure, is presented in Algorithm 6. For completeness,
we also included Algorithms 1 and 7 that are used for initializing and updating the
coverages of the patches. However, that part of the algorithm is not discussed in this
paper. For more details, we refer the reader to [22]. Finally, we remark that, compared
to the presentation in [22], we slightly generalized the initialization of Algorithm 5 and
adjusted Algorithm 7, since we incorporated the generalized local upper and local lower
bound concepts from [21], see also Section 2.2.

40

Algorithm 5 Hybrid patch decomposition algorithm for (MOMIP)
Input: Initial point x̂ ∈ X, quality parameter ε > 0, and initial enclosure A =

C(L′, U ′) satisfying Assumption 2.4
Output: Lower and upper bound sets L, U ⊆ Rp

1: procedure HyPaD(x̂, ε, z, Z)
2: Initialize L = L′, U = U ′, X = {x̂}, D = ()
3: Solve (F(x̂I)) with optimal solution (x̄C , ᾱ) and set x̄ := (x̄C , x̂I)
4: if ᾱ ≤ 0 then
5: InitIDS(x̂I) ▷ see Algorithm 1
6: Update linearization points: X = X ∪ D.E
7: end if
8: while w(C(L, U)) > ε do
9: for l ∈ L do

10: if ({l + εe} + int(Rp
+)) ∩ U ̸= ∅ then

11: Select u ∈ ({l + εe} + int(Rp
+)) ∩ U with maximal s(l, u)

12: Solve (RSUP(X , l, u)) with optimal solution (x̄, η̄, t̄)
13: Update lower bound set: L = UpdateLLB(L, η̄)
14: Solve (F(x̄I)) with optimal solution (x̂C , α̂) and set x̂ := (x̂C , x̄I)
15: if α̂ ≤ 0 then
16: Improve(x̂, ε, U, X , D) ▷ see Algorithm 6
17: Update linearization points: X = X ∪ D.E
18: else
19: Update linearization points: X = X ∪ {x̂}
20: end if
21: end if
22: end for
23: end while
24: end procedure

Algorithm 6 Improvement Step on Patch-Level
Input: Feasible point x̂ ∈ S, quality ε > 0, upper bound set U , set of linearization

points X , and integer data structure D
Output: Updated sets U, X , and updated data structure D

1: procedure Improve(x̂, ε, U, X , D)
2: if D(x̂I) is not initialized then
3: InitIDS(x̂I) ▷ see Algorithm 1
4: else if D(x̂I).S == true then
5: UpdateIDS(x̂I , ε, U, D) ▷ see Algorithm 7
6: else if ∃ x′

I ∈ SI with D(x′
I) initialized and D(x′

I).S == true then
7: UpdateIDS(x′

I , ε, U, D) ▷ see Algorithm 7
8: else
9: SNIA(X , D) ▷ see Algorithm 2

10: end if
11: end procedure

41

Algorithm 7 Updating D(x̂I) for an integer assignment x̂I ∈ SI

Input: Integer assignment x̂I ∈ SI , quality ε > 0, upper bound set U , and data
structure D

Output: Updated set U and updated integer data structure D
1: procedure UpdateIDS(x̂I , ε, U, D)
2: Initialize Lx̂I

= D(x̂I).L, done = true
3: for l ∈ Lx̂I

do
4: if ({l + εe} + int(Rp

+)) ∩ U ̸= ∅ then
5: done = false
6: Select u ∈ ({l + εe} + int(Rp

+)) ∩ U with maximal s(l, u)
7: Solve (SUP(x̂I , l, u)) with optimal solution (x̄C , t̄) and set

x̄ := (x̄C , x̂I), ȳ := f(x̄) and ỹ := l + t̄(u − l)
8: D(x̂I).E = D(x̂I).E ∪ {x̄}
9: D(x̂I).N = D(x̂I).N ∪ {ȳ}

10: D(x̂I).L = UpdateLLB(D(x̂I).L, ỹ)
11: U = UpdateLUB(U, ȳ)
12: end if
13: end for
14: if done == true then
15: Set integer assignment inactive: D(x̂I).S = false
16: end if
17: end procedure

42

	1 Introduction
	2 Selecting an approximation concept
	2.1 Enclosure
	2.2 Computation of lower and upper bounds

	3 The Hybrid Patch Decomposition algorithm
	4 Implementation details
	4.1 Initialization
	4.2 Fallback procedure for the computation of new integer assignments
	4.2.1 Full enumeration
	4.2.2 Dynamic boxes
	4.2.3 Fixed boxes

	5 Numerical experiments
	5.1 Comparison of fallback procedures for the computation of new integer assignments
	5.2 Influence of the choice of
	5.3 Number of explored patches
	5.4 Comparison of HyPaD and MOMIX

	Appendix

