
Solving Various Classes of Arc Routing Problems

with a Memetic Algorithm-based Framework

Sasan Mahmoudinazlou1, Changhyun Kwon2, Hadi Charkhgard1*

1Department of Industrial and Management Systems Engineering,
University of South Florida, Tampa, FL 33620.

2Department of Industrial and Systems Engineering, KAIST, Daejeon,
South Korea.

*Corresponding author(s). E-mail(s): h.charkhgard@gmail.com;
Contributing authors: sasanm@usf.edu; chkwon@kaist.ac.kr;

Abstract

Arc routing problems are combinatorial optimization problems that have many
real-world applications, such as mail delivery, snow plowing, and waste collection.
Various variants of this problem are available, as well as algorithms intended
to solve them heuristically or exactly. Presented here is a generic algorithmic
framework that can be applied to a variety of arc routing problems where a fleet
of vehicles is used to visit a predefined set of edges. The main characteristic of
the problem that qualifies it for the proposed framework is that each edge should
be visited no more than once. This proposed framework uses genetic algorithms,
dynamic programming, and local searches in a systematic manner and provides
guidelines for applying them to the arc routing problem of one’s choice. We
select two problems to test the effectiveness of our proposed framework: the min-
max windy K-vehicle rural postman problem and the undirected capacitated
arc routing problem. We implement our proposed framework and compare it
with existing algorithms using an established benchmark set for each problem.
We demonstrate that our generic proposed framework can outperform existing
custom-built algorithms.

Keywords: arc routing, Chinese postman problem, memetic algorithm, metaheuristic,
Dynamic programming

1

1 Introduction

Arc routing problems are fundamental in operations research and logistics, covering
a wide range of real-world applications, including garbage collection, mail delivery,
school bus route planning, and snow plowing [1, 2]. These problems involve determining
optimal routes for a fleet of vehicles to traverse a network of arcs while satisfying
various constraints. A considerable amount of research has been conducted over the
years in order to address different aspects of arc routing problems. For a comprehensive
overview of the existing literature, interested readers may refer to a review paper on
arc routing problems by Corberán et al. [3] and a survey of arc routing problems
under uncertainty by De Maio et al. [4]. In summary, the existing literature can be
categorized from at least three perspectives: the number of vehicles, arc directions,
and the number of visits.

A significant amount of the literature on arc routing has focused on single-vehicle
routing problems, such as the well-known Chinese Postman Problem (CPP) introduced
by a Chinese mathematician, Meigu Guan (Mei-Ko Kwan), and the Rural Postman
Problem (RPP) proposed by Orloff [5]. CPP is characterized by the objective of finding
the shortest tour that traverses each arc at least once while minimizing the total
distance. The RPP differs slightly in that not all of the arcs are required for visiting.
While these problems have received significant attention, they represent just one facet
of the broader arc routing class. There is also a category of arc routing problems
involving multiple vehicles, where a fleet of vehicles must service a set of arcs. As an
example, the Capacitated Arc Routing Problem (CARP) introduced by Golden and
Wong [6], is a well-studied multi-vehicle arc routing problem. CARP involves visiting
a set of edges with specific demands. Vehicles are homogeneous and have a limited
capacity. Some of the existing solutions approaches in this category are an exact
approach by Bartolini et al. [7] that employs set partitioning, the transformation to
the Capacitated Vehicle Routing Problem (CVRP) by [8], as well as heuristic methods
such as Tabu Search [9], Genetic Algorithm [10], and Ant Colony Optimization [11].

Aside from the number of vehicles, arc routing studies can be classified based
on the capability to traverse the arcs in one direction or in two directions. Thus,
arc routing problems can be classified into three categories: directed, undirected, and
mixed. The arcs in directed arc routing problems have a specific direction, whereas
the arcs in undirected arc routing problems may be visited in any direction, and in
mixed arc routing problems, the graph may contain both directed and undirected
arcs. The problems of this category are also solvable by various optimization methods.
Heuristic methods by Maniezzo and Roffilli [12] for directed CARP, exact methods by
Belenguer et al. [13] for mixed CARP, and transformation to node-routing by Baldacci
and Maniezzo [14] for undirected CARP are some examples of this category.

Lastly, another type of classification for arc routing problems is based on the
number of visits to each arc. In the first category of arc routing problems (referred
to as the “single-visit” category), each edge must only be visited once, e.g., CPP,
RPP, and CARP. The second type of arc routing problem (referred to as the “at-
most-one-visit” category) is one in which each edge should be visited at most once,
meaning that some of the edges may be left unvisited. Problems in this category aim
to maximize profit, for example, CARP with profit [15]. The third category (referred

2

to as the “multiple-visit” category) consists of problems in which we are permitted
to visit edges more than once. The Profitable Arc Tour Problem [16] is an example
of this type of problem, in which profits can be collected multiple times from arcs.
Some of the existing solution approaches in this category are exact algorithms such
as Branch-and-Price by Feillet et al. [16] and heuristic algorithms such as a hybrid
Metahueristic by Euchi and Chabchoub [17] for the Profitable Arc Tour Problem.

From the existing body of literature, one can observe that the classes of arc routing
problems mentioned above are typically investigated in isolation. As a result, the
existing solution methods are often customized for specific classes, creating a gap in
the development of adaptable algorithms capable of addressing a wide spectrum of
problems. This study aims to bridge this gap by introducing a generic algorithmic
framework designed to tackle a range of arc routing problems, accommodating any
number of vehicles and arc direction formats within the single-visit or at-most-one-
visit categories. The only limitation of the proposed framework is its applicability to
the multiple-visit category.

Our proposed generic framework is based on Memetic Algorithms (MA). This
framework leverages the power of genetic algorithms, dynamic programming, and local
search techniques to provide efficient and effective solutions. To address an arc routing
problem involving a fleet of vehicles, three levels of decision-making must be consid-
ered. The first level involves assigning each arc to a vehicle, the second level determines
the order in which the arcs are visited during each tour, and the third level deals with
the direction of the arcs, particularly in undirected and mixed graphs. The second
and third decisions, namely the order and direction of arcs, are handled by genetic
algorithms (GAs), using a direction-aware chromosome encoding. The first decision,
which involves assigning arcs to vehicles, is addressed using dynamic programming.
To evaluate the effectiveness of our algorithm, we have chosen two different arc rout-
ing problems with distinct objectives and constraints. We compare the results of our
framework to those of existing methods by solving an established benchmark set for
each problem.

The rest of this paper is organized as follows: In Section 2, we will formally intro-
duce the class of problems to which our proposed framework is intended to solve. A
discussion of the conditions to check to determine whether a problem falls within this
category will also be provided. The details of our generic framework will be presented
in Section 3. Section 4 presents the computational results for two benchmark sets. The
paper is concluded and future directions are suggested in Section 5.

2 Problem Description

This section provides a brief description of the classes of arc routing problems suitable
for our proposed algorithmic framework. Consider a graph G = (V, E), where V =
{1, . . . , n} represents the set of vertices and E represents the set of edges. The depot,
denoted by vertex V0, serves as both the starting and ending point for each tour. The
graph G can be directed, undirected, or mixed. Each edge e ∈ E is associated with a
travel time te (or cost ce), and these travel times adhere to the triangle inequality. In
the presence of undirected edges, as seen in the windy arc routing problem [18], each

3

undirected edge will possess two different travel times (costs). Within this context,
there exists a subset of edges, labeled as ER, which must be traversed; these are
referred to as the required edges. For certain problem classes, a distinct subset of
edges is referred to as profitable edges, rather than required edges. In such cases, our
objective is to visit the edges that yield the highest profit, rather than traversing all
the edges in the set.

Our proposed framework is designed to solve arc routing problems in which edges
in a set of required or profitable edges may only be traversed once. In some arc rout-
ing problems, multiple visits are permitted. Considering that our proposed framework
encodes a solution in a fixed-size array that includes all of the required edges (or prof-
itable edges), multi-service arc routing problems cannot be addressed by our proposed
framework. We can name three such problems as follows: maximum benefit Chinese
postman problem [19], profitable arc tour problem [17], and generalized maximum
benefit multiple Chinese postman problem [20]. There is also a type of arc routing
problem in which the goal is to provide service to nodes. A traversal of each arc,
however, involves serving the customers of the nodes adjacent to it. The problem is
referred to as the Close Enough Arc Routing Problem (CEARP) [21]. This is also a
problem that cannot be solved by our proposed framework.

The proposed framework can accommodate any arbitrary number of vehicles,
denoted as m. Furthermore, it can be tailored to accommodate various common con-
straints. Two such constraints, which we use for illustration in this study, are the
maximum tour length and capacity restrictions. Assume that dj represents the demand
for edge ej , and C represents the maximum capacity of each vehicle. The sum of dj
across all edges in a tour must not exceed C. In a similar manner, travel time con-
straints can be defined. Let L be the maximum duration allowed for each tour. The
total travel time for each tour must be less than or equal to L. For problems without
capacity constraints, we can simply set C =∞ (similarly for L).

In terms of the objective function, the class of arc routing problems solvable by
our proposed framework may vary from minimizing the total cost and minimizing
the maximum tour length to maximizing the total profit. Section 3.2 provides details
regarding the proper handling of the objective function. In light of all that, the pro-
posed framework can solve a wide range of problems relating to arc routing, including
the min-max windy k-rural postman problem [22], the capacitated arc routing prob-
lem [6], the undirected capacitated arc routing problem with profits [15], the team
orienteering arc routing problem [23], among others.

In summary, the main limitation of our proposed framework arises when there are
edges that require multi-service. Otherwise, our generic framework can be used. In
Section 3, we will provide explanations about how the proposed framework can handle
various constraints and objective functions for problem classes that can be solved by
our intended framework. To demonstrate the effectiveness of the proposed framework,
in Section 4, we introduce two different problems, including the min-max windy K-
vehicle rural postman problem and the undirected capacitated arc routing problem,
and illustrate the performance of our proposed framework.

4

3 A Memetic Algorithm-based Framework

The purpose of this section is to provide a detailed explanation of the architecture of
our framework, beginning with the genetic algorithm. Algorithm 1 provides a detailed
description of the MA. We begin by generating µ individuals (line 1) where µ is a
user-defined parameter that indicates the minimum population size. Generating ini-
tial individuals can be performed randomly. However, the performance of evolutionary
algorithms is generally improved when they start with a population that is well-fitted.
In this regard, it is recommended to design a procedure that can generate high-quality
initial solutions. Until the stopping condition is satisfied, each of the following steps is
repeated. When Itstop iterations have been completed without improvement, the algo-
rithm terminates. The first step of the process is to sort the population according to
fitness (objective function) and a diversity multiplier in order to measure differences
between individuals (line 3). Diversification multipliers are specific to each problem
and will be discussed in more detail. Afterwards, two individuals will be selected from
the population as parents (line 4). To select the parents for this study, Tournament
Selection was used. Tournament selection involves selecting a subset of individuals at
random from a population. In this paper, ktournament refers to the number of individu-
als within the subset, which is a parameter that is defined by the user. The individuals
within this subset compete against each other, and the one with the best fitness value
is selected to be a parent. The same process is followed for selecting the second par-
ent. When crossover is applied to two parents, one child will be produced (line 5),
for which the Split algorithm is employed for fitness evaluation and tour determina-
tion (line 6). Afterward, the new offspring will be improved by applying neighborhood
search functions (line 7). A survival plan is implemented once the population reaches
µ+ λ. According to fitness value, the best µ individuals are retained and the rest are
discarded (lines 9-11). If no improvement is observed after Itdiv iterations, the popu-
lation will be diversified in order to help the algorithm avoid local optima. During this
step, the top nbest individuals are kept, the rest are discarded, and new individuals
are generated until the population size reaches µ. A similar process is used to create
new individuals (lines 12-14) as was used to generate the initial population.

3.1 Chromosome representation

Based on the generic MA framework proposed in this study, any arc routing problem
can be solved when the required arcs are assumed to be visited at most once. In this
regard, chromosome encoding is assumed to include the order in which arcs must be
arranged as well as their direction. Orders are incorporated by permuting the required
arcs, while arc directions are handled by the signs of these numbers. For instance,
[2,−6, 5, 1,−3, 4] represents the chromosome encoding of an instance with 6 required
arcs in an undirected graph (Figure 1). When representing an individual on a directed
graph, all signs should be positive. In a mixed graph, the signs for directed arcs in
the representation should always be positive, while the signs for undirected arcs can
be either positive or negative. In this example, the arcs are ordered as their absolute
values appear in the representation, i.e., [E2, E6, E5, E1, E3, E4]. It is the sign of each
gene that determines the direction. Suppose edge E1 was originally intended to connect

5

Algorithm 1 Memetic Algorithm

1: Ω = initial population()

2: while Stopping condition is not met do
3: sort(Ω) ▷ Based on fitness and diversification factor
4: Select ω1 and ω2 from Ω
5: c← crossover(ω1, ω2)
6: ω = Split(c) ▷ Algorithm 2
7: educate(ω) ▷ Neighborhood search
8: Ωf ← Ωf ∪ {ω}
9: if size(Ω) = µ+ λ then

10: select survivors(Ω)
11: end if
12: if best(Ω) not improved for ItDIV iterations then
13: diversify(Ω)
14: end if
15: end while
16: Return best(Ω)

vertex V1 to vertex V2, in which case +1 indicates V1 → V2 and −1 indicates V2 → V1.
Let E1, E2, E3, E4, E5 and E6 represent V1 → V2, V0 → V8, V3 → V4, V5 → V6, V9 →
V10 and V7 → V8 respectively. Assume there are two vehicles for visiting these arcs,
then the sequence [2,−6, 5, 1,−3, 4] can be split into two tours, each tour will be
handled by one vehicle. Letting [2,−6, 5] and [1,−3, 4] represent tours for each of the

two vehicles, they will respectively be equivalent to V0 → V8 → V7
s−→ V9 → V10

s−→ V0

and V0
s−→ V1 → V2

s−→ V4 → V3
s−→ V5 → V6

s−→ V0, where Vi → Vj means traversing

the required arc starting from Vi ending in Vj and Vi
s−→ Vj means the shortest path

from Vi to Vj . Detailed information regarding the procedure for splitting the tour into
several tours will be provided in the following section. Dijstra’s algorithm [24] can
be used to find the shortest path between all pairs of nodes at the beginning of the
computation before running MA.

3.2 Individual evaluation by Split

This study proposes a generalized Split algorithm similar to what Prins [25] intro-
duced for vehicle routing problems. We intend to design a dynamic programming-based
framework for arc routing problems involving multiple vehicles. The algorithm must
be able to take a sequence of edges and, without changing their sequence, optimally
split them into multiple tours regardless of the objective function. Our Split has been
formulated in a way that accommodates both vehicle capacity constraints and time
limitations (travel distances) for each tour. The addition of any other constraint is
possible as well. A constraint can easily be deactivated by setting the right hand side
to a large number.

A simple illustration of our proposed split algorithm can be found in Figure 2.
The algorithm takes a chromosome representation and determines the delimiters for
dividing the sequence of edges intom tours, wherem represents the number of vehicles.

6

V0

V1

V2

V4

V3

V5

V6

V8

V7

V9

V10

E1

E3

E2

E4

E6

E5

Fig. 1: An arc routing problem instance with six required edges.

4 9 −3 −8 2 −5 10 7 −6 1 4 9 −3 −8 2 −5 10 7 −6 1

4 9 −3 −8 2 −5 10 7 −6 1

tour 1 tour 2

tour 1 tour 2 tour 3

4 9 −3 −8 2 −5 10 7 −6 1

tour 1 tour 2 tour 3 tour 4

m
=
2

m = 3

m
=
4

Fig. 2: Illustration of Split algorithm.

Developing a dynamic programming algorithm begins with reducing the problem into
smaller subproblems. Let α(k, r) be the problem of optimally splitting the first k
required edges in the chromosome into r tours. In that case, the main problem would
be equivalent to α(Nreq,m), where Nreq represents the number of all required edges
and m represents the number of vehicles. Bellman’s optimality equations will thus
complete the dynamic programming algorithm which solves α(Nreq,m) by solving the
subproblems. Below is a list of notation used in the Split algorithm for the convenience
of the reader:

• S = [S1, S2, ..., SNreq
]: The sequence of required edges in the chromosome. (e.g.

S = [2,−6, 5, 1,−3, 4], explained in previous section)
• m: Number of vehicles; Obviously m ≤ Nreq.

7

• V k
r : The optimal objective value of subproblem α(k, r), i.e., completing the

subsequence [S1, ..., Sk] in r tours.
• F (V k−1

r , j): The objective value obtained by adding a tour containing [Sk, ..., Sj]
to the optimal solution of problem α(k− 1, r). This value depends on the objective
function of each specific problem.

• Rk: Set of all possible numbers of tours for visiting first k required edges, where

Rk =

{
{0} if k = 0,

{1, ...,min(k,m)} if 1 ≤ k ≤ Nreq,

For example, having m ≥ 3 vehicles, R3 = {1, 2, 3} since visiting three arcs needs
at least one tour and it is infeasible to split them into more than three tours.

• tSj
: The time (distance/cost) of traveling edge Sj

• τSi,Sj
: The time (distance/cost) of shortest path from the end point of edge Si to

the start point of edge Sj

The start and end point of an edge depends on the sign of Sj . For example, if
Sj = +3 and edge E3 represents V1 → V2, then the start and end point of this
edge would be V1 and V2 respectively, and if Sj = −3 for the same edge E3, then
the start and end point would be V2 and V1 respectively. Note that if edge E3 is
directed, the corresponding Sj in the representation will always be positive.

• dSj
: Demand of edge Sj

• L: The maximum time (distance/cost) allowed for a tour. If no such constraint
exists, then L =∞.

• C: The capacity of each vehicle. In case there is no capacity constraint, then C =∞.

For each r ∈ {1, . . . ,m − 1} and j ∈ {r + 1, . . . , Nreq}, the goal of the dynamic
program is to establish an optimal solution of the problem α(j, r + 1) by considering
the possibility of adding one additional tour containing the subsequent [Sk, . . . , Sj] to
the solution obtained for the problem α(k − 1, r) for all k ∈ {r + 1, . . . , j}, assuming
that they are all solved to optimality. More specifically, for each r ∈ {1, . . . ,m − 1}
and j ∈ {r + 1, . . . , Nreq}, by assuming that V k−1

r is known for all k ∈ {r + 1, . . . , j},
the Bellman optimality equation can be stated as

V j
r+1 = min ormax

k=r+1,...,j

{
F (V k−1

r , j)
}
.

The choice of “min” or “max” depends on the problem and the sense of the objective
function being explored. For example, if the objective function is to maximize the total
profit, then “max” should be selected and we can define

F (V k−1
r , j) = V k−1

r +

j∑
i=k

pSi
.

where where pSi
is the profit obtained by traversing edge Si. Similarly, if the objective

function is to minimize the maximum tour length, then “min” should be selected and

8

Algorithm 2 Split for multi-vehicle arc routing (in minimization form)

1: V 0
0 ← 0

2: V k
r ← +∞ ∀k = 1 to Nreq , ∀r in Rk ▷ V k

r ← −∞ for maximization
3: for k = 1 to Nreq do
4: for r ∈ Rk−1 do
5: if V k−1

r < +∞ then ▷ V k−1
r > 0 for maximization

6: time← 0; load← 0; j ← k
7: while j ≤ Nreq do
8: if k = j then
9: time← τ0,Sj

+ tSj
+ τSj ,0 ▷ 0 represents depot.

10: else
11: time← time− τSj−1,0 + τSj−1,Sj

+ tSj
+ τSj ,0

12: end if
13: load← load+ dSj

14: if time > L or load > C then
15: break

16: end if
17: if r + 1 ∈ Rj then

18: if F (V k−1
r , j) better than V j

r+1 then

19: V j
r+1 ← F (V k−1

r , j) ▷ F depends on the objective function
20: end if
21: end if
22: j ← j + 1
23: end while
24: end if
25: end for
26: end for
27: return best(V i

m)

we can define
F (V k−1

r , j) = max(V k−1
r , Tk,j)

where Tk+1,j is the length of the tour that contains the subsequent [Sk, ..., Sj].
In light of the above, the proposed Split algorithm begins by initializing V 0

0 with
0 and all V k

r with an undesirable value. Depending on whether the objective function
should be minimized or maximized, the value is +∞ or −∞. As a result of a forward
propagation, we are aiming to solve α(Nreq,m) by starting with α(0, 0). The condi-
tion in Line 5 ensures that the problem α(k − 1, r) is feasible to begin with. This
infeasibility might be due to violation of a constraint. Variables time and load are
used to record the travel time (distance/cost) and the vehicle load for the current tour
that is being added. These variables are intended to ensure that the travel time and
capacity constraints are not violated (Lines 14-16). If users wish to impose additional
constraints, they can define them in a similar manner to capacity and time within
the proposed framework. The algorithm compares the new solution of the problem

9

α(j, r+1) with the existing one while adding each edge Sj to the current tour, and if
it is more satisfactory, it replaces the existing solution.

As a final note on the Split algorithm, it should be noted that in some arc routing
problems, not all arcs can be traversed in the final solution. Specifically, the problems
with the objective of maximizing the total profit involve selecting the most profitable
arcs and ordering them in different tours. Consequently, it may not be possible to solve
the α(Nreq,m) problem in this case. We will therefore select α(k,m), which provides
the best objective value. In the Split algorithm, arcs are selected in the same order
as they appear in S until forward propagation is not possible due to constraints being
violated.

3.3 Crossover

Based on our chromosome encoding, any permutation-based crossover can be applied
with some modifications to handle both the signs as well as the order. It is, however,
recommended to use the Similar Tour Crossover (STX) described in Mahmoudina-
zlou and Kwon [26], which is specially designed to address problems associated with
multiple tours. From the first parent, a random tour is selected, followed by the tour
with the greatest number of mutual edges from the second parent. A simple two-point
crossover is then implemented between selected tours, and the new tour is then added
to the child. Until the child has m tours, this process should be repeated. It is possible
that some edges will appear more than once in the tours at the end of the process. In
addition to removing repeating edges, any edges that could violate the time or capac-
ity constraint will also be removed from the child’s tour. Ultimately, all remaining
edges will be assigned to one of the child’s tours based on a greedy approach, to the
extent that constraints allow. It is necessary to examine all possible insertions for each
edge, and then the edge should be placed according to the objective function in the
position and direction (sign) that is most appropriate. Furthermore, the edges that
are not able to be placed on any of the tours due to constraints must be inserted at
the end in order to keep all the edges in play.

3.4 Chromosome education

In evolutionary algorithms, improving the offspring by employing local search methods
tends to lead to a faster convergence to a solution of higher quality. The neighborhoods
that can be used for the class of arc routing problems that we are addressing in this
paper may be classified into three categories. Firstly, there are intra-route neighbor-
hoods, which include movements within each tour. The reinsert neighborhood consists
of taking an edge from a tour and repositioning it on the same tour. An exchange move
alters two edges within a tour. A moving edge may be examined in both directions
(signs, in our representation). A two-opt move reverses the order of a subsequence of
a tour. A one-reverse move inverts the direction (changes the sign in our represen-
tation) of one edge in a tour. These four neighborhoods are examples of intra-route
local searches. Considering other neighborhoods and selecting the best ones for the
problem of one’s choice is highly recommended.

10

1 −2 3 −4 −5 6 7 −8 9 10 −11 12

7 −4 2 −5 12 −8 11 10 −9 −3 −1 6

Parent 1

Parent 2

−4 −5 6 7 −8

7 −4 2 −5

1 −2 3

−3 −1 6

9 10 −11 12

12 −8 11 10 −9
Similar tours

−4 −4 2 7 −8 1 −1 3 12 10 −11 10 −9 Child (unprocessed)

−4 2 7 −8 1 3 12 10 −11 −9 repeated edges deleted

5 6 Remaining cities

−4 2 7 −5 −8 1 3 12 6 10 −11 −9 Child (processed)

1

2

3

4

5

Fig. 3: Illustration of STX crossover for a problem with size Nreq = 12 and m = 3.

1 2 3 4 5 1 ±4 2 3 5

(a) Reinsert move.

1 2 3 4 5 ±3 2 ±1 4 5

(b) Exchange move.

1 2 3 4 5 1 −4 −3 −2 5

(c) two-opt move.

1 2 3 4 5 1 2 −3 4 5

(d) one-reverse move.

Fig. 4: Intra-route neighborhoods.

1 2 3 4

5 6 7

1 2 4

5 ±3 6 7

(a) shift(1,0) move.

1 2 3 4

5 6 7

1 ±5 3 4

±2 6 7

(b) swap(1,1) move.

Fig. 5: Inter-route neighborhoods.

11

8 9 10

unvisited edges:

1 2 3 4

tours:

5 6 7

8 10

1 2 3 4

5 ±9 6 7

(a) add-one move.

8 9 10

unvisited edges:

1 2 3 4

tours:

5 6 7

3 8 9

1 2 ±10 4

5 6 7

(b) substitute move.

Fig. 6: Outer neighborhoods.

Another category is inter-route neighborhoods, which require two different tours.
Shift(1,0) and swap(1,1) are examples of this type of operation. A shift(1,0) transfers
one edge from one tour to another tour, while a swap(1,1) exchanges two edges from
two different tours. One can also use other types of inter-route local searches, such
as shift(2,0) or swap(2,1), etc. The third neighborhood category, which we refer to as
the outer neighborhood, only applies to problems that do not necessarily traverse all
edges. In problems where the objective is to maximize total profit, some of the edges
may not be selected in the final solution. In this regard, adding one of the unvisited
edges to one of the tours might be a potential improvement. Another option would be
to swap one of the unvisited edges with an edge on one of the tours. We refer to theses
moves as add-one and substitute moves respectively. Similarly, other movements are
possible in the outer neighborhood category.

The next step is to determine how and in what order these local searches should
be conducted. Local searches are sometimes performed at random in some studies.
We recommend, however, using these local searches in a systematic manner in order
to maximize their effectiveness. We begin by employing all intra-route neighborhoods
one by one. Our method entails taking a chromosome and implementing all possible
moves within one intra-route search until there is no further improvement. We repeat
the process for the next intra-route neighborhood search. In addition, we keep track
of the indices of tours that are being improved by any of the changes. The process is
repeated until no further improvement is possible as a result of intra-route changes.
A similar search is then conducted with inter-route movements, and the improved
tours are recorded. Finally, moves within the outer neighborhood are similarly applied.
Afterward, for tours that have been improved by any move, the whole process is
repeated again. As soon as the entire iteration of the search does not result in an
improved tour, the process is terminated.

3.5 Diversification

Typically, genetic algorithms have a tendency to generate populations that closely
resemble the best individual, especially when the populations are small. This can
result in the algorithm becoming stuck in local optima. Having a more diverse pop-
ulation increases the likelihood of reaching global optima because it provides more
opportunities for exploration.

To further diversify the population, we evaluate the chromosome’s fitness based on
the solution’s objective value, as well as its distance from its adjacent chromosomes

12

after sorting by fitness. As a first step, we convert the multi-vehicle arc routing solution
into a rank-based representation in order to quantify the distance between the two
individuals. Each rank-based representation of an individual consists of an array of
size n representing the position of all required edges in any tour. If an edge is not
included in any tour as a result of constraints, the corresponding value will be zero.
Consider [4,−3, 8], [−1, 5,−10,−7], [6,−2] as the tours of a multi-vehicle arc routing
instance when n = 10 and m = 3. Therefore, the rank-based representation of this
chromosome would be R = [1, 2, 2, 1, 2, 1, 4, 3, 0, 3]. A distance between two individuals
P1, P2 with rank-based representations R1, R2 can be calculated as follows:

δ(P1, P2) =
1

n

Nreq∑
i=1

|R1[i]−R2[i]|
Mr

,

where Mi is the maximum rank value in R1 and R2. The degree of dissimilarity
between two representations is assessed on a scale ranging from zero to one, with values
approaching zero indicating similarity and values nearing one indicating dissimilarity.
To measure diversity, we compute a quantity called the diversity contribution ∆(P)
by considering the average distance between an individual, denoted as P , and its two
closest neighbors. To determine the fitness of each individual, we employ the following
formula:

fitness(P) = objective(P)× γ∆(P),

where objective(P) is the value of objective function for the given individual and
γ represents the diversification factor, which is a hyper parameter for the algorithm.
When solving a maximization problem, γ should be greater than one; otherwise, it
should be lower than one.

4 Computational results

To evaluate the performance of our proposed framework, we selected two different
problems, the min-max windy k-vehicle rural postman problem (MM K-WRPP) and
the undirected capacitated arc routing problem with profits. Each problem is analyzed
using a benchmark set and baseline algorithms derived from the literature. We devel-
oped the algorithm using the Julia programming language on a Mac computer with 16
GB of RAM and an Apple M1 processor. The parameters used in our MA are µ = 10,
λ = 20, ktournament = 2, Itstop = 5000, Itdiv = 1000, nbest = 0.2µ, γ = 0.9 (1.2)
for minimization (maximization) problems. Considering evolutionary algorithms are
stochastic optimizations, the results of each run may differ. As a result, we solve each
instance ten times using MA and report the best and average results obtained from
the ten runs.

4.1 Min-max windy k-vehicle rural postman problem

There is an important arc routing problem known as the windy rural postman problem.
In WRPP, G = (V, E) is an undirected graph and ER ∈ E is the set of all required
edges. Every edge in ER has two travel times (costs), one for traversing it in each

13

direction. i.e., for the edge eij , the travel times are tij and tji, where tij ̸= tji. The
objective is to find a tour in which the vehicle starts from the depot, visits all the edges
in ER, and returns to the depot with the least amount of travel time (cost). Here, we
solve the WRPP using multiple vehicles with the objective of minimizing the longest
tour length. We set C and L to ∞ since there is no constraint on vehicle capacity or
tour length.

A benchmark data set derived from 24 RPP instances proposed by Christofides
is used to test our algorithm on MM K-WRPP. Within this set, six different WRPP
instances are generated for each 24 RPP instances. This benchmark set contains 144
instances, which are available at http://www.uv.es/corberan. Among the benchmark
instances in this set, there are those with up to 50 vertices, 184 edges, and 78 required
edges. Several algorithms have been proposed in the literature for solving this set.
Examples of existing algorithms in the literature include a branch-and-cut algorithm
by Benavent et al. [22], an Iterative Local Search (ILS) algorithm by Benavent et al.
[27], and a branch-price-and-cut algorithm by Corberán et al. [19]. The results of our
study are compared with those of ILS. The ILS algorithm has been tested in four
different settings. To conduct the comparison, we have selected the setting with the
best performance, which is referred to as ILS-H1.

Table 1 provides a summary of the results. Due to the speed of our processor,
the computational time cannot be used as a reliable basis for comparison. For the
purposes of comparing the quality of solutions, we take the best-known solutions as a
baseline and calculate the gap for each algorithm. In each 24 groups of instances, six
instances are included. Column “Opt.” represents the number of instances for which
the optimal solution is known. The presented gaps are the gaps between these results
of algorithms (Alg) and the best known solutions (BKS). Following is the formula for
calculating the gaps:

gapAlg =
Alg− BKS

BKS
× 100%

Therefore, the negative gaps refer to the instances that MA has improved the BKS.
For each algorithm, the gap and time are averaged over all six instances within the
group. For MA, gapb and gapa represent the gaps for best and average results out
of ten runs respectively. Average 1 indicates the average over all groups of instances,
whereas Average 2 is over groups C20-C24 in order to emphasize the performance
over large instances. The results show that ILS-H1 performs better than MA when
there are two vehicles involved. There is a similar performance between the algorithms
when there are three vehicles. However, in the case of four and five vehicles, MA is
superior to ILS-H1. Having used an exact method for splitting and a heuristic method
for sequence, we conclude that the exact part of our algorithm is more active with
more tours to split, resulting in better performance. It is worth noting that MA has
improved the best-known solution for 1, 13, and 15 instances for the case of 3, 4, and
5 vehicles, respectively.

4.2 Undirected capacitated arc routing problem with profits

As a second example of applying our proposed framework, we examine the undirected
capacitated arc routing problem with profits (UCARPP). The graph G(V, E) in this

14

http://www.uv.es/corberan

Number of vehicles = 2 Number of vehicles = 3 Number of vehicles = 4 Number of vehicles = 5

Opt. ILS-H1 MA Opt. ILS-H1 MA Opt. ILS-H1 MA Opt. ILS-H1 MA

gap time gapb gapa time gap time gapb gapa time gap time gapb gapa time gap time gapb gapa time

C01 6 0.0 0.0 0.0 0.0 0.1 6 0.0 0.0 0.0 0.0 0.1 6 0.0 0.0 0.0 0.0 0.1 6 0.0 0.0 0.0 0.0 0.1
C02 6 0.0 0.2 0.0 0.0 0.2 6 0.0 0.2 0.0 0.0 0.2 6 0.0 0.2 0.0 0.0 0.2 6 0.0 0.2 0.0 0.0 0.2
C03 6 0.0 5.8 0.0 0.1 0.6 6 0.0 4.0 0.0 0.0 0.6 6 0.0 3.5 0.0 0.0 0.6 6 0.0 3.4 0.0 0.0 0.5
C04 6 0.1 4.0 0.0 0.1 0.5 6 0.0 2.7 0.0 0.1 0.5 6 0.0 2.6 0.0 0.0 0.5 5 0.3 2.6 0.0 0.0 0.4
C05 6 0.0 0.3 0.0 0.0 0.2 6 0.0 0.3 0.0 0.0 0.2 6 0.0 0.2 0.0 0.0 0.2 6 0.0 0.2 0.0 0.0 0.2
C06 6 0.0 2.3 0.0 0.1 0.4 6 0.0 1.9 0.0 0.0 0.4 6 0.0 1.7 0.0 0.0 0.4 5 1.2 1.7 0.0 0.0 0.3
C07 6 0.0 5.1 0.0 0.2 0.4 6 0.0 3.1 0.0 0.0 0.5 6 0.0 2.7 0.0 0.0 0.4 5 0.1 2.9 0.0 0.0 0.4
C08 6 0.0 6.6 0.0 0.1 0.6 6 0.0 5.0 0.0 0.0 0.6 5 0.0 4.7 0.0 0.1 0.6 4 1.5 4.5 0.0 0.0 0.5
C09 6 0.0 0.4 0.0 0.0 0.2 6 0.0 0.3 0.0 0.0 0.2 6 0.0 0.3 0.0 0.0 0.2 6 0.0 0.3 0.0 0.0 0.2
C10 6 0.0 0.1 0.0 0.0 0.1 6 0.0 0.1 0.0 0.0 0.1 6 0.0 0.0 0.0 0.0 0.1 6 0.0 0.0 0.0 0.0 0.1
C11 6 0.0 0.0 0.0 0.0 0.1 6 0.0 0.0 0.0 0.0 0.1 6 0.0 0.0 0.0 0.0 0.1 6 0.0 0.0 0.0 0.0 0.1
C12 6 0.0 0.0 0.0 0.0 0.1 6 0.0 0.0 0.0 0.0 0.1 6 0.0 0.0 0.0 0.0 0.1 6 0.0 0.0 0.0 0.0 0.1
C13 6 0.0 0.0 0.0 0.0 0.1 6 0.0 0.0 0.0 0.0 0.1 6 0.0 0.0 0.0 0.0 0.1 6 0.0 0.0 0.0 0.0 0.8
C14 6 0.0 18.3 0.0 0.1 1.0 6 0.0 10.5 0.0 0.5 1.0 5 0.1 9.0 0.0 0.1 1.1 4 0.9 8.4 0.1 0.1 1.0
C15 6 0.0 1.6 0.0 0.0 0.3 6 0.0 1.2 0.0 0.0 0.4 6 0.0 1.2 0.0 0.0 0.3 6 0.0 1.2 0.0 0.0 0.3
C16 6 0.1 17.8 0.0 0.5 1.1 6 0.1 10.2 0.0 0.3 1.2 3 2.1 8.8 0.1 0.4 1.1 1 4.0 8.4 0.1 0.2 1.1
C17 6 0.0 1.0 0.0 0.0 0.2 6 0.0 0.8 0.0 0.0 0.2 6 0.0 0.8 0.0 0.0 0.2 6 0.0 0.8 0.0 0.0 0.2
C18 6 0.0 1.2 0.0 0.0 0.3 6 0.0 1.1 0.0 0.0 0.3 6 0.0 1.0 0.0 0.0 0.2 6 0.0 1.0 0.0 0.0 0.2
C19 6 0.0 11.2 0.0 0.0 0.7 6 0.0 6.3 0.0 0.3 0.8 6 0.0 5.2 0.0 0.2 0.7 4 0.4 4.8 0.0 0.0 0.6
C20 6 0.3 175.0 0.3 0.9 4.2 4 0.8 79.4 0.3 0.8 4.7 1 1.3 56.7 -0.2 0.7 4.6 0 3.2 48.9 -0.3 0.4 4.7
C21 6 0.9 214.8 0.9 2.6 5.7 2 1.6 97.5 0.4 2.2 5.8 0 2.4 68.7 -0.3 0.9 6.0 0 5.4 58.2 -0.2 0.7 5.2
C22 6 0.3 351.6 0.6 1.6 9.2 0 1.5 147.1 0.2 1.7 8.9 0 3.9 95.4 -0.6 1.0 8.5 0 7.3 77.7 -0.3 0.6 8.8
C23 6 0.5 404.0 0.8 1.7 8.3 1 2.1 162.5 0.5 1.6 8.2 0 4.9 105.9 0.1 1.1 7.6 0 7.3 85.8 -0.9 0.4 7.5
C24 6 0.2 128.0 0.3 1.2 4.0 3 0.7 59.9 0.1 0.7 3.9 0 3.7 43.8 0.2 0.9 3.7 0 3.8 38.2 0.2 0.8 3.7

Average 1 0.1 56.2 0.1 0.4 1.6 0.3 24.7 0.1 0.3 1.6 0.8 17.2 0.0 0.2 1.6 1.5 14.6 -0.1 0.1 1.55
Average 2 0.4 254.7 0.6 1.6 6.3 1.3 109.3 0.3 1.4 6.3 3.3 74.1 -0.1 0.9 6.1 5.4 61.7 -0.3 0.6 5.97

Table 1: Comparison of MA and ILS-H1 in solving MM K-WRPP.

VNS Tabu A MPA ABC MA

Ins. size slow fast slow fast gapb gapa time gapb gapa time gapb gapa time

N
u
m
b
er

o
f
v
eh

ic
le
s=

2

val1 24-39 0.19 0.00 0.19 0.38 0.00 0.02 9.60 0.37 1.17 3.96 0.19 0.44 2.31
val2 24-34 0.00 0.00 0.00 0.00 0.00 0.02 9.23 0.00 0.17 2.94 0.00 0.00 1.63
val3 24-35 0.00 0.27 0.36 0.00 0.00 0.00 6.30 0.00 0.50 3.15 0.00 0.14 1.82
val4 41-69 1.69 1.09 1.24 0.28 -0.93 -0.45 41.05 -0.76 1.47 14.69 -0.57 0.03 5.42
val5 34-65 1.20 2.15 0.59 0.82 -0.38 0.12 53.48 -0.38 1.35 12.74 -0.38 0.34 3.85
val6 31-50 0.00 0.19 1.73 0.91 0.00 0.60 79.87 0.00 1.18 6.56 -0.26 -0.05 2.52
val7 40-66 0.00 0.60 1.26 2.47 -0.47 -0.18 167.73 -0.47 1.74 13.50 -0.58 0.66 3.87
val8 30-63 1.19 0.94 0.60 1.03 0.00 0.84 316.60 0.35 2.31 11.85 -0.02 0.32 3.95
val9 50-92 0.76 2.67 2.00 1.41 -0.47 0.29 198.88 -0.54 1.44 33.19 -1.08 -0.46 8.02
val10 50-97 1.02 1.64 2.73 1.36 -0.91 -0.08 243.45 -1.35 0.79 37.78 -1.64 -1.05 11.57

Average 0.61 0.95 1.07 0.87 -0.32 0.12 112.62 -0.28 1.21 14.04 -0.43 0.04 4.50

N
u
m
b
er

o
f
v
eh

ic
le
s=

3

val1 24-39 0.00 0.15 0.41 0.42 0.00 0.00 32.90 0.00 0.92 4.41 0.00 0.09 2.91
val2 24-34 0.00 0.00 0.16 0.16 0.00 0.00 9.57 0.00 0.18 3.36 0.00 0.00 2.07
val3 24-35 0.00 0.00 0.00 0.00 0.00 0.00 7.47 0.00 0.10 3.64 0.00 0.00 2.33
val4 41-69 0.47 1.16 0.79 1.00 -0.63 -0.05 26.30 0.23 1.51 16.65 -0.37 0.48 8.33
val5 34-65 1.20 1.17 0.76 1.45 -0.66 0.08 171.55 -0.71 1.10 14.80 -0.84 -0.21 6.59
val6 31-50 0.05 1.09 0.46 1.09 -0.05 0.31 59.67 -0.05 1.50 7.79 -0.24 0.18 3.99
val7 40-66 0.09 1.63 1.78 2.91 -0.47 0.16 82.10 -0.47 1.42 15.68 -0.47 -0.07 6.70
val8 30-63 0.58 1.08 1.20 1.22 -0.52 0.19 67.90 0.32 0.99 13.75 -0.47 0.04 6.29
val9 50-92 0.29 3.11 0.51 1.54 -1.00 -0.24 357.03 -1.00 0.77 37.90 -1.68 -1.06 14.00
val10 50-97 0.63 1.75 0.76 1.22 -1.01 -0.28 183.93 -1.27 -0.14 43.29 -2.35 -1.67 20.38

Average 0.33 1.11 0.68 1.10 -0.43 0.02 99.84 -0.30 0.83 16.13 -0.64 -0.22 7.36

N
u
m
b
er

o
f
v
eh

ic
le
s=

4

val1 24-39 0.00 0.20 0.41 0.41 0.00 0.00 6.77 0.41 1.13 5.11 0.10 0.17 3.71
val2 24-34 0.00 0.00 0.00 0.00 0.00 0.00 11.10 0.00 0.00 3.81 0.00 0.00 2.44
val3 24-35 0.00 0.00 0.00 0.00 0.00 0.00 7.10 0.00 0.00 4.08 0.00 0.00 2.79
val4 41-69 0.32 0.57 0.42 0.11 -0.56 -0.15 83.90 -0.56 0.78 17.86 -0.81 -0.33 9.35
val5 34-65 0.18 0.86 1.47 1.53 -0.95 -0.19 116.37 -0.99 0.67 15.35 -1.03 -0.56 8.89
val6 31-50 0.00 0.50 0.60 0.96 0.00 0.31 43.43 0.00 0.80 8.57 0.00 0.03 4.37
val7 40-66 0.06 0.86 0.68 2.03 -0.12 0.51 119.53 -0.12 0.76 17.15 -0.12 0.09 7.51
val8 30-63 0.13 0.96 0.47 1.41 -0.03 0.29 126.47 0.51 1.11 14.85 -0.22 0.03 8.11
val9 50-92 0.75 2.08 0.27 1.52 -0.68 -0.15 350.98 -0.41 0.94 40.26 -0.79 -0.37 17.18
val10 50-97 0.00 1.85 2.38 1.67 -0.45 0.04 316.38 -0.53 0.96 47.18 -0.67 -0.31 22.54

Average 0.14 0.79 0.67 0.96 -0.28 0.06 118.20 -0.17 0.72 17.42 -0.36 -0.12 8.69

Table 2: Comparison of MA with baseline algorithms in solving UCARPP.

15

problem is an undirected graph, with V representing all the vertex points and E repre-
senting all the edges. Rather than required edges, we have profitable edges represented
by Ep ∈ E , with different profits for each edge. There is also a demand associated
with each edge in Ep. Each homogeneous vehicle has a capacity of C. Unlike WRPP,
UCARPP has symmetric travel times. Each edge has only one travel time regardless
of its direction (tij = tji). Furthermore, there is a constraint limiting the total travel
time for each tour by L in addition to the capacity constraint for vehicles.

An arc routing benchmark set, originally developed by Belenguer and Benavent
[28] and modified by Archetti et al. [15] for UCARPP, is used as the benchmark set.
This dataset is available at http://users.ntua.gr/ezach/. x These instances are named
in the format val{i}{s}, where i is an integer from [1, 10] and s is a character from
[A,B,C,D]. In each val{i}, the instances are identical graphs, with the only difference
being the edge demands and profits. In each instance, the problem has been solved
under the assumption of two, three, and four vehicles; therefore, there are 102 instances
in total. Among the algorithms that have been proposed in the literature to solve
this benchmark set are Variable Neighborhood Search (VNS) and Tabu Search (Tabu
feasible and Tabu Admissible) by Archetti et al. [15], a Move Promise Algorithm
(MPA) by Zachariadis and Kiranoudis [29], and an Artificial Bee Colony (ABC) by
Cura [30].

An overview of the results can be found in Table 2. The results are presented as
averages for the instances of each group. The group val1, for example, contains three
instances with the names val1A, val1B, and val1C. Some groups contain three instances
while others contain four instances. In the second column of the table, the name of the
group of instances is displayed. The third column displays the graph size as |V | − |E|,
where |V | is the number of vertices and |E|, the number of profitable edges.

We have taken the best results out of VNS, Tabu feasible, and Tabu admissible
as the baseline and calculated the gap between these results and the baseline for all
algorithms. Following is the formula for calculating the gaps:

gapAlg =
baseline− Alg

baseline
× 100%

A negative gap value indicates that the result was better than the baseline. Algorithms
used for comparison include VNS, Tabu admissible (Tabu A), MPA, and ABC. VNS
and Tabu A have been implemented wit two variants, slow and fast. MPA, ABC, and
our MA were all run ten times for each instance. gapb and gapa represent the gap
between best and average results and baseline, respectively. Similarly to the previous
section, the comparison cannot be made based on the computation times since the
processing speeds are different. Nevertheless, the solution quality obtained by MA in
all three cases is clearly superior. Furthermore, it is noteworthy that MA has improved
BKS in 30 out of 102 instances.

5 Conclusions

The purpose of this paper was to present a generic algorithmic framework that can
be applied to a variety of arc routing problems. This category of problems includes
those in which a set of edges should be visited at most once. To solve the problems,

16

http://users.ntua.gr/ezach/

we used genetic algorithms in conjunction with dynamic programming. The genetic
algorithm is responsible for determining the order and direction of arcs, while the
dynamic programming is responsible for assigning edges to different vehicles. In order
to facilitate algorithm convergence, local searches are used. A systematic guideline
is provided for applying these methods. This will enable the reader to apply them
to the arc routing problem of their choice. This study utilized Dijstra’s algorithm to
determine the shortest path between the nodes.

The min-max windy K-vehicle rural postman problem and the undirected capaci-
tated arc routing problem were selected to test the effectiveness of our approach. Our
proposed framework was implemented and compared with existing algorithms based
on an established benchmark set for each problem. We show the efficacy of our pro-
posed framework by showing that it can outperform existing algorithm. In addition,
our proposed framework found new best solutions for 29 out of 144 instances and 30
out of 102 instances of these benchmark sets, respectively. We hope that this work will
encourage researchers to develop generic approaches able to address a variety of prob-
lems instead of merely focusing on one problem. There may be a potential research
direction in developing an algorithm that can be applied to a class of node routing
problems.

Acknowledgements. This work was partially supported by the National Science
Foundation via CMMI-2032458.

Conflict of interest. The authors declare that they have no conflict of interest.

References

[1] Assad, A.A., Golden, B.L.: Arc routing methods and applications. Handbooks in
Operations Research and Management Science 8, 375–483 (1995)

[2] Del Pia, A., Filippi, C.: A variable neighborhood descent algorithm for a real waste
collection problem with mobile depots. International Transactions in Operational
Research 13(2), 125–141 (2006)

[3] Corberán, Á., Eglese, R., Hasle, G., Plana, I., Sanchis, J.M.: Arc routing problems:
A review of the past, present, and future. Networks 77(1), 88–115 (2021)

[4] De Maio, A., Laganà, D., Musmanno, R., Vocaturo, F.: Arc routing under uncer-
tainty: Introduction and literature review. Computers & Operations Research
135, 105442 (2021)

[5] Orloff, C.S.: A fundamental problem in vehicle routing. Networks 4(1), 35–64
(1974)

[6] Golden, B.L., Wong, R.T.: Capacitated arc routing problems. Networks 11(3),
305–315 (1981)

17

[7] Bartolini, E., Cordeau, J.-F., Laporte, G.: Improved lower bounds and exact
algorithm for the capacitated arc routing problem. Mathematical Programming
137, 409–452 (2013)

[8] Longo, H., De Aragao, M.P., Uchoa, E.: Solving capacitated arc routing problems
using a transformation to the cvrp. Computers & Operations Research 33(6),
1823–1837 (2006)

[9] Hertz, A., Laporte, G., Mittaz, M.: A tabu search heuristic for the capacitated
arc routing problem. Operations research 48(1), 129–135 (2000)

[10] Lacomme, P., Prins, C., Ramdane-Chérif, W.: A genetic algorithm for the capac-
itated arc routing problem and its extensions. In: Workshops on Applications of
Evolutionary Computation, pp. 473–483 (2001). Springer

[11] Santos, L., Coutinho-Rodrigues, J., Current, J.R.: An improved ant colony opti-
mization based algorithm for the capacitated arc routing problem. Transportation
Research Part B: Methodological 44(2), 246–266 (2010)

[12] Maniezzo, V., Roffilli, M.: Algorithms for large directed capacitated arc rout-
ing problem instances: Urban solid waste collection operational support. Recent
advances in evolutionary computation for combinatorial optimization, 259–274
(2008)

[13] Belenguer, J.-M., Benavent, E., Lacomme, P., Prins, C.: Lower and upper bounds
for the mixed capacitated arc routing problem. Computers & Operations Research
33(12), 3363–3383 (2006)

[14] Baldacci, R., Maniezzo, V.: Exact methods based on node-routing formulations
for undirected arc-routing problems. Networks 47(1), 52–60 (2006)

[15] Archetti, C., Feillet, D., Hertz, A., Speranza, M.G.: The undirected capacitated
arc routing problem with profits. Computers & Operations Research 37(11),
1860–1869 (2010)

[16] Feillet, D., Dejax, P., Gendreau, M.: The profitable arc tour problem: Solution
with a branch-and-price algorithm. Transportation Science 39(4), 539–552 (2005)

[17] Euchi, J., Chabchoub, H.: Hybrid metaheuristics for the profitable arc tour
problem. Journal of the Operational Research Society 62(11), 2013–2022 (2011)

[18] Minieka, E.: The chinese postman problem for mixed networks. Management
science 25(7), 643–648 (1979)

[19] Corberán, Á., Plana, I., Rodŕıguez-Ch́ıa, A.M., Sanchis, J.M.: A branch-and-
cut algorithm for the maximum benefit chinese postman problem. Mathematical
Programming 141, 21–48 (2013)

18

[20] Shafahi, A., Haghani, A.: Generalized maximum benefit multiple chinese postman
problem. Transportation Research Part C: Emerging Technologies 55, 261–272
(2015)

[21] Gulczynski, D.J., Heath, J.W., Price, C.C.: The close enough traveling salesman
problem: A discussion of several heuristics. Perspectives in Operations Research:
Papers in Honor of Saul Gass’ 80 th Birthday, 271–283 (2006)

[22] Benavent, E., Corberán, A., Plana, I., Sanchis, J.M.: Min-max k-vehicles windy
rural postman problem. Networks: An International Journal 54(4), 216–226
(2009)

[23] Archetti, C., Speranza, M.G., Corberán, Á., Sanchis, J.M., Plana, I.: The team
orienteering arc routing problem. Transportation Science 48(3), 442–457 (2014)

[24] Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische
Mathematik 1(1), 269–271 (1956)

[25] Prins, C.: A simple and effective evolutionary algorithm for the vehicle routing
problem. Computers & operations research 31(12), 1985–2002 (2004)

[26] Mahmoudinazlou, S., Kwon, C.: A hybrid genetic algorithm for the min–max
multiple traveling salesman problem. Computers & Operations Research 162,
106455 (2024)

[27] Benavent, E., Corberán, Á., Sanchis, J.M.: A metaheuristic for the min–max
windy rural postman problem with k vehicles. Computational Management
Science 7, 269–287 (2010)

[28] Belenguer, J.M., Benavent, E.: A cutting plane algorithm for the capacitated arc
routing problem. Computers & Operations Research 30(5), 705–728 (2003)

[29] Zachariadis, E.E., Kiranoudis, C.T.: Local search for the undirected capacitated
arc routing problem with profits. European Journal of Operational Research
210(2), 358–367 (2011)

[30] Cura, T.: An artificial bee colony approach for the undirected capacitated arc
routing problem with profits. International Journal of Operational Research
17(4), 483–508 (2013)

19

	Introduction
	Problem Description
	A Memetic Algorithm-based Framework
	Chromosome representation
	Individual evaluation by Split
	Crossover
	Chromosome education
	Diversification

	Computational results
	Min-max windy k-vehicle rural postman problem
	Undirected capacitated arc routing problem with profits

	Conclusions
	Acknowledgements
	Conflict of interest

