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1. Introduction. We address Generalized Nash Equilibrium Problems (GNEP)16

[6–8], where the shared feasible set is implicitly defined as the equilibrium set of a dif-17

ferent Nash Equilibrium Problem (NEP). The resulting GNEP presents a hierarchical18

structure where the players of the GNEP are the upper-level agents, while the players19

of the NEP that defines the feasible set are the lower-level ones: the upper-level agents20

operate a selection among the equilibria of the NEP played by the lower-level agents.21

Nonsmooth convex terms in both the upper and the lower-level agents’ objective func-22

tions are considered, in order to include, e.g., sparsity enhancing or exact penalty-like23

terms. Such hierarchical GNEP, while stemming from real-world applications such as24

multi-portfolio selection (see e.g. [16, 18] and Example 2 in section 7), to the best of25

our knowledge has not been explicitly addressed in its full generality yet.26

Relying on standard assumptions for the upper and the lower-level agents’ prob-27

lems, the hierarchical GNEP turns out to be jointly convex [10] and with a nonempty28

equilibrium set (Proposition 3.5 and Proposition 3.8). Mimicking the smooth context,29

we identify, in our broader framework, variational solutions that can be computed by30

addressing a suitable (upper-level) Generalized Variational Inequality (GVI), whose31

feasible set is implicitly defined as the solution set of another (lower-level) GVI ( [21]32

for the definition of a single-level GVI, and [7] where variational solutions of a single-33

level GNEP are identified in the smooth case). The resulting hierarchical GVI consists34

of a lower-level GVI reformulating the lower-level NEP, and of an upper-level GVI35

whose solution set is the set of variational equilibria of the upper-level GNEP.36

Concerning hierarchical programs, two main approaches have been developed in37

the literature: alternating-like techniques [1, 19, 20, 23, 25] and Tikhonov methods38

[1, 4, 9, 12, 13, 15, 17, 24]. As far as we are aware, considering the level of generality39

we take into account, there are no methods in the literature for finding variational40

solutions of hierarchical GNEPs.41

We compute variational equilibria of the hierarchical GNEP through the corre-42
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sponding hierarchical GVI described above via a projected gradient Tikhonov-like43

approach: we derive convergence properties and obtain complexity guarantees. More44

in detail, we iteratively address single-level GVI subproblems, where the Tikhonov45

parameter is used to suitably weight the lower and the upper-level GVI operators.46

We show that using a projected gradient method with a constant Tikhonov parame-47

ter, the sequence produced by the algorithm converges to a fixed distance from every48

solution of the single-level GVI subproblem (Theorem 4.5). As a consequence, ei-49

ther the sequence admits a single limit vector, which turns out to be a solution of50

the GVI subproblem, or it orbits around the GVI subproblem’s solution set. In the51

latter case, the projected gradient method fails to converge to solutions of the GVI52

subproblem, and, in the same spirit of [3], we rely on an averaging step to reach the53

solution set of the GVI subproblem (Theorem 4.7). Notice that, solving the GVI54

subproblem for positive fixed values of the Tikhonov parameter only corresponds to55

solving inexactly the hierarchical GNEP. The inexactness in computing variational56

solutions of the hierarchical GNEP is directly linked to the value of the Tikhonov57

parameter (Proposition 6.3). Unfortunately, if the Tikhonov parameter is fixed to58

zero, the solution set of the GVI subproblem corresponds only to the feasible set of59

the hierarchical GNEP, completely ignoring the payoffs of the upper-level players.60

In order to compute variational solutions of the hierarchical GNEP, one cannot rely61

solely on solving the GVI subproblem for any fixed value of the Tikhonov parameter.62

Introducing a suitable updating rule that establishes a link between the Tikhonov63

parameter and the stepsize sequences, and makes them vanish (Assumptions D) we64

prove convergence to a variational solution of the hierarchical GNEP (Theorem 5.2).65

Relying on harmonic sequences for the Tikhonov parameter and the stepsize, we66

provide complexity bounds in terms of maximum number of iterations that the al-67

gorithm needs to meet a target accuracy. Specifically, we evaluate the complexity68

of computing solutions of the GVI subproblem for fixed values of the Tikhonov pa-69

rameter, for both the standard projected gradient iterations and for the averaging70

ones. Moreover, we give complexity bounds, under Assumptions D, when computing71

variational solutions of the hierarchical GNEP. The results of our analysis suggest72

that solutions of the GVI subproblem for fixed values of the Tikhonov parameter can73

be computed quite efficiently (Table 1). In view of such theoretical insights, we pres-74

ent the Projected Average Single-loop Tikhonov Algorithm (PASTA) that gradually75

satisfies the requirements in Assumptions D. By means of PASTA, we first aim at76

efficiently approaching the solution set of the GVI subproblem for fixed values of the77

Tikhonov parameter and, only at a later stage, we seek to achieve convergence to vari-78

ational solutions of the hierarchical GNEP. Our numerical experiments confirm that79

such approach works well in practice and results in a faster convergence compared to80

satisfying Assumptions D from the beginning (section 7).81

In section 2 we present the hierarchical GNEP model, as well as the main as-82

sumptions of our framework, and, in section 3, we introduce the hierarchical GVI we83

rely on in order to compute variational solutions of the original problem. In section 4,84

we introduce the Tikhonov approach, and convergence results concerning the GVI85

subproblem for fixed values of the Tikhonov parameter, while in section 5 we intro-86

duce Assumptions D and analyze the resulting convergence properties to variational87

solutions of the hierarchical GNEP. In section 6, we collect the complexity bounds88

we achieve when considering harmonic sequences for the Tikhonov parameter and the89

stepsize. In section 7, we introduce PASTA and test it numerically, first addressing a90

toy example, and then solving a multi-portfolio selection problem, inspired by [16].91
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2. The hierarchical jointly-convex Generalized Nash Equilibrium mo-92

del. We define a Generalized Nash Equilibrium Problem (GNEP) whose shared feasi-93

ble region E is given implicitly by the equilibrium set of a lower-level Nash Equilibrium94

Problem (NEP). We first deal with the lower-level NEP, highlighting the conditions95

for its solution set to be nonempty, convex and compact (see Assumptions A and96

developments in section 3). Next, we provide assumptions concerning the upper-level97

hierarchical GNEP that ensure that make it a jointly-convex problem with nonempty98

solution set (see Assumptions B and developments in section 3).99

2.1. The lower-level NEP. The lower-level NEP consists of the collection of100

N (parametric) optimization problems, each borne by player ν, with ν = 1, . . . , N ,101

managing nν decision variables. We denote by y the vector formed by all the decision102

variables, and by y−ν the vector composed by all the players’ decision variables except103

those of player ν: y ≜ (y1 · · · yN )T ∈ Rp, y−ν ≜ (y1 · · · yν−1, yν+1 · · · yN ) ∈ Rp−nν ,104

where p =
∑N

ν=1 nν . To emphasize player ν’s decision variables within y, we some-105

times write (yν , y−ν) instead of y. Note that this still stands for the vector y and that,106

in particular, the notation (yν , y−ν) does not mean that the block components of y107

are reordered in such a way that yν becomes the first block. For each player at the108

lower level, the objective function is given by the sum of a smooth term θlν : Rp → R109

depending on variables yν as well as on the variables y−ν , and a nonsmooth term110

φl
ν : Rnν → R depending on variables yν only. Summarizing, the NEP we consider111

consists of the collection of player ν’s parametric optimization problems112

(Pl
ν) minimizeyν θlν(y

ν , y−ν) + φl
ν(y

ν) s.t. yν ∈ Yν ,113

where Yν ⊆ Rnν .114

Denoting Y ≜ Y1 × · · · × YN ⊆ Rp, the lower-level NEP is the following problem115

(NEPl) find y ∈ Y : θlν(y
ν , y−ν) + φl

ν(y
ν) ≤ θlν(v

ν , y−ν) + φl
ν(v

ν), ∀vν ∈ Yν , ν = 1, . . . , N.116

Any y ∈ Y satisfying (NEPl) is an equilibrium, or a solution of the NEP. A point is117

therefore an equilibrium if for no player, given the other players’ choices, the objective118

function can be decreased by unilaterally changing their decision variables to any119

other feasible point. Accordingly, we indicate with E ≜ {y ∈ Y : θlν(y
ν , y−ν) +120

φl
ν(y

ν) ≤ θlν(v
ν , y−ν) + φl

ν(v
ν), ∀vν ∈ Yν , ν = 1, . . . , N} ⊆ Rp the (non-parametric)121

set of equilibria of the NEP.122

Assumptions A123

A1 Yν is nonempty, convex and compact, for every ν = 1, . . . , N ;124

A2 θlν is convex with respect to yν , for every ν = 1, . . . , N ;125

A3
[
∇yνθlν

]N
ν=1

is monotone on Y ;126

A4 φl
ν is convex and locally Lipchitz, for every ν = 1, . . . , N .127

From assumption A4, one can immediately deduce that ∂yνφl
ν is locally bounded and128

outer-semicontinuous for every ν = 1, . . . , N , where the operator ∂yν indicates the set129

of subgradients with respect to player ν’s variables. Furthermore, ∂yνφl
ν is a compact130

and convex nonempty set. Such results can be traced back in [5, Proposition 2.1.2 a]131

and [5, Proposition 2.1.5 d]. We will show that E is nonempty convex and compact132

(see section 3).133

2.2. The upper-level GNEP. Considering the upper-level hierarchical GNEP,134

overall, player µ, with µ = 1, . . . ,M , controls the decision variables xµ ∈ Rmµ , with135 ∑M
µ=1 mµ = p, so as to solve the following optimization problem:136

(Pu
µ) minimizexµ θuµ(x

µ, x−µ) + φu
µ(x

µ) s.t. (xµ, x−µ) ∈ E,137
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where θuµ : Rp → R is a smooth function depending on variables xµ as well as on the138

variables x−µ, and φu
µ : Rmµ → R is a nonsmooth term depending on variables xµ139

only. Notice that this is not a simple NEP, but a GNEP, because each player’s feasible140

region depends parametrically on the other players’ variables. The variables xµ belong141

therefore to the solution set of the lower-level NEP, we denote x ≜ (x1 · · ·xM ) ∈ Rp,142

x−µ ≜ (x1 · · ·xµ−1, xµ+1 · · ·xM ) ∈ Rp−mµ . The way the lower-level variables are par-143

titioned among the players (y1, . . . , yN ) is completely independent from the partition144

of the same variables among the players that happens at upper level (x1, . . . , xM ).145

For the sake of notational simplicity, and without loss of generality, we assume that146

x = y, meaning that the variables are ordered (but not partitioned) in the same way147

at both the levels. The upper-level GNEP is the following problem:148

149

(GNEPu) find x ∈ E: θuµ(x
µ, x−µ) + φu

µ(x
µ) ≤ θuµ(w

µ, x−µ) + φu
µ(w

µ),150

∀wµ : (wµ, x−µ) ∈ E, µ = 1, . . . ,M.151152

Assumptions B153

B1 θuµ is convex with respect to xµ, for every µ = 1, . . . ,M ;154

B2
[
∇xµθuµ

]M
µ=1

is monotone on Y ;155

B3 φu
µ is convex and locally Lipchitz, for every µ = 1, . . . ,M .156

Similarly to the lower level, from assumption B3 we can deduce that ∂xµφu
µ is lo-157

cally bounded and outer-semicontinuous for every µ = 1, . . . ,M . Furthermore ∂xµφu
µ158

is a compact convex nonempty set. We will show that the set of equilibria of the159

hierarchical GNEP is nonempty (see section 3).160

3. The Generalized Variational Inequality Formulation. The finite-di-161

mensional Generalized Variational Inequality (GVI) provides an analytical tool to162

address the described hierarchical GNEP. First we focus on reformulating the lower-163

level NEP as a GVI in order to prove that, under Assumptions A, its solution set E164

is nonempty, convex and compact. We also deal with the solution set of the (upper-165

level) hierarchical GNEP by showing that the GVI provides a tool to compute its166

variational equilibria, and we show this subset of equilibria to be nonempty, convex167

and compact.168

3.1. Lower-level GVI formulation. The lower-level NEP (NEPl) turns out169

to be equivalent to the following GVI:170

(GVIl) find y ∈ Y : ∃fy ∈ F (y) : fT
y (v − y) ≥ 0, ∀v ∈ Y ;171

where F (y) ≜
[
∂yν

(
θlν(y) + φl

ν(y
ν)
)]N

ν=1
: Rp ⇒ Rp.172

Remark 3.1. In view of Assumptions A, θlν(y
ν , y−ν) + φl

ν(y
ν), for all ν, turns173

out to be also regular (see [22, Proposition 7.27]). This implies that we can write174

(see [22, Proposition 10.9])175

(3.1) F (y) =
[
∇yνθlν(y)

]N
ν=1

+
[
∂yνφl

ν(y
ν)
]N
ν=1

for all y ∈ Y .176

Additionally, the operator F turns out to be outer-semicontinuous on Y , since it is the177

sum of a continuous term
[
∇yνθlν

]N
ν=1

and an outer-semicontinuous one
[
∂yνφl

ν

]N
ν=1

.178
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In the next proposition, whose proof is given in Appendix A.1, we show that, under179

Assumptions A, (NEPl) can be recast as (GVIl), whose solution set is denoted by180

SOL(F, Y ).181

Proposition 3.2. Under assumptions A1, A2, A4, E = SOL(F,Y).182

With the following results we list some properties of F and E.183

Proposition 3.3. Under assumptions A1, A2, A4, SOL(F, Y ), and then E,184

are nonempty and compact.185

Proof. To prove the nonemptiness of E, we rely on [11, Theorem 3.1], where186

nonemptiness, compactness and convexity of Y , outer-semicontinuity, convex valued-187

ness (on Y ) of F are required for E to be nonempty. These conditions are satisfied188

under A1, A2, A4. E is bounded, since Y is compact.189

Regarding closedness of E, the proof is obtained by contradiction. Thanks to190

Proposition 3.2, if E is not closed, there exists a sequence {yk} ⊂ E such that191

(3.2) ∃fyk
∈ F (yk) : f

T
yk
(v − yk) ≥ 0, ∀v ∈ Y,192

and such that yk → y /∈ E, i.e.193

(3.3) ∀fy ∈ F (y), ∃v ∈ Y : fT
y (v − y) < 0.194

Since F is locally bounded over the bounded set Y , an infinite subset of indices K195

exists such that limk∈K fyk
= f . Moreover, since F is outer-semicontinuous, f ∈ F (y),196

taking the subsequential limit on both sides of (3.2), we get 0 ≤ limk∈K fT
yk
(v− yk) =197

f
T
(v − y), for all v ∈ Y , which contradicts (3.3).198

Proposition 3.4. Under Assumptions A, F is maximal monotone (see Defini-199

tion A.1 in Appendix A.2) and SOL(F, Y ), and then E, are convex sets.200

Proof. First note that, since under A3 the operator
[
∇yνθlν

]N
ν=1

is continuous201

and monotone, it turns out to be also maximal monotone (see [22, Proposition 12.7]).202

On the other hand, under assumption A4, the operator φl
ν is continuous and convex,203

which implies that the point to set map defined by ∂yνφl
ν is maximal monotone204

(see [22, Proposition 12.17]). By Lemma A.2 in Appendix A.2 we therefore have that205 [
∂φl

ν

]N
ν=1

is maximal monotone. Since the sum of maximal monotone operators is206

maximal monotone under mild conditions (as long as rint (dom∇yνθlν) ∩ rint(dom207

∂yνφl
ν) ̸= ∅) (see [22, Proposition 12.44]), we can deduce that the mapping F is208

maximal monotone. Recalling [11, Theorem 4.4], the convexity of SOL(F, Y ) and E209

follows, since Y is nonempty and convex, and F is maximally monotone.210

Proposition 3.5. Under Assumptions A and B, (GNEPu) is jointly-convex.211

Proof. By Proposition 3.4, E is convex, and the thesis holds by Assumptions B212

because the upper-level agents’ objectives are convex with respect to their private213

variables.214

3.2. Upper-level GVI formulation. The following GVI can be used to com-215

pute solutions of (GNEPu):216

(GVIu) find x ∈ SOL(F, Y ) : ∃gx ∈ G(x) : gTx (w − x) ≥ 0, ∀w ∈ SOL(F, Y ),217

where G(x) ≜
[
∂xµ

(
θuµ(x) + φu

µ(x
µ)
)]M

µ=1
: Rp ⇒ Rp.218
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Remark 3.6. Similarly to the lower level, under Assumptions B, we have G(x) =219 [
∇xµθuµ(x)

]M
µ=1

+
[
∂xµφu

µ(x
µ)
]M
µ=1

, for all x ∈ Y . The operator G is also outer-220

semicontinuous, by the same reasoning presented in Remark 3.1 for operator F .221

With the next result, whose proof is reported in Appendix A.3, under Assumptions222

B, we show that the solution set of (GVIu), that we denote by SOL(G,SOL(F, Y )),223

is included in the solution set of (GNEPu).224

Proposition 3.7. Under assumptions B1, B3, every x ∈ SOL(G,SOL(F, Y ))225

is a solution of (GNEPu).226

In particular, we say that the solutions belonging to SOL(G,SOL(F, Y )) are the227

variational equilibria of (GNEPu), mimicking the classical definition in the smooth228

case. Computing the variational equilibria of a GNEP is relvant for many applications229

(see e.g. [10], and the references therein). With the following propositions, whose230

proofs are reported in Appendix A.4 and Appendix A.5 respectively, we establish231

some properties concerning G and the set of variational equilibria of (GNEPu).232

Proposition 3.8. Under Assumpions A, B1, B3, SOL(G,SOL(F, Y )) is non-233

empty and compact and then also the set of equilibria of (GNEPu) is nonempty.234

Proposition 3.9. Under Assumptions A and B, G is maximal monotone (see235

Definition A.1 in Appendix A.2) and SOL(G,SOL(F, Y )) is convex.236

Therefore, we can say that (GNEPu) is a jointly-convex problem whose solutions can237

be computed by solving (GVIu) with a nonempty, convex and compact solution set.238

4. On the solution of the Tikhonov single-level GVI subproblem. By239

Proposition 3.7 and Proposition 3.8, we can compute variational solutions to (GNEPu)240

by addressing (GVIu). In particular, we employ Tikhonov-like regularization tech-241

niques, where the lower-level GVI mapping F is penalized at the same level of the242

upper-level one G:243

Hη(y) ≜ F (y) + ηG(y),244

where η ≥ 0 is the Tikhonov parameter. The parameter η is used to weight the lower245

and the upper-level GVI operators F and G. The corresponding single-level GVI246

subproblem is as follows:247

(4.1) find y ∈ Y : ∃hη
y ∈ Hη(y) : hηT

y (v − y) ≥ 0, ∀v ∈ Y.248

We denote by SOL(Hη, Y ) the solution set of (4.1). We also introduce the Minty249

counterpart for (4.1), that is instrumental for the forthcoming developments:250

(4.2) find y ∈ Y : hηT
v (v − y) ≥ 0, ∀v ∈ Y, ∀hη

v ∈ Hη(v).251

Notice that, as we clarify in the forthcoming developments, solving the GVI sub-252

problem (4.1) and (4.2) corresponds to solving inexactly (GVIl) and (GVIu) (see253

Proposition A.4 and Proposition 6.3).254

Proposition 4.1. Under Assumptions A and B, for every η ≥ 0, Hη is maximal255

monotone, outer-semicontinuous and locally bounded on Y . Moreover, SOL(Hη, Y )256

is convex, compact-valued and nonempty.257

Proof. The claim is a consequence of Proposition 3.4 and Proposition 3.9.258
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The solution sets of (4.1) and the one of the Minty problem (4.2) turn out to coin-259

cide, according to the following results whose proofs are given in Appendix A.6 and260

Appendix A.7, respectively.261

Theorem 4.2. Under assumptions A1, A3, A4, B2 and B3 if a vector y ∈ Y262

is a solution of (4.1), then it is a solution of (4.2).263

Theorem 4.3. Under assumptions A1, A4, and B3, if a vector y ∈ Y is a264

solution of (4.2), it is a solution of (4.1).265

In the rest of the paper, Assumptions A, B will always be assumed to hold. We define266

the following finite quantities:267

F ≜ max
y∈Y

max
fy∈F (y)

∥fy∥ G ≜ max
y∈Y

max
gy∈G(y)

∥gy∥ D ≜ max
x,v∈Y

∥x− v∥.268

We remark that the boundedness of Y (see assumption A1) is a sufficient condition269

for F ,G and D to be finite.270

To compute a point in SOL(Hη, Y ) with η ≥ 0, we investigate different first-order271

methods. Here we focus only on the solution of the GVI subproblem (4.1), while we272

provide a convergence analysis for (GNEPu) in section 5.273

We first analyze the properties of the following projected gradient-like procedure274

when specified to address problem (4.1).275

Given {γk}, {ηk}, y1 ∈ Y , for every k = 1, . . . compute:276

(4.3)
fyk
∈ F (yk), gyk

∈ G(yk), hηk
yk
← fyk

+ ηkgyk

yk+1 ← PY (yk − γkh
ηk
yk
),

277

where PY denotes the Euclidean projection operator on the convex set Y .278

The sequence {yk} produced by Algorithm (4.3) presents strong properties under279

mild assumptions regarding Tikhonov parameters {ηk} and stepsizes {γk}.280

Assumptions C281

C1 {γk} is non-increasing, γk > 0 for all k, γk → 0 and {γk} /∈ ℓ1, that is,282 ∑∞
k=1 γk =∞;283

C2 {ηk} is non-increasing, ηk > 0 for all k and ηk → η ≥ 0.284

The non-summability of {γk} is a condition that, roughly speaking, makes stepsizes285

vanishing not too fast. Sufficient conditions ensuring C1 can be readily obtained, see286

e.g. the example given in (6.1).287

When Hη is just maximal monotone, {yk} may not converge to SOL(Hη, Y ),288

see e.g. [15]. However, we show in Theorem 4.5 that the distance of yk from any289

u ∈ SOL(Hη, Y ) converges to a constant value, depending on u. In the following290

theorem, we prove the existence of some bounds which we rely on to prove the claim291

in Theorem 4.5.292

Theorem 4.4. Consider the sequences {γk}, {ηk}, {yk} and {hηk
yk
} defined in293

Algorithm (4.3) and assume Assumptions C to hold. Let294

Ψk
1 ≜

∞∑
j=k

γ2
j , Ψk

2 ≜
∞∑
j=k

γj(ηj − η), ∀k ≥ 1.295

For each u ∈ SOL(Hη, Y ), and for every k ≥ 1, we have:296

(4.4) lim sup
∆→∞

∥yk+∆ − u∥2 − ∥yk − u∥2 ≤ 2Λ1Ψ
k
1 + 2Λ2Ψ

k
2 ,297

with Λ1 ≜ (F
2
+ η21G

2
) and Λ2 ≜ GD.298
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Proof. Due to the non expansiveness of the projection operator, for every j ≥ 1299

we have:300

∥yj+1 − u∥2 = ∥PY (yj − γjh
ηj
yj )− PY (u)∥2 ≤ ∥yj − γjh

ηj
yj − u∥2

= ∥yj − u∥2 + ∥γjh
ηj
yj∥2 + 2γjh

ηjT
yj (u− yj) + 2γjηg

T
yj
(u− yj)

−2γjηgTyj
(u− yj)

= ∥yj − u∥2 + ∥γjh
ηj
yj∥2 + 2γjh

ηT
yj

(u− yj) + 2γj(ηj − η)gTyj
(u− yj)

≤ ∥yj − u∥2 + 2γ2
j

(
F

2
+ η21G

2
)
+ 2γj(ηj − η)GD,

301

where the latter inequality holds because u ∈ SOL(Hη, Y ), and due to the following302

relation, since {ηj} is non-increasing:303

(4.5) ∥γj(fyj
+ ηjgyj

)∥2 ≤ 2γ2
j

(
∥fyj
∥2 + η2j ∥gyj

∥2
)
≤ 2γ2

j

(
F

2
+ η21G

2
)
.304

Summing j from k to k +∆− 1 we find:305

k+∆−1∑
j=k

∥yj+1 − u∥2 −
k+∆−1∑
j=k

∥yj − u∥2 ≤ 2Λ1

k+∆−1∑
j=k

γ2
j + 2Λ2

k+∆−1∑
j=k

γj(ηj − η)306

which implies, due to the telescoping series property,307

∥yk+∆ − u∥2 ≤ ∥yk − u∥2 + 2Λ1

k+∆−1∑
j=k

γ2
j + 2Λ2

k+∆−1∑
j=k

γj(ηj − η).308

Relation (4.4) is obtained by letting ∆→∞.309

In Theorem 4.5 we list the main convergence properties of {yk}.310

Theorem 4.5. Consider the sequences {γk}, {ηk}, {yk} and {hηk
yk
} defined in311

Algorithm (4.3) and assume Assumptions C to hold. The following statements hold:312

a) if {γk} ∈ ℓ2, that is,
∑∞

k=1 γ
2
k < ∞ and {γk(ηj − η)} ∈ ℓ1, given any u ∈313

SOL(Hη, Y ), for some lu depending on u, we have limk→∞ ∥yk − u∥2 = lu;314

b) if yk → y, then, y ∈ SOL(Hη, Y );315

c) ∥yk+1 − yk∥ → 0.316

Proof. The proof of a) is obtained from relation (4.4) by observing that Ψk
1 → 0317

and Ψk
2 → 0. The proof of b) is reported in Appendix A.9. As for c): for all v ∈ Y318

and k ≥ 1 we have:319

∥yk+1 − yk∥ =
∥∥PY (yk − γkh

ηk
yk
)− PY (yk)

∥∥ ≤ ∥∥yk − γkh
ηk
yk
− yk

∥∥ =
∥∥γkhηk

yk

∥∥→ 0,320

where the inequality is due to the non expansiveness of the projection operator, and321

the last term goes to zero because Hηk
is locally bounded over the compact set Y .322

Note that relaxing the assumption on the boundedness of Y , but requiring F and G323

to be bounded on it, one can still obtain convergence results by slightly modifying324

the line of reasoning in the results above and in the forthcoming developments.325

Under Assumptions C, {yk} might orbit around SOL(Hη, Y ) thanks to Theo-326

rem 4.5 (a), (c), without reaching it eventually. On the other hand, if {yk} converges,327

then its limit point belongs to the solution set, see Theorem 4.5 (b). This cannot328

be guaranteed in general, but one might rely on some averaging techniques. Thus,329
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given the sequences {γk} and {yk} defined by Algorithm (4.3), we introduce a further330

averaging sequence {zk} such that, for k ≥ 1,331

(4.6) zk ←
∑k

j=1 γjyj∑k
j=1 γj

.332

In Theorem 4.7 we show that {zk} converges to SOL(Hη, Y ). With the preliminary333

Theorem 4.6, we obtain some bounds that are then used to prove Theorem 4.7.334

Theorem 4.6. Consider the sequences {γk}, {ηk}, {yk}, {gyk
} and {hηk

yk
} defined335

in Algorithm (4.3) and {zk} defined in (4.6) and assume Assumptions C to hold. Let336

Ξk
1 ≜

∑k
j=1 γ

2
j∑k

j=1 γj
, Ξk

2 ≜

∑k
j=1 γj(ηj − η)∑k

j=1 γj
, Ξk

3 ≜
1∑k

j=1 γj
, k ≥ 1.337

For all k ≥ 1 we have:338

(4.7) hηT
v (v − zk) ≥ −Λ1Ξ

k
1 − Λ2Ξ

k
2 − Λ3Ξ

k
3 , ∀v ∈ Y, ∀hη

v ∈ Hη(v),339

with Λ1 and Λ2 defined in Theorem 4.4 and Λ3 ≜ D2/2.340

Proof. For all v ∈ Y , hη
v ∈ Hη(v) and for every j ≥ 1, following the same steps341

as the ones in the chain of relations at the beginning of the proof of Theorem 4.4,342

∥yj+1 − v∥2 = ∥yj − v∥2 + ∥γjh
ηj
yj∥2 + 2γjh

ηT
yj

(v − yj) + 2γj(ηj − η)gTyj
(v − yj)

≤ ∥yj − v∥2 + 2γ2
j (F

2
+ η21G

2
) + 2γjh

ηT
v (v − yj) + 2γj(ηj − η)GD,

343

due to the monotonicity of Hη, as well as equation (4.5). Then,344

−2γjhηT
v (v − yj) ≤ ∥yj − v∥2 − ∥yj+1 − v∥2 + 2Λ1γ

2
j + 2Λ2γj(ηj − η).345

Summing j from 1 to k, and dividing by 2
∑k

j=1 γj , we get346

−hηT
v (v − zk) ≤ ∥y1−v∥2

2
∑k

j=1 γj
− ∥yk+1−v∥2

2
∑k

j=1 γj
+ Λ1

∑k
j=1 γ2

j∑k
j=1 γj

+ Λ2

∑k
j=1 γj(ηj−η)∑k

j=1 γj

≤ Λ1

∑k
j=1 γ2

j∑k
j=1 γj

+ Λ2

∑k
j=1 γj(ηj−η)∑k

j=1 γj
+ D2

2
1∑k

j=1 γj
,

347

and then (4.7) follows.348

Theorem 4.7. Consider the sequences {γk} and {yk} defined in Algorithm (4.3)349

and {zk} defined in (4.6) and assume Assumptions C to hold. The limit point of {zk}350

belongs to SOL(Hη, Y ).351

Proof. The proof is obtained by observing that Ξk
1 ,Ξ

k
2 → 0 in view of Lemma A.3352

where we take bk = γk and ak = γk as far as Ξk
1 is concerned, while ak = ηk − η when353

considering Ξk
2 , and Ξk

3 → 0 due to C1. Therefore, Theorem 4.6 yields lim inf
k→∞

hηT
v (v−354

zk) ≥ 0, for all v ∈ Y and for all hη
v ∈ Hη(v). Hence all subsequential limits of {zk}355

are solutions to the Minty GVI subproblem, and thus, by Theorem 4.3 they belong356

to SOL(Hη, Y ).357

In the sequel, we prove that {zk} has actually a single limit point. For every358

u1, u2 ∈ SOL(Hη, Y ), by convexity: u1+u2

2 ∈ SOL(Hη, Y ), see Proposition 4.1. Com-359

bining point a) in Theorem 4.5 and Lemma A.3 in Appendix A.8, we can say that360
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10 L. LAMPARIELLO, S. SAGRATELLA, V.G. SASSO

∃ l(u1+u2
2 ), lu1

∈ R:361 ∑k
j=1 γj

∥∥yj − u1+u2

2

∥∥2∑k
j=1 γj

−−−−→
k→∞

l(u1+u2
2 ),

∑k
j=1 γj ∥yj − u1∥2∑k

j=1 γj
−−−−→
k→∞

lu1
.362

For every j ≥ 1 we have:363 ∥∥∥yj − u1 + u2

2

∥∥∥2

=
∥∥∥yj − u1 +

u1 − u2

2

∥∥∥2

= ∥yj − u1∥2 +
∥∥∥u1 − u2

2

∥∥∥2

+(yj −u1)
T (u1 −u2).364

Multiplying both sides by γj , summing j from 1 to k, and then dividing by
∑k

j=1 γj ,365

we get:366

(4.8)

∑k
j=1 γj

∥∥yj − u1+u2
2

∥∥2∑k
j=1 γj

−
∑k

j=1 γj ∥yj − u1∥2∑k
j=1 γj

−
∥∥∥u1 − u2

2

∥∥∥2

= (zk − u1)
T (u1 − u2).367

Taking the limit on both sides, we get368

l(u1+u2
2 ) − lu1

−
∥∥∥∥u1 − u2

2

∥∥∥∥2 = lim
k→∞

(zk − u1)
T (u1 − u2).369

Let us assume by contradiction that z ̸= z̃ are two limit points of {zk}. In the first370

part of the proof we have shown that z, z̃ ∈ SOL(Hη, Y ). The last equation implies371

(z − z̃)T (u1 − u2) = (z − u1)
T (u1 − u2)− (z̃ − u1)

T (u1 − u2) = 0. Considering u1 = z372

and u2 = z̃, we obtain ∥z − z̃∥2 = 0 that contradicts z ̸= z̃.373

Under Assumptions A, B and C, the sequence produced by Algorithm (4.3) together374

with (4.6) converges to SOL(Hη, Y ). The points in SOL(H0, Y ) correspond to the375

solutions of (GVIl), therefore they are feasible for (GVIu), and then they belong376

to E, but they are not guaranteed to be solutions to (GVIu). On the other hand,377

if η > 0, the sequence produced by Algorithm (4.3) together with (4.6) converges378

to SOL(Hη, Y ), that corresponds to solving, depending on η, (GVIl) and (GVIu)379

inexactly (see Proposition A.4 and Proposition 6.3). Considering relation (6.3), one380

is not guaranteed to solve (GVIl) exactly. Therefore, in order to solve the (GVIu)381

exactly, and obtain equilibria of (GNEPu), one cannot focus solely on computing382

points in SOL(Hη, Y ) for any η.383

In the following section, we define additional requirements (Assumptions D) on384

{γk} and {ηk} that let the sequence produced by Algorithm (4.3) together with (4.6)385

compute points in SOL(H0, Y ) and in SOL(G,SOL(F, Y )), and therefore equilibria of386

(GNEPu). Note that differently from Assumptions C, the conditions in Assumptions387

D require the choices of {γk} and {ηk} to be related to each other.388

5. On the solution of the upper-level GNEP. We provide assumptions en-389

suring that the sequence produced by Algorithm (4.3) together with (4.6) converges390

to a solution of problem (GVIu), which is also a solution for (GNEPu) (see Propo-391

sition 3.7). We define the following bounds for the Minty versions of (GVIl) and392

(GVIu).393

Theorem 5.1. Consider the sequences {γk}, {ηk}, {yk} and {hηk
yk
} defined in

Algorithm (4.3) and {zk} defined in (4.6) and assume Assumptions C to hold. Let
η = 0 in assumption C2, and

Φk
1 ≜

∑k
j=1 γj

γj
ηj∑k

j=1 γj
, Φk

2 ≜
1

ηk
∑k

j=1 γj
, k ≥ 1.
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For all k ≥ 1 we have:394

fT
v (v − zk) ≥ −Λ1Ξ

k
1 − Λ2Ξ

k
2 − Λ3Ξ

k
3 , ∀v ∈ Y, ∀fv ∈ F (v),(5.1)395

gTv (v − zk) ≥ −Λ1Φ
k
1 − Λ3Φ

k
2 , ∀v ∈ SOL(F, Y ), ∀gv ∈ G(v),(5.2)396397

with Λ1, Λ2, Λ3, {Ξk
1}, {Ξk

2} and {Ξk
3} defined in Theorem 4.4 and Theorem 4.6.398

Proof. Relation (5.1) can be obtained by considering Theorem 4.6 with η = 0.399

To prove (5.2), for every v ∈ SOL(F, Y ), fv ∈ F (v), gv ∈ G(v), by reasoning simi-400

larly to the beginning of the proof of Theorem 4.6, and observing that SOL(F, Y ) ⊆ Y401

and fv + ηjgv ∈ Hηj (v), for every j ≥ 1 we can write −2γj(fv + ηjgv)
T (v − yj) ≤402

∥yj − v∥2 − ∥yj+1 − v∥2 + 2Λ1γ
2
j . Since v ∈ SOL(F, Y ), fv ∈ F (v) exists such that403

f
T

v (yj − v) ≥ 0, and then:404

−2γjgTv (v − yj) ≤
−2γj(fv + ηjgv)

T (v − yj)

ηj
≤ ∥yj − v∥2 − ∥yj+1 − v∥2

ηj
+ 2Λ1

γ2
j

ηj
.405

Summing j from 1 to k and dividing by
∑k

j=1 γj we get:406

(5.3) − 2gTv (v − zk) ≤
∑k

j=1
∥yj−v∥2−∥yj+1−v∥2

ηj∑k
j=1 γj

+ 2Λ1

∑k
j=1 γj

γj

ηj∑k
j=1 γj

.407

By observing that408 ∑k
j=1

∥yj−v∥2−∥yj+1−v∥2

ηj
= ∥y1−v∥2

η1
− ∥yk+1−v∥2

ηk
+

∑k−1
j=1 ∥yj+1 − v∥2

(
1

ηj+1
− 1

ηj

)
≤ D2

η1
+D2 ∑k−1

j=1

(
1

ηj+1
− 1

ηj

)
D2

η1
+D2

(
1
ηk

− 1
η1

)
= 2Λ3

ηk
,

409

we obtain −2gTv (v − zk) ≤ 2Λ1Φ
k
1 + 2Λ3

1
ηk

∑k
j=1 γj

, that implies (5.2).410

We define the following additional conditions to guarantee the convergence of the411

sequence produced by Algorithm (4.3) together with (4.6) to solutions of (GVIu).412

Assumptions D413

D1 η = 0;414

D2 γk

ηk
→ 0;415

D3 ηk
∑k

j=1 γj →∞.416

Differently from the conditions in Assumptions C, Assumptions D require {γk}417

and {ηk} not to be chosen independently of one another . We remark that, in the418

more restrictive setting of single-valued upper and lower-level operators, as consid-419

ered in [17], one can control the accuracy in the iterative solution of the Tikhonov420

subproblems. In this case, an algorithm can be defined to solve the resulting hier-421

archical Variational Inequality that converges under Assumptions A, B, C, D1 and422

ηk /∈ ℓ1, therefore not requiring D2 and D3 that relate {γk} and {ηk}. In our general423

set-valued framework (resulting from nonsmooth payoffs for the players of the Nash424

problems) it is not practical to control the accuracy in the solution of the Tikhonov425

subproblems, and therefore Assumptions D are required in the following result.426

Theorem 5.2. Consider the sequences {γk} and {ηk} defined in Algorithm (4.3)427

and {zk} defined in (4.6). If Assumptions C and D hold, then the unique limit point428

of {zk} is a solution to (GVIu), and then to (GNEPu).429
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Proof. Sequence {zk} admits a unique limit point by Theorem 4.7. Due to as-430

sumptions C1 and D3, Ξk
3 ,Φ

k
2 → 0. Moreover, Ξk

1 ,Ξ
k
2 ,Φ

k
1 → 0 in view of Lemma A.3,431

where we take bk = γk and ak = γk as far as Ξk
1 is concerned, while ak = ηk when432

considering Ξk
2 , and ak = γk/ηk as for Φk

1 . The claim then follows from Theorem 4.3.433

In order to recover solutions of (GVIu) and then equilibria of (GNEPu), {ηk} must434

be assumed to go to 0. This requirement can be traced back to the lack of standard435

constraint qualifications for (GVIu).436

Theorem 5.3. Consider the sequences {γk}, {ηk} and {yk} defined in Algorithm437

(4.3). If Assumptions C and D hold, and yk → y, then y is a solution to problem438

(GVIu), and then to (GNEPu).439

Proof. The proof is similar to that of Theorem 4.5.440

6. Complexity Bounds Considering Harmonic Sequences. In this section441

we consider the case where {γk} and {ηk} from Algorithm (4.3) together with (4.6)442

are defined as harmonic sequences:443

(6.1) γk =
γ

kα
, ηk =

η

kβ
+ η, k ≥ 1,444

with γ > 0, η > 0 and η ≥ 0. This is done in order to describe a possible practical445

way to implement the sequences {γk} and {ηk}.446

The first theorem deals with the complexity of the distance of {yk} from any447

solution u ∈ SOL(Hη, Y ), by relying on the bounds defined in Theorem 4.4.448

Theorem 6.1. Consider α ∈
(
1
2 , 1

)
and β > 1−α in (6.1), then Assumptions C449

hold. Moreover, given any tolerance δ ∈ (0, 1) for the bound given in (4.4), it holds450

that 2Λ1Ψ
k
1 + 2Λ2Ψ

k
2 < δ for every451

k > λ1

(
1

δ

)max{ 1
2α−1 ,

1
α+β−1}

,452

with λ1 ≜ 1 + max

{(
4Λ1γ

2

2α−1

) 1
2α−1

,
(

4Λ2γη
α+β−1

) 1
α+β−1

}
.453

Proof. Assumptions C trivially hold under the conditions on α and β.454

Let us introduce an upper bound for Ψk
1 :455

Ψk
1 = γ2

∞∑
j=k

1

j2α
≤ γ2

0

∫ ∞

k−1

x−2αdx = γ2

[
−1

(2α− 1)x2α−1

]∞

k−1

=
γ2

(2α− 1)(k − 1)2α−1
.456

Therefore, a sufficient condition to have 2Λ1Ψ
k
1 < δ/2, is k > 1+

(
4Λ1γ

2

2α−1

) 1
2α−1 ( 1

δ

) 1
2α−1 .457

Next, we define an upper-bound for Ψk
2 :458

Ψk
2 = γη

∞∑
j=k

1
jα+β ≤ γη

∫ ∞

k−1

x−α−βdx = γη

[
−1

(α+ β − 1)xα+β−1

]∞
k−1

=
γη

(α+ β − 1)(k − 1)α+β−1
.459

Hence, a sufficient condition to have 2Λ2Ψ
k
2 < δ/2, is requiring that k > 1 +460 (

4Λ2γη
α+β−1

) 1
α+β−1 ( 1

δ

) 1
α+β−1 , concluding the proof.461

In particular, choosing α = 1 − ϵ and β = 1 − ϵ, with 0 < ϵ < 1/2, the maximum462

number of iterations k to have the distance ∥yk − u∥2 converging with an error lower463

than δ is O(δ−1/(1−2ϵ)), for any u ∈ SOL(Hη, Y ).464
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In the forthcoming results, we exploit the following bounds for the generic har-465

monic series with α > 0:466

(6.2)
k(1−α)

2(1− α)
≤

k∑
j=1

1

jα
≤ k(1−α)

1− α
+
−α
1− α

,467

where the lower bound holds for k ≥ 2
2

1−α . The next result provides complexity468

bounds for {zk} to converge to SOL(Hη, Y ) (see Theorem 4.6).469

Theorem 6.2. If in (6.1) α ∈ (0, 1) and β > 0, then Assumptions C hold.470

Moreover, given any tolerance δ ∈ (0, 1) for the bound given in (4.7), it holds that471

Λ1Ξ
k
1 + Λ2Ξ

k
2 + Λ3Ξ

k
3 < δ for every472

k > λ2

(
1

δ

)max{ 1
α , 1

1−α , 1β}
,473

474
475

with λ2 = max

{(
12Λ1γ(1− α)

1− 2α

) 1
α

,

(
−24Λ1γα(1− α)

1− 2α

) 1
1−α

,476

(
12Λ2η(1− α)

1− (α+ β)

) 1
β

,

(
−12Λ2η(α+ β)(1− α)

1− (α+ β)

) 1
1−α

,

(
6Λ3(1− α)

γ

) 1
1−α

}
.477

478

Proof. Assumptions C trivially hold under the conditions on α and β.479

The bounds defined in (6.2) imply, under our hypotheses on α and β480

k∑
j=1

γj =

k∑
j=1

γ
1

jα
≥ γ

k(1−α)

2(1− α)
,481

k∑
j=1

γ2
j =

k∑
j=1

γ2 1

j2α
≤ γ2 k

(1−2α)

1− 2α
+
−γ22α

1− 2α
,482

k∑
j=1

γj(ηj − η) =

k∑
j=1

γη
1

jα+β
≤ γη

k1−(α+β)

1− (α+ β)
+
−γη(α+ β)

1− (α+ β)
.483

484

We now define an upper bound for Ξk
1 :485

Ξk
1 =

∑k
j=1 γ

2
j∑k

j=1 γj
≤ 2γ(1− α)

1− 2α
k−α +

−4γα(1− α)

1− 2α
kα−1,486

therefore, a sufficient condition to have Λ1Ξ
k
1 < δ/3 is to have487

k > max

{(
12Λ1γ(1− α)

1− 2α

) 1
α

,

(
−24Λ1γα(1− α)

1− 2α

) 1
1−α

}(
1

δ

)max{ 1
α , 1

1−α}
.488

The upper bound for Ξk
2 is as follows:489

Ξk
2 =

∑k
j=1 γj(ηj − η)∑k

j=1 γj
≤ 2η(1− α)

1− (α+ β)
k−β +

−2η(α+ β)(1− α)

1− (α+ β)
kα−1,490
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therefore, a sufficient condition to have Λ2Ξ
k
2 < δ/3 is to have491

k > max

{(
12Λ2η(1− α)

1− (α+ β)

) 1
β

,

(
−12Λ2η(α+ β)(1− α)

1− (α+ β)

) 1
1−α

}(
1

δ

)max{ 1
β , 1

1−α}
.492

The upper bound for Ξk
3 is as follows:493

Ξk
3 =

1∑k
j=1 γj

≤ 2(1− α)

γ
kα−1,494

therefore, a sufficient condition to have Λ3Ξ
k
3 < δ/3 is to have495

k >

(
6Λ3(1− α)

γ

) 1
1−α

(
1

δ

) 1
1−α

.
496

Choosing α = β = 1/2, the maximum number of iterations k to have problem (4.2)497

solved by zk with an error of less than δ is O(δ−2).498

We show that solving approximately problem (4.2) yields the approximate fulfill-499

ment of optimality conditions for the Minty versions of (GVIl) and (GVIu), according500

to Proposition Proposition 6.3.501

Proposition 6.3. Let η > 0 and zk satisfy (4.7), it holds that502

(6.3) fT
v (v − zk) ≥ −Λ1Ξ

k
1 − Λ2Ξ

k
2 − Λ3Ξ

k
3 − ηΛ2, ∀v ∈ Y, ∀fv ∈ F (v),503

504

(6.4) gTv (v − zk) ≥ −
Λ1Ξ

k
1 + Λ2Ξ

k
2 + Λ3Ξ

k
3

η
, ∀v ∈ SOL(F, Y ), ∀gv ∈ G(v).505

Proof. See Appendix A.10.506

Notice that Proposition 6.3 works only for η > 0 and there is no value for η that let507

the approximation errors given in (6.3) and (6.4) be zero simultaneously.508

By considering the bounds obtained in Theorem 5.1, complexity results can be509

provided as follows.510

Theorem 6.4. If in (6.1) α ∈ (0, 1), β ∈ (0,min{α, 1 − α}) and η = 0, then511

Assumptions C and D hold. Moreover given any tolerance δ ∈ (0, 1) for the bounds512

given in (5.1) and (5.2), Λ1Ξ
k
1 + Λ2Ξ

k
2 + Λ3Ξ

k
3 < δ for every513

k > λ2

(
1

δ

)max{ 1
α , 1

1−α , 1β}
,514

with λ2 defined in Theorem 6.2, and Λ1Φ
k
1 + Λ3Φ

k
2 < δ for every515

k > λ3

(
1

δ

)max{ 1
α−β , 1

1−α , 1
1−α−β}

,516

517

with λ3 ≜ max

{(
8Λ1γ(1−α)
η(1+β−2α)

) 1
α−β

,
(

8Λ1γ(β−2α)(1−α)
η(1+β−2α)

) 1
1−α

,
(

4Λ3(1−α)
γη

) 1
(1−α−β)

}
.518
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Proof. Assumptions C, D1, D2 trivially hold under the conditions on α and519

β. Note that the complexity regarding (5.1) is proved in Theorem 6.2. Using the520

harmonic series bounds (6.2) we can write:521

k∑
j=1

γj = γ

k∑
j=1

1

jα
≥ γ

k1−α

2(1− α)
(6.5)522

k∑
j=1

γ2
j

ηj
=

γ2

η

k∑
j=1

1

j2α−β
≤ γ2

η

k1−(2α−β)

1− (2α− β)
+

γ2(β − 2α)

η(1 + β − 2α)
(6.6)523

524

We can define the following upper bound for Φk
1 :525

Φk
1 =

∑k
j=1

γ2
j

ηj∑k
j=1 γj

≤ γ2(1− α)

η(1 + β − 2α)
kβ−α +

γ(β − 2α)2(1− α)

η(1 + β − 2α)
kα−1,526

therefore, a sufficient condition to have Λ1Φ
k
1 < δ/2 is to have:527

k > max

{(
8Λ1γ(1−α)
η(1+β−2α)

) 1
α+β

,
(

8Λ1γ(β−2α)(1−α)
η(1+β−2α)

) 1
1−α

}(
1
δ

)max{ 1
α−β , 1

1−α}
}
.528

Next, we define an upper bound for Φk
2 :529

(6.7) Φk
2 ≜

1

ηk
∑k

j=1 γj
≤ 2(1− α)

γη
kα+β−1,530

therefore, a sufficient condition to have Λ3Φ
k
2 < δ/2 is to have531

k >

(
4Λ3(1− α)

γη

) 1
(1−α−β)

(
1

δ

) 1
(1−α−β)

.532

Moreover, assumption D3 holds due to relation (6.7), since α+ β < 1.533

Choosing α = 1/2 and β = 1/4, the maximum number of iterations k to have the534

Minty versions of (GVIl) and (GVIu) solved with an error less than δ isO(δ−4). Notice535

that the convergence rate we prove is the same as the one provided, in a more specific536

case (namely, an optimization problem with variational inequality constraints), in [13].537

Summarizing, Algorithm (4.3) together with (4.6), with the harmonic sequences in538

(6.1), achieves different convergence properties with different complexities for different539

values of α and β (see Table 1).540

7. Numerical Analysis. We define a practical algorithm to exploit the previous541

sections’ theoretical results. Focusing on Table 1, if α and β are close to 1, one can542

obtain quite fast convergence of {yk} to an orbit around SOL(Hη, Y ). On the other543

hand, if α and β decrease to 0.5, {zk} converges to SOL(Hη, Y ). Finally, if β further544

decreases to 0.25, the convergence of {zk} is guaranteed to the solutions of (GVIu),545

and then the equilibria (GNEPu), but with worse complexity guarantees. Therefore,546

a possible way to obtain, at the beginning, fast convergence to partial results, and547

achieve the convergent setting for α and β once close to the solutions of (GVIu) (by548

satisfying Assumptions C and D), is to consider two decreasing sequences {αk} and549

{βk}.550
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α β convergence properties complexity

1− ϵ 1− ϵ
lim sup
∆→∞

∥yk+∆ − u∥2 − ∥yk − u∥2 ≤ δ,

u ∈ SOL(Hη, Y )
O(δ−1/(1−2ϵ))

0.5 0.5 hηT
v (v − zk) ≥ −δ, ∀v ∈ Y, hη

v ∈ Hη(v) O(δ−2)

0.5 0.25
fT
v (v − y) ≥ −δ, ∀v ∈ Y, fv ∈ F (v)
gTv (v − y) ≥ −δ, ∀v ∈ SOL(F, Y ), gv ∈ G(v)

O(δ−4)

Table 1
Possible settings for α and β and relative convergence properties and complexities

Algorithm 7.1 combines computations (4.3) and (4.6) and employs harmonic se-551

quences for {γk} and {ηk} with decreasing {αk} and {βk}, respectively. In particular,552

k is a parameter that indicates the iteration at which the averaging procedure defined553

in (4.6) starts, and the sequence {zk} is computed. This allows one to start computing554

{zk} when the sequence {yk} approaches SOL(Hηk
, Y ) (see Theorem 4.5). One gets555

a faster convergence of {zk} as points yk that are possibly far from the solution set556

and weight more (since {γk} is monotone non-increasing) are ignored in the average.557

In the following result, whose proof is given in Appendix A.11, we provide a558

practical rule to compute {αk} and {βk} in order to satisfy Assumptions C and D.559

We focus on the case where {αk} goes from α to α and {βk} goes from β to β.560

Algorithm 7.1 Projected Average Single-loop Tikhonov Algorithm (PASTA)

Data: {αk} > 0, γ > 0, {βk} > 0, η > 0, k ∈ N, y1 ∈ Y

for k = 1, 2, . . . do
γk ← γ/kαk and ηk ← η/kβk

choose fyk
∈ F (yk), gyk

∈ G(yk) and compute hηk
yk

= fyk
+ ηkgyk

yk+1 = PY (yk − γkh
ηk
yk
)

end for
for k = k, k + 1 . . . do

zk =

∑k
j=k γjyj∑k
j=k γj

end for

Proposition 7.1. Let α ≥ α > 0, β ≥ β > 0, εα, εα > 0, Iα, Iβ ∈ N and561

γk = γ/kαk , ηk = η/kβk , with αk = α − (α − α) (min{k, Iα}/Iα)εα , βk = β −562

(β − β) (min{k, Iβ}/Iβ)εβ . Assume α < 1, β < min{α, 1 − α}, and εα ≤ εα ≜563

logIα (1− (1− tα)α/(tα(α− α)))
−1

, εβ ≤ εβ ≜ logIβ
(
1− (1− tβ)β/(tβ(β − β))

)−1
,564

with tα ≜ logIα(Iα − 1) and tβ ≜ logIβ (Iβ − 1). Assumptions C and D hold.565

Employing in PASTA {αk} and {βk} as defined in Proposition 7.1, with εα and566

εβ chosen according to Proposition 7.1, Assumptions C and D hold. Therefore, by567

Theorem 5.2, Theorem 5.3 and Theorem 6.4, the unique limit point of {zk}, that is568

the limit point of {yk} if it exists, is a solution to (GVIu) and then it is a variational569

equilibrium for (GNEPu) by Theorem 4.2 and Proposition 3.7. Notice that the bounds570

for εα and εβ provided in Proposition 7.1 are only sufficient to satisfy Assumptions571

C and D, and larger values for such parameters can be used in practice. We can572
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employ fixed values by simply setting αk = α and βk = β for all k, and still satisfy573

Assumptions C and D, therefore recovering the theoretical convergence properties. In574

the sequel, we compare these two choices and show, by means of numerical evidences,575

that PASTA achieves faster convergence than the case of fixed α and β.576

We provide numerical experiments to prove the convergence of PASTA in practical577

settings. In Example 1 we consider a simple hierarchical jointly-convex GNEP, which578

allows one to evaluate the convergence of the algorithm to the equilibria of (NEPl)579

and (GNEPu), since an analytical description of the lower-level equilibrium set can580

be readily obtained. In Example 2 we study a more elaborate hierarchical jointly-581

convex GNEP model in the context of multi-portfolio selection (see [16] for more582

details regarding multi-portfolio optimization). In this case, one cannot easily evaluate583

the convergence to equilibria of (GNEPu), because an analytical description of its584

feasible set (i.e. the equilibria of (NEPl)) is not readily available. We focus only on585

convergence to the equilibria of (NEPl), but we will also show the influence of the586

upper level by observing a posteriori the computed solutions. All the computations587

are performed on a Mac mini 8.1, Quad-Core Intel Core i3 3.6 GHz, RAM 8 GB, and588

took no longer than 10 seconds (Example 1) and 200 seconds (Example 2).589
Example 1 We first consider a simple example where it is easy to have an explicit590

expression for the lower-level equilibrium set E, and to compute the unique variational591
solution of (GNEPu). Let us consider N = 4 lower-level players and M = 2 upper-592

level players, with x1 = (y2, y4), x2 = (y1, y3),593

θl1(y
1, y−1) = 0.5(y1)2 + y1(y2 + 2y3 + y4 − 100), φl

1(y
1) = 0, Y1 = [−100, 50],594

θl2(y
2, y−2) = 0.5(y2)2 + y2(y1 + y3 + y4 − 50), φl

2(y
2) = max{0,−10(y2 − 15)}, Y2 = [0, 50],595

θl3(y
3, y−3) = 0.5(y3)2 + y3(y2 + y4 − 100), φl

3(y
3) = 0, Y3 = [0, 100],596

θl4(y
4, y−4) = 0.5(y4)2 + y4(y1 + y2 + y3 − 50), φl

4(y
4) = 0, Y4 = [0, 50],597

θu1 (x
1, x−1) = (y2 − 20)2 + (y4 − 50)2 + (y2 + y4)(y1 + y3), φu

1 (x
1) = 0,598

θu2 (x
2, x−2) = (y1)2 + y1(y2 + y3) + (y3)2 + y3(y2 + y4), φu

2 (x
2) = 0.599600

For this example AssumptionsA andB are verified. One can obtain an explicit expres-601

sion for the lower-level equilibrium set E =
{
(−50, y2, 50, 50− y2) : 15 ≤ y2 ≤ 50

}
,602

and thus the unique variational equilibrium of (GNEPu) is x∗ = (−50, 15, 50, 35).603

Note that at x∗, the second lower-level player’s payoff is non differentiable. In this604

setting, we can test PASTA and monitor the distance from x∗. Concerning the evalua-605

tion of the subgradient, in order to deal with the nondifferentiability of the lower-level606

map, we set fy = [∇y1θl1(y),∇y2θl2(y)−5(15+10−3−y2)/(10−3),∇y3θl3(y),∇y4θl4(y)]
T607

for every y such that y2 ∈ [15−10−3, 15+10−3]. The projection is computed in closed608

form, since Yν are box-sets. We set the maximum number of iterations I = 106, the609

parameters γ = 1, η = 0.1, and the starting point y1 = (0, 0, 0, 0). The sequence {αk},610

used to compute the stepsizes {γk}, is defined as in Proposition 7.1 with α = 0.75,611

α = 0.5, Iα = I/2 and εα = 0.05. On the other hand, {βk}, used to compute the612

Tikhonov parameters {ηk}, is defined as in Proposition 7.1, with β = 0.75, β = 0.25,613

Iβ = I and εβ = 0.03. These values for εα and εβ are such that the sequences {γk}614

and {ηk} are nonincreasing and therefore Assumptions C are verified (even though εα615

and εβ do not verify the sufficient condition given in Proposition 7.1). PASTA, with616

its variable policies for {αk} and {βk}, is compared with the fixed case, where αk = α617

and βk = β for all k. Note that the values for α and β, used for both the variable and618

fixed settings, ensure Assumptions D, and the convergence of the method is guaran-619

teed (see Theorem 6.4). In Table 2 we report opt(zI) ≜ ∥zI − x∗∥∞ for PASTA and620

for the fixed case, as well as for different choices of the iteration k for the averaging621

procedure {zk} to start. Note that the point zI is closer to x∗ for higher values of k,622
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Fig. 1. Comparison between variable (PASTA) and fixed {αk} and {βk} considering opt(yk) =
∥yk − x∗∥∞ for iterations 0- 100k (left-hand side) and for all 1000k iterations (right-hand side)

opt(zI) opt(yI)

k 0 0.4I 0.8I
Variable α&β 0.57434 0.42161 0.41424 0.41219
Fixed α&β 0.84268 0.45928 0.42367 0.41220

Table 2
opt(w) = ∥w − x∗∥∞ in Example 1, considering variable (PASTA) and fixed {αk} and {βk}

for zI , with different starting iterations k, and yI

because the early iterations, which are more distant from x∗, are not included in the623

computation of the average. Moreover, we underline that in all our experiments, yI624

is a better approximation of x∗ than every zI . For this reason, although the averaged625

sequence {zk} is essential to obtain theoretical convergence guarantees (see section 4626

and section 5), in our experiments the sequence {yk} has shown convergent behav-627

iour, and we rely on Theorem 4.5 b) and Theorem 5.3 to justify our choice to focus628

on {yk} approaching x∗. In Figure 1, we show the comparison between the perfor-629

mances of variable (PASTA) and fixed {αk} and {βk} in terms of distance between630

{yk} and x∗. In Table 3 we report the value of this distance at different iterations. It631

is evident that using the insights in section 4 concerning the Tikhonov subproblem to632

develop the algorithm with variable {αk} and {βk} (PASTA), one can obtain a faster633

convergence to the equilibria of (GNEPu), than using fixed {αk} and {βk}, see also634

the explaination at the beginning of section 7, together with Table 1. The output of635

PASTA is yI = (−49.5878, 15.0010, 50.0124, 34.6699).636

Example 2 We consider a hierarchical multi-portfolio selection model in the case637

of financial service providers managing different lower-level clients’ portfolios (or ac-638

counts) by assigning them to multiple upper-level managers (see [16] for more details639

about hierarchical multi-portfolio optimization and [18] where the hierarchical GNEP640

framework is introduced in this context). Following the classical Markowitz approach,641

as for each lower-level account ν, the weighted sum of linear expected return (Iν(y
ν))642

and quadratic portfolio volatility (Rν(y
ν)) is minimized, by investing the relative bud-643

gets in K financial assets. The lower-level variables yν ∈ RK represent the shares of644

the budget to be invested in each asset. Additionally, each account-related objective645

depends (parametrically) on the other accounts’ problem decision variables via a cou-646

pling quadratic transaction cost term (TCν(y
ν , y−ν)). Therefore the accounts-related647
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Iterations 10k 25k 50k 75k 100k 250k 500k 750k 1000k
Var α&β 0.7342 0.6140 0.5491 0.5186 0.4998 0.4528 0.4283 0.4179 0.4122
Fix α&β 1.3395 1.0513 0.8778 0.7915 0.7359 0.5839 0.4905 0.4431 0.4122

Table 3
opt(yk) = ∥yk − x∗∥∞ at different iterations in Example 1, considering variable (PASTA) and

fixed {αk} and {βk}

lower-level parametric problems form (NEPl). Upper-level managers µ = 1, . . . ,M648

are responsible of deciding trades for a subset Sµ of lower-level accounts, but se-649

lecting only among equilibria of (NEPl). The objective function of each manager µ650

measures the performances of the portfolios they manage, and depends not only on651

each manager’s own decision variables, but also on the choices of the other managers,652

similarly to the lower-level accounts’ interplay. The resulting upper-level managers’653

problems form (GNEPu), where the shared feasible set is given by the equilibria of654

the accounts-related (NEPl). At both the upper and lower level, a sparsity enhancing655

term is included to reduce monitoring costs and simplify portfolio management.656
Consider N = 25, M = 5 and xµ = [yν ]ν∈Sµ

,657

θlν(y
ν , y−ν) = −Iν(y

ν) + ρνRν(y
ν) + TCν(y

ν , y−ν), φl
ν(y

ν) = τν∥yν∥1,658

Yν ≜

{
yν ∈ [lν , uν ]

K :

K∑
i=1

yνi ≤ 1

}
,659

θuµ(x
µ, x−µ) = −

∑
ν∈Sµ

Iν(y
ν) + ρµ

∑
ν∈Sµ

Rν(y
ν) + TCµ(x

µ, x−µ), φu
µ(x

µ) = τµ
∑

ν∈Sµ

∥yν∥1,660

661

where ρν regulates the risk-aversion of each agent ν, and τν regulates their desire for662

sparsity. In the following numerical results, uν = 1 and lν = −0.1 are chosen for663

each lower-level player ν to allow players to invest at most their whole budget on664

a single financial asset and to shortsell each asset for at most 10% of their budget.665

Numerical tests for two data sets are provided, the first one consisting of K = 10666

assets belonging to Euro Stoxx 50 (SX5E) (from 2/1/2019 to 31/12/2019), resulting667

in nν = 10 variables controlled by each lower-level player, and p = 250 total (GNEPu)668

variables. The second data set consists of K = 29 assets from Dow Jones Industrial669

Average (DJIA) stock markets (from 2/1/2017 to 31/12/2017), resulting in nν = 29670

variables controlled by each lower-level player, and p = 725 total (GNEPu) variables.671

In both cases, the upper-level managers control N/M = 5 lower-level accounts each,672

arranged in such a way that Sµ = {(µ − 1)(N/M) + 1, . . . , µ(N/M)} for all µ ∈673

{1, . . . ,M}. We have, for the SX5E dataset, mµ = 50, and for the DIJA dataset mµ =674

145 variables controlled by each upper-level manager. All player-related parameters675

are computed randomly in order to verify Assumptions A and B (see [16, Section676

3] for further details). We remark that the resulting (NEPl) and (GNEPu) are not677

potential games, and they cannot be reduced to simple optimization problems.678

The algorithm’s parameters for PASTA are the same as Example 1, except γ =679

100 and η = 1, thus satisfying Assumptions C and D. The equally weighted portfolio680

yν = (1/K)1K for all ν is used as the starting vector. Concerning the subgradients,681

fyν
i
= ∇θlν(y)i + τν(yνi + 10−4)/(10−4) − τν whenever yνi ∈ [−10−4, 10−4] for every682

ν ∈ {1, . . . , N} and i ∈ {1, . . . ,K}, and gxµ
j
= ∇θuµ(x)j + τµ(xµ

j + 10−4)/(10−4)− τµ683

whenever xµ
j ∈ [−10−4, 10−4] for every µ ∈ {1, . . . ,M} and j ∈ {1, . . . , (N/M)K}.684

To implement the projection step of PASTA, a finite-steps method, inspired by [16],685

is implemented, preventing one from having to compute the projection by solving an686

optimization problem at each iteration.687
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Portfolios corresponding to clients from 1 to 15 are regularized only at the lower688

level, while portfolios corresponding to clients from 16 to 25 are regularized only by689

the upper-level managers: τ lν = τ l for ν = 1, . . . , 15, τ lν = 0 for ν = 16, . . . , 25,690

τuµ = 0 for µ = 1, . . . , 3, τuµ = τu for µ = 4, 5. This is done in order to observe691

how the regularization of the two hierarchical levels yields sparsity for the computed692

portfolios. Depending on τ l and τu, we define five different regularization settings:693

• No regularization: τ l = τu = 0 • Lower regularization 1: τ l = 2e-04, τu = 0694

• Lower regularization 2: τ l = 3e-04, τu = 0 • Full regularization 1: τ l = 2e-04,695

τu = 3e-03 • Full regularization 2: τ l = 3e-04, τu = 3e-03. It is not reasonable to696

assume that an analytical expression for E is available, as it is for Example 1, and697

therefore it is not practical to explicitly compute the distance of {yk} and {zk} from698

(GNEPu)’s solution set. A measure of feasibility can still be given as feas(yk, fyk
) ≜699

∥yk − PY (yk − fyk
)∥2, with fyk

∈ F (yk). Note that this is an upper bound of the700

distance from {yk} to E, as fyk
∈ F (yk) was not chosen to minimize this quantity.701

Figure 2 and Figure 3 show feas(yk, fyk
) for the two datasets considered and the702

five different regularization settings over the iterations. In every picture, we report703

both the values for the algorithm version with variable {αk} and {βk} (PASTA),704

and the for version with fixed {αk} and {βk}. Similarly to the results in Example 1,705

PASTA shows a faster convergence to the feasible set of the hierarchical problem. The706

erratic behaviour of feas(yk, fyk
), which happens in the regularized settings, can be707

explained by the lack of inner semicontinuity of the subgradient point-to-set mappings.708

In fact, in the No regularization setting, the plots turn out to appear quite smooth.709

Therefore, in the following analysis, we report values obtained by PASTA.710

In Table 4 we report feas(yI , fyI
) and feas(zI , fzI ) computed starting from differ-711

ent iterations k, in all the five regularization settings. Similarly to Example 1, {zk}712

obtains better feasibility for higher values of k. Contrarily to Example 1, {zk} can713

achieve a better feasibility than {yk}, because it shows more resilience to the non-714

continuity of the subgradient and a more stable trend. For this reason, {zk} could be715

useful to obtain a smoother convergence in the cases where the nonsmoothness of the716

players’ payoffs yields a noisy behaviour of the considered merit function for {yk}.717

So far, in this numerical example, we only analyzed convergence to the feasible718

set E of (GNEPu). To show the influence of the upper-level managers, and conse-719

quently of the upper-level objective functions, we measure the sparsity of the portfolio720

corresponding to zI for k = 0.8I (which is actually the same as the sparsity for yI)721

for the five regularization settings considered. Table 5 shows the percentage of zeros722

(intended as investments of less than 0.1% of the budget) of the final portfolios, regu-723

larized by the lower-level agents (accounts 1–15) and upper-level managers (accounts724

16–25). Both of the hierarchical levels have an impact on the computed solutions, as725

witnessed by the different number of zeros depending on the agents’ regularization726

choices. Specifically, in the No regularization setting, the computed portfolios require727

every account to invest in all the assets, resulting in a completely non-sparse solution.728

In the two Lower regularization settings, accounts 1–15 invest in less assets, with a729

sparser solution for Lower regularization 2, as the sparsity enhancing parameter (τ l)730

is higher. In the two Full regularization settings, accounts 1–15 do not modify their731

behaviour compared to the two Lower regularization settings, but for accounts 16–25,732

controlled by upper-level managers 4 and 5 that enforce sparsity, the number of assets733

with no investments turns out to be higher. Notice that the regularization operated734

by the upper-level managers is less effective than the one operated by the lower-level735

problems, since they can only select porfolios among the lower-level equilibria. None-736
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feas(zI , fzI ) feas(yI , fyI )

k = 0 k = 0.4I k = 0.8I

SX5E

No reg 3.9860e-03 5.7453e-05 4.7687e-05 4.7442e-05
Low. reg. 1 3.4648e-03 2.6466e-04 2.6212e-04 4.0399e-04
Low. reg. 2 3.7396e-03 8.0372e-04 7.8346e-04 1.2101e-03
Full reg. 1 3.4227e-03 4.1116e-04 4.0964e-04 4.1343e-04
Full reg. 2 3.5618e-03 5.7343e-04 5.5812e-04 6.8682e-04

DIJA

No reg. 3.0745e-03 2.9030e-05 2.4679e-05 2.4539e-05
Low. reg. 1 2.3533e-03 1.0974e-04 1.0774e-04 1.8460e-04
Low. reg. 2 2.5532e-03 4.1920e-04 4.1520e-04 4.7494e-04
Full reg. 1 6.0450e-03 4.1062e-04 3.6413e-04 4.6802e-04
Full reg. 2 6.2340e-03 8.3879e-04 8.2669e-04 1.1776e-03

Table 4
feas(w, fw) = ∥w − PY (w − fw)∥2, obtained with PASTA for both datasets in Example 2, for

zI , with different starting iterations k, and yI , considering the five different regularization settings

SX5E DIJA
#Accounts 1–15 16–25 1–15 16–25
No regularization 0.00% 0.00% 0.00% 0.00%
Lower regularization 1 28.00% 0.00% 38.62% 0.00%
Lower regularization 2 44.67% 0.00% 56.78% 0.00%
Full regularization 1 28.00% 25.00% 38.62% 12.07%
Full regularization 2 44.67% 24.00% 56.55% 11.72%

Table 5
Portfolio sparsity (% of assets with an investment lower than 0.1% of the budget), for the first

15 and the last 10 accounts, obtained with PASTA for both datasets in Example 2, considering the
five different regularization settings

theless, the sparsity obtained by managers 4 and 5 demonstrates the influence of the737

upper-level game on the overall solution. This confirms the theoretical properties of738

PASTA, that ensure theoretical convergence to solutions of (GNEPu).739

8. Conclusions. We list the main contributions of our work below.740

1. We focus on the framework of GNEPs with nonsmooth payoffs and having a741

hierarchical structure, i.e. the shared feasible region is implicitly defined as742

the set of equilibria of a lower-level NEP with nonsmooth payoffs. These prob-743

lems naturally arise in real-world applications such as multi-portfolio selection744

with sparsity enhancing terms. Under standard conditions (see Assumptions745

A), we show that the feasible set of such GNEPs is compact, nonempty and746

convex (see Proposition 3.3 and Proposition 3.4). Under additional conditions747

(see Assumptions B), the GNEP equilibrium set is nonempty and bounded748

(see Proposition 3.8). Moreover, there exists a subset of equilibria, that we749

term variational solutions, which is nonempty, convex and compact. We are750

not aware of other contributions in this context in the literature.751

2. Generalizing a classical result in the smooth context, one can rely on a hier-752

archical GVI structure to compute variational equilibria of the original hier-753

archical GNEP. We study conditions that make the hierarchical GVI numer-754

ically tractable by exploiting the techniques described below.755

3. We combine Tikhonov-like penalization techniques with averaged gradient-756

like approaches to prove convergence and obtain complexity guarantees under757

mild conditions (Assumptions C and D) that, requiring the upper and lower-758

level mappings to be just maximal monotone, are the most general among759

the ones relied upon in the literature (see Theorem 5.2 and Theorem 5.3).760
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Fig. 2. Comparison between variable (PASTA) and fixed {αk} and {βk} considering
feas(yk, fyk ) = ∥yk − PY (yk − fyk )∥2, for the SX5E (left-hand side) and the DIJA (right-hand
side) datasets, in the cases of No regularization, Lower regularization 1 and 2, respectively

4. Exploiting the theoretical insights concerning the faster convergence to the761

subproblem solutions (Theorem 4.5, Theorem 4.7 and Table 1), we propose762

the Projected Average Single-loop Tikhonov Algorithm that gradually sat-763

isfies the requirements in Assumptions D. We confirm PASTA’s theoretical764

properties and show that it works well in practice through numerical tests.765

5. Focusing on the motivating example of multi-portfolio selection, we apply and766

test our approach on the novel model presented in [18]. Multi-portfolio se-767

lection turns out to be numerically tractable under standard conditions. The768

numerical results validate the modeling choices: e.g. the computed portfolio769

turns out to be sparse due to the nonsmooth regularization term.770

As future research, we wish to consider Newton-like algorithms to speed up compu-771

tations and compute non-variational equilibria. We would like to encompass in our772

analysis enlargements of the set-valued mappings to recover continuity properties.773
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Fig. 3. Comparison between variable (PASTA) and fixed {αk} and {βk} considering
feas(yk, fyk ) = ∥yk − PY (yk − fyk )∥2, for the SX5E (left-hand side) and the DIJA (right-hand
side) datasets, in the cases of Full regularization 1 and 2, respectively

774

Appendix A. Additional results.775

A.1. Proof of Proposition 3.2. If y ∈ E, then y ∈ SOL(F, Y ). By the convex-776

ity of the problems (Pl
ν) and the minimum principle, thanks to (3.1) and the convexity777

of Yν , y ∈ E if and only if, for all ν = 1 . . . N :778

∃ξν ∈ ∂yνφl
ν(y

ν) : (∇yνθlν(y
ν , y−ν) + ξν)

T (vν − yν) ≥ 0 ∀vν ∈ Yν .779

Concatenating all these inequalities, (GVIl) holds with fy =
[
∇yνθlν(y

ν , y−ν) + ξν
]N
ν=1

780

and thus y ∈ SOL(F, Y ). Vice versa, if y ∈ SOL(F, Y ), for all ν = 1 . . . N there exists781

∃fy ∈ F (y) such that fT
y ((vν , y−ν)− (yν , y−ν)) ≥ 0, ∀(vν , y−ν) ∈ Y . By (3.1),782

∃fν
y ∈ ∇yνθlν + ∂yνφl

ν : fνT
y (vν − yν) ≥ 0, ∀vν ∈ Yν .783

By the convexity of player ν’s problem, y ∈ E.784

A.2. On Maximal Monotonicity.785

Definition A.1. A monotone mapping T : Rn ⇒ Rn is maximal monotone if for786

every pair
(
û, t̂

)
∈ (Rn × Rn) \ gph(T ) there exists (ũ, t̃) ∈ gph(T ), where gph(T ) ≜787

{(u, t)|u ∈ Rn, t ∈ T (u)}, with (û− ũ)T (t̂− t̃) < 0.788

The following result characterizes the Carthesian product of maximal monotone map-789

pings, and it is used to prove Proposition 3.4 and Proposition 3.9.790
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Lemma A.2. Let S : X ⇒ X̃ and T : Y ⇒ Ỹ be maximal monotone mappings.791

Their Carthesian product is also maximal monotone.792

Proof. If, by contradiction, S × T : X × Y ⇒ X̃ × Ỹ is not maximal monotone,793

then it would mean that there exists an element794

(x, y, sx, ty) /∈ gph(S × T ) = {(x, y, sx, ty)|x ∈ X, y ∈ Y, sx ∈ S(x), ty ∈ T (y)},795

that does not violate the monotonicity of the operator S × T . That is796

(A.1) (sx − sx)
T (x− x) + (ty − ty)

T (y − y) ≥ 0, ∀(x, y) ∈ X × Y, ∀(sx, ty) ∈ S(x)× T (y).797

Since (x, y, sx, ty) /∈ gph(S × T ), we can assume, (x, sx) /∈ gph(S). Due to the798

maximal monotonicity of S, there must exist (x, sx) with x ∈ X and sx ∈ S(x) such799

that (sx − sx)
T (x − x) < 0. From (A.1), one can deduce (ty − ty)

T (y − y) > 0,800

∀y ∈ Y and ∀ty ∈ T (y). Due to the maximal monotonicity of mapping T , this801

would mean (y, ty) ∈ gphT , and it would be possible to choose (y, ty) = (y, ty)802

and find (ty − ty)
T (y − y) = (ty − ty)

T (y − y) = 0, which is in contradiction with803

(ty − ty)
T (y − y) > 0, ∀y ∈ Y and ∀ty ∈ T (y).804

A.3. Proof of Proposition 3.7. For all µ = 1 . . .M , x ∈ SOL(G,SOL(F, Y ))805

means that for every wµ such that (wµ, x−µ) ∈ SOL(F, Y ), we have806

∃gx ∈ G(x) : gTx ((w
µ, x−µ)− (xµ, x−µ)) ≥ 0 ⇐⇒ ∃gµx ∈ Gµ(x) : gµTx (wµ − xµ) ≥ 0,

θuµ(x
µ, x−µ) + φu

µ(x
µ) ≤ θuµ(w

µ, x−µ) + φu
µ(w

µ), ∀wµ : (wµ, x−µ) ∈ E,
807

which is due to (Proposition 3.2, Proposition 3.4) convexity of player µ’s problem.808

A.4. Proof of Proposition 3.8. The proof is obtained similarly to the one for809

Proposition 3.3, by recalling that, by Assumptions A, B1 and B3, the noneptiness,810

compactness and convexity of SOL(F, Y ), the convex valuedness of G are guaranteed.811

G is outer-semicontinuous, so that we get the closedness of SOL(G,SOL(F, Y )). The812

set of equilibria of problem (GNEPu) is bounded as its feasible set is compact.813

A.5. Proof of Proposition 3.9. Since
[
∂φu

µ

]M
µ=1

turns out to be maximal814

monotone, the proof is analogous to the one of Proposition 3.4.815

A.6. Proof of Theorem 4.2. We have, for all v ∈ Y , hη
v ∈ Hη(v), h

η
y ∈ Hη(y):816

0 ≤ (hη
v − hη

y)
T (v − y) = hηT

v (v − y)− hηT
y (v − y) ≤ hηT

v (v − y),817

which follows from the monotonicity of Hη and since y is a solution of (4.1), and we818

can select hη
y ∈ Hη(y) such that hηT

y (v − y) ≥ 0, for all v ∈ Y .819

A.7. Proof of Theorem 4.3. For any v ∈ Y we define uτ ≜ τy + (1 − τ)v,820

τ ∈ (0, 1). Since uτ ∈ Y by the convexity of Y , if y is a solution of (4.2), for all821

hη
uτ ∈ Hη(u

τ ),822

0 ≤ hηT
uτ (uτ − y) = hηT

uτ (τy + (1− τ)v − y) = (1− τ)hηT
uτ (v − y) ≤ hηT

uτ (v − y)823

Considering τ → 1, we have uτ −→
Y

y, and becauseHη is compact-valued over Y , for an824

appropriately chosen subsequence of τ , and consequently of uτ , there exists a sequence825

of hη
uτ , with hη

uτ ∈ Hη(u
τ ) such that hη

uτ → h
η

u. Since Hη is outer-semicontinuous,826

h
η

u ∈ Hη(y). This implies, for all v ∈ Y , ∃hη

u ∈ Hη(y) : h
ηT

u (v − y) ≥ 0.827
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A.8. Averaging Sequences. The proof of the next lemma can be traced back828

to [14, Point 1 in Section 2.4.2].829

Lemma A.3. Let {ak} and {bk} be sequences of positive real numbers such that:830

limk→∞ ak = a,
∑∞

k=1 bk =∞. Then, limk→∞
∑k

j=1 bjaj/
∑k

j=1 bj = a.831

A.9. Proof of point b) in Theorem 4.5. Assume by contradiction {yk} ad-832

mits a limit vector y /∈ SOL(Hη, Y ). Due to C1, together with Lemma A.3, zk → y,833

and, by Theorem 4.7, we have the contradiction y ∈ SOL(Hη, Y ).834

A.10. On Inexactness. First, we give the proof of Proposition 6.3.835

Proof of Proposition 6.3. For all v ∈ Y , for all fv ∈ F (v), hη
v = fv+ηgv ∈ Hη(v),836

fT
v (v − zk) = hηT

v (v − zk)− ηgTv (v − zk) ≥ −Λ1Ξ
k
1 − Λ2Ξ

k
2 − Λ3Ξ

k
3 − ηΛ2,837

where the inequality is due to (4.7), and thus we get (6.3). Moreover, for all v ∈838

SOL(F, Y ), fv ∈ F (v) exists such that f
T

v (zk − v) ≥ 0, and for all gv ∈ G(v):839

−Λ1Ξ
k
1 + Λ2Ξ

k
2 + Λ3Ξ

k
3/η ≤

[
fv/η + gv

]T
(v − zk) ≤ gTv (v − zk),840

where the first inequality comes from (4.7), and thus we get (6.4).841

We remark that it is difficult to measure how inexactness propagates from Minty-842

like GVI optimality conditions (like (4.7), (5.1), (5.2), (6.3), (6.4)) to the players’843

problems’ ones. This topic does not seem to have been thoroughly investigated in the844

literature: some preliminary results can be traced back in [2], where however only the845

case of single-valued mappings is considered.846

We also give the counterpart related to (4.1) of Proposition 6.3.847

Proposition A.4. Given ε ≥ 0, let y be a solution of the inexact version of848

(4.1), i.e. y ∈ Y , ∃hη
y ∈ Hη(y) such that hηT

y (v − y) ≥ −ε, ∀v ∈ Y . We have849

∃fy ∈ F (y) : fT
y (v − y) ≥ −ε− ηΛ2, ∀v ∈ Y,850

851
∃gy ∈ G(y) : gTy (v − y) ≥ −ε/η, ∀v ∈ SOL(F, Y ).852

Proof. Since hη
y = fy + ηgy, for some fy ∈ F (y) and gy ∈ G(y), for all v ∈ Y :853

fT
y (v−y) = hηT

y (v−y)−ηgTy (v−y) ≥ −ε−ηΛ2, and, as in the proof of Proposition 6.3,854

−ε/η ≤ [fy/η + gy]
T
(v − y) ≤ gTy (v − y), ∀v ∈ SOL(F, Y ).855

A.11. Proof of Proposition 7.1. By Theorem 6.4, we only need to prove that856

sequences {γk} and {ηk} are nonincreasing. Let us prove this for {γk}, therefore fo-857

cusing on {αk}, since the proof for {ηk} can be obtained following the same reasoning.858

Clearly, αk = α, and then {γk} is nonincreasing, for all k ≥ Iα. For every859

k ∈ (1, Iα), and for every εα ∈ (0, εα], we have860

α

α− α
− 1 =

α

(α− α)
=

tα
1− tα

(Iεαα − 1)

Iεαα
≥ tα

1− tα

(Iεαα − 1)

Iεαα

≥ tα
1− tα

(kεα − (k − 1)εα)

Iεαα
≥ tkα

1− tkα

(kεα − (k − 1)εα)

Iεαα
,

861

where tkα ≜ logk(k − 1), and the last inequality holds since tkα ≤ tα, thus (k/Iα)
εα ≤862

1 ≤ α/(α− α)− tkα/(1− tkα)(k
εα − (k − 1)εα)/(Iεαα ), and by rearranging terms,863

αk = α− (α− α) (k/Iα)
εα ≥ tkα [α− (α− α) (k − 1/Iα)

εα ] = tkααk−1,864

which implies kαk ≥
[
kt

k
α

]αk−1

= (k − 1)αk−1 .865
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