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ADDRESSING HIERARCHICAL JOINTLY-CONVEX
GENERALIZED NASH EQUILIBRIUM PROBLEMS WITH
NONSMOOTH PAYOFFS*
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Abstract. We consider a Generalized Nash Equilibrium Problem whose joint feasible region
is implicitly defined as the solution set of another Nash game. This structure arises e.g. in multi-
portfolio selection contexts, whenever agents interact at different hierarchical levels. We consider
nonsmooth terms in all players’ objectives, to promote, for example, sparsity in the solution. Under
standard assumptions, we show that the equilibrium problems we deal with have a nonempty solution
set and turn out to be jointly convex. To compute variational equilibria, we devise different first-order
projection Tikhonov-like methods whose convergence properties are studied. We provide complexity
bounds and we equip our analysis with numerical tests using real-world financial datasets.
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1. Introduction. We address Generalized Nash Equilibrium Problems (GNEP)
[6-8], where the shared feasible set is implicitly defined as the equilibrium set of a dif-
ferent Nash Equilibrium Problem (NEP). The resulting GNEP presents a hierarchical
structure where the players of the GNEP are the upper-level agents, while the players
of the NEP that defines the feasible set are the lower-level ones: the upper-level agents
operate a selection among the equilibria of the NEP played by the lower-level agents.
Nonsmooth convex terms in both the upper and the lower-level agents’ objective func-
tions are considered, in order to include, e.g., sparsity enhancing or exact penalty-like
terms. Such hierarchical GNEP, while stemming from real-world applications such as
multi-portfolio selection (see e.g. [16,18] and Example 2 in section 7), to the best of
our knowledge has not been explicitly addressed in its full generality yet.

Relying on standard assumptions for the upper and the lower-level agents’ prob-
lems, the hierarchical GNEP turns out to be jointly convex [10] and with a nonempty
equilibrium set (Proposition 3.5 and Proposition 3.8). Mimicking the smooth context,
we identify, in our broader framework, variational solutions that can be computed by
addressing a suitable (upper-level) Generalized Variational Inequality (GVI), whose
feasible set is implicitly defined as the solution set of another (lower-level) GVI ( [21]
for the definition of a single-level GVI, and [7] where variational solutions of a single-
level GNEP are identified in the smooth case). The resulting hierarchical GVI consists
of a lower-level GVI reformulating the lower-level NEP, and of an upper-level GVI
whose solution set is the set of variational equilibria of the upper-level GNEP.

Concerning hierarchical programs, two main approaches have been developed in
the literature: alternating-like techniques [1, 19, 20, 23, 25] and Tikhonov methods
[1,4,9,12,13,15,17,24]. As far as we are aware, considering the level of generality
we take into account, there are no methods in the literature for finding variational
solutions of hierarchical GNEPs.

We compute variational equilibria of the hierarchical GNEP through the corre-
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sponding hierarchical GVI described above via a projected gradient Tikhonov-like
approach: we derive convergence properties and obtain complexity guarantees. More
in detail, we iteratively address single-level GVI subproblems, where the Tikhonov
parameter is used to suitably weight the lower and the upper-level GVI operators.
We show that using a projected gradient method with a constant Tikhonov parame-
ter, the sequence produced by the algorithm converges to a fixed distance from every
solution of the single-level GVI subproblem (Theorem 4.5). As a consequence, ei-
ther the sequence admits a single limit vector, which turns out to be a solution of
the GVI subproblem, or it orbits around the GVI subproblem’s solution set. In the
latter case, the projected gradient method fails to converge to solutions of the GVI
subproblem, and, in the same spirit of [3], we rely on an averaging step to reach the
solution set of the GVI subproblem (Theorem 4.7). Notice that, solving the GVI
subproblem for positive fixed values of the Tikhonov parameter only corresponds to
solving inexactly the hierarchical GNEP. The inexactness in computing variational
solutions of the hierarchical GNEP is directly linked to the value of the Tikhonov
parameter (Proposition 6.3). Unfortunately, if the Tikhonov parameter is fixed to
zero, the solution set of the GVI subproblem corresponds only to the feasible set of
the hierarchical GNEP, completely ignoring the payoffs of the upper-level players.
In order to compute variational solutions of the hierarchical GNEP, one cannot rely
solely on solving the GVI subproblem for any fixed value of the Tikhonov parameter.

Introducing a suitable updating rule that establishes a link between the Tikhonov
parameter and the stepsize sequences, and makes them vanish (Assumptions D) we
prove convergence to a variational solution of the hierarchical GNEP (Theorem 5.2).

Relying on harmonic sequences for the Tikhonov parameter and the stepsize, we
provide complexity bounds in terms of maximum number of iterations that the al-
gorithm needs to meet a target accuracy. Specifically, we evaluate the complexity
of computing solutions of the GVI subproblem for fixed values of the Tikhonov pa-
rameter, for both the standard projected gradient iterations and for the averaging
ones. Moreover, we give complexity bounds, under Assumptions D, when computing
variational solutions of the hierarchical GNEP. The results of our analysis suggest
that solutions of the GVI subproblem for fixed values of the Tikhonov parameter can
be computed quite efficiently (Table 1). In view of such theoretical insights, we pres-
ent the Projected Average Single-loop Tikhonov Algorithm (PASTA) that gradually
satisfies the requirements in Assumptions D. By means of PASTA, we first aim at
efficiently approaching the solution set of the GVI subproblem for fixed values of the
Tikhonov parameter and, only at a later stage, we seek to achieve convergence to vari-
ational solutions of the hierarchical GNEP. Our numerical experiments confirm that
such approach works well in practice and results in a faster convergence compared to
satisfying Assumptions D from the beginning (section 7).

In section 2 we present the hierarchical GNEP model, as well as the main as-
sumptions of our framework, and, in section 3, we introduce the hierarchical GVI we
rely on in order to compute variational solutions of the original problem. In section 4,
we introduce the Tikhonov approach, and convergence results concerning the GVI
subproblem for fixed values of the Tikhonov parameter, while in section 5 we intro-
duce Assumptions D and analyze the resulting convergence properties to variational
solutions of the hierarchical GNEP. In section 6, we collect the complexity bounds
we achieve when considering harmonic sequences for the Tikhonov parameter and the
stepsize. In section 7, we introduce PASTA and test it numerically, first addressing a
toy example, and then solving a multi-portfolio selection problem, inspired by [16].
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HIERARCHICAL GNEPS WITH NONSMOOTH PAYOFFS 3

2. The hierarchical jointly-convex Generalized Nash Equilibrium mo-
del. We define a Generalized Nash Equilibrium Problem (GNEP) whose shared feasi-
ble region F is given implicitly by the equilibrium set of a lower-level Nash Equilibrium
Problem (NEP). We first deal with the lower-level NEP, highlighting the conditions
for its solution set to be nonempty, convex and compact (see Assumptions A and
developments in section 3). Next, we provide assumptions concerning the upper-level
hierarchical GNEP that ensure that make it a jointly-convex problem with nonempty
solution set (see Assumptions B and developments in section 3).

2.1. The lower-level NEP. The lower-level NEP consists of the collection of
N (parametric) optimization problems, each borne by player v, with v = 1,... N,
managing n, decision variables. We denote by y the vector formed by all the decision
variables, and by y~" the vector composed by all the players’ decision variables except
those of player v: y = (y'---yM)T € RP, y7v & (yl-. gy~ Lyt yN) € RP77
where p = Zf,v:l n,. To emphasize player v’s decision variables within y, we some-
times write (y”,y ") instead of y. Note that this still stands for the vector y and that,
in particular, the notation (y”,y~") does not mean that the block components of y
are reordered in such a way that y” becomes the first block. For each player at the
lower level, the objective function is given by the sum of a smooth term ¢, : R? — R
depending on variables y” as well as on the variables y~", and a nonsmooth term
¢! : R™ — R depending on variables 3 only. Summarizing, the NEP we consider
consists of the collection of player v’s parametric optimization problems

(PL) minimize,» 0}, (y”,y ") + ¢, (y") sty €Y,

where Y,, C R",
Denoting Y £ Y] x --- x Yy C RP, the lower-level NEP is the following problem

(NEPY) findy e Y:0L(y",y™") + ¢\ (") < 0L, y™") + L (v"), v’ €Y,, v=1,...,N.

Any y € Y satisfying (NEP!) is an equilibrium, or a solution of the NEP. A point is
therefore an equilibrium if for no player, given the other players’ choices, the objective
function can be decreased by unilaterally changing their decision variables to any
other feasible point. Accordingly, we indicate with £ = {y € Y : 6 (y",y~") +
oL(y”) < 0L (v, y7Y) + ¢L(vY), VoY €Y, v=1,...,N} C RP the (non-parametric)
set of equilibria of the NEP.
Assumptions A

A1l Y, is nonempty, convex and compact, for every v =1,..., N;

A2 ¢ is convex with respect to y¥, for every v =1,..., N;

A3 [V,.0!] ,],V=1 is monotone on Y;

A4 ¢! is convex and locally Lipchitz, for every v =1,..., N.
From assumption A4, one can immediately deduce that Jy~ ¢! is locally bounded and
outer-semicontinuous for every v = 1,..., N, where the operator d,~ indicates the set
of subgradients with respect to player v’s variables. Furthermore, 0y» ¢!, is a compact
and convex nonempty set. Such results can be traced back in [5, Proposition 2.1.2 a]
and [5, Proposition 2.1.5 d]. We will show that F is nonempty convex and compact
(see section 3).

2.2. The upper-level GNEP. Considering the upper-level hierarchical GNEP,
overall, player u, with g =1,..., M, controls the decision variables z# € R, with
Zﬁil m, = p, so as to solve the following optimization problem:

(P%) minimize,. O (2", 27") + ¢ (2") st (2, 27F) € B,
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4 L. LAMPARIELLO, S. SAGRATELLA, V.G. SASSO

where ¢, : RP — R is a smooth function depending on variables z* as well as on the
variables z7#, and ), : R™» — R is a nonsmooth term depending on variables z*
only. Notice that this is not a simple NEP, but a GNEP, because each player’s feasible
region depends parametrically on the other players’ variables. The variables z* belong
therefore to the solution set of the lower-level NEP, we denote z = (z!---2M) € RP,
rTFE (ph o grm pptl L MY € RPTe . The way the lower-level variables are par-
titioned among the players (y',...,y") is completely independent from the partition
of the same variables among the players that happens at upper level (z1,...,2).
For the sake of notational simplicity, and without loss of generality, we assume that
x = y, meaning that the variables are ordered (but not partitioned) in the same way
at both the levels. The upper-level GNEP is the following problem:

(GNEP") find z € E: 0,(2",27") + ¢, (a") < 0, (0!, x7") + @) (wh),
V! : (whaT?) e E, p=1,...,M.

Assumptions B
B1 6} is convex with respect to x#, for every p=1,..., M;
B2 [vwag]ff:l
B3 ¢}, is convex and locally Lipchitz, for every u=1,..., M.
Similarly to the lower level, from assumption B3 we can deduce that O.uj; is lo-
cally bounded and outer-semicontinuous for every p=1,..., M. Furthermore 0. ¢}
is a compact convex nonempty set. We will show that the set of equilibria of the
hierarchical GNEP is nonempty (see section 3).

is monotone on Y;

3. The Generalized Variational Inequality Formulation. The finite-di-
mensional Generalized Variational Inequality (GVI) provides an analytical tool to
address the described hierarchical GNEP. First we focus on reformulating the lower-
level NEP as a GVI in order to prove that, under Assumptions A, its solution set E
is nonempty, convex and compact. We also deal with the solution set of the (upper-
level) hierarchical GNEP by showing that the GVI provides a tool to compute its
variational equilibria, and we show this subset of equilibria to be nonempty, convex
and compact.

3.1. Lower-level GVI formulation. The lower-level NEP (NEP!) turns out
to be equivalent to the following GVI:

(GVTH findyeY: 3f,€F(y): fllv—y)>0, YweY;

where F(y) 2 [0, (6,(y) + ¢, (y")]._, : RP = RP.

Remark 3.1. In view of Assumptions A, 0\ (y",y7") + . (y”), for all v, turns
out to be also regular (see [22, Proposition 7.27]). This implies that we can write
(see [22, Proposition 10.9])

N N
(3.1) F(y) = [Vyuefj(y)]yzl + [81/”905/(9”)],,:1 forally e Y.
Additionally, the operator F' turns out to be outer-semicontinuous on Y, since it is the
. l N . . l N
sum of a continuous term [Vyu Gy] ,—, and an outer-semicontinuous one [8yu goy] 1
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HIERARCHICAL GNEPS WITH NONSMOOTH PAYOFFS 5

In the next proposition, whose proof is given in Appendix A.1, we show that, under
Assumptions A, (NEP!) can be recast as (GVI'), whose solution set is denoted by
SOL(F,Y).

PROPOSITION 3.2. Under assumptions A1, A2, A4}, E = SOL(F,Y).
With the following results we list some properties of F' and E.

PROPOSITION 3.3. Under assumptions A1, A2, A4, SOL(F,Y), and then E,
are nonempty and compact.

Proof. To prove the nonemptiness of E, we rely on [11, Theorem 3.1], where
nonemptiness, compactness and convexity of Y, outer-semicontinuity, convex valued-
ness (on Y) of F are required for E to be nonempty. These conditions are satisfied
under A1, A2, A4. F is bounded, since Y is compact.

Regarding closedness of FE, the proof is obtained by contradiction. Thanks to
Proposition 3.2, if F is not closed, there exists a sequence {yx} C E such that

(3.2) fy. € Flyk) : ﬁ(v —yg) >0, Yvey,
and such that yp, >y ¢ E, i.e.

(3.3) VipEF(®E), FIeY: [frw-7) <O0.
Since F' is locally bounded over the bounded set Y, an infinite subset of indices K
exists such that limgex fy, = f. Moreover, since F' is outer-semicontinuous, f € F(7),

taking the subsequential limit on both sides of (3.2), we get 0 < limgex fka (v—yi) =

F (v —7), for all v € Y, which contradicts (3.3). 0

PROPOSITION 3.4. Under Assumptions A, F is maximal monotone (see Defini-
tion A.1 in Appendiz A.2) and SOL(F,Y), and then E, are convez sets.

Proof. First note that, since under A3 the operator [Vyuﬁf,]ivzl is continuous
and monotone, it turns out to be also maximal monotone (see [22, Proposition 12.7]).
On the other hand, under assumption A4, the operator ¢!, is continuous and convex,
which implies that the point to set map defined by 0y~ ¢! is maximal monotone
(see [22, Proposition 12.17]). By Lemma A.2 in Appendix A.2 we therefore have that
[690,1/} 11/\[21 is maximal monotone. Since the sum of maximal monotone operators is
maximal monotone under mild conditions (as long as rint (domV,.6}) N rint(dom
Oyrol) # 0) (see [22, Proposition 12.44]), we can deduce that the mapping F is
maximal monotone. Recalling [11, Theorem 4.4], the convexity of SOL(F,Y) and E
follows, since Y is nonempty and convex, and F is maximally monotone. ]

PROPOSITION 3.5. Under Assumptions A and B, (GNEP"Y) is jointly-convez.

Proof. By Proposition 3.4, F is convex, and the thesis holds by Assumptions B
because the upper-level agents’ objectives are convex with respect to their private
variables. O

3.2. Upper-level GVI formulation. The following GVI can be used to com-
pute solutions of (GNEP"):

(GVI¥) find z € SOL(F,Y): 3g, € G(z): ¢l(w—2)>0, YweSOL(F,Y),

where G(z) £ [Opn (0%(z) + wﬁ(z“))]iil : RP = RP.

This manuscript is for review purposes only.
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Remark 3.6. Similarly to the lower level, under Assumptions B, we have G(x) =
[VWHZ(JC)]ZIZI + [amHQDZ(SCM)]Z\L/IZI, for all z € Y. The operator G is also outer-
semicontinuous, by the same reasoning presented in Remark 3.1 for operator F'.

With the next result, whose proof is reported in Appendix A.3, under Assumptions
B, we show that the solution set of (GVI*), that we denote by SOL(G, SOL(F,Y)),
is included in the solution set of (GNEP").

PROPOSITION 3.7. Under assumptions B1, B3, every x € SOL(G,SOL(F,Y))
is a solution of (GNEPY).

In particular, we say that the solutions belonging to SOL(G,SOL(F,Y)) are the
variational equilibria of (GNEP"), mimicking the classical definition in the smooth
case. Computing the variational equilibria of a GNEP is relvant for many applications
(see e.g. [10], and the references therein). With the following propositions, whose
proofs are reported in Appendix A.4 and Appendix A.5 respectively, we establish
some properties concerning G and the set of variational equilibria of (GNEP“).

PROPOSITION 3.8. Under Assumpions A, B1, B3, SOL(G,SOL(F,Y)) is non-
empty and compact and then also the set of equilibria of (GNEPY) is nonempty.

PROPOSITION 3.9. Under Assumptions A and B, G is maximal monotone (see
Definition A.1 in Appendiz A.2) and SOL(G,SOL(F,Y)) is convez.

Therefore, we can say that (GNEP") is a jointly-convex problem whose solutions can
be computed by solving (GVI*) with a nonempty, convex and compact solution set.

4. On the solution of the Tikhonov single-level GVI subproblem. By
Proposition 3.7 and Proposition 3.8, we can compute variational solutions to (GNEP")
by addressing (GVI*). In particular, we employ Tikhonov-like regularization tech-
niques, where the lower-level GVI mapping F' is penalized at the same level of the
upper-level one G:

H,(y) £ F(y) +nG(y),

where 7 > 0 is the Tikhonov parameter. The parameter 7 is used to weight the lower
and the upper-level GVI operators F' and GG. The corresponding single-level GVI
subproblem is as follows:

(4.1) find yeY: 3n)eH,(y): h) (v—y)>0, YweY.

We denote by SOL(H,,,Y) the solution set of (4.1). We also introduce the Minty
counterpart for (4.1), that is instrumental for the forthcoming developments:

(4.2) find yeY: AT (v—y)>0, YoeY, VhlecH,v).

Notice that, as we clarify in the forthcoming developments, solving the GVI sub-
problem (4.1) and (4.2) corresponds to solving inexactly (GVI') and (GVI%) (see
Proposition A.4 and Proposition 6.3).

PROPOSITION 4.1. Under Assumptions A and B, for everyn > 0, Hy, is mazimal
monotone, outer-semicontinuous and locally bounded on'Y . Moreover, SOL(H,,Y)
is convezx, compact-valued and nonempty.

Proof. The claim is a consequence of Proposition 3.4 and Proposition 3.9. O

This manuscript is for review purposes only.
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HIERARCHICAL GNEPS WITH NONSMOOTH PAYOFFS 7

The solution sets of (4.1) and the one of the Minty problem (4.2) turn out to coin-
cide, according to the following results whose proofs are given in Appendix A.6 and
Appendix A.7, respectively.

THEOREM 4.2. Under assumptions A1, A3, A4, B2 and B3 if a vector y € Y
is a solution of (4.1), then it is a solution of (4.2).

THEOREM 4.3. Under assumptions A1, A4, and B3, if a vector y € Y is a
solution of (4.2), it is a solution of (4.1).

In the rest of the paper, Assumptions A, B will always be assumed to hold. We define
the following finite quantities:

- A A A
P = max [ max Iyl G= max max llgyll - D = max lo —vl].
We remark that the boundedness of Y (see assumption A1) is a sufficient condition
for F,G and D to be finite.

To compute a point in SOL(H,,,Y") with n > 0, we investigate different first-order
methods. Here we focus only on the solution of the GVI subproblem (4.1), while we
provide a convergence analysis for (GNEP") in section 5.

We first analyze the properties of the following projected gradient-like procedure
when specified to address problem (4.1).

Given {yi}, {nk}, y1 €Y, for every k =1, ... compute:

4.3
(4.3) Yr+1 < Py (ye — vehyt),

where Py denotes the Euclidean projection operator on the convex set Y.

The sequence {yx } produced by Algorithm (4.3) presents strong properties under
mild assumptions regarding Tikhonov parameters {n} and stepsizes {74 }.
Assumptions C

C1 {4} is non-increasing, v, > 0 for all k, 7, — 0 and {v;} ¢ ¢1, that is,

220:1 Ve = OO

C2 {ni} is non-increasing, n, > 0 for all k¥ and n — n > 0.

The non-summability of {v;} is a condition that, roughly speaking, makes stepsizes
vanishing not too fast. Sufficient conditions ensuring C1 can be readily obtained, see
e.g. the example given in (6.1).

When H, is just maximal monotone, {y;} may not converge to SOL(H,,Y),
see e.g. [15]. However, we show in Theorem 4.5 that the distance of y; from any
u € SOL(H,,Y) converges to a constant value, depending on u. In the following
theorem, we prove the existence of some bounds which we rely on to prove the claim
in Theorem 4.5.

THEOREM 4.4. Consider the sequences {7V}, {mx}, {yr} and {hj*} defined in
Algorithm (4.3) and assume Assumptions C to hold. Let

VPEN " WEEN i —m), VE> L
=k =k

For each v € SOL(H,,Y), and for every k > 1, we have:
(4.4) limsup [lyrya — ul? = [lyp — ul® < 28,05 + 24,05,
A—o0

with Ay 2 (F° +n2G°) and Ay 2 GD.

This manuscript is for review purposes only.
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Proof. Due to the non expansiveness of the projection operator, for every j > 1
we have:

lyi+r —ull® = 1Py (y; —vihy;) — Py (@)l* < llyy — by — ul®

] T
ly; — wll® + g 117 + 2v5hy;” (w = y;) + 23195, (u — y;)
—2vjng,. (u — yj)

= lyy — ull® + [[vhg) 11> + 29500 (u = y;) + 2v;(n; — n)gy, (w — y;)
—92 _92 _
lys =l +292 (F* + 113G ) + 235(n; — m)GD,

IN

where the latter inequality holds because u € SOL(H,,Y’), and due to the following
relation, since {n;} is non-increasing:

—2 —2
(4.5) 5 s + 13901 < 292 (I, 12+ 0290, 12) < 297 (F* +03C°).

Summing j from k to k + A — 1 we find:

k+A-1 k+A—-1 k+A-1 k+A-1
ool —ulP= > Ny —ul® <280 Y 7 +280 Y (0 —n)
g=Fk j=k j=k j=k

which implies, due to the telescoping series property,

kA1 kA1
lea —al? < lge—ul?+200 S 2428, S 505 — ).
j=k j=k
Relation (4.4) is obtained by letting A — oo. d

In Theorem 4.5 we list the main convergence properties of {yy}.

THEOREM 4.5. Consider the sequences {vx}, {nx}, {yx} and {h}*} defined in
Algorithm (4.3) and assume Assumptions C to hold. The following statements hold:
a) if {v} € 02, that is, Y po 7 < o0 and {vk(n; —n)} € £*, given any u €
SOL(H,),Y), for some L, depending on u, we have limy o ||y — ull* = lu;
b) if y. — 7, then, y € SOL(H,,Y);
¢) |[yr+1 = ywll = 0.

Proof. The proof of a) is obtained from relation (4.4) by observing that ¥% — 0
and W% — 0. The proof of b) is reported in Appendix A.9. As for ¢): for all v € Y
and k > 1 we have:

lyr+1 = yell = || Py (ye = wehige) = Py (i) || < [Jyn — whige —yel| = [Jahie]| — 0,

where the inequality is due to the non expansiveness of the projection operator, and
the last term goes to zero because H,, is locally bounded over the compact set Y. O

Note that relaxing the assumption on the boundedness of Y, but requiring F' and G
to be bounded on it, one can still obtain convergence results by slightly modifying
the line of reasoning in the results above and in the forthcoming developments.
Under Assumptions C, {yx} might orbit around SOL(H,,Y") thanks to Theo-
rem 4.5 (a), (c), without reaching it eventually. On the other hand, if {yx} converges,
then its limit point belongs to the solution set, see Theorem 4.5 (b). This cannot
be guaranteed in general, but one might rely on some averaging techniques. Thus,

This manuscript is for review purposes only.
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given the sequences {v;} and {yx} defined by Algorithm (4.3), we introduce a further
averaging sequence {zj} such that, for k£ > 1,

k
Zj:l VY5
—
Zj:l Vi
In Theorem 4.7 we show that {z} converges to SOL(H,,Y). With the preliminary
Theorem 4.6, we obtain some bounds that are then used to prove Theorem 4.7.

THEOREM 4.6. Consider the sequences {v&}, {nx}, {yx}, {9y, } and {h)*} defined
in Algorithm (4.3) and {zx} defined in (4.6) and assume Assumptions C to hold. Let

(4.6) 2k

k k
ko 2= o 2oj=1Yi(m; =)
1= =5 g = ——0,

E k E
Zj:l Vi Zj:l Vi Zj:l Vi

For all k > 1 we have:

1
ke L sy

) -

(1]
(1]
(1]

(4.7) R (v — 2) > —A1ZF — AoZh — A3EE, WYweY, VAT € H,(v),

with A1 and Ay defined in Theorem 4.4 and A5 = D?/2.

Proof. For all v € Y, h}] € H,(v) and for every j > 1, following the same steps
as the ones in the chain of relations at the beginning of the proof of Theorem 4.4,

g1 — o2 ly; — oll® + [l h I + 275037 (0 = y3) + 275 (n; — n)gy, (v — y;)

—2 —2 —
ly; —olI> + 277 (F" + niG") + 27,17 (v — y;) + 2v;(n; — n)GD,

IN

due to the monotonicity of H,, as well as equation (4.5). Then,

=29 k" (v = ;) < lly; — vl = g1 — vl + 280797 + 2A97;(n; — 7).

Summing j from 1 to k, and dividing by 2 Z?:l v;, We get

—o||? —o||? g S5y i (ni—n)
T (y—2z,) < lys—oll”  lyrtr—vll A Za= Yy A, 21 0
v ( ) - 22§=1 Yi 22?:1 Vi ?:1 Vi Z?:l Vi

PO Sh_1vimi—n) | p2 1
< A J J A j=1 D~
shige ot = e n s o

and then (4.7) follows. d

THEOREM 4.7. Consider the sequences {7y} and {yx} defined in Algorithm (4.3)
and {z} defined in (4.6) and assume Assumptions C to hold. The limit point of {1}
belongs to SOL(H,,Y).

Proof. The proof is obtained by observing that Z¥, =5 — 0 in view of Lemma A.3
where we take by, = v and ax = 7y as far as E’f is concerned, while ax = 1y —n when
considering Z&, and Z§ — 0 due to C1. Therefore, Theorem 4.6 yields hgg inf AT (v —
zi) > 0, for all v € Y and for all A € H,(v). Hence all subsequential limits of {z}
are solutions to the Minty GVI subproblem, and thus, by Theorem 4.3 they belong
to SOL(H,,Y).

In the sequel, we prove that {z;} has actually a single limit point. For every
u1,up € SOL(H,,Y), by convexity: % € SOL(H,,,Y), see Proposition 4.1. Com-
bining point a) in Theorem 4.5 and Lemma A.3 in Appendix A.8, we can say that
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Ell(u1+u2>,lu1 € R:
2

k
Zj:l i Hyj - ul;m
k
Zj:l v; k—o0

For every j > 1 we have:

I Sk My —

k
Zj:l o7 k—o0

Lu,.

l(ulguay

Uy — U2

2

Uy — U2
2

Yj 2

w1 + uz ||?
1 2” = |ly; — w1 +

2 2
| = s = wal*+|| |+ (s = u)™ (w1 — 2.

Multiplying both sides by ;, summing j from 1 to £, and then dividing by Z?zl Vi
we get:

2 k 2
S v — 2]t vy — | —up |2
(4.8) === ij i MY o - HU1 5 = H = (21— u1)" (w1 — u2).
Zj:l Vi Ej:l Vi
Taking the limit on both sides, we get
w1 — us ||?
1~ U2 .
l(u1+u2) —ly, — = lim (z — ul)T(ul — ug).
2 2 k—o0

Let us assume by contradiction that Z # Z are two limit points of {z}. In the first
part of the proof we have shown that z,z € SOL(H,,Y’). The last equation implies
Z—-2)T(u1 —ug) = (Z—u1) T (ug —ua) — (2 —u1)? (ug — uz) = 0. Considering u; =z
and uy = 2, we obtain ||z — 2]|*> = 0 that contradicts z # 2. d

Under Assumptions A, B and C, the sequence produced by Algorithm (4.3) together
with (4.6) converges to SOL(H,,Y). The points in SOL(Hy,Y) correspond to the
solutions of (GVI'), therefore they are feasible for (GVI*), and then they belong
to E, but they are not guaranteed to be solutions to (GVI*). On the other hand,
if n > 0, the sequence produced by Algorithm (4.3) together with (4.6) converges
to SOL(H,,,Y), that corresponds to solving, depending on 7, (GVI') and (GVI%)
inexactly (see Proposition A.4 and Proposition 6.3). Considering relation (6.3), one
is not guaranteed to solve (GVI') exactly. Therefore, in order to solve the (GVI%)
exactly, and obtain equilibria of (GNEP"), one cannot focus solely on computing
points in SOL(H,,,Y") for any 7.

In the following section, we define additional requirements (Assumptions D) on
{7k} and {n;} that let the sequence produced by Algorithm (4.3) together with (4.6)
compute points in SOL(Hp,Y) and in SOL(G, SOL(F,Y)), and therefore equilibria of
(GNEPY). Note that differently from Assumptions C, the conditions in Assumptions
D require the choices of {74} and {n} to be related to each other.

5. On the solution of the upper-level GNEP. We provide assumptions en-
suring that the sequence produced by Algorithm (4.3) together with (4.6) converges
to a solution of problem (GVI*), which is also a solution for (GNEP“) (see Propo-
sition 3.7). We define the following bounds for the Minty versions of (GVI') and
(GVIY).

THEOREM 5.1. Consider the sequences {7V}, {mx}, {yr} and {hj*} defined in
Algorithm (4.3) and {z} defined in (4.6) and assume Assumptions C to hold. Let
n =0 in assumption C2, and

k Vi
Zj:l ani, 1
ofe W oeks k>l
Zj:l Vi Mk Zj:l i
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For all k > 1 we have:

(5.1)  fT(v—2p) > =AM EF — AZ5 — A3ZE, WweY, Vf, € F(v),

v

(5.2)  gl(v—2zp) > A ®F — A3®5, Vo€ SOL(FY), Vg, € G(v),

with Ay, Ao, A3, {Z%}, {Z5} and {Z5} defined in Theorem 4.4 and Theorem 4.6.

Proof. Relation (5.1) can be obtained by considering Theorem 4.6 with n = 0.

To prove (5.2), for every v € SOL(F,Y), f, € F(v), g, € G(v), by reasoning simi-
larly to the beginning of the proof of Theorem 4.6, and observing that SOL(F,Y) C Y
and f, + 19, € Hy,(v), for every j > 1 we can write —27v;(f, + njg0) T (v —y;) <
ly; — vll* = lyjsr — vlI* + 2A177. Since v € SOL(F,Y), f, € F(v) exists such that

f;l;(y] —v) >0, and then:

—27;(fp +1i90)T (v —y; =) = lyj+1 — vl|? V3
gy < Z2 T ) =) _ s =0l =l F
nj nj nj
Summing j from 1 to k and dividing by Z?Zl v; we get:
koo llyi—ol®=llyj+1—vl® k %
g1 -’ 2 =1 Vin
(5.3) —2gT (v —zy) < 2L +on, =
Zj:l Vi Zj:l Vi
By observing that
o2y —vl? _oll2 —v||? _
2?21 lly; —vll U\Lyg+1 I _ Hyl771 [ Hyk+771k I + 25211 llyse1 — U||2 (njil _ %)
D2 2 k-1 1 1\ p? 2 (1 1) _ 2A
< Do (nj+1 _nT-) e (m—ni) =
we obtain —2¢T (v — z;,) < 2A, 9% + 2A3ﬁ, that implies (5.2). O
¢ 22j=1"77

We define the following additional conditions to guarantee the convergence of the
sequence produced by Algorithm (4.3) together with (4.6) to solutions of (GVIY).
Assumptions D
D1 1 =0;
D2 & — (;
Mk

D3 Zle vy — 0.

Differently from the conditions in Assumptions C, Assumptions D require {~x}
and {7} not to be chosen independently of one another . We remark that, in the
more restrictive setting of single-valued upper and lower-level operators, as consid-
ered in [17], one can control the accuracy in the iterative solution of the Tikhonov
subproblems. In this case, an algorithm can be defined to solve the resulting hier-
archical Variational Inequality that converges under Assumptions A, B, C, D1 and
e ¢ ¢4, therefore not requiring D2 and D3 that relate {1} and {n;}. In our general
set-valued framework (resulting from nonsmooth payoffs for the players of the Nash
problems) it is not practical to control the accuracy in the solution of the Tikhonov
subproblems, and therefore Assumptions D are required in the following result.

THEOREM 5.2. Consider the sequences {7y} and {ni} defined in Algorithm (4.3)
and {z} defined in (4.6). If Assumptions C and D hold, then the unique limit point
of {z1} is a solution to (GVI"), and then to (GNEPY).
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Proof. Sequence {zp} admits a unique limit point by Theorem 4.7. Due to as-

sumptions C1 and D3, =5, ®5 — 0. Moreover, =%, Z5 ®% — 0 in view of Lemma A.3,

where we take by = -, and ap = % as far as :’f is concerned, while ay = n; when

considering Z5, and ay = i /ni, as for ®F. The claim then follows from Theorem 4.3.0

In order to recover solutions of (GVI*) and then equilibria of (GNEP™), {n;} must
be assumed to go to 0. This requirement can be traced back to the lack of standard
constraint qualifications for (GVI*).

THEOREM 5.3. Consider the sequences {vi}, {ni} and {yx} defined in Algorithm
(4.3). If Assumptions C and D hold, and yr — G, then § is a solution to problem

(GVI%), and then to (GNEP").
Proof. The proof is similar to that of Theorem 4.5. O

6. Complexity Bounds Considering Harmonic Sequences. In this section
we consider the case where {v;} and {n;} from Algorithm (4.3) together with (4.6)
are defined as harmonic sequences:

i
ke

with 7 > 0, 7 > 0 and 1 > 0. This is done in order to describe a possible practical
way to implement the sequences {74} and {n}.

The first theorem deals with the complexity of the distance of {yx} from any
solution u € SOL(H,,Y), by relying on the bounds defined in Theorem 4.4.

THEOREM 6.1. Consider o € (%, 1) and f > 1—«in (6.1), then Assumptions C
hold. Moreover, given any tolerance § € (0,1) for the bound given in (4.4), it holds
that 2A1 U + 2A,WE < § for every

1 max{ g57 s 5=t )
k>X\ <§) s

1 1
with \} £ 1 4+ max { (éﬁfﬁ) o ) (;ﬁz{ﬂ) e }

Proof. Assumptions C trivially hold under the conditions on « and 3.
Let us introduce an upper bound for U#:

o 1 ® o ., -1 o 72
= —a dz = - = _
! ;J /kflx e {(Za—l):r"’“*lh,l (2a — 1)(k — 1)20-1

1

1
Therefore, a sufficient condition to have 2A;¥¥ < §/2,is k > 1+<4A” ) o (§)%T

Next, we define an upper-bound for W5:

(6.1) T = Mk = kﬁ Toin k=1,

& [T e — -1 - i
Uk — 1 < / a=Bir — — .
2 N2 jarm S0 . z T =M (a+B—DaotF=1|, |~ (a+B—1)(k—1)o+p-1

Hence, a sufficient condition to have 2A,U% < §/2, is requiring that & > 1 +

— a% 1
(%) o (§)“¥7=7, concluding the proof. O

In particular, choosing &« = 1 — e and 8 =1 — ¢, with 0 < € < 1/2, the maximum

number of iterations k to have the distance ||y, — u||* converging with an error lower
than ¢ is O(6~Y/(1729) for any u € SOL(H,,Y).
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165 In the forthcoming results, we exploit the following bounds for the generic har-
466 monic series with o > 0:

k
1 k(- —a
— < — <
_Zja_ 11—« —i_lfoz7

167 (6.2)
468  where the lower bound holds for k& > 9725, The next result provides complexity
169 bounds for {21} to converge to SOL(H,,,Y’) (see Theorem 4.6).

470 THEOREM 6.2. If in (6.1) o € (0,1) and > 0, then Assumptions C hold.
471 Moreover, given any tolerance § € (0,1) for the bound given in (4.7), it holds that
472 AlE’f + AQEIQC + A3E§ < 6 for every

D\ max{E e )

A73 k> Ao (5) ,
AT4
75

1 1

12A47(1 — o =24Nya(l — T-a
476 with Ao = max ol @) , el @) ,
1 -2« 1 -2«
- (12A277(1 - a)>5 (—12A277(a +8)(1— a)>11u <6A3(1 - a)> =
. 1—(a+p) )’ 1—(a+5) ’ gl '
A79 Proof. Assumptions C trivially hold under the conditions on « and 3.
180 The bounds defined in (6.2) imply, under our hypotheses on « and
k k

1 k(=)

8 2 Zvja 2730 oy
Jj=1 Jj=1
k k _

1 k(=200 _329q
48: 2 ;2 < =2
- 2% =2 T ST 5 T T

j=1 j=1
k k _

1 K1t An(a+ B)
483 Yi\ng —n) = - <M + .
- 200 = =2 T STy ) T T- @ o)

185 We now define an upper bound for =¥:

k 2 — _
486 =k _ 2.7:1 Vi < 2’}/(1 — Oé) B 4 _4704(1 - Oé) a—1
B oyt T -2 1—2a ’

187 therefore, a sufficient condition to have A1=¥ < §/3 is to have

" 12A7(1 — «) a —24A75a(1 — @) = 1\ e s )
188 k>max{< =%, ) 1 —2a 5 )

489 The upper bound for Z5 is as follows:

e =) 25— a)

190 =k = R na+p8)(1-a)

a—1
Sk T l-(a+p) 1—(a+p) S
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therefore, a sufficient condition to have A»Z% < §/3 is to have

() () HO T

The upper bound for =5 is as follows:

=K a—1
=k = ket

k
Zj:l Vi 7

therefore, a sufficient condition to have A3=% < §/3 is to have

() () D

Choosing o = 8 = 1/2, the maximum number of iterations k to have problem (4.2)
solved by z with an error of less than § is O(672).

We show that solving approximately problem (4.2) yields the approximate fulfill-
ment of optimality conditions for the Minty versions of (GVI!) and (GVI%), according
to Proposition Proposition 6.3.

PROPOSITION 6.3. Let n > 0 and zy, satisfy (4.7), it holds that

(6.3) fEw —2p) > —AEF — AZh — A3 —nAy, Yo ey, Vf, € F(v),

AN + AoEE + AgEE
6.4)  gr(v—2) > — 1=t 2772+ 373 Wwe SOL(F)Y), Vg, € G(v).

Proof. See Appendix A.10. d

Notice that Proposition 6.3 works only for n > 0 and there is no value for n that let
the approximation errors given in (6.3) and (6.4) be zero simultaneously.

By considering the bounds obtained in Theorem 5.1, complexity results can be
provided as follows.

THEOREM 6.4. If in (6.1) a € (0,1), 8 € (0,min{e,1 — a}) and n = 0, then
Assumptions C and D hold. Moreover given any tolerance § € (0,1) for the bounds
given in (5.1) and (5.2), AMZ¥ + AoZ5 + A3ZE < 6§ for every

1 max{é,ﬁ,%}
k> Ao (6) R

with Ao defined in Theorem 6.2, and A;®% + Az®5 < & for every

)

1 1 1
1 max{ a—B'I-a’ 1—a—[3}
1)

k>/\3<

1 1 1
j L 8AF(1—a) \o=F  (8MF(B—20)(1—a) \T-o (4A3(1—0)) T-o=F)
with \s = max { (%) , (%) ; (73% )> }
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Proof. Assumptions C, D1, D2 trivially hold under the conditions on « and
B. Note that the complexity regarding (5.1) is proved in Theorem 6.2. Using the
harmonic series bounds (6.2) we can write:

k k 1 klfa
. e >y
j=1 j=1
kE .2 2 k =2 1.1-(2a—8) —2(n
1 k 2
66 S E-Ly o<l )
g M T 1= Q2a=p)  n(l+ 5 - 2a)

We can define the following upper bound for ®}:

q)k:ZlejT’; L M0=a) . AB-200201-0a)
1 Sy T M+ 8- 2aq) (148 - 2a) ’

therefore, a sufficient condition to have A;®% < §/2 is to have:

k > max { (M)W : (8/\17(5—2@)(1—@))1—10‘} (%)max{alﬁ,lla}}.

n(1+5—-2a) n(1+8-20a)

Next, we define an upper bound for (1)12“ :
1 < 2(1 — «)

(6.7) k2 . < ——
Mk Zj:l Vi R

ka+ﬂ—1

therefore, a sufficient condition to have A3®5 < §/2 is to have

— (1—5713) (17;76)
o (BT ()
n d

Moreover, assumption D3 holds due to relation (6.7), since o + 8 < 1. |

Choosing = 1/2 and g = 1/4, the maximum number of iterations k to have the
Minty versions of (GVI') and (GVI*) solved with an error less than § is O(6~*). Notice
that the convergence rate we prove is the same as the one provided, in a more specific
case (namely, an optimization problem with variational inequality constraints), in [13].

Summarizing, Algorithm (4.3) together with (4.6), with the harmonic sequences in
(6.1), achieves different convergence properties with different complexities for different
values of o and 8 (see Table 1).

7. Numerical Analysis. We define a practical algorithm to exploit the previous
sections’ theoretical results. Focusing on Table 1, if a and 8 are close to 1, one can
obtain quite fast convergence of {y;} to an orbit around SOL(H,,Y’). On the other
hand, if o and 8 decrease to 0.5, {z;} converges to SOL(H,,Y"). Finally, if § further
decreases to 0.25, the convergence of {z} is guaranteed to the solutions of (GVI¥),
and then the equilibria (GNEP*), but with worse complexity guarantees. Therefore,
a possible way to obtain, at the beginning, fast convergence to partial results, and
achieve the convergent setting for oz and 3 once close to the solutions of (GVI*) (by
satisfying Assumptions C and D), is to consider two decreasing sequences {ay} and

{Br}-
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«Q 153 convergence properties complexity
liglsup [yk+a — ull® = [lye — ul]* <6,

l1—€¢ 1-—c¢ —00 0(5—1/(1—26))
u € SOL(H,,Y)
05 05 RIT (v — 21) > =8, Yo € Y, bl € H,(v) 0(572)
flw—y)>—6, Ve, f, € F(v) 4
05 025 b y) > 5 W e SOL(RY), g, e Glw) 00 )

TABLE 1
Possible settings for a and B and relative convergence properties and complexities

Algorithm 7.1 combines computations (4.3) and (4.6) and employs harmonic se-
quences for {7} and {nx} with decreasing {ay} and {8}, respectively. In particular,
k is a parameter that indicates the iteration at which the averaging procedure defined
in (4.6) starts, and the sequence {z} is computed. This allows one to start computing
{21} when the sequence {y} approaches SOL(H,,_,Y) (see Theorem 4.5). One gets
a faster convergence of {2z} as points y; that are possibly far from the solution set
and weight more (since {v} is monotone non-increasing) are ignored in the average.

In the following result, whose proof is given in Appendix A.11, we provide a
practical rule to compute {ay} and {fi} in order to satisfy Assumptions C and D.
We focus on the case where {a;} goes from @ to o and {f3;} goes from 3 to 3.

Algorithm 7.1 Projected Average Single-loop Tikhonov Algorithm (PASTA)
Data: {a}} >0,7>0,{6} >0,7>0,keN,y; €Y
for k=1,2,... do
Vi + 7/k% and ny, < 7/k°*
choose fy, € F(yr), gy, € G(yr) and compute hj* = f, + nrgy,
Yer1 = Py (yr — ehyr)
end for
fork=kk+1... do

k
2= ViYi
=g

Zj:ﬁ Vi

end for

PROPOSITION 7.1. Let @ > a > 0, B > 8 > 0, €a,6a > 0, In, I € N and
T = W/kakf Me = ﬁ/kﬁk7 with ay = @ — (a_ a) (min{k,[a}/fa)ga, B = B —
(B — B) (min{k, Ig}/I5)*". Assume a < 1, B < min{a,1 — a}, and e, < &4 =

_ — —1
logr, (1 — (1 = ta)a/(ta(@—a))) ™", 5 < &5 £ logr, (1~ (1 —ts)B/(ts(B —5)))
with to £ logr, (Io — 1) and tg = log;, (I — 1). Assumptions C and D hold.

Employing in PASTA {aj} and {fx} as defined in Proposition 7.1, with ¢, and
e chosen according to Proposition 7.1, Assumptions C and D hold. Therefore, by
Theorem 5.2, Theorem 5.3 and Theorem 6.4, the unique limit point of {z}, that is
the limit point of {ys} if it exists, is a solution to (GVI*) and then it is a variational
equilibrium for (GNEP*) by Theorem 4.2 and Proposition 3.7. Notice that the bounds
for e, and eg provided in Proposition 7.1 are only sufficient to satisfy Assumptions
C and D, and larger values for such parameters can be used in practice. We can
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employ fixed values by simply setting ap = « and S = B for all k, and still satisfy
Assumptions C and D, therefore recovering the theoretical convergence properties. In
the sequel, we compare these two choices and show, by means of numerical evidences,
that PASTA achieves faster convergence than the case of fixed o and (.

We provide numerical experiments to prove the convergence of PASTA in practical
settings. In Example 1 we consider a simple hierarchical jointly-convex GNEP, which
allows one to evaluate the convergence of the algorithm to the equilibria of (NEP')
and (GNEP"), since an analytical description of the lower-level equilibrium set can
be readily obtained. In Example 2 we study a more elaborate hierarchical jointly-
convex GNEP model in the context of multi-portfolio selection (see [16] for more
details regarding multi-portfolio optimization). In this case, one cannot easily evaluate
the convergence to equilibria of (GNEP"), because an analytical description of its
feasible set (i.e. the equilibria of (NEP!)) is not readily available. We focus only on
convergence to the equilibria of (NEP!), but we will also show the influence of the
upper level by observing a posteriori the computed solutions. All the computations
are performed on a Mac mini 8.1, Quad-Core Intel Core i3 3.6 GHz, RAM 8 GB, and

took no longer than 10 seconds (Example 1) and 200 seconds (Example 2).
Example 1 We first consider a simple example where it is easy to have an explicit

expression for the lower-level equilibrium set F/, and to compute the unique variational

solution of (GNEP"). Let us consider N = 4 lower-level players and M = 2 upper-

level players, with 2! = (y2,y*), 22 = (v, %),
Oy, y ) = 05" + ' (¥ + 2% +y* —100), ©l(y') =0, Y1 =[-100,50],
05(y,y%) = 05(y°)° +v° (' +v° +y* —50), @h(y®) = max{0,—10(y*> — 15)}, Yz = [0,50],
05,y %) = 05(5°)° + v (> +y* —100), ¥5(y°) =0, Yz =[0,100],

1

3
Oh(yt,y™*) =05+ (' + 7 +1° - 50), ©hi(y*) =0, Yi=]0,50],
03z 27" = (v* —20)° + (v* = 50> + (v* + ") (' +¢%), ¢i@@") =0,
05 (2 27%) = (")’ + v (W +v°) + (P + PP +ut), w(@®) =o0.

For this example Assumptions A and B are verified. One can obtain an explicit expres-
sion for the lower-level equilibrium set F = {(—507 y%,50,50 — y?) : 15 < y? < 50},
and thus the unique variational equilibrium of (GNEP*) is z* = (-50, 15,50, 35).
Note that at z*, the second lower-level player’s payoff is non differentiable. In this
setting, we can test PASTA and monitor the distance from z*. Concerning the evalua-
tion of the subgradient, in order to deal with the nondifferentiability of the lower-level
map, we set f, = [V,101(y), V,205(y)—5(15+1073—¢?) /(1073), V204 (y), V404 ()] T
for every y such that y? € [15—1073,15+1073]. The projection is computed in closed
form, since Y, are box-sets. We set the maximum number of iterations I = 106, the
parameters ¥ = 1, 77 = 0.1, and the starting point y; = (0,0,0,0). The sequence {ay},
used to compute the stepsizes {74}, is defined as in Proposition 7.1 with @ = 0.75,
a =05, 1, = I/2 and ¢, = 0.05. On the other hand, {3}, used to compute the
Tikhonov parameters {7}, is defined as in Proposition 7.1, with B =0.75, 8 = 0.25,
Ig =1 and €5 = 0.03. These values for &, and e are such that the sequences {vx}
and {nx} are nonincreasing and therefore Assumptions C are verified (even though ¢,
and g do not verify the sufficient condition given in Proposition 7.1). PASTA, with
its variable policies for {ay} and {8k}, is compared with the fixed case, where oy, = «
and (8, = B for all k. Note that the values for o and 3, used for both the variable and
fixed settings, ensure Assumptions D, and the convergence of the method is guaran-
teed (see Theorem 6.4). In Table 2 we report opt(z7) = ||z7 — *||_ for PASTA and
for the fixed case, as well as for different choices of the iteration k for the averaging
procedure {z} to start. Note that the point z7 is closer to 2* for higher values of k,
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Fic. 1. Comparison between variable (PASTA) and fixed {a,} and {8} considering opt(yx) =
llyx — x* || for iterations 0- 100k (left-hand side) and for all 1000k iterations (right-hand side)

B opt(27) B opt(y7)

k 0 0.41 0.81

Variable a& 8  0.57434  0.42161 0.41424  0.41219

Fixed a & 3 0.84268  0.45928 0.42367 0.41220
TABLE 2

opt(w) = ||lw — x*||, in Ezample 1, considering variable (PASTA) and fized {0y} and {8y}
for 27, with different starting iterations k, and YT

because the early iterations, which are more distant from z*, are not included in the
computation of the average. Moreover, we underline that in all our experiments, y;
is a better approximation of * than every z7. For this reason, although the averaged
sequence {zx} is essential to obtain theoretical convergence guarantees (see section 4
and section 5), in our experiments the sequence {y;} has shown convergent behav-
iour, and we rely on Theorem 4.5 b) and Theorem 5.3 to justify our choice to focus
on {yx} approaching x*. In Figure 1, we show the comparison between the perfor-
mances of variable (PASTA) and fixed {a} and {8} in terms of distance between
{yr} and z*. In Table 3 we report the value of this distance at different iterations. It
is evident that using the insights in section 4 concerning the Tikhonov subproblem to
develop the algorithm with variable {ay} and {8} (PASTA), one can obtain a faster
convergence to the equilibria of (GNEP*), than using fixed {a} and {8}, see also
the explaination at the beginning of section 7, together with Table 1. The output of
PASTA is y; = (—49.5878,15.0010, 50.0124, 34.6699).

Example 2 We consider a hierarchical multi-portfolio selection model in the case
of financial service providers managing different lower-level clients’ portfolios (or ac-
counts) by assigning them to multiple upper-level managers (see [16] for more details
about hierarchical multi-portfolio optimization and [18] where the hierarchical GNEP
framework is introduced in this context). Following the classical Markowitz approach,
as for each lower-level account v, the weighted sum of linear expected return (I, (y"))
and quadratic portfolio volatility (R, (y*)) is minimized, by investing the relative bud-
gets in K financial assets. The lower-level variables ¥ € R represent the shares of
the budget to be invested in each asset. Additionally, each account-related objective
depends (parametrically) on the other accounts’ problem decision variables via a cou-
pling quadratic transaction cost term (T'C,, (y”,y~")). Therefore the accounts-related
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Iterations 10k 25k 50k 75k 100k 250k 500k 750k 1000k
Var a & 0.7342 0.6140 0.5491 0.5186 0.4998 0.4528 0.4283 0.4179 0.4122
Fix a&p 1.3395 1.0513 0.8778 0.7915 0.7359 0.5839 0.4905 0.4431 0.4122

TABLE 3
opt(yk) = llyr — =*||, at different iterations in Example 1, considering variable (PASTA) and

fized {o} and {Br}

lower-level parametric problems form (NEP!). Upper-level managers pp = 1,..., M
are responsible of deciding trades for a subset S, of lower-level accounts, but se-
lecting only among equilibria of (NEP'). The objective function of each manager u
measures the performances of the portfolios they manage, and depends not only on
each manager’s own decision variables, but also on the choices of the other managers,
similarly to the lower-level accounts’ interplay. The resulting upper-level managers’
problems form (GNEP"), where the shared feasible set is given by the equilibria of
the accounts-related (NEP!). At both the upper and lower level, a sparsity enhancing
term is included to reduce monitoring costs and simplify portfolio management.

Consider N =25, M =5 and z* = [y”]yesu,

0L y™") = L")+ R+ TCu(y",y™"), L") =7y,
K

Y, £ {y" € [l u]® > gy < 1},
1=1

Op(a,a™) == > L") +peu Yy Ruy’)+TCu(a*,z™"), ¢p(@) =70 > lly"I,
vesS, veS, veS,

where p, regulates the risk-aversion of each agent v, and 7, regulates their desire for
sparsity. In the following numerical results, u, = 1 and [, = —0.1 are chosen for
each lower-level player v to allow players to invest at most their whole budget on
a single financial asset and to shortsell each asset for at most 10% of their budget.
Numerical tests for two data sets are provided, the first one consisting of K = 10
assets belonging to Euro Stoxx 50 (SX5E) (from 2/1/2019 to 31/12/2019), resulting
in n, = 10 variables controlled by each lower-level player, and p = 250 total (GNEP")
variables. The second data set consists of K = 29 assets from Dow Jones Industrial
Average (DJIA) stock markets (from 2/1/2017 to 31/12/2017), resulting in n, = 29
variables controlled by each lower-level player, and p = 725 total (GNEP") variables.
In both cases, the upper-level managers control N/M = 5 lower-level accounts each,
arranged in such a way that S, = {(u — 1)(N/M) +1,...,u(N/M)} for all p €
{1,..., M}. We have, for the SX5E dataset, m, = 50, and for the DIJA dataset m, =
145 variables controlled by each upper-level manager. All player-related parameters
are computed randomly in order to verify Assumptions A and B (see [16, Section
3] for further details). We remark that the resulting (NEP') and (GNEP*) are not
potential games, and they cannot be reduced to simple optimization problems.

The algorithm’s parameters for PASTA are the same as Example 1, except 7 =
100 and 77 = 1, thus satisfying Assumptions C and D. The equally weighted portfolio
Y’ = (l/K)lK for all v is used as the starting vector. Concerning the subgradients,
fyr = VOL(y)i + 7 (yY +107%)/(107*) — 7 whenever y¥ € [-107*,107*] for every
ve{l,...,N}andic{l,...,K}, and Gt = VO (x); + (! +107%)/(107%) — 7+
whenever ! € [-107%,107%] for every p € {1,...,M} and j € {1,...,(N/M)K}.
To implement the projection step of PASTA, a finite-steps method, inspired by [16],
is implemented, preventing one from having to compute the projection by solving an
optimization problem at each iteration.
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Portfolios corresponding to clients from 1 to 15 are regularized only at the lower
level, while portfolios corresponding to clients from 16 to 25 are regularized only by
the upper-level managers: 7. = 7 for v = 1,...,15, 7/ = 0 for v = 16,...,25,
7, =0for p=1,...,3, 7y = 7" for p = 4,5. This is done in order to observe
how the regularization of the two hierarchical levels yields sparsity for the computed
portfolios. Depending on 7' and 7%, we define five different regularization settings:

e No regularization: 7 = 7¢ = 0 e Lower reqularization 1: 7 = 2e-04, 7% = 0
o Lower regularization 2: 7' = 3e-04, 7% = 0 e Full reqularization 1: 7' = 2e-04,
74 = 3e-03 o Full reqularization 2: 7' = 3e-04, 7% = 3e-03. It is not reasonable to

assume that an analytical expression for F is available, as it is for Example 1, and
therefore it is not practical to explicitly compute the distance of {y} and {z;} from
(GNEP")’s solution set. A measure of feasibility can still be given as feas(yg, f,, ) =
llyr — Py (yr — fyi)lly, with f, € F(yx). Note that this is an upper bound of the
distance from {y} to E, as f,, € F(yx) was not chosen to minimize this quantity.

Figure 2 and Figure 3 show feas(yx, fy, ) for the two datasets considered and the
five different regularization settings over the iterations. In every picture, we report
both the values for the algorithm version with variable {ay} and {f;} (PASTA),
and the for version with fixed {ax} and {8x}. Similarly to the results in Example 1,
PASTA shows a faster convergence to the feasible set of the hierarchical problem. The
erratic behaviour of feas(y, fy,), which happens in the regularized settings, can be
explained by the lack of inner semicontinuity of the subgradient point-to-set mappings.
In fact, in the No regularization setting, the plots turn out to appear quite smooth.
Therefore, in the following analysis, we report values obtained by PASTA.

In Table 4 we report feas(yz, f,-) and feas(z7, f..) computed starting from differ-
ent iterations k, in all the five regularization settings. Similarly to Example 1, {2}
obtains better feasibility for higher values of k. Contrarily to Example 1, {z;} can
achieve a better feasibility than {yz}, because it shows more resilience to the non-
continuity of the subgradient and a more stable trend. For this reason, {zx} could be
useful to obtain a smoother convergence in the cases where the nonsmoothness of the
players’ payoffs yields a noisy behaviour of the considered merit function for {y}.

So far, in this numerical example, we only analyzed convergence to the feasible
set E of (GNEP"). To show the influence of the upper-level managers, and conse-
quently of the upper-level objective functions, we measure the sparsity of the portfolio
corresponding to z7 for k = 0.8] (which is actually the same as the sparsity for Y7)
for the five regularization settings considered. Table 5 shows the percentage of zeros
(intended as investments of less than 0.1% of the budget) of the final portfolios, regu-
larized by the lower-level agents (accounts 1-15) and upper-level managers (accounts
16-25). Both of the hierarchical levels have an impact on the computed solutions, as
witnessed by the different number of zeros depending on the agents’ regularization
choices. Specifically, in the No regularization setting, the computed portfolios require
every account to invest in all the assets, resulting in a completely non-sparse solution.
In the two Lower regularization settings, accounts 1-15 invest in less assets, with a
sparser solution for Lower regularization 2, as the sparsity enhancing parameter (7)
is higher. In the two Full reqularization settings, accounts 1-15 do not modify their
behaviour compared to the two Lower reqularization settings, but for accounts 16-25,
controlled by upper-level managers 4 and 5 that enforce sparsity, the number of assets
with no investments turns out to be higher. Notice that the regularization operated
by the upper-level managers is less effective than the one operated by the lower-level
problems, since they can only select porfolios among the lower-level equilibria. None-
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B fgas(zf, ]:27) B B feas(yt, fy;)
k=0 k=041 k=0.81
No reg 3.9860e-03  5.7453e-05  4.7687e-05  4.7442e-05

Low. reg. 1  3.4648e-03  2.6466e-04  2.6212e-04  4.0399e-04
SX5E  Low. reg. 2 3.7396e-03  8.0372e-04  7.8346e-04 1.2101e-03
Full reg. 1 3.4227e-03  4.1116e-04  4.0964e-04  4.1343e-04
Full reg. 2 3.5618e-03  5.7343e-04  5.5812e-04  6.8682e-04
No reg. 3.0745e-03  2.9030e-05  2.4679e-05  2.4539e-05
Low. reg. 1 2.3533e-03  1.0974e-04  1.0774e-04  1.8460e-04
DIJA  Low. reg. 2 2.5532e-03  4.1920e-04  4.1520e-04  4.7494e-04
Full reg. 1 6.0450e-03  4.1062e-04  3.6413e-04  4.6802e-04
Full reg. 2 6.2340e-03  8.3879e-04  8.2669e-04  1.1776e-03
TABLE 4
feas(w, fw) = |lw — Py (w — fuw)|ly, obtained with PASTA for both datasets in Example 2, for

27, with different starting iterations k, and y7, considering the five different regularization settings

SX5E DIJA
# Accounts 1-15 16-25 1-15 16-25
No regularization 0.00% 0.00% 0.00% 0.00%

Lower regularization 1 28.00%  0.00% 38.62%  0.00%

Lower regularization 2 44.67%  0.00% 56.78%  0.00%

Full reqularization 1 28.00% 25.00%  38.62%  12.07%

Full regularization 2 44.67% 24.00% 56.55% 11.72%

TABLE 5
Portfolio sparsity (% of assets with an investment lower than 0.1% of the budget), for the first

15 and the last 10 accounts, obtained with PASTA for both datasets in Example 2, considering the
five different regularization settings

theless, the sparsity obtained by managers 4 and 5 demonstrates the influence of the
upper-level game on the overall solution. This confirms the theoretical properties of
PASTA, that ensure theoretical convergence to solutions of (GNEP“).

8. Conclusions. We list the main contributions of our work below.

1. We focus on the framework of GNEPs with nonsmooth payoffs and having a
hierarchical structure, i.e. the shared feasible region is implicitly defined as
the set of equilibria of a lower-level NEP with nonsmooth payoffs. These prob-
lems naturally arise in real-world applications such as multi-portfolio selection
with sparsity enhancing terms. Under standard conditions (see Assumptions
A), we show that the feasible set of such GNEPs is compact, nonempty and
convex (see Proposition 3.3 and Proposition 3.4). Under additional conditions
(see Assumptions B), the GNEP equilibrium set is nonempty and bounded
(see Proposition 3.8). Moreover, there exists a subset of equilibria, that we
term variational solutions, which is nonempty, convex and compact. We are
not aware of other contributions in this context in the literature.

2. Generalizing a classical result in the smooth context, one can rely on a hier-
archical GVI structure to compute variational equilibria of the original hier-
archical GNEP. We study conditions that make the hierarchical GVI numer-
ically tractable by exploiting the techniques described below.

3. We combine Tikhonov-like penalization techniques with averaged gradient-
like approaches to prove convergence and obtain complexity guarantees under
mild conditions (Assumptions C and D) that, requiring the upper and lower-
level mappings to be just maximal monotone, are the most general among
the ones relied upon in the literature (see Theorem 5.2 and Theorem 5.3).
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Fic. 2.  Comparison between wvariable (PASTA) and fized {oar} and {Br} considering
feas(yx, fy,) = vk — Py (yx — fyp)lly, for the SX5E (left-hand side) and the DIJA (right-hand
side) datasets, in the cases of No regularization, Lower regularization 1 and 2, respectively

4. Exploiting the theoretical insights concerning the faster convergence to the
subproblem solutions (Theorem 4.5, Theorem 4.7 and Table 1), we propose
the Projected Average Single-loop Tikhonov Algorithm that gradually sat-
isfies the requirements in Assumptions D. We confirm PASTA’s theoretical
properties and show that it works well in practice through numerical tests.

5. Focusing on the motivating example of multi-portfolio selection, we apply and
test our approach on the novel model presented in [18]. Multi-portfolio se-
lection turns out to be numerically tractable under standard conditions. The
numerical results validate the modeling choices: e.g. the computed portfolio
turns out to be sparse due to the nonsmooth regularization term.

As future research, we wish to consider Newton-like algorithms to speed up compu-
tations and compute non-variational equilibria. We would like to encompass in our
analysis enlargements of the set-valued mappings to recover continuity properties.
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Appendix A. Additional results.

A.1. Proof of Proposition 3.2. If y € F, then y € SOL(F,Y"). By the convex-
ity of the problems (P!) and the minimum principle, thanks to (3.1) and the convexity
of Y,, y € E if and only if, for all v =1... N:

3, €0, 0L (y) : (V0L (y”,y ™)+ &)T (0 —y") >0 W” €Y.
Concatenating all these inequalities, (GVI') holds with f, = [V, 6. (y, y™") + & ] 5:1

and thus y € SOL(F,Y). Vice versa, if y € SOL(F,Y), for all v = 1... N there exists
3fy € F(y) such that f((v",y™") — (y",y7")) =0, ¥(v",y™") € Y. By (3.1),

3f, € Vo0l + 0yv gl fny(UV —y’) >0, W’ ey,

By the convexity of player v’s problem, y € E. O
A.2. On Maximal Monotonicity.

DEFINITION A.1. A monotone mapping T : R™ = R" is mazimal monotone if for
every pair (ﬁ,ﬂ € (R™ x R™) \ gph(T) there exists (u,t) € gph(T), where gph(T) =
{(u,t)|u € Rt € T(u)}, with (u — ﬂ)T(tA— t) < 0.

The following result characterizes the Carthesian product of maximal monotone map-
pings, and it is used to prove Proposition 3.4 and Proposition 3.9.
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LEMMA A2 Let S: X = X and T : Y = Y be mazimal monotone mappings.
Their Carthesian product is also mazimal monotone.

Proof. If, by contradiction, S x T : X xY = X x Y is not maximal monotone,
then it would mean that there exists an element

(Z,7, 52, ty) & gph(S x T) = {(2,y, 50, ty) |z € X,y €Y, 50 € S(a),t, € T(y)},
that does not violate the monotonicity of the operator S x T. That is
(A1) (52 =5)" (@ =7) + (ty —1,)"(y—9) 20, V(z,y) € X XY, V(sz,ty) € S(x) x T(y).

Since (Z,7,5z,ty) ¢ gph(S x T), we can assume, (T,5;) ¢ gph(S). Due to the
maximal monotonicity of S, there must exist (z,s,) with z € X and s, € S(z) such
that (s, — 5;)7(x —Z) < 0. From (A.1), one can deduce (t, — &))" (y — y) > 0,
Vy € Y and Vt, € T(y). Due to the maximal monotonicity of mapping 7', this
would mean (y,%¢,) € gphT, and it would be possible to choose (y,t,) = (7,t,)
and find (t, — )" (y —9) = (¢, — )T (y — y) = 0, which is in contradiction with
(ty —t,)T(y—79) > 0,Vy € Y and Vt, € T(y). O

A.3. Proof of Proposition 3.7. For all uy =1... M, z € SOL(G,SOL(F,Y))
means that for every w# such that (w#,z~*) € SOL(F,Y’), we have

9. € G(z):  gI((w*,a=#) — (a*,27H)) >0 <= Jgt e Gulz): gt (w* —aH) >0,
Gﬁ(x“,x_“) +p(zt) < GZ(w”,x_“) +@p(wh),  Vwk: (w*,z7") € E,

which is due to (Proposition 3.2, Proposition 3.4) convexity of player u’s problem. O

A.4. Proof of Proposition 3.8. The proof is obtained similarly to the one for
Proposition 3.3, by recalling that, by Assumptions A, B1 and B3, the noneptiness,
compactness and convexity of SOL(F,Y), the convex valuedness of G are guaranteed.
G is outer-semicontinuous, so that we get the closedness of SOL(G,SOL(F,Y)). The
set of equilibria of problem (GNEP") is bounded as its feasible set is compact. |

A.5. Proof of Proposition 3.9. Since [&pﬁ]i\:f:l turns out to be maximal

monotone, the proof is analogous to the one of Proposition 3.4. ]

A.6. Proof of Theorem 4.2. We have, for all v € Y, hj) € Hy(v), h) € H,(y):
0 < (hy = hy)" (v —y) = k" (v —y) = hy" (v —y) <hY" (v —y),

which follows from the monotonicity of H, and since y is a solution of (4.1), and we
can select h]l € H,(y) such that k" (v —y) >0, for all v € Y. d

A.7. Proof of Theorem 4.3. For any v € Y we define u™ = 7y + (1 — 7)o,
7 € (0,1). Since u™ € Y by the convexity of Y, if y is a solution of (4.2), for all
hl- € Hy(u"),

0<hIF (™ —y)=hF(ry+(L—mhw—y) =1 -7 (v—y) <A (v—y)

Considering 7 — 1, we have u” 7 y, and because H, is compact-valued over Y, for an

appropriately chosen subsequence of 7, and consequently of u”, there exists a sequence
of hll,, with hl. € H,(u") such that h. — K. Since H, is outer-semicontinuous,

ho e H,(y). This implies, for all v € Y, Ih. € H,(y) : EZT(U —y) >0. O
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A.8. Averaging Sequences. The proof of the next lemma can be traced back
to [14, Point 1 in Section 2.4.2].

LEMMA A.3. Let {ar} and {by} be sequences of positive real numbers such that:
limy o0 af =@, > poyq b = 00. Then, limy_, o0 Z?zl bjaj/Z§=1 b; =a.

A.9. Proof of point b) in Theorem 4.5. Assume by contradiction {y;} ad-

mits a limit vector § ¢ SOL(H,,,Y’). Due to C1, together with Lemma A.3, z;, — 7,
and, by Theorem 4.7, we have the contradiction 7 € SOL(H,,Y). d

A.10. On Inexactness. First, we give the proof of Proposition 6.3.

Proof of Proposition 6.3. For allv € Y, for all f, € F(v), hl = f, +ng, € Hy(v),
fo (w=z) = W) (v = 2) = ngy (v = zi) > —MEY — AoE5 — A3E5 — s,
where the inequality is due to (4.7), and thus we get (6.3). Moreover, for all v €
SOL(F,Y), f, € F(v) exists such that ?f(zk —v) >0, and for all g, € G(v):
~MEf 4 AE5 4 A/ < [Fu /0] (0= 20) < g (0= 20),
where the first inequality comes from (4.7), and thus we get (6.4). ad

We remark that it is difficult to measure how inexactness propagates from Minty-
like GVI optimality conditions (like (4.7), (5.1), (5.2), (6.3), (6.4)) to the players’
problems’ ones. This topic does not seem to have been thoroughly investigated in the
literature: some preliminary results can be traced back in [2], where however only the
case of single-valued mappings is considered.

We also give the counterpart related to (4.1) of Proposition 6.3.

PROPOSITION A.4. Given € > 0, let y be a solution of the inexact version of
(4.1), i.e. y €Y, 3 € Hy(y) such that k)" (v —y) > —¢, Yo € Y. We have
fy € F(y): fi(v—y)>—e—nhy, Ywey,

dg, € G(y) : gyT(v —y) > —¢/n, YveSOL(F,Y).

Proof. Since hy) = f, + ngy, for some f, € F(y) and g, € G(y), for all v € Y
fg(v—y) = hZT(v—y)—ngg(v—y) > —e—nls, and, as in the proof of Proposition 6.3,
—e/n < [fy/n+g5)" (v—1y) < gT(v—1y), Vv SOL(F,Y). o

A.11. Proof of Proposition 7.1. By Theorem 6.4, we only need to prove that

sequences {7} and {n;} are nonincreasing. Let us prove this for {;}, therefore fo-
cusing on {ay }, since the proof for {n;} can be obtained following the same reasoning.

Clearly, o, = «, and then {7} is nonincreasing, for all k > I,. For every
ke (1,1,), and for every ¢, € (0,2,], we have
a L - o ot (I —1) o _ta (Ite —1)
a—a  (@—a) 1—t, I= T 1—t, I
ta (K5 — (k—1)%) te (k% —(k—1)*)
> > 7
- 1 . ta Iga = 1 _ tZ Iga

where t¥ £ logy(k — 1), and the last inequality holds since t* < t,, thus (k/I,)° <
1<a/(@—a)—tE/(1 —tF) (k% — (k —1)%=)/(I5*), and by rearranging terms,

ar=a— (@—a)(k/I) >t [@a— @—a)(k—1/I,)%] = thay_,

[0 7
which implies k** > |:kt§:| S (k — 1)k, 0
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