
Solving Nonconvex Optimization Problems using
Outer Approximations of the Set-Copositive Cone

Markus Gabl∗ and Kurt Anstreicher†

November 15, 2023

Abstract

We consider the solution of nonconvex quadratic optimization problems using an
outer approximation of the set-copositive cone that is iteratively strengthened with
conic constraints and cutting planes. Our methodology utilizes an MILP-based
oracle for a generalization of the copositive cone that considers additional linear
equality constraints. In numerical testing we evaluate our algorithm on a variety of
different nonconvex quadratic problems.

1 Introduction

In this paper we are interested in an optimization problem of the form

CPOPT : min C • Y
s.t. Bi • Y = bi, i = 1, . . . ,m

Y ∈ CPn+1,

where CPk, the cone of k×k completely positive matrices, are those matrices that can be
written in the form

∑r
i=1 uiu

T
i with each ui ∈ Rk

+. In CPOPT the matrix Y has the form

Y =

(
Y00 xT

x X

)
.

and the constraints of CPOPT include the constraint that Y00 = 1. The matrix X can
then be viewed as a relaxation of the rank-one matrix xxT , where x ≥ 0. Since the
constraints of CPOPT include Y00 = 1, and all of the equality constraints are written in
terms of Y , we can assume without loss of generality that bi = 0 for all other constraints.
For convenience we will also consider the rows and columns of Y to be indexed 0, 1, . . . , n,
so that Yij = Xij for i, j ≥ 1.

By the result of Burer [9], a variety of NP-Hard problems, including indefinite quadratic
optimization with continuous and binary variables, can be exactly represented using

∗Institute of Operations Research, Karlsruhe Institute of Technology, Karlsruhe, Germany
†Dept. of Business Analytics, University of Iowa, Iowa City, Iowa, USA

1

CPOPT. The difficulty with CPOPT is that for k ≥ 5 the cone CPk is very difficult
to explicitly represent. A tractable relaxation for CPk is DNN k, the cone of k × k
doubly-nonnegative (DNN) matrices, and using DNN n+1 in place of CPn+1 results in
a computable relaxation of the original problem. However the solution of this DNN re-
laxation will not in general solve CPOPT. If the DNN relaxation is not tight then its
solution Y ∗ /∈ CPn+1, and one approach to strengthening the DNN relaxation would then
be to generate a cut that separates Y ∗ from CPn+1. This approach is applied in the case
where Y ∗ has block structure in [14]. However in general the problem of determining if
a matrix is CP is NP-Hard [11], and if not then finding a cut that separates the matrix
from the CP cone is computationally difficult.

A different approach to strengthening the DNN relaxation of CPOPT is to use a
hierarchy of cones Ckr , r ≥ 0, where Ck0 = DNN k and CPk ⊂ Ckr+1 ⊂ Ckr for each r;
see for example [23, 13]. In such a hierarchy the cones, Ckr better approximate CPk as r
increases, so replacing CPk with Ckr , k > 0 improves upon the DNN relaxation. However
these hierachies involve extended-variable formulations whose size grows very rapidly in
r, and therefore the use of Ckr for r > 1 is typically impractical unless k is very small.

An alternative to working with the problem CPOPT is to use its conic dual. The dual
problem has the form

COPOPT : max bTv

s.t. C −
m∑
i=1

viBi = S

S ∈ COPn+1,

where COPk is the cone of k×k copositive (COP) matrices, COPk = {M ∈ Sk : xTMx ≥
0 ∀x ∈ Rk

+}. Under a regularity condition, for example the existence of an interior solution
in CPOPT, the primal and dual problems have equal solution values. Corresponding to
the relaxations of CPk described above there are dual cones that are interior to COPk.
For example, the dual of DNN k is the cone SPN k of matrices that can be written as
the sum of a k × k non-negative matrix and a k × k PSD matrix.

Our interest here is to work with the dual problem COPOPT, but replacing COPn+1

with an outer approximation which will then be strengthened via the addition of conic
constraints and linear cuts. In order to use this approach we need an initial outer ap-
proximation for COPn+1 matrices, and a way to determine if a matrix is COP and if not
generate a cut that separates it from COPn+1. From a theoretical standpoint the problem
of determining whether or not a matrix is copositive is also very difficult [11]. However,
recent papers [2, 17, 25] have shown that the problem of determining whether or not a
matrix is copositive, and if not generating a cut that separates it from the COP cone, can
be formulated as a mixed-integer linear programming (MILP) problem. The availability
of very efficient software for MILP problems makes this problem computationally much
more practical than the corresponding detection/separation problem for CP matrices.

There are different algorithmic frameworks in which one can employ cuts based on the
failure of a matrix to be copositive. One possibility is to use an ellipsoid-type algorithm
that at each iteration k ≥ 0 has a candidate solution vk for COPOPT and an ellipsoid
Ek centered at vk that must contain the optimal solution v∗ of COPOPT. If Sk =
C −

∑m
i=1 v

k
iBi /∈ COPn+1, then a cut vector u ≥ 0 with uTSku < 0 is generated,

2

and the cut
∑m

i=1 vi(u
TBiu) ≤ uTCu − uTSku is added. If Sk is copositive then an

objective cut bTv ≥ bTvk is added. Following the addition of the cut, a new point
vk+1 and ellipsoid Ek+1 are generated. Algorithms of this type include the central-cut
ellipsoid algorithm [19], the analytic center cutting-plane method (ACCPM) [16] , and
the volumetric cutting plane algorithm with central cuts [1]. These algorithms have the
advantage of all being provably convergent, with the ellipsoid algorithm and the volumetric
cutting-plane algorithm requiring a polynomial number of steps, and the ACCPM being
more efficient in practice. However in all cases the problem of determining the next iterate
vk+1 becomes numerically ill-conditioned and the algorithm may fail before a sufficiently
accurate solution is found.

The application of ellipsoid-type algorithms to a copositive programming problem of
the form

min C •X
s.t. Bi •X ≤ bi, i = 1, . . . ,m, (1)

X ∈ COPn,

was first suggested in [12] (see also [3]), and developed further in [5]. These papers
all consider applying a problem of the type (1) to determining if a given matrix C is
completely positive. A complexity result for this problem using the ellipsod algoriithm
is given in [3, 12] while [5] gives computational results using the ellipsoid algorithm, the
volumetric cutting-plane method and the ACCPM.

An alternative to an ellipsoid-type algorithm for solving COPOPT is to use a sim-
pler outer approximation (OA) algorithm. On each iteration of such an algorithm we
consider the problem COPOPT but with COPn+1 replaced by an outer approximation
C ⊃ COPn+1. This problem is solved, generating an iterate vk and Sk = C −

∑m
i=1 v

k
iBi.

If Sk ∈ COPn+1 then vk solves COPOPT. If Sk /∈ COPn+1 then we generate a cut u ≥ 0
with uTSku < 0, and the cut uTSu ≥ 0 is added to C. There are several advantages to
this approach. First, although ellipsoid-type methods are provably convergent they are
very susceptible to numerical ill-conditioning. Second, the placement of the cut uTSu ≥ 0
does not need to be “backed off” to

∑m
i=1 vi(u

TBiu) ≤ uTCu− uTSku as in an ellipsoid-
type method using central cuts. Finally, we wish to consider the possibility of adding
additional conic constraints that are more general than linear cuts. It is possible that the
theory of the methods described above could be extended to deal with such constraints,
but the algorithms as currently developed only incorporate linear cuts.

In the next section we describe how to initially approximate the cone COPn+1 using
linear and conic constraints, and how a cut u ≥ 0 with uTSku < 0 can be generated
when Sk /∈ COPn+1. In Section 3 we modify the cut-generation procedure to explicitly
incorporate additional linear constraints Ax = d from CPOPT. In Section 4 we apply our
outer-approximation algorithm to two different classes of non-convex quadratic optimiza-
tion problems, and in Section 5 we consider the application of our algorithm to nonconvex
quadratic problems arising from adjustable robust optimization. In Section 6 we make
some concluding remarks.
Notation. For matrices A and B of the same size we use A • B to denote the matrix
inner product A •B = tr(ABT), and A ◦ B to denoted the Hadamard or componentwise
product. For vectors x and y we use (x; y) to denote the vector (xT , yT)T . We use e to
denote a vector of arbitrary dimension with each component equal to one.

3

2 Approximating the copositive cone

In order to implement an OA algorithm for COPOPT we need an initial outer approxi-
mation for the cone COPn+1 and a way to generate a cut for a matrix S /∈ COPn+1. In
this section we consider these two topics.

For an initial outer approximation, any S ∈ COPn+1 certainly satisfies the constraints

(ei + ej)
TS(ei + ej) ≥ 0, 1 ≤ i ≤ j ≤ n+ 1, (2)

where ei ∈ Rn+1 is the elementary vector with a one in the ith coordinate and zeros
elsewhere. The use of (2) as an outer approximation for COPn+1 is dual to using the cone
of nonnegative diagonally dominant matrices DDn+1

+ as an inner approximation of CPn+1

[18], and was used as an initial outer approximation for the copositive cone in [3, 12].
The inner approximation DDn+1

+ ∈ CPn+1 can be expanded by considering symmetric
diagonal scalings of matrices in DDn+1

+ , leading to the cone SDDn+1
+ [18]. This cone

corresponds to matrices all of whose 2× 2 principal submatrices are completely positive,
whose dual is the cone of matrices all of whose 2× 2 principal submatrices are copositive.
Since for k ≤ 4 the cones COPk and SPN k are the same, we can then improve on the
outer approximation (2) by using the constraints

S̄2
ij ≤ SiiSjj, Sij ≥ S̄ij, 1 ≤ i < j ≤ n+ 1. (3)

Compared to (2), the constraints (3) require one additional variable S̄ij and a rotated
second-order cone (SOC) constraint for each i < j. A reasonable approach to avoid
generating all of these constraints a-priori would be to first solve a problem using the
approximation (2), and then add violated constraints from (3). Note that for a given i, j,
checking if the constraint from (3) is satisfied amounts to checking if Sij ≥ −

√
SiiSjj,

which is trivial. The use of the constraints (3) to strengthen an initial approximation of
the copositive cone was also suggested in [20].

Let sTi denote the ith row of S, ν ∈ Rn+1
++ and assume that θ is a positive integer. The

approach for checking if a matrix S is copositive from [2] is based on solving the MILP
problem

MILPCOP : max γ

s.t. sTi u ≤ −γ + νi(1− zi), i = 1, . . . , n+ 1

γ ≥ 0, 0 ≤ u ≤ z,

z ∈ {0, 1}n+1, eT z ≥ θ.

For θ = 1 the solution value in MILPCOP is zero if and only if S ∈ COPn+1, and assuming
that diag(S) ≥ 0 the same is true for θ = 2. If S /∈ COPn+1 then the solution of MILPCOP
has γ > 0, and u ≥ 0 with uTSu < 0 demonstrates that the principal submatrix of
S corresponding to {i : zi = 1} is not copositive. Although the equivalence between
copositivity of S and γ = 0 in the solution of MILPCOP holds for any ν > 0, in practice
the components of ν should be related to the values in S to avoid the possibility of a very
small but positive optimal value. A simple suggestion for such a ν is given in [2].

As described above, the constraints (3) correspond to all 2× 2 submatrices of S being
copositive. By solving MILPCOP with the constraint 1 ≤ eT z ≤ 4 we can also check to

4

see if there are 3 × 3 or 4 × 4 principal submatrices of S that fail to be copositive. In
the case where such a submatrix is found, we could use the fact that COPk = SPN k for
k ≤ 4 to impose a constraint involving a PSD matrix that would enforce copositivity of
the submatrix. Instead we will describe a method [21] for generating an SOC constraint
that improves upon the linear cut found by MILPCOP while avoiding the computational
expense of working with a PSD matrix.

Suppose that S ∈ COPk for k ∈ {3, 4}. Then S = S̄ + N , where S̄ � 0 and N ≥ 0.
Assume that S̄ has the form:

S̄ =

(
σ ŝT

ŝ Ŝ

)
(4)

where σ ≥ 0 and ŝ ∈ Rk−1. Then

S̄ � 0 ⇐⇒ σŜ − ŝŝT � 0,

⇐⇒ ûT (σŜ − ŝŝT)û ≥ 0 ∀û ∈ Rk−1

⇐⇒ (ŝT û)2 ≤ σûT Ŝû ∀û ∈ Rk−1. (5)

For fixed û the constraint in (5) is a rotated second-order cone, which implicitly includes
the constraints σ ≥ 0 and ûT Ŝû ≥ 0.

Now assume that S̄ has the form (4) with σ ≥ 0. We claim that for fixed ū = (µ; û)
the constraint (5) implies that ūT S̄ū ≥ 0. To see this, note that

ūT S̄ū = (µ ûT)

(
σ ŝT

ŝ Ŝ

)(
µ
û

)
= σµ2 + 2µŝT û+ ûT Ŝû.

If σ = 0 then (5) implies that ŝT û = 0, so ūT S̄ū = ûT Ŝû ≥ 0. If σ > 0, then ūT S̄ū ≥ 0 is
equivalent to σūTSū = σ2µ2 + 2σµŝT û+ σûT Ŝû ≥ 0, and (5) implies that

σ2µ2 + 2σµŝT û+ σûT Ŝû ≥ σ2µ2 + 2σµŝT û+ (ŝT û)2 = (σµ+ ŝT û)2 ≥ 0.

If MILPCOP finds a cut u ≥ 0 with 3 ≤ eT z ≤ 4, then we can apply the constraints

Sβ ≥ S̄, (ŝT û)2 ≤ σûT Ŝû (6)

to the principal submatrix Sβ corresponding to {i : zi = 1}, where S̄ has the form (4).
These constraints are stronger than the simple cut uTSu ≥ 0, but avoid the computational
expense of imposing the PSD constraint on S̄.

3 Set-copositivity detection with linear constraints

An outer approximation algorithm based on MILPCOP , as described in the previous sec-
tion, uses MILPCOP to check if S ∈ COPn+1 for an iterate S, and if not to generate a
cut u ≥ 0 with uTSu < 0. Exactly such an approach is implemented in [20] to solve
the copositive dual of a unit-commitment problem in order to obtain a copositive pricing
matrix that applies to an underlying problem with discrete variables. In our own prelimi-
nary implementation of such an algorithm, we observed cases where MILPCOP repeatedly
generated cuts, but the addition of these cuts produced very little change in the objective.

5

On closer inspection, it was clear that in these cases the cut vector u had no relation-
ship to the feasible region of the original problem, which contains equality constraints of
the form Ax = d. Our goal here is to modify MILPCOP so as to explicitly incorporate
information from these constraints.

Assume now that the original problem includes constraints Ax = d, x ≥ 0 where A is
an r×n matrix. Following the methodology of [9], each such constraint aTi x = di produces
two constraints in CPOPT,(

0 aTi
ai 0

)
• Y = 2di,

(
0 0
0 aia

T
i

)
• Y = d2

i , (7)

and if desired these constraints can be homogenized using the fact that Y00 = 1. To
homogenize the original constraints, let y = (y0;x) = (x0;x) and Â = [−b, A]. Then
Ax = b can be written as Ây = 0, y0 = 1. Since Y00 = 1 in CPOPT, we can also consider
y to be column zero of the matrix Y . To reduce notion, in the sequel we will replace Â
with A and write the homogenized constraints as Ay = 0. No confusion should result.

For an arbitrary convex cone K ∈ Rk, let COP(K) denote the matrices that are
copositive over K,

COP(K) = {M ∈ Sk : yTMy ≥ 0 ∀y ∈ K}.
The usual copositive cone is then COPk = COP(Rk

+). We are now interested in the cone
COP(K) with

K = {y ≥ 0 : Ay = 0}, (8)

where A is an r × k matrix. Clearly COPk ⊂ COP(K) for any such matrix A. We call
COP(K) the set-copositive matrix cone with respect to the ground cone K ⊆ Rn. The dual
of this cone, i.e. CP(K) = conv

{
xxT : x ∈ K

}
we call the set-completely positive matrix

cone. Some basic properties of these types of cones are summarized in a recent review
paper [8, Section 2]; see especially Proposition 11. Such cones appear in earlier literature
on copositive reformulations such as [10, 26, 7]. Within this literature the cone COP(K)
is sometimes referred to as a set-semidefinite cone [15], but we prefer the set-copositive
nomenclature.

Lemma 1. Assume that CPOPT includes the constraints Ay = 0, and has an optimal
solution Y that is rank-one; Y = yyT , y ≥ 0, y0 = 1. Then if strong duality holds between
CPOPT and COPOPT, it also holds if S ∈ COPn+1 is replaced by S ∈ COP(K) in
COPOPT, where K is given by (8).

Proof. The objective gap between solutions Y and (v, S) that are feasible in CPOPT and
COPOPT, respectively, is

C • Y − bTv =

(
S +

m∑
i=1

viBi

)
• Y −

m∑
i=1

vibi

=
m∑
i=1

vi(Bi • Y − bi) + S • Y

= S • Y,

and Y ∈ CPn+1, S ∈ COPn+1 implies that S • Y ≥ 0. Under the assumptions of the
lemma, there is an optimal solution Y of the form Y = yyT , y ≥ 0, y0 = 1, Ay = 0. For

6

such a Y we have S • Y = yTSy, so S ∈ COP(K) implies that S • Y ≥ 0. Moreover
if (v, S) is an optimal solution of COPOPT then Y • S = 0, and (v, S) remains feasible
when COPn+1 is replaced by COP(K).

Motivated by Lemma 1, we consider replacing the problem MILPCOP with a general-
ization that determines whether or not a matrix S ∈ COP(K) rather than S ∈ COPn+1.
To do this, consider the problem

QP(S,A) : min uTSu

s.t. Au = 0

eTu ≤ 1

u ≥ 0.

The KKT conditions for QP(S,A) problem are necesary, since it has only linear con-
straints, and therefore there are (λ, γ, t) so that the solution u also satisfies the system:

Su+ ATλ+ γe = t

γ ≥ 0, t ≥ 0, γ(1− eTu) = 0, uT t = 0.

Note that the solution u satisfies uTSu = uT (t−ATλ− γe) = −γ. In addition, note that
it is possible that the solution of QP(S,A) has γ = 0, but the solution has γ > 0 if the
constraints Au = 0 are dropped.

We now define a generalization of MILPCOP that takes into account the presence of
the equality constraints Ay = 0 in K from (8):

MILPCOP(K) : max γ

s.t. Su+ ATλ ≤ −γe+ ν ◦ (e− z),

Au = 0, 0 ≤ γ ≤ αeTu,

0 ≤ u ≤ z, z ∈ {0, 1}n+1.

Lemma 2. Assume that ν > 0, α > 0, and let K be as in (8). Then S ∈ COP(K) if and
only if the solution of MILPCOP(K) has γ = 0.

Proof. We will prove the equivalent statement that the solution of MILPCOP(K) has γ > 0
if and only if the solution value of QP(S,A) is negative. Suppose that there is a solution of
MILPCOP (K) with γ > 0. Note that ui > 0 =⇒ zi = 1, so uT [ν ◦ (e− z)] = uT (e− z) = 0.
Therefore uTSu ≤ −γeTu ≤ −γ2/α, and scaling u by 1/(eTu) obtains a feasible solution
in QP(S,A) with a negative objective value. Next assume that the solution value in
QP(S,A) is negative. Then there is a solution of the KKT system with γ > 0, u 6= 0. Let
zi = 1 if ui > 0, and zi = 0 otherwise. Scaling (u, λ, γ) then obtains a solution with γ > 0
that is feasible for all of the constraints of MILPCOP(K) except for possibly γ ≤ αeTu.
Reducing γ if necessary to satisfy this constraint, we obtain a solution of MILPCOP(K)

with γ > 0.

Note that the condition γ ≤ αeTu in MILPCOP(K) prevents the possibility that γ > 0
but u = 0. In MILPCOP this was prevented by the condition eT z ≥ θ ≥ 1, but it is not
obvious that this suffices in MILPCOP(K) due to the term ATλ. It should also be noted

7

that there is a somewhat counter-intuitive aspect to using COP(K) in place of COPn+1

in COPOPT. Since COPn+1 ⊂ COP(K), it appears that using COP(K)n+1 in place of
COPn+1 is weakening rather than strengthening the constraints of COPOPT, but Lemma
1 shows that this change has no effect on the solution. Our motivation in using COP(K)
is not to strengthen the constraints of COPOPT but rather to restrict the cuts being
generated to be more relevant to the underlying problem, which includes the constraints
Ay = 0.

4 Computational results

In this section we consider applying an algorithm that uses cuts based on an outer ap-
proximation of the set-copositive cone, incorporating additional constraint information
as described in the previous section. We consider two different classes of problems for
our computations. All computations in this section, and the following section, were per-
formed on an Intel(R) Core(TM) i5-9300H CPU running at 2.40GHz with 16GB RAM.
Linear and mixed integer linear problems were solved via Gurobi 9.1 while nonlinear conic
problems were solved via Mosek 9.2. Both were accessed from Matlab via the YALMIP
interface [22].

4.1 MINLPLib instances

To begin, we consider problems from MINLPLib corresponding to nonconvex quadratic
programming (QP) problems, with only continuous variables. Using the results from [9]
such problems can be exactly represented in the form CPOPT under mild assumptions.
In order to put problems into the required form for this representation, all variables must
be nonnegative and slacks added to any inequalities to convert them to equalities. We
considered instances where the number of variables after splitting free variables and/or
adding slacks was no more than 70.

In Table 1 we give the results of applying our outer approximation algorithm to 62
nonconvex QP instances. In the table we give the (known) optimal value for each problem,
the value for the DNN relaxation of CPOPT (equal to the value for the SPN restriction
of COPOPT), and the value obtained by applying our outer approximation algorithm
using cuts based on MILPCOP(K). We also record the gap between the optimal value and
the DNN value, the gap between the COP outer approximation value and the optimal
value and the number of cuts and time used by the OA algorithm. The OA algorithm
was terminated once the time exceeded 3600 seconds, or the time attempting to generate
a cut exceeded 600 seconds, or the number of cuts exceeded 100.

In Table 2 we summarize the number of MINLIBLib problems on which the DNN
relaxation and COP-OA algorithm are numerically exact. Out of the 62 total problems,
the DNN relaxation and the COP outer approximation algorithm are exact on almost the
same number of problems, 46 for the DNN relaxation and 47 for the COP-OA algorithm,
but the two methods are simultaneously exact on only 38 problems. Although the COP-
OA algorithm is exact on one more instance than the DNN relaxation, it should be noted
that there are several instances on which the COP-OA gap is much higher then the
DNN gap, with most of these corresponding to larger problems where the algorithm was

8

Table 1: Results on MINLPLib problems

Objective Value Gap COP-OA
Instance n m Opt DNN COP-OA DNN COP-OA cuts time
ex2 1 1 11 1 -17.000 -18.160 -17.000 1.160 0.000 2 3.82
ex2 1 2 13 2 -213.000 -213.000 -213.000 0.000 0.000 2 0.77
ex2 1 3 32 9 -15.000 -15.000 -15.000 0.000 0.000 4 49.87
ex2 1 4 15 5 -11.000 -11.000 -11.000 0.000 0.000 2 0.92
ex2 1 5 31 11 -268.015 -268.015 -268.015 0.000 0.000 101 91.23
ex2 1 6 25 5 -39.000 -39.828 -39.000 0.828 0.000 16 9.08
ex2 1 7 30 10 -4150.410 -4334.185 -2259.365 183.775 1891.045 12 3844.68
ex2 1 8 48 10 15639.000 15639.000 15639.000 0.000 0.000 2 7.67
ex2 1 9 10 1 0.375 -0.375 -0.375 0.750 0.000 2 0.63

ex2 1 10 30 10 49318.018 49318.018 49318.018 0.000 0.000 26 3713.29
meanvar 16 2 5.243 5.243 5.243 0.000 0.000 2 0.53
nemhaus 5 5 31.000 31.000 31.000 0.000 0.000 1 0.25

qp2 51 2 0.001 0.001 0.001 0.000 0.000 3 437.05
st bpaf1a 30 10 -45.380 -45.380 -45.380 0.000 0.000 10 9.99
st bpaf1b 30 10 -42.626 -42.963 -42.963 0.337 0.000 6 6.42

st bpk1 10 6 -13.000 -13.000 -13.000 0.000 0.000 3 0.81
st bpv1 12 4 10.000 10.000 10.000 0.000 0.000 3 0.77
st bpv2 13 5 -8.000 -8.000 -8.000 0.000 0.000 3 0.86
st bsj2 8 5 1.000 1.000 1.000 0.000 0.000 1 0.25
st bsj4 16 4 -70262.050 -71232.380 -70262.050 970.330 0.000 5 1.65
st cqpf 11 6 -2.750 -2.750 -2.748 0.000 0.002 5 1.26
st e22 9 5 -85.000 -85.000 -85.000 0.000 0.000 3 0.79
st e23 6 2 -1.083 -1.083 -1.083 0.000 0.000 4 0.99
st e24 8 4 3.000 3.000 3.000 0.000 0.000 2 0.51
st e25 12 8 0.890 0.890 0.890 0.000 0.000 2 0.53
st e26 8 4 -185.779 -185.779 -185.779 0.000 0.000 2 0.50

st fp7a 30 10 -354.751 -354.823 -72.879 0.072 281.872 9 3840.53
st fp7b 30 10 -634.751 -634.820 -359.667 0.069 275.083 11 3823.94
st fp7c 30 10 -8695.012 -8696.586 -5531.468 1.574 3163.544 15 3746.18
st fp7d 30 10 -114.751 -114.819 8.075 0.069 122.826 9 3812.60
st fp7e 30 10 -3730.410 -3914.185 -1839.365 183.775 1891.045 13 3640.41
st fp8 44 20 15639.000 15639.000 15639.000 0.000 0.000 3 7.00
st ht 7 3 -1.600 -2.000 -1.600 0.400 0.000 3 0.75

st jcbpa 33 13 -794.856 -794.856 -11.000 0.000 783.856 101 530.38
st m1 31 11 -461356.939 -461356.939 -461356.939 0.000 0.000 101 1817.54
st m2 51 21 -856648.819 -856648.816 -856648.926 0.000 0.000 6 3613.95

st pan1 7 4 -5.284 -5.284 -5.284 0.000 0.000 4 1.05
st ph1 11 5 -230.117 -230.117 -230.117 0.000 0.000 5 1.49
st ph2 11 5 -1028.117 -1028.117 -1028.117 0.000 0.000 5 1.51
st ph3 11 5 -420.235 -420.235 -420.235 0.000 0.000 5 1.87

st ph11 7 4 -11.281 -11.478 -11.281 0.196 0.000 2 0.53
st ph12 7 4 -22.625 -23.088 -22.625 0.463 0.000 2 0.55
st ph13 13 10 -11.281 -11.461 -11.281 0.180 0.000 2 0.59
st ph14 13 10 -229.722 -229.722 -229.722 0.000 0.000 2 0.60
st ph15 8 4 -392.704 -392.704 -392.704 0.000 0.000 3 0.83
st ph20 12 9 -158.000 -158.000 -158.000 0.000 0.000 3 0.86
st phex 7 5 -85.000 -85.000 -85.000 0.000 0.000 3 1.50

st qpc-m0 4 2 -5.000 -5.000 -5.000 0.000 0.000 2 0.82
st qpc-m1 5 10 -473.778 -473.778 -473.778 0.000 0.000 3 1.46

st qpc-m3a 20 10 -382.695 -382.695 -382.695 0.000 0.000 3 1.47
st qpc-m3b 20 10 0.000 0.000 0.000 0.000 0.000 101 39.70
st qpc-m3c 20 10 0.000 0.000 0.000 0.000 0.000 1 3.16
st qpc-m4 20 10 0.000 0.000 0.000 0.000 0.000 17 5.76

st qpk1 6 4 -3.000 -3.000 -3.000 0.000 0.000 2 0.63
st qpk2 18 12 -12.250 -12.250 -12.250 0.000 0.000 2 0.75
st qpk3 33 22 -36.000 -36.000 -36.000 0.000 0.000 2 2.08

st rv1 15 5 -59.944 -59.944 -59.904 0.000 0.040 3 1.25
st rv2 30 10 -64.481 -64.481 -61.123 0.000 3.358 38 3663.46
st rv3 40 20 -35.761 -35.761 -20.900 0.000 14.861 6 3618.24
st rv7 50 20 -138.188 -138.187 -48.793 0.000 89.394 6 3622.44
st rv8 60 20 -132.662 -132.661 -117.036 0.000 15.626 6 3626.00
st rv9 70 20 -120.153 -120.427 -44.798 0.274 75.355 7 3725.03

9

Table 2: Solution status for DNN relaxation and COP-OA algorithm

COP-OA
Gap = 0 Gap > 0 Total

DNN Gap = 0 38 8 46
Gap > 0 9 7 16

Total 47 15 62

terminated after exceeding the 3600 second time limit. Another way of looking at the
summary in Table 2 is that of the 16 problems on which the DNN relaxation is not exact,
the COP-OA algorithm is exact on 9. The DNN relaxation is computationally relatively
inexpensive, but as noted in the Introduction there is no practical way to strengthen it
when it does not provide the optimal solution.

The results in Tables 1 and 2 were obtained by initializing the relaxation of COPOPT
using the constraints (2) and then generating cuts using MILPCOP(K). We also experi-
mented with versions of the COP-OA algorithm that considered additional cuts, including:

• Cuts obtained from MILPCOP in addition to those obtained from MILPCOP(K);

• Linear and SOC constraints (3) obtained from 2× 2 submatrices;

• Linear and SOC constraints (6) obtained from 3× 3 or 4× 4 submatrices.

Note that none of these additional cuts make use of information from any linear con-
straints. In our experiments none of these additional cuts resulted in consistent improve-
ments, and in some cases the performance of the algorithm was substantially degraded.

4.2 Binary QPs

For this set of experiments we consider binary quadratic programming (BQP) problems
of the form

BQP : min xTQx+ qTx

s.t. Ax ≤ b

xi ∈ {0, 1}, i = 1, . . . , n,

where A is an m×n matrix. Using the methodology of [9], any such problem has an exact
representation as a problem of the form CPOPT, obtained by adding slacks to convert the
inequalities Ax ≤ b to equalities Ax + s = b, s ≥ 0 and also adding explicit constraints
x + t = e, t ≥ 0. In the end we thus have a problem with variables x̄ = (x; s; t) and
equality constraints Āx̄ = d̄, where

Ā =

(
A I 0
I 0 I

)
, d̄ =

(
b
e

)
.

For each of the above equality constraints we include the original constraint as well as
the “squared” constraint from (7). Finally, the binary conditions are incorporated via the

10

added equality constraints x = diag(X); note that these constraints are not considered
in any way by the MILPCOP(K) cut-generation procedure since they do not correspond to
linear constraints in the original variables.

For our numerical experiments we considered two different methodologies for randomly
generating the objective coefficients Q and q. For the first (Type I), Q̃ = (Q̂ + Q̂T)/2,
where Q̂ is an upper triangular matrix with elements uniformly chosen from {−1, 0, 1}
for 1 ≤ i ≤ j ≤ n, and the elements of q are similarly uniformly chosen from {−1, 0, 1}.
For the second (Type II), Q = (Q̂ + Q̂T), where Q̂ is an upper triangular matrix with
elements uniformly chosen on the interval [−5, 5] for 1 ≤ i ≤ j ≤ n, and the elements of
q are similarly uniformly chosen on [−5, 5]. For the constraints we iteratively generated
coefficients with the coefficient of the first variable always equal to one, and the rest of
the coefficients equal to zero with probability 60%, 1 with probability 20% and -1 with
probability 20%. For the right-hand side bi we drew a random number between zero and
max(aTi e, 0) where aTi is the ith row of A. After each constraint was generated the problem
was checked for feasibility, and if it became infeasible the constraint was discarded and
the process repeated until a feasible problem with the desired number of constraints was
obtained. We also discarded problems where the feasible set was reduced to a singleton.

Table 3: Results on BQP problems

Instance Solved Ave. Time (sec)
n m Type Gurobi COP-OA DNN Gurobi COP-OA DNN
5 1 I 5 5 5 0.0802 0.4589 0.0872
5 1 II 5 5 4 0.0784 0.5677 0.0960
5 2 I 5 5 5 0.0798 0.4604 0.0874
5 2 II 5 5 3 0.0790 0.5504 0.0924

10 2 I 5 5 5 0.0922 1.2223 0.1164
10 2 II 5 5 3 0.0840 1.4727 0.1272
10 4 I 5 5 3 0.0938 1.3318 0.1578
10 4 II 5 5 2 0.0898 1.3546 0.1610
15 2 I 5 5 3 0.0912 14.8099 0.2798
15 2 II 5 5 0 0.0906 27.0382 0.3318
15 5 I 5 5 4 0.0952 79.4416 0.2882
15 5 II 5 5 0 0.0942 95.5523 0.4078

In Table 3 we summarize results for problems of the two types and several choices of
(n,m). For each problem type and value of (n,m) we generated 5 instances and attempted
to solve each instance using GuRoBi and our COP-OA algorithm. For each instance we
also computed the value for the DNN relaxation of CPOPT. As seen in Table 3, Gurobi
and the COP-OA algorithm successfully solve all of the instances. The number of exact
values for the DNN relaxation decreases with n, and is also always lower for the Type II
problems; most notably the DNN relaxation is not exact for any of the Type II problems
with n = 15. Although the COP outer approximation algorithm successfully solves all
of the problems, it is clear from Table 3 that it is much slower than GuRoBi on these
problems, and that the time for the COP-OA algorithm is growing rapidly in the problem

11

size. It is worthwhile to note that for these instances the COP-OA algorithm never re-
quired more than 3 cuts to converge, and therefore we can conclude that the MILPCOP(K)

cut-generation problems were substantially harder for GuRoBi to solve than the original
BQP problems themselves. In this regard it is important to note that advanced MILP
codes such as GuRoBi utilize considerable logic to identify constraint structure and then
automatically add valid inequalities to strengthen the LP relaxation of problems with
discrete variables. For example, in the BQP problems inequalities such as triangle in-
equalities will be automatically generated, and these inequalities will dramatically reduce
the amount of branching that would otherwise be required. On the other hand, problems
such as MILPCOP(K) may not have constraint structure that can be readily exploited in
this way.

5 Application to robust newsvendor problems

In this section we consider a robust multi-item newsvendor problem:

max
x∈Rn

min
u∈U

n∑
i=1

(ri − ci)xi −min {ri(xi − ui), si(ui − xi)}

= max
x∈Rn

min
u∈U

n∑
i=1

max {(ri − ci)xi − ri(xi − ui), (ri − ci)xi − si(ui − xi)}

where x, r, c, u, s, all in Rn are vectors of quantities of stocked goods, revenues, costs,
uncertain demand and shortage costs, respectively. We assume that the uncertainty set
U is constructed via the following factor model

U =

{
u ∈ Rn :

u = ū+ Diag (û)Fz,
z ∈ Rn, ‖z‖∞ ≤ 1, ‖z‖1 ≤ ρ

}
=

{
u ∈ Rn :

(
1
u

)
∈ K

}
,

K =

{(
u0

u

)
∈ Rn+1 :

u = u0ū+ Diag (û)Fz,
z ∈ Rn, ‖z‖∞ ≤ u0, ‖z‖1 ≤ u0ρ

}
.

(9)

In (9) the vectors ū and û are given, as are ρ and the matrix F ; ū can then be seen
as an average value of the uncertainty parameter around which the uncertainty set is
constructed. We also assume F to be a matrix of full rank.

This problem was studied in [4] and later treated by [27] in the context of copositive
optimization. The problem has an adjustable robust optimization (ARO) reformulation
since the inner-most max problem is a function of the uncertainty parameter:

max
x,y(·)

min
u∈U

n∑
i=1

yi(u)

yi(u) ≤ (ri − ci)xi − ri(xi − ui), u ∈ U , i = 1, . . . , n,

yi(u) ≤ (ri − ci)xi − si(ui − xi), u ∈ U , i = 1, . . . , n.

(10)

There are several known ways to approach (10) via copositive optimization techniques,
most notably those discussed in [26, 27]. The former article presents an exact coposi-
tive reformulation while the latter investigates copositive reformulations of the so-called

12

quadratic policy approximation. The quadratic policy approximation is itself inexact,
and is further conservatively approximated using an inner approximation of the coposi-
tive cone. Hence, there are two sources of approximation errors and so far their individual
respective contributions to the total error has not been investigated either analytically or
empirically. Since we can now solve both the exact reformulation and the quadratic policy
approximation using our cutting plane algorithm, while the conservative approximation
of the quadratic policy can be solved with conic optimization solvers, we have the tools
to examine these errors empirically for the first time.

In the following we will give a short review of the main techniques introduced in
[26, 27], applying them to the ARO reformulation of the robust newsvendor problem.
After that, we present numerical experiments investigating the gaps between the different
approaches.

5.1 Three approaches based on copositive optimization

In [27] the authors considered conservative approximations, where the second-stage func-
tions y(·) are restricted to the space of quadratic functions, so that

y(u) =

u
TY1u+ yT1 u+ γ1

...
uTYnu+ yTnu+ γn

 .

This restriction is called the quadratic policy or quadratic decision rule since the second-
stage response to the outcome of the uncertain process is modeled as a function that is
quadratic in the uncertainty parameter. After applying this quadratic policy, the con-
straints in (10) are given by

uTYiu+ yTi u+ γi ≤ (ri − ci)xi − ri(xi − ui), u ∈ U , i = 1, . . . , n,

uTYiu+ yTi u+ γi ≤ (ri − ci)xi − si(ui − xi), u ∈ U , i = 1, . . . , n,

which can be reformulated into set-copositive constraints

λi ≥ 0,

(
−cixi − γi 1

2
(riei − yi)T

1
2

(riei − yi) −Yi

)
− λie1e

T
1 ∈ COP(K), i = 1, . . . , n,

µi ≥ 0,

(
(ri − ci + si)xi − γi −1

2
(siei + yi)

T

−1
2

(siei + yi) −Yi

)
− µie1e

T
1 ∈ COP(K), i = 1, . . . , n.

The objective function in (10) can be reformulated similarly after it is cast as a constraint
by means of introducing an epigraphical variable.

In [27] the authors proposed a conservative and therefore inner approximation of these
constraints. The COP-OA cutting plane algorithm, however, lets us solve the resulting
model exactly so that we are now able to asses the quality of the conservative approxi-
mation by comparing its performance with the results from the exact evaluation of the
quadratic policy. Details of applying our approach, as well as formulating the conservative
approximation, are summarized in Appendix A.

We now discuss a third and final approach to (10) from [26], where the authors derive
an exact copositive reformulation of a form that can also be solved via our cutting plane

13

algorithm. Thus, the algorithm allows us to do both: solve (10) exactly via the exact
copositve reformulation from [26], but also solve the approximations of (10) based on
quadratic decision rules exactly, without the need to employ a further approximation of
COP(K). Thus, we can assess the gap introduced by the quadratic policy in isolation for
the first time.

To establish the exact reformulation, we observe that (10) is of the form

max
x,y(·)

{
min
Ū

{
eTy(u)

}
: Ax+By(u) ≥ Cu, ∀u ∈ Ū

}
, (11)

with

A =

(
−Diag(c)

Diag(r − c+ s)

)
, B =

(
−I
−I

)
, C =

(
−Diag(r)
Diag(s)

)
(ū+ Diag(û)F) ,

and Ū =
{
u ∈ K̄ : eT1 u = 1

}
where K̄ is defined as in Appendix A.

The following equivalences hold by a classical argument in robust optimization (see
[6]) and by strong duality in linear optimization:

max
x,y(u)

{
min
u∈Ū

{
eTy(u)

}
: Ax+By(u) ≥ Cu, ∀u ∈ Ū

}
= max

x
cTx+ min

u∈Ū
max
y

{
eT1 ue

Ty : AxeT1 u+By ≥ Cu
}

= max
x

cTx+ min
(u,w)∈Ū×Rm

+

{
wT
(
C + AxeT1

)
u : BTw = eeT1 u

}
.

By the same argument used in [26] we can add redundant constraints ||(u;w)|| ≤ π for
some large enough π ∈ R. The feasible set of the inner minimization problem can be
written as

F =

{(
u
w

)
∈ K̂ : eT1 u = 1,

∥∥∥∥uw
∥∥∥∥ ≤ π

}
,

K̂ =

{(
u
w

)
∈ K̄ × R2n

+ : BTw = eeT1 u

}
=

{(
u
w

)
∈ Rn+1 × R2n

+ : BTw = eeT1 u, Pu ≥ 0

}
,

where P is defined as in Appendix A, i.e. Pu ≥ 0 encodes the ∞-norm and the 1-norm
constraints in K̄. Then, the problem v(x) = min(u,w)∈F×Rm

+
wT
(
C + AxeT1

)
u has an exact

completely positive reformulation whose dual is given by

max
λ,Λ,ρ

λ+ πµ

s.t. :

(
0 1

2

(
C + AxeT1

)T
1
2

(
C + AxeT1

)
0

)
+ λe1e

T
1 + µI ∈ COP

(
K̂
)
,

and its optimal value is equal to v(x) since µI can be scaled to give a Slater point.
Hence, we can solve maxx∈Rn cTx + v(x) as a copositive optimization problem. As noted
in [26], strong duality may fail to hold in case we do not create a Slater point in the
dual by introducing the redundant constraint to bound the conic primal. However, in
any given iteration of our algorithm, we only solve linear approximations of that problem

14

Instances Average Gap (%) Num. Opt.
n ρ v ex-quad ex-cons quad-cons quad cons
2 1.0 10 0.000 0.000 0.000 10 10
2 1.0 50 0.000 0.000 0.000 10 10
2 1.5 10 -0.011 0.014 0.024 10 9
2 1.5 50 0.000 0.000 0.000 10 10
3 1.0 10 0.001 0.000 0.000 9 9
3 1.0 50 0.000 0.000 0.000 10 10
3 2.5 10 -0.009 0.025 0.034 9 5
3 2.5 50 0.056 0.074 0.018 8 4
4 1.0 10 0.002 0.000 -0.002 10 10
4 1.0 50 0.001 0.003 0.002 9 9
4 2.5 10 0.131 0.266 0.135 4 0
4 2.5 50 0.638 1.356 0.708 2 0

Table 4: Results for newsvendor problems

for which strong duality does not hinge on the existence of a Slater point, and therefore
the term µI can be omitted. Again, membership in COP(K̂) can be certified via our
set-copositivity test via a reformulation similar to the one used for certifying COP(K).
In order to execute this strategy we employ similar techniques to the ones used when
reformulating the quadratic policy, detailed in Appendix A, and we omit the details here.

5.2 Computational experiments

For our experiments we chose the following specifications for the problem data

r = 80e, s = 60e, c = 40e+ 20c̃, ū = 60e, û = ve,

where c̃i ∼ Uniform[0, 1] for each i, and the parameter v ∈ R was varied across the
instances. For the matrix F we generated a random matrix F̄ with F̄ij ∼ Uniform[0, 2]
for each i, j, and populated the rows of F with the rows of F̄ normalized by their 1-
norm. The impact of F on the uncertainty set is governed by the scaling via û, which
we controlled via v. The parameter ρ, which controls the shape of the uncertainty set,
was also varied. Note that ρ = 1 eliminates the ∞-norm component from the description
of U , since in this case the respective 1-norm ball is contained in the respective ∞-norm
ball. For n > ρ > 1 both components are relevant.

In Table 4 we have summarized the results of our experiments. The instances consid-
ered are organized by the values of (n, ρ, v). For each of these configurations 10 instances
were generated and the respective rows summarize the results over these instances. All
instances of the exact and quadratic policy models were successfully solved using the
COP-OA algorithm. In the columns headed by “Average Gap” we report the gap be-
tween the exact optimal solutions and the solutions obtained from solving the quadratic
policy approximation exactly (“ex-quad”) the gap from the solution of the conservative
approximation of the quadratic policy model (“ex-cons”) and finally the gap between

15

Instances Average Time (sec) Ave. Iter.
n ρ v exact quad cons exact quad
2 1.0 10 0.307 7.412 0.095 1.0 7.8
2 1.0 50 0.299 8.546 0.094 1.0 8.5
2 1.5 10 1.281 8.361 0.090 4.3 8.8
2 1.5 50 1.342 9.326 0.089 4.7 9.6
3 1.0 10 0.655 26.021 0.122 1.0 13.5
3 1.0 50 0.528 33.116 0.139 1.0 14.0
3 2.5 10 2.895 46.748 0.185 6.1 20.5
3 2.5 50 2.662 48.610 0.152 7.1 24.6
4 1.0 10 7.301 391.577 0.315 1.0 18.1
4 1.0 50 7.964 286.086 0.358 1.0 21.3
4 2.5 10 21.515 526.407 0.486 8.2 31.5
4 2.5 50 16.696 430.150 0.437 8.8 45.7

Table 5: Time and iterations to solve newsvendor problems

the exact solution under the quadratic policy and its conservative approximation (“quad-
cons”). For all of these values we present the avarage value of the percentage gaps over
the ten instances we created. The final three columns, headed by “Num. Opt.”, count
the number of times the quadratic model (“quad”) and its conservative approximation
(“cons”), respectively, gave the exact optimal value within numerical tolerances.

Several features of these results are worth discussing in greater detail. First, the
quality of both the quadratic policy and its conservative approximation deteriorate with
dimension. This is, secondly, especially the case for instances where the structure of
the uncertainty set is more complicated, i.e. where both norm constraints are relevant.
Thirdly, the quality of the conservative approximation of the quadratic model is still quite
good at least in the instances we considered. This demonstrates that comparatively cheap
approximations of set-copositive constraints can still yield satisfactory results. Finally,
the small but theoretically impossible negative values in the first three columns are a
testament to the numerical instabilities that are attached to using the COP-OA algorithm
to compute the exact and quadratic policy values, and also the interior-point solver used to
compute values for the conservative approximation. For example, numerical degeneracies
may develop as cutting planes are added in the COP-OA algorithm, and the indicator for
set-copositivity γ in MILPCOP(K) may be close to zero for a super-optimal solution. These
issues are especially taxing for the quadratic policy instances, since many set-copositivity
tests and subsequent cutting planes are implemented on every iteration of the algorithm.
For the purpose of reporting the number of optimal values in the final two columns we
consider small negative gaps to correspond to optimal solutions.

In Table 5 we give the average times and number of iterations required for the same
problems considered in Table 4. As we can see, the exact reformulation was much easier
to solve for our algorithm than the quadratic policy model. The reason is that the latter
requires testing set-copositivity for 2n matrix blocks of order n+ 1 (4n+ k + 2 after the
reformulation described in the Appendix) on every iteration, while for the exact model
only a single test per iteration has to be performed where the order of the matrix block

16

is 3n + 1 (4n + k + 2 after reformulation). In addition, the larger number of copositive
matrix blocks increased the number of iterations needed substantially for the quadratic
policy. Hence solving the quadratic policy exactly does not yield much benefit other
than certifying the quality of the conservative approximation, at least for our solution
approach.

6 Conclusion

In this paper we have described an algorithm for nonconvex quadratic problems that
can be formulated as completely positive (CPOPT) optimization problems, whose duals
are copositive optimization (COOPT) problems. Our method iteratively strengthens an
outer approximation of the set-copositive cone that incorporates linear constraints from
the original CPOPT problem. We extend a previous MILP-based method for generating
a cut that separates a matrix from the copositive cone to incorporate such linear con-
straints. Computational results show that the method is capable of globally solving small
nonconvex problems to optimality, with the computational bottleneck being the MILP-
based separation routine. This observation suggests that modifications to the separation
problem that make it more computationally tractable would be very beneficial. In ad-
dition, CPOPT formulations often include linear constraints that combine the original
variables x and lifted matrix variavbles X; examples include constraints obtained from
the reformulation-linearization technique (RLT) and constraints of the form x = diag(X)
for binary x. An extension of our methodology that could incorporate such constraints
in the separation routine would be an attractive enhancement.

Acknowledgement

Research for this paper was begun when one author (Anstreicher) was visiting the Vienna
Center for Operations Research (VCOR) at the University of Vienna, Austria, where
the other author (Gabl) was completing his dissertation. Support from the VCOR and
especially Prof. Immanuel Bomze is gratefully acknowledged.

References

[1] Kurt M. Anstreicher. Towards a practical volumetric cutting plane method for convex
programming. SIAM J. Optim., 9:190–206, 1999.

[2] Kurt M. Anstreicher. Testing copositivity via mixed-integer linear programming.
Linear Algebra Appl., 609:218–230, 2021.

[3] Kurt M. Anstreicher, Samuel Burer, and Peter J.C. Dickinson. An algorithm to
compute the CP-factorization of a completely positive matrix. Oberwolfach Rep.,
52:3079–3081, 2017.

[4] Amir Ardestani-Jaafari and Erick Delage. Linearized robust counterparts of two-
stage robust optimization problems with applications in operations management.
INFORMS J. Comput., 33(3):1138–1161, 2020.

17

[5] Riley Badenbroek and Etienne de Klerk. An analytic center based cutting plane
method to determine complete positivity of a matrix. INFORMS J. Comput., To
appear, 2021.

[6] Aharon Ben-Tal, Alexander Goryashko, Elana Guslitzer, and Arkadi Nemirovski.
Adjustable robust solutions of uncertain linear programs. Math. Prog., 99(2):351–
376, 2004.

[7] Immanuel Bomze and Markus Gabl. Interplay of non-convex quadratically con-
strained problems with adjustable robust optimization. Math. Meth. Oper. Res.,
93:115–151, 2021.

[8] Immanuel M Bomze and Markus Gabl. Optimization under Uncertainty and Risk:
Quadratic and Copositive Approaches. Euro. J. Oper. Res., 310(2):449–476, 2023.

[9] Samuel Burer. On the copositive representation of binary and continuous nonconvex
quadratic programs. Math. Prog., 120:479–495, 2009.

[10] Samuel Burer. Copositive programming. In Handbook on Semidefinite, Conic and
Polynomial Optimization, pages 201–218. Springer, 2012.

[11] Peter J. C. Dickinson and Luuk Gijben. On the computational complexity of mem-
bership problems for the completely positive cone and its dual. Comput. Optim.
Appl., 57:403–415, 2014.

[12] Peter J.C. Dickinson. The Copositive Cone, the Completely Positive Cone and their
Generalizations. Ph.D. thesis, University of Groningen, 2013.

[13] Hongbo Dong. Symmetric tensor approximation hierarchies for the completely posi-
tive cone. SIAM J. Optim., 23:1850–1866, 2013.

[14] Hongbo Dong and Kurt Anstreicher. Separating doubly nonnegative and completely
positive matrices. Math. Prog., 137:131–153, 2013.

[15] Gabriele Eichfelder and Janez Povh. On the set-semidefinite representation of non-
convex quadratic programs over arbitrary feasible sets. Optim. Letters, 7(6):1373–
1386, 2013.

[16] Jean-Louis Goffin, Zhi-Quan Luo, and Yinyu Ye. Complexity analysis of an interior
cutting plane method for convex feasibility problems. SIAM J. Optim., 6(3):638–652,
1996.

[17] Jacek Gondzio and E. Alper Yildirim. Global solutions of nonconvex standard
quadratic programs via mixed integer linear programming reformulations. Technical
report, University of Edinburgh, Edinburgh, UK, 2018.

[18] João Gouveia, Ting Kei Pong, and Mina Saee. Inner approximating the completely
positive cone via the cone of scaled diagonally dominant matrices. J. Global Optim.,
pages 383–405, 2020.

18

[19] Martin Grötschel, László Lovász, and Alexander Schrijver. Geometric algorithms and
combinatorial optimization. Springer-Verlag (Berlin), 1988.

[20] Cheng Guo, Merve Bodur, and Joshua A. Taylor. Copositive duality for discrete
energy markets. Technical report, University of Toronto, 2021.

[21] Sunyoung Kim and Masakazu Kojima. Exact solutions of some nonconvex quadratic
optimization problems via SDP and SOCP relaxations. Comput. Optim. Appl.,
26:143–154, 2003.

[22] Johan Löfberg. Yalmip : A toolbox for modeling and optimization in matlab. In
Proceedings of the CACSD Conference, Taipei, Taiwan, 2004.

[23] Javier Peña, Juan Vera, and Luis F. Zuluaga. Computing the stability number of a
graph via linear and semidefinite programming. SIAM J. Optim., 18:87–105, 2007.

[24] Ralph Tyrell Rockafellar. Convex Analysis. Princeton University Press, 2015.

[25] Wei Xia, Juan Vera, and Luis F. Zuluaga. Globally solving nonconvex quadratic pro-
grams via linear integer programming techniques. INFORMS J. Computing, 32:40–
56, 2020.

[26] Guanglin Xu and Samuel Burer. A copositive approach for two-stage adjustable ro-
bust optimization with uncertain right-hand sides. Comput. Optim. Appl., 70(1):33–
59, 2018.

[27] Guanglin Xu and Grani A Hanasusanto. Improved decision rule approximations for
multi-stage robust optimization via copositive programming. Oper. Res., to appear,
2023.

A Reformulating the quadratic policy model

In this appendix we descibe details necessary to apply our COP-OA algorithm to the
quadratic policy model, and to compute the conservative approximation of the quadratic
policy. First, we discuss how to construct the conservative approximation. Note that

K =

{(
u0

u0ū+ Diag (û)Fz,

)
: z ∈ Rn, ‖z‖∞ ≤ u0, ‖z‖1 ≤ u0ρ

}
= MK̄

with

K̄ =

{(
u0

z,

)
: z ∈ Rn, ‖z‖∞ ≤ u0, ‖z‖1 ≤ u0ρ

}
, M =

(
1 oT

ū Diag (û)F

)
Then, from the definition of set-copositive matrix cones we get that

COP (K) = COP
(
MK̄

)
= M−TCOP

(
K̄
)
M−1

19

so that we can focus on the simpler cone COP
(
K̄
)
. Following the approach in [27], we

can approximate this cone via the inner approximation{
S + P TWP : S ∈ Sn+1

+ , W ≥ 0
}
⊆ COP

(
K̄
)
,

where P ∈ Rk×(n+1) is a matrix so that

P

(
u0

z

)
≥ 0⇔ ‖z‖∞ ≤ u0, ‖z‖1 ≤ u0ρ,

which exists since both norms are polyhedral convex functions (see e.g. [24, Corollary
19.1.2.]).

In order to apply our cutting plane algorithm, to solve the quadratic policy model
exactly, we need to be able to test whether S ∈ COP (K). There are two adaptations
we have to make since, firstly, (u0;u) ∈ Rn+1 is not restricted to be nonnegative and,
secondly, K is described in terms of equations and inequalities rather than just equations.
However, it is easy to see that vTSv ≥ 0 ∀v ∈ K if and only if(

u+

u−

)(
S −S
−ST S

)(
u+

u−

)
≥ 0

for all (u+, u−) such that

u+ − u− = (u+
0 − u−0)ū+ Diag (û)F (z+ − z−),

P

(
u+

0 − u−0
z+ − z−

)
= p,

(u+
0 ;u+) ∈ Rn+1

+ , (u−0 ;u−) ∈ Rn+1
+ , z+ ∈ Rn

+, z− ∈ Rn
+, p ∈ Rk

+,

where the latter conditions describe a cone of the required form for our set-copositivity
algorithm testing to be applicable.

20

