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Abstract
We formulate a long-term multi-period institutional Asset-Liability Management

(ALM) problem, in which the decision maker seeks the minimization of the initial
capital invested in a dedicated immunized portfolio and the risk stemming from two
sources: the investment losses and the shortfall with respect to an exogenous capital
requirement. The asset portfolio is required to stochastically dominate a liability
portfolio under a rich set of exogenous uncertainties. The problem is formulated as
a sequential decision problem with second-order stochastic-dominance constraints
that are enforced in a time-consistent manner. The risk associated with investment
losses and regulatory capital is managed by optimizing a time-consistent dynamic
measure of risk in the objectives, while the risk associated with the liability cov-
erage is controlled by the sequential stochastic dominance constraints resulting in
a robust optimal risk-averse policy. We devise an efficient decomposition method
for solving the risk-averse multi-stage problem and discuss its convergence. The
proposed methodology is validated computationally on a case study developed on a
property and casualty ALM problem.

Keywords: Asset-liability management, stochastic dominance, multistage stochastic
programming, time consistency, decomposition method.

Introduction

We consider a multi-period asset-liability management (ALM) problem with assets and
liabilities exposed to several risk sources and formulated as a multistage stochastic pro-
gramming (MSP) problem. From a modeling and financial perspective, the ALM problem
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is characterised by a solvency requirement under which the decision maker seeks the min-
imization of the shortfall with respect to an exogenous risk capital estimate. Inspired by
a corporate case study, the ALM problem features a large insurance and financial inter-
mediary, whose business structure is summarized by a technical division, an investment
and a risk management division, that are responsible for liability policies, asset manage-
ment and risk assessment, respectively. The decision maker, based on the risk assessment
and the current asset-liability portfolios, intends to minimize the dedicated capital and
preserve over time a sufficient funding to cover the liabilities and comply with regulatory
policies.

Various mathematical models have been proposed in the literature to devise a policy
that manages the risk of liability coverage and investment losses with a minimal initial
capital. The framework of risk-averse multi-stage stochastic programming problems is
particularly suitable to this end. In such a framework, the decision maker determines
an optimal portfolio immunization strategy based on the evolution of the assets and the
liabilities over the time-horizon. In this problem formulation, we identify several sources
of risk and we propose to control the risk in multiple ways. We impose a risk-averse
constraint in the form of a stochastic ordering relation that ensures statistically the ability
to cover the liabilities over the time horizon. The initial capital dedicated to the liability
portfolio is minimized in the objective of the first stage decision, while the risk of falling
below the required regulatory capital and the potential investment losses are handle by a
time-consistent dynamic measure of risk. The immunization of the dedicated investment
portfolio includes matching of its duration to that of the liability portfolio.

Optimization problems with stochastic dominance constraints were first introduced in
Dentcheva and Ruszczyński [2003] and further developed in Dentcheva and Ruszczyński
[2004]. The consistency of measures of risk with the stochastic dominance relations was
first investigated by Ogryczak and Ruszczyński [1999] with a focus on the class of semide-
viation risk measures and in Ogryczak and Ruszczyński [2002] with a dual characterization
of stochastic dominance conditions. A general consistency result of law-invariant coher-
ent measures of risk and second order stochastic dominance is stated in Leitner [2005].
A solid foundation for the adoption of SD as a decision paradigm in portfolio theory is
provided by Levy [2006]. Optimization with SD constraints relate to many other risk-
averse models such as optimization using coherent measures of risk, see Dentcheva and
Ruszczyński [2008a], utility functions, see Dentcheva and Ruszczyński [2003], distortion,
see Dentcheva and Ruszczyński [2006a], chance constraints, or Average (Conditional)
Value-at-Risk constraints, see Dentcheva and Ruszczyński [2006b]. Numerical methods
for static optimization problems involving stochastic dominance relations as constraints
or as multivariate objectives are proposed in Dentcheva and Ruszczyński [2003, 2010];
Fábián et al. [2011]; Luedtke [2008]; Noyan and Ruszczyński [2008]; Roman et al. [2006];
Rudolf and Ruszczyński [2008].

While a lot of literature analyses stochastic order relations for scalar random vari-
ables and their implications for decision making under uncertainty, much fewer works
are devoted to the comparison of sequences, although dynamical systems are prevalent
in practice. We refer to Müller and Stoyan [2002] for an overview of stochastic order-
ings for sequences and processes. The challenge in such comparisons arise from time-
consistency considerations which are crucial in the context of sequential decision making.
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The majority of the sequential comparisons result in a time-inconsistent decision prob-
lems. Stochastic-ordering constraints in dynamic stochastic optimization are discussed in
Dentcheva and Ruszczyński [2008b]; Dentcheva et al. [2022]; Escudero et al. [2016, 2017];
Haskell and Jain [2013]. The proposal in Haskell and Jain [2013] addresses the limiting
distribution in an infinite-time horizon average-cost Markov decision problem. In Escud-
ero et al. [2016, 2017], time-consistent constraints are imposed in a manner akin to Average
(Conditional) Value-at-Risk constraints for a multi-stage stochastic optimization problem.
Average Value-at-Risk can be represented as the expected value of a nonlinear function,
which facilitates the application of the theory and methods for risk-neutral optimization.
The dynamic (two-stage version) of the Conditional Value-at-Risk is consistent with the
SD comparison, see Pflug and Pichler [2014]; Pflug and Ruszczyński [2005]. In this pa-
per, we use a stochastic comparison within the framework presented in Dentcheva et al.
[2022], which develops a multistage stochastic program constrained by time-consistent
sequential comparisons. Our approach differs from the one presented in Dentcheva et al.
[2022] because we do not benchmark the recourse function sequences and our stochastic
comparison is limited to one step look-ahead. Further details are provided in Section 1.

Very popular and powerful tools for controlling risk in sequential decision problems
are provided by the theory and methods of time-consistent coherent measures of risk. We
refer to Föllmer and Schied [2008]; Shapiro et al. [2021] for an overview. We use this
framework in our paper to address the risk associated with the overall capital involved
in the operation. The time-consistency definition, which we adopt in this paper, is based
on Ruszczyński [2010]. In particular, a scenario decomposition method for multi-stage
stochastic programming problems with coherent measures of risk is proposed in Collado
et al. [2012]. In Gülten and Ruszczyński [2015] an extended two-stage problem formulation
with coherent measures of risk is formulated and a numerical method for solving the
problem is proposed. In our paper, we use the techniques form Gülten and Ruszczyński
[2015] extending them to the multi-stage setting and integrating with a suitable numerical
treatment of the sequential stochastic dominance constraints.

When considering the current state-of-the-art in ALM modelling approaches, our start-
ing point is the comprehensive ALM problem formulation, developed from Consigli et al.
[2011a, 2018]. The introduction of market based asset and liability valuation and the
enforcement of funding and solvency feasibility conditions have been noted as essential
contributions in recent years. To mention just a few: Urban et al. [2004] analyses the
risk capital allocation problem for an insurance portfolio, Gatzert and Schmeiser [2008]
combines fair pricing and capital requirements for non-life insurance companies, Alessan-
dri and Drehmann [2010] develops the analysis on risk capital requirements for a banking
intermediary, Dhaene et al. [2012] establishes optimal capital allocation principles in pres-
ence of several risk sources. A risk management approach to capital allocation by financial
intermediaries is proposed in Maume-Deschamps et al. [2015]. In Consigli et al. [2018]
the implications of capital constraints on the optimization of risk-adjusted returns in a
dynamic model are analysed. In Lauria et al. [2022] a dynamic stochastic control ap-
proach based on an open-loop linear feedback policy has been applied to a defined-benefit
pension fund manager problem combining a stochastic control approach, with a chance
constraint on pension fund funding ratio. A recent review on dynamic risk measures in
financial optimization can be found in Chen et al. [2017], which discusses the distinction
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between terminal, additive, and recursive risk measures.
Any such application requires the definition of a set of stochastic models for scenario

generation and, specifically for this application, the approximation of the liability prob-
ability distributions. Following the adopted risk capital-based problem formulation, we
capture a rich set of risk sources through the definition of a 2-level statistical model with
the yield curve and inflation as core risk processes, see Christensen et al. [2009]; Nelson
and Siegel [1987]. The adopted scenario generation method follows classical approaches,
see for instance Dupačová et al. [2000]; Heitsch and Römisch [2009]; Maggioni and Pflug
[2016, 2019]; Narum et al. [2023].

The adoption of stochastic dominance principles in an ALM context is not new. To
date however, the models are either static or use a time-inconsistent comparisons in a
multi-stage setting. Additionally, the computational burden has been a major deterrent
for the use of sequential stochastic comparisons in a multistage stochastic programming
when either a direct linear programming method or the one based on the approach pro-
posed in Luedtke [2008] is applied. On the other hand, the ALM problems are a natural
candidate for introducing a sequential SD requirement with positive managerial and de-
cision making implications. An early application of SD criteria in a multistage ALM
problem was due to Yang et al. [2010] with a focus on risk control at specific stages.
More recently, yet enforcing SD constraints at individual stages, under an independence
assumption, Consigli et al. [2020] solved an individual ALM problem over a long term
horizon. A similar approach was previously adopted by Kopa et al. [2018] to solve an
optimal pension allocation problem based on a multi-criteria optimization problem for-
mulation with SD constraints at an intermediate and at the final stage. We also refer
to an ALM problem over several stages and a relatively long planning horizon subject
discussed in Moriggia et al. [2019] and Consigli et al. [2020]. In that work the SD relation
is used to compare the performance of the constructed portfolio to a benchmark portfolio
stage-wise at selected stages. The numerical solution is based on the approach proposed
in Luedtke [2008]. In Mei et al. [2022], the authors discuss a portfolio selection problem
in a multi-stage setting using the comparison proposed in Dentcheva and Ruszczyński
[2008b]. These references show that the application of stochastic dominance as a risk
constraint leads to relevant computational implications.

The contribution of our paper can be summarized as follows.
• We introduce a novel multi-stage ALM model using time-consistent stochastic-

ordering relations and dynamic measures of risk for constructing immunized port-
folios; the model includes a comprehensive risk control enabling the AL manager to
satisfy capital requirements, preserve the company funding status, and fulfil liability
obligations;

• We develop an efficient decomposition method to solve the associated risk-averse
multi-stage optimization problem and discuss its convergence;

• We provide an extended set of financial-based validation evidence and sensitivity
results analysing the impact of the stochastic dominance conditions.

The paper is organized as follows. We introduce the necessary notions and information
related to stochastic dominance in Section 1. The ALM problem is then formulated in
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Section 2. In Section 3, we present the stochastic models adopted to derive the full
set of coefficients of the ALM model. The numerical approach developed to solve the
ALM problem is presented in Section 4. Section 5 discusses the computational evidences
collected to validate the methodology and to support the decision-making process. Finally,
conclusions are drawn in Section 6. We leave to the appendices the detailed description
of the stochastic models supporting scenario generation and the algorithm developed for
this project.

1 Sequential stochastic dominance

First, we introduce the notions of stochastic dominance of first and higher order. The
right-continuous cumulative distribution function (CDF) FZ(η) of Z is defined as FZ(η) =
P (Z ≤ η) and the survival function of Z is given by F̄Z(η) = P (Z > η). The integrated
distribution function F

(2)
Z (η) is defined as follows:

F
(2)
Z (η) =

∫ η

−∞
FZ(t) dt for η ∈ R.

Clearly, the function F
(2)
Z (·) is finite everywhere whenever Z is integrable and it is convex

as an integral of a non-decreasing function. For a random variables Z with a finite k-th
moment, k ≥ 2, we define recursively the functions

F
(k+1)
Z (η) =

∫ η

−∞
F

(k)
Z (α) dα for η ∈ R. (1)

Definition 1. (i) A random variable V is stochastically larger than a random variable
Z with respect to the first order stochastic dominance (denoted V ⪰(1) Z) if FV (η) ≤
FZ(η) for all η ∈ R.

(ii) For two random variables V and Z, it is said that the variable V is stochastically
larger than Z with respect to the k-th order stochastic dominance (denoted V ⪰(k) Z)
if F

(k)
V (η) ≤ F

(k)
Z (η) for all η ∈ R.

Notice that the relation V ⪰(1) Z is also equivalent to F̄Z(η) ≤ F̄V (η) for all η ∈ R,
meaning that V takes larger values more frequently but comparisons of integrated survival
functions lead to different relations than the k-order dominance.

We use the shorthand notation a+ = max(0, a) for any a ∈ R. Changing the order
of integration in the definition of the function F

(2)
Z (·), we obtain the following equivalent

representation of the second-order relation:

V ⪰(2) Z ⇔ E[η − V ]+ ≤ E[η − Z]+, for all η ∈ R. (2)

The second-order stochastic dominance relation can also be characterized by the respective
quantile functions, which turned out to be very useful. Let F −1

Z (·) be the left continuous
inverse of the cumulative distribution function FZ(·) defined by

F −1
Z (p) = inf{η : FZ(η) ≥ p}, for 0 < p < 1.
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The absolute Lorenz function LZ : [0, 1] → R, introduced in the seminal work of Lorenz,
see Lorenz [1905], is defined as the cumulative quantile function:

LZ(p) =
∫ p

0
F −1

Z (t)dt for 0 < p ≤ 1.

The definition of the function beyond the interval (0, 1] is extended by setting LZ(0) = 0
and LZ(p) = ∞ for p ̸∈ [0, 1]. The Lorenz function is widely used in economics for
comparison of income streams.

Interestingly the integrated distribution function and the Lorenz function are related
via conjugate duality. It is shown in Ogryczak and Ruszczyński [2002] that LZ(·) and
F

(2)
Z (·) are Fenchel conjugate functions. This result implies that relating the Lorenz

functions of two integrable random variables provides an equivalent characterizations of
the stochastic ordering relations, i.e.,

V ⪰(2) Z ⇔ LV (p) ≥ LZ(p) for all p ∈ [0, 1]. (3)

It is clear that Z ⪰(1) V if and only if F
(−1)
Z (η) ≥ F

(−1)
V (η) for all η ∈ R but a quantile

characterization for the relations of order k > 2 is not available.

Let us turn to comparison of sequences. Given probability space (Ω, F , P ), a filtration
F1 ⊂ · · · ⊂ FT , with F0 = {∅, Ω} and FT = F , denote Z = L1(Ω, F1, P ) × · · · ×
L1(Ω, FT , P ). We assume that the filtration is generated by the random data process
{ξt}T

t=1 and denote the history of the data process until time t by ξ[t].
We wish to compare two sequences X = (X1, X2, . . . , XT ) and Y = (Y1, Y2, . . . , YT )

in Z at any time t = 1, . . . T in a consistent way in the context of a sequential decision
problem whose description is based on the data process {ξt}T

t=1. To this end, we introduce
the cumulative sum of X until time t as a function of the history path ξ[t], i.e.,

xt(ξ[t]) = (X1 + X2 + · · · + Xt)(ξ[t]), t = 1, . . . T.

We shall denote the projected future value for the sequence X at time t when ξ[t] is fixed
defined as follows:

Xt+1|ξ[t] = Xt+1|ξ[t] + Et+1

[
Xt+2|ξ[t] + Et+2

[
Xt+3|ξ[t] + · · · + ET −1[XT |ξ[t]]

]]
.

A time-consistent comparison, proposed in Dentcheva et al. [2022], is obtained in the
following way. We call the sequence X ∈ Z stochastically larger than the sequence
Y ∈ Z if at any time t and history ξ[t] the following holds

xt(ξ[t]) + Xt+1 |ξ[t] ⪰ξ[t] yt(ξ[t]) + Yt+1 |ξ[t],

where the comparison ⪰ξ[t] is an appropriately chosen stochastic ordering for scalar-valued
random variables. The choice may depend on the current state of the data process, or
simply on the time of comparison. In particular, we may postulate

xt(ξ[t]) + Xt+1 |ξ[t] ⪰(2) yt(ξ[t]) + Yt+1 |ξ[t].

6



If we denote the accumulated difference between X and Y until time t along the path
(scenario) ξ[t] by σt(ξ[t]), then at time t we have the following

σt(ξ[t]) + Xt+1 |ξ[t] ⪰(2) Yt+1 |ξ[t]. (4)
A simpler comparison is to look only one step ahead and requires

σt(ξ[t]) + Xt+1|ξ[t] ⪰(2) Yt+1|ξ[t]. (5)
Notice that comparison (4) is better suited for situations when the decision maker is
interested in comparing the total reward (profit) associated with X to that of Y. Com-
parison (5) is more suitable for situation when dominating at every state of the process
is essential. For this reason, we utilize the latter comparison in this paper.

The sequences of random variables that we consider are modeled as scenario tree pro-
cesses. We apply the SSD principles via comparison (5) specifically to the asset portfolio
distribution (as X) relative to the probability distribution of the liabilities (as Y): in finan-
cial economics both quantities define stock variables, the former representing the current
value of all assets of an intermediary and the latter the obligations still pending at cur-
rent time. Modern accounting principles, see European Parliament [2009], require those
quantities to be marked-to-market and recent solvency regulations, to limit widespread
financial instability in the markets, ask for sufficient capital to hedge future negative
scenarios and the stability over time of the funding conditions. These latter require the
value of the portfolio at every point in time to be sufficient to cover the current liabilities.
These considerations motivate an ALM problem formulation capturing both aspects.

The model formulation in Section 2 relies on an exogenous specification of the liability
sequence to be stochastically dominated. As control process we consider the portfolio
allocations that generate the portfolio distribution in every stage of the problem. This is
then naturally defined as a multistage problem with a long but finite planning horizon.
By enforcing an SSD ordering between the portfolio and the liability dynamics, the ALM
manager may allow for a few scenarios under which the solvency condition may actually
worsen, but overall she/he will preserve an effective liability hedge. Furthermore she/he
will hold over time a sufficient capital to account for future losses. Any ALM manager
is however well aware of the cost of capital that she/he will typically try to minimize.
The recent 2020-2021 global crisis provides a very good motivation for the adopted SSD
approach and helps clarifying the model rationale. Indeed, consider a generic insurance
intermediary issuing policies for property and casualty as well as health and life insur-
ance policies (see Consigli et al. [2012]): this intermediary was confronted in 2020 with
increasing liabilities and cash outflows, heavy negative asset returns and very low if not
negative interest rates that did further deteriorate the liability condition. In this project
we then impose SSD conditions to preserve a good asset-liability ratio and determine
a sufficient, yet minimal, capital to hedge those type of negative scenarios. A stressed
scenario analysis is also conducted in the case study.

2 Asset-liability management: problem description and formu-
lation

We consider the decision problem of a financial intermediary managing assets and lia-
bilities exposed to several risk sources over a finite time horizon T . The financial inter-
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mediary needs to define in which assets to invest at any of the discrete times t ∈ T ′ :=
{0, 1, . . . , T − 1}. We consider a set I of liquid assets, divided into fixed income assets
I1 and equity assets I2. The asset universe I ′ includes also a cash account labelled as 0,
such as I ′ := I∪ {0}. At stage t = 0, we assume that the financial intermediary holds
an initial amount x̂i,0 for liquid asset i ∈ I and that the proportion of each liquid asset
i ∈ I in the portfolio must respect specific lower and upper bounds θm

i and θM
i relative

to an evolving scenario-dependent portfolio value. In addition, fixed income assets i ∈ I1
are characterized by a deterministic duration parameter δx

i,t at each stage t. Assets price
returns and gain-loss coefficients are instead considered as random parameters evolving
as discrete-time stochastic processes.

Uncertainty in assets price returns and gain-loss coefficients is represented by means
of a non recombining scenario tree, with N indicating its set of nodes. For each stage
t ∈ T := {T ′ ∪ T}, there is a discrete set of nodes Nt. The final set NT is the set of
nodes called leaves, while the set N0 is composed of a unique node, i.e., the root. Each
node at stage t, except the root, is connected to a unique node at stage t − 1, which is
called ancestor node a(n), and to nodes at stage t + 1, called successors. For each node
n except the leaves (i.e., n ∈ Nt, t < T ) there exists a non-empty set of children nodes
C(n) ∈ Nt+1. A scenario is a path through nodes from the root node to a leaf node. We
represent with pn the probability of node n and we have ∑

n∈Nt
pn = 1, t ∈ T . For each

liquid asset i ∈ I, we represent by ri,n and gi,n the realization at node n ∈ Nt, t ∈ T
of price returns and gain-loss coefficients respectively. Details on their evolution will be
provided later in Section 3.3.

The other source of uncertainty is given by due payments Lj,n generated by liability
class j ∈ J , reflected in random values in both the liability durations δλ

j,n and the nominal
value of liability contracts λj,n. At each stage t, the total value of liabilities incurred
by the financial intermediary is therefore a stochastic parameter, represented by Λn :=∑

j∈J λj,n, n ∈ Nt. In terms of durations, a small mismatch ∆(x,λ) between asset durations
and liability durations is allowed. Finally, the core business of the financial intermediary
generates over the time horizon uncertain revenues cn, n ∈ Nt. Thus, the difference
cn − ∑

j∈J Lj,n, n ∈ Nt represents the stochastic core technical profit at stage t.
In such a framework, the financial intermediary wants to determine an optimal port-

folio immunization strategy, by defining the evolution over the time horizon of the assets
portfolio to cover liabilities. Specifically, to represent the amount of each asset i ∈ I ′ held
at stage t ∈ T , the continuous variables xi,n, n ∈ Nt are introduced. The assets portfolio
composition may change over the time due to buying and selling decisions that can occur
in any stage except the final one. We thus introduce the two continuous variables x+

i,n

and x−
i,n, n ∈ Nt to represent the quantity of each liquid asset i ∈ I purchased and sold

at stage t ∈ T ′. It is worth mentioning that assets can also be purchased in the root
node. This is done by drawing the quantity x̂0,0 on the initial deposit in the cash account.
Moreover, transaction costs associated with buying and selling decisions are represented
by parameters ϕ+ and ϕ− respectively. The asset portfolio rebalancing occurring at stage
t ≥ 1 may determine either gains or losses zn, n ∈ Nt for the financial intermediary. Fi-
nally, we assume the existence at each stage t > 1 of a regulatory capital Kt representing
a minimum capital requirement needed to hedge current liabilities and any potential loss
over the next stages. Thus, the financial intermediary also needs to control the evolution
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of the risk capital kn, n ∈ Nt over the set of stages.
We define the following notation:
Sets:

• T = {t : t = 0, . . . , T}: set of stages;

• T ′ = {t : t = 0, . . . , T − 1}: set of stages (last stage excluded);

• N = {n : n = 0, . . . , N}: set of nodes of the scenario tree;

• Nt ⊂ N : set of the scenario tree nodes at stage t ∈ T ;

• a(n): ancestor of node n ∈ Nt, t ∈ T \ {0};

• C(n): set of children of node n ∈ Nt, t ∈ T ′;

• I ′ = {i : i = 0, . . . , I}: set of assets (cash included i = 0);

• I = {i : i = 1, . . . , I} = I1 ∪ I2: set of liquid assets;

• I1 = {i : i = 1, . . . , I1} ⊂ I: subset of fixed income assets;

• I2 = {i : i = 1, . . . , I2} ⊂ I: subset of equity assets;

• J = {j : j = 1, . . . , J}: set of liabilities.

Deterministic Parameters:

• x̂i,0: initial amount of liquid asset i ∈ I held;

• θm
i minimum proportion of liquid asset i ∈ I in the portfolio;

• θM
i : maximum proportion of liquid asset i ∈ I in the portfolio;

• δx
i,t: duration of fixed income asset i ∈ I1 in stage t ∈ T ;

• ∆(x,λ): maximum duration mismatching;

• ϕ+: investment unit transaction cost coefficient;

• ϕ−: selling unit transaction cost coefficients;

• Kt: regulatory capital in stage t ∈ T ;

• α ∈ [0, 1]: parameter of the convex combination of the shortfall and the opposite of
the investment profits;

• β: weight in the objective function of the initial cash account deposit.

Stochastic Parameters:

• ri,n: price return of asset i ∈ I ′ in node n ∈ Nt, t ∈ T \ {0};

• gi,n: gain-loss coefficient of asset i ∈ I in node n ∈ Nt, t ∈ T \ {0};
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• Lj,n: cash outflows associated with liability j ∈ J in node n ∈ Nt, t ∈ T \ {0};

• δλ
j,n: duration of liability j ∈ J in node n ∈ N ;

• λj,n: value of liability j ∈ J in node n ∈ N ;

• Λn: total liability value ∑
j∈J λj,n in node n ∈ N ;

• cn: core business revenues in node n ∈ Nt, t ∈ T \ {0}.

Decision Variables:

• x+
i,n ∈ R+: amount of asset i ∈ I purchased in node n ∈ N ;

• x−
i,n ∈ R+: amount of asset i ∈ I sold in node n ∈ N ;

• xi,n ∈ R+: amount of asset i ∈ I ′ held in node n ∈ N ;

• x̂0,0 ∈ R+: initial cash account deposit;

• zn ∈ R: cumulative investment profit from portfolio rebalancing in node n ∈ Nt, t ∈
T \ {0}. z0 = 0 at the root;

• kn ∈ R+: capital value in node n ∈ N .

The corresponding optimization model is formulated as follows:

min ρ0 ◦ · · · ◦ ρT −1

 ∑
t∈T \{0}

∑
n∈Nt

[
α(Kt − kn)+ − (1 − α)

∑
i∈I

gi,nx−
i,n

] + βx̂0,0 (6a)

s.t. xi,0 = x̂i,0 + x+
i,0 − x−

i,0, i ∈ I, (6b)
x0,0 = x̂0,0 +

∑
i∈I

x−
i,0(1 − ϕ−) −

∑
i∈I

x+
i,0(1 + ϕ+), (6c)

xi,n = xi,a(n)(1 + ri,n) + x+
i,n − x−

i,n, i ∈ I, n ∈ Nt, t ∈ T \ {0}, (6d)
zn =

∑
i∈I

gi,nx−
i,n + za(n), n ∈ Nt, t ∈ T \ {0}, (6e)

x0,n = x0,a(n)(1 + r0,a(n)) +
∑
i∈I

x−
i,n(1 − ϕ−)+

−
∑
i∈I

x+
i,n(1 + ϕ+) + cn −

∑
j∈J

Lj,n, n ∈ Nt, t ∈ T \ {0}, (6f)

−
∑
j∈J

λj,n∆(x,λ) ≤
∑
i∈I1

xi,nδx
i,t −

∑
j∈J

λj,nδλ
j,n≤

∑
j∈J

λj,n∆(x,λ)
, n ∈ Nt, t ∈ T ′, (6g)

kn =
∑
i∈I

xi,n −
∑
j∈J

λj,n + zn, n ∈ Nt, t ∈ T , (6h)
∑
i∈I

xi,n(1 + ri,C(n)) ⪰(k)
∑
j∈J

λj,C(n), n ∈ Nt, t ∈ T ′, (6i)

θm
i

∑
i∈I

xi,n ≤ xi,n ≤ θM
i

∑
i∈I

xi,n, i ∈ I, n ∈ Nt, t ∈ T ′, (6j)

x+
i,n = x−

i,n = 0, n ∈ NT . (6k)

10



Denoting with ρt a one-period conditional risk measure, the objective function (6a)
minimizes the sum of the weighted initial amount of cash invested βx̂0,0 and the risk at
each stage t of a convex combination of the shortfall ∑

n∈Nt
(Kt − kn)+ and the opposite

of the investment profits − ∑
n∈Nt

∑
i∈I gi,nx−

i,n. The coefficients β and α are non-negative
fixed inputs, the first to calibrate the problem with a possible default value β = 1 and
the latter to span alternative risk profiles through different convex combinations. Con-
straint (6b) provides the quantities to purchase and sell at time t = 0, given the initial
portfolio allocation x̂i,0 for each liquid asset i ∈ I. Equation (6c) computes the cash flows
associated with selling and buying decisions at stage t = 0. Equation (6d) represents the
rebalancing constraints for asset i ∈ I. Equation (6e) computes the cumulative gain and
loss process in node n by focusing on the investment portfolio and helps distinguishing
the realized gains, here considered, from the potential, though unrealized gains associated
with the portfolio value evolution. The cash flow balance equation (6f) traces the evolution
of cash surpluses at each stage taking into account interest accrual from previous stage
cash balance, selling x−

i,n and buying x+
i,n decisions on the asset portfolio and revenues

cn and costs ∑
j∈J Lj,n associated with the intermediary core business. Constraint (6g)

models the assets-liabilities duration matching, which allows a small duration mismatch
∆(x,λ) between fixed income assets and liabilities. Equation (6h) computes the agent cap-
ital endowment, reflecting the market-to-market difference ∑

i∈I xi,n − ∑
j∈J λj,n between

the asset portfolio and the liability, plus the cumulative investment profit zn. Every year
such endowment increases if profits accumulate and decreases if new liabilities are issued
or losses are accounted for. We do not account here for core technical profit because
those will be captured by a positive cash balance x0,n which is already part of the capital
definition. The agent solvency under this assumption is consistently determined by the
ratio between the asset minus the liability and the capital growth induced by cumulative
profits. Constraint (6i) enforces along the scenario tree the stochastic dominance of or-
der k of the the asset portfolio values over the liability portfolio on the children nodes,
thus conditionally along the tree, consistently with the decomposition method that will
be employed. Finally, constraint (6j) enforces the portfolio diversification, by imposing
minimum and maximum shares for each asset in the portfolio and (6k) rules out possible
selling or buying decisions at the end of the planning horizon.

3 Uncertainty model
The ALM model implementation requires the specification of a rich set of random coef-
ficients, assumed, in this setting, to follow a discrete non recombining tree process. We
present in the following subsections the stochastic models adopted to derive the full set
of coefficients of problem (6). The following economic and financial risk sources are ac-
counted for and motivate the model specification based on investment horizon T and a
liability evaluation horizon Tλ:

• The fluctuations of the term structure of interest rates and inflation have a joint
impact on the asset portfolio and the liability of the intermediary through their
pricing and duration mismatching.

• Credit risk fluctuations in the economy have an impact on corporate returns and
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exogenous liability costs.

• Every asset class has specific risk factors driving their future behaviour.

• All the above jointly determine the risk exposure of the intermediary and the asso-
ciated capital requirements.

3.1 Yield curve, inflation and credit spread models
Asset returns and liability costs depend on the evolution of inflation and the term structure
of interest rates. For the latter we have implemented the popular Nelson-Siegel-Svensson
model in the dynamic arbitrage-free version proposed by Christensen et al. [2009]. Let
yt,τ denote the yield quoted at time t over the term τ . We have:

yt,τ = by
1,t + by

2,te
− τ

λt + by
3,t

τ

λt

e
− τ

λt . (7)

Eq. (7) relies on a 3-factor model with factors reflecting level, slope and convexity of
the curve, as functions of by

1,t, by
2,t and by

3,t, from which a long-term yield by
1,t and an

instantaneous yield by
1,t + by

2,t for the instantaneous short rate dynamics yt,0 = yt can be
derived. The parameter λt represents a decay factor, here expressed and estimated as a
linear function of the coefficients by

j,t, j = 1, 2, 3:

λt = ay
0 + ay

1by
1,t + ay

2by
2,t + ay

3by
3,t + ϵy

t , (8)

where ay
j , j = 0, 1, 2, 3, are the coefficient processes and ϵy

t are the residuals, here supposed
to be normally distributed and correlated. We have adopted multivariate Ordinary Least
Squares (OLS) estimation and calibrated the model to enforce arbitrage free conditions,
following Christensen et al. [2009].

We consider as reference for the inflation process πt the annual Consumer Price Index
(CPI) dynamics, specified as a simple mean-reverting model with the long term mean set
at the European Central Bank (ECB) 2% target. Given an initial state π0, for t ∈ T with
monthly increments ∆t, we assume a dynamic:

πt = πt−∆t + aπ(0.02 − πt−∆t)∆t + σπ√
πt−∆t

√
∆tϵπ

t , (9)
where ϵπ

t are the residuals that we assume normally distributed and correlated, while
parameters aπ and σπ are the coefficient processes to be estimated on the data history.

Jointly with the yield curve, the spread model for Investment Grade (IG) borrowers
in the euro area defines an explanatory variable for corporate returns as specified next.
Credit spread sIG

t random dynamics are described by the following autoregressive model:

sIG
t = c0 + c1s

IG
t−∆t + c2yt + ϵs

t , (10)

where cj, j = 0, 1, 2, are the coefficient processes to be estimated on data, ϵs
t are the

residuals, supposed to be normally distributed and correlated and yt is the instantaneous
short rate.

We refer to Appendix A for the estimation of the coefficients associated with the
statistical models introduced in this paragraph.
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3.2 Liability model
We consider a liability process of a representative insurance intermediary with an invest-
ment grade credit rating that over time funds its activity relying on incoming premiums
generated by claims and life contracts. We rely in this respect on the modeling frame-
work in Consigli et al. [2011a]. Based on current market conditions, the intermediary is
classified as an investment-grade BBB borrower in terms of credit rating. Our primary
interest in this application is twofold: (i) analyse the impact on the company solvency of
potentially disruptive liability scenarios, as those emerged recently due to the pandemics,
and (ii) verify the effectiveness of multistage stochastic dominance feasibility conditions.
To our knowledge this has not being attempted before neither in an ALM context nor
more generally in dynamic stochastic problems.

We consider an insurance intermediary whose revenues and costs evolve according to
a simple linear stochastic process. Specifically, see Consigli et al. [2011b], given initial
long term estimates c0 and Lj,0, cash inflows and revenues ct at time t and insurance costs
and compensations to underwriters Lj,t for liability class j at time t are described by the
following equations:

ct+1 = ct(1 + ρt+1) (11)
ρt = µρ + σρϵρ

t (12)
Lj,t+1 = Lj,t(1 + ξj,t+1) (13)

ξj,t = µj,ξ + σj,ξϵ
ξ
j,t, (14)

where µρ (µj,ξ) is the average increase for cash inflows (outflows), σρ (σj,ξ) is the volatility
of cash inflows (outflows), and ϵρ

t (ϵξ
j,t) are the normally distributed residuals. By subjec-

tively modifying the premiums and claims distributions, we can generate stressed liability
scenarios and verify the impact on the optimal solvency conditions and investment policy.

Given the liability cash flows Lj,t, the current liability obligation λj,t is defined as the
discounted value of the expected payments as follows:

λj,t = Et

 ∑
h∈Tλ,−t

e−yt,h(h−t)Lj,h

 . (15)

We estimate the nodal liability values as scenario dependent discounted cash flows in
descending nodes over a stage-dependent horizon Tλ: at the root node this estimation
includes all cash flows projected over Tλ years, then for every t we update the estimation
to Tλ − t = Tλ,−t. Thus at the horizon T , future liability cash flows are accounted for
Tλ − T as future random cash-flows. As a result, as time evolves, the pressure on the
asset portfolio decreases due to the shortening of the liability evaluation horizon and the
associated duration δλ

j,t, which is defined as follows:

δλ
j,t = Et

∑
h∈Tλ,−t

(h − t)e−yt,h(h−t)Lj,h

λj,t

 . (16)

Discounting is then attained by backward recursion along the tree relying on the nodal
realizations of the yield curve from the model described above.
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3.3 Asset returns
We consider a partition of the asset universe I into two classes: for fixed income ETFs
I1 := {i = 1, . . . , I1} and for equity ETFs I2 := {i = I1 + 1, . . . , I2}. The set I1 is further
partitioned into treasury fixed income assets i = 1, . . . , I3, I3 < I1, and corporate fixed
income assets i = I3 + 1, . . . , I1.

Asset price returns are computed as ri,t = vi,t

vi,t−∆t
−1, with vi,t to denote the ETF value

at time t. We have:

ri,t = bi,0 + bi,1ri,t−1 + bi,2yt−1,δx
i,t

+ bi,3πt + ϵi,t, i = 1, . . . , I3, (17)

where yt−1,δx
i,t

is the yield to maturity at time t − 1 of asset i with underlying dura-
tion δx

i,t, πt is the EU inflation rate at time t given in (9) and ϵi,t are the residuals.
Ordinary least squares estimation is employed to determine the regression coefficients
bi = (bi,0, bi,1, bi,2, bi,3)⊤, i = 1, . . . , I3.

Furthermore, price returns ri,t for corporate assets are described by the following
process:

ri,t = bi,0 + bi,1ri,t−1 + bi,2yt−1,δx
i,t

+ bi,3s
IG
t + bi,4rI1+1,t + ϵi,t, i = I3 + 1, . . . , I1, (18)

which assumes a dependence on the credit spread variable sIG
t and on small cap returns

rI1+1,t of equity I1 + 1 ∈ I2. The vector of regression coefficients to be estimated is given
by bi = (bi,0, bi,1, bi,2, bi,3, bi,4)⊤.

Equity asset returns for i ∈ I2 are considered for large and small caps in the eq-
uity market plus emerging markets. These assets become of primary importance in the
long term when trying to stochastically dominate the liability costs that may increase
significantly upon increasing uncertainty. The correspondent autoregressive model is:

ri,t = bi,0 + bi,1ri,t−1 + bi,2yt,1 + bi,3πt + bi,4ft + ϵi,t, i = I1 + 1, . . . , I2. (19)

Model (19) postulates dependence of equity returns on previous returns, on the 1-year
interest rate yt,1 and on the term spread ft between the 10- and the 1-year interest rates,
whose relevance is related to its ability to capture long-term economic expectations. The
corresponding vector of regression coefficients is bi = (bi,0, bi,1, bi,2, bi,3, bi,4)⊤, i = I1 +
1, . . . , I2. We refer to Appendix A for the results of the estimation of the regression
coefficients bi = (bi,0, bi,1, bi,2, bi,3, bi,4)⊤, i ∈ I.

Once defined the asset returns, we can compute the gain and loss coefficients gi,t,
which are associated with selling decisions of any type of asset. For h ∈ T , i ∈ I, let
ρi,h := Πh

s=1(1 + ri,s) − 1. We define the average gain and loss coefficient per unit selling
at time t as:

gi,t := 1
t

t∑
h=1

ρi,h. (20)

We refer to Appendix B for the scenario generation algorithm associated wit the corre-
sponding uncertain parameters.
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4 Numerical solution
The idea is to use the dynamic programming formulation of the multi-stage problem
and to solve it recursively by using a version of the multi-cut method (see Ruszczyński
and Shapiro [2003]), in which additional event cuts approximate the stochastic order
constraints and further cuts approximating the risk measures in the objective functions.
The objective is in form (6a), which represents the time-consistent dynamic risk measures.

We introduce the extra variables sn ∈ R+, representing the shortfall of capital below
the regulatory capital in node n ∈ Nt, t = 1, . . . , T . The problem can be solved recursively
as follows. At the last stage, we calculate for every leaf node n ∈ NT the shortfall below
the regulatory capital:

Qn,T = min αsn

s.t. xi,n = xi,a(n)(1 + ri,n),
x0,n = x0,a(n)(1 + r0,a(n)) + cn −

∑
j∈J

Lj,n,

zn = za(n),

kn =
∑
i∈I

xi,n −
∑
j∈J

λj,n + zn,

sn ≥ KT − kn, sn ≥ 0.

For the nodes n ∈ Nt, t = 1 . . . , T − 1, we calculate:

Qn,t = min αsn − (1 − α)
∑
i∈I

gi,nx−
i,n + ϱn[Qt+1|n]

s.t. xi,n = xi,a(n)(1 + ri,n) + x+
i,n − x−

i,n, i ∈ I, (21)
x0,n = x0,a(n)(1 + r0,a(n)) +

∑
i∈I

x−
i,n(1 − ϕ−)+

−
∑
i∈I

x+
i,n(1 + ϕ+) + cn −

∑
j∈J

Lj,n, (22)

θm
i

∑
i∈I

xi,n ≤ xi,n ≤ θM
i

∑
i∈I

xi,n, i ∈ I, (23)

−
∑
j∈J

λj,n∆(x,λ) ≤
∑
i∈I1

xi,nδx
i,t −

∑
j∈J

λj,nδλ
j,n ≤

∑
j∈J

λj,n∆(x,λ)
, (24)

∑
i∈I

xi,n(1 + ri,C(n)) ⪰(k)
∑
j∈J

λj,C(n), (25)

zn =
∑
i∈I

gi,nx−
i,n + za(n), (26)

kn =
∑
i∈I

xi,n −
∑
j∈J

λj,n + zn, (27)

sn ≥ Kt − kn, sn ≥ 0.
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For the root node:

min βx̂0,0 + ϱ0[Q1]
s.t. xi,0 = x̂i,0 + x+

i,0 − x−
i,0, i ∈ I,

x0,0 = x̂0,0 +
∑
i∈I

x−
i,0(1 − ϕ−) −

∑
i∈I

x+
i,0(1 + ϕ+),

(21) − (25), (27).

We start with solving the problems at the leaf nodes with some initial guess for the
variables at their ancestor nodes. Assume that we carry out iteration ℓ. For each problem
at node n ∈ Nt, we obtain its optimal value, denoted v̄ℓ

n, the optimal solution, denoted
(xℓ

n, (x+
n )ℓ, (x−

n )ℓ, zℓ
n, kℓ

n), and the optimal Lagrange multipliers dℓ
n ∈ R|I|+2 associated

with constraints about re-balancing of the assets, cash, and the cumulative profit. This
information provides an objective cut at the ancestor node of n of form:

va(n) ≥ v̄ℓ
n + ⟨−T ⊤

n dℓ
n, (xa(n), za(n)) − (xℓ

n, zℓ
n)⟩

= −⟨T ⊤
n dℓ

n, (xa(n), za(n))⟩ + αℓ
n, with αℓ

n = v̄ℓ
n + ⟨T ⊤

n dℓ
n, (xℓ

a(n), zℓ
a(n))⟩.

Here Tn is the matrix containing the coefficients associated with the ancestor variables of
node n; it is a diagonal matrix with elements dii = 1 + ri,n for i ∈ I, d00 = 1 + r0,a(n),
and dii = 1 for i = |I| + 2. We shall gather the objective cuts for the objective function
of node n constructed until iteration ℓ in the set J ℓ

o(n).
Furthermore, at node n, having solved the problems for all successor nodes m ∈ C(n),

we solve an auxiliary problem

max
µ∈Aϱ

∑
m∈C(n)

pn,mµmv̄ℓ
m, (28)

where Aϱ is the convex subdifferential ϱ[0] in the dual representation of the risk measure
ϱ. Let µℓ

n be the solution of that problem. As it is a subgradient of the risk measure, it
provides a cut in the approximating problem for node n of the following form:

wn ≥ ⟨µℓ
n, v⟩.

These cuts approximating the risk function at node n that are constructed until iteration
ℓ are gathered in the set J ℓ

r(n). We also need a parameter w to impose a lower bound on
the value of the risk measure ϱn.

The ordering constraint is approximated according to the quantile method presented
in Dentcheva and Martinez [2012], see also Dentcheva and Ruszczyński [2010]. This
means that at node n ∈ Nt, we compare the random variable Λn with realizations Λn,m =∑

j∈J λj,m, m ∈ C(n), and the random variable Xn with realizations Xn,m = ∑
i∈I xi,n(1 +

ri,m) where ri,m is associated with node m ∈ C(n).
In order to impose the stochastic dominance constraints (6i) assuming the order k = 2,

we use the following method. We denote S1 = {1, . . . , |C(n)|}.

Algorithm to impose stochastic dominance

Step 0: Set ι = 1, J ι
e(n) = {S1}, and X1

n,m = ∑
i∈I xℓ

i,n(1 + ri,m) for all m ∈ C(n).
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Step 1: Solve the problem:

min αsn − (1 − α)
∑
i∈I

gi,nx−
i,n + wn + βx̂0,0

s.t. wn ≥ ⟨µj
n, v⟩ j ∈ J ℓ

r(n), v ∈ R|C(n)|

vm ≥ −⟨T ⊤
mdj

m, (xn, zn)⟩ + αj
m j ∈ J ℓ

o(m), m ∈ C(n),
xi,n = xℓ−1

i,a(n)(1 + ri,n) + x+
i,n − x−

i,n, i ∈ I,

x0,n = xℓ−1
0,a(n)(1 + r0,a(n)) +

∑
i

x−
i,n(1 − ϕ−)+

−
∑
i∈I

x+
i,n(1 + ϕ+) + cn −

∑
j∈J

Lj,n,

θm
i

∑
i∈I

xi,n ≤ xi,n ≤ θM
i

∑
i∈I

xi,n, i ∈ I,

−
∑
j∈J

λj,n∆(x,λ) ≤
∑
i∈I1

xi,nδx
i,t −

∑
j∈J

λj,nδλ
j,n ≤

∑
j∈J

λj,n∆(x,λ)

zn =
∑
i∈I

x−
i,ngi,n + zℓ−1

a(n),

kn =
∑
i∈I

xi,n + zn −
∑
j∈J

λj,n

1
P (Sj)

∑
m∈Sj

pn,mX ι
n,m ≥ 1

P (Sj)F (−2)(Λn; P (Sj)), Sj ∈ J ι
e(n),

sn ≥ Kt − kn,

sn ≥ 0 wn ≥ w.

(29)

Let X ι
n be the new random variable associated with the solution of problem (29).

Step 2: Consider the sets Aι
η = {X ι

n ≤ η} and let

δι = sup
η

{ 1
P (Aι

η)F (−2)(Λn; P (Aι
η)) − 1

P (Aι
η)

∑
m∈Aι

η

pn,mX ι
n,m : P (Aι

η) > 0
}

. (30)

If δι ≤ 0, then index the solutions of problem (29) by ℓ and stop. Otherwise,
continue.

Step 3: Find ηι such that P (X ι
n ≤ ηι) > 0 as well as

1
P (Aι

ηι)
∑

m∈Aι
ηι

pn,mX ι
n,m − 1

P (Aι
ηι)F (−2)(Λn; P (Aι

ηι)) ≤ −δι

2 (31)

are satisfied.

Step 4: Set Sι = Aι
ηι , J ι+1

e (n) = J ι
e(n) ∪ {Sι}, increase ι by one, and go to Step 1.

The solution of the problem vℓ
n provides a lower bound for the recourse function

Qn(xa(n), za(n)), while wℓ
n is a lower bound for the risk measure associated with node n.

If the problem is infeasible, we can construct a feasibility cut,

γℓ
n + ⟨d̃ℓ

n, (xa(n), za(n))⟩ ≤ 0. (32)
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The feasibility cuts remain valid for the true cost-to-go function.
We refer to the approximate problem (29) at each node of the scenario tree as P(n).

Each of the problems P(n) maintains and updates the following data: its current solution
(xn, (x+

n ), (x−
n ), zn, kn), convex polyhedral models of the cost-to-go functions Q(j)(·) of its

successors m ∈ C(n) (if any), and the current approximation vn and wn of the optimal
value of its own cost-to-go function and the risk measure at n. The operation of each
subproblem is as follows:

Step 1. If n is not the root node, retrieve from the ancestor problem P(a(n)) its current
approximate solution (xa(n), za(n)).

Step 2. If n is not a leaf node, retrieve from each successor problem P(m), m ∈ C(n), all
new objective and feasibility cuts and update the approximations of their cost-to-go
functions Q

n
(·). Update the approximation of its risk measure by solving problem

(28).

Step 3. Solve the problem (29).

(a) If it is solvable, update its solution and its optimal value. If n is not the root node
and vn increased, construct a new objective cut.

(b) If the problem is infeasible, and n is not the root node, construct a new feasibility
cut. If n is the root node, then stop, because the entire problem is infeasible.

Step 4. Wait for the command to activate again, and then go to Step 1.

It remains to describe the way in which these subproblems are initiated, activated
in the course of the solution procedure, and terminated. We assume that we know a
sufficiently large number M such that each cost-to-go function can be bounded from
below by −M . Our initial approximations of the successors’ functions are just

Q(j)(·) = −M.

At the beginning, no ancestor solutions are available, but we can initiate each subproblem
with some arbitrary point (xa(n), za(n)).

There is much freedom in determining the order in which the subproblems are solved.
Three rules have to be observed.

1. There is no sense to activate a subproblem P(n) whose ancestor’s solution did not
change, and whose successor problems P(m), m ∈ C(n), did not generate any new
cuts since this problem was activated last.

2. If a subproblem P(n) has a new solution, each of its successors P(m), m ∈ C(n) has
to be activated some time after this solution has been obtained.

3. If a subproblem P(n) generates a new cut, i.e., if it is infeasible or has a new optimal
value vn, its ancestor P(a(n)) has to be activated some time after this cut has been
generated.
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We shall terminate the method if Rule 1 applies to all subproblems, in which case we claim
that the current solutions constitute the optimal solution of the entire problem. The other
stopping test is the infeasibility test at Step 3(a) for the root node. It is obvious, because
we operate with relaxations here, and if a relaxation is infeasible, so is the true problem.

Now we argue that the method discovers infeasibility of the problem or converges to
a solution of it. If the method stops because the Rule 1 applies to all subproblems, i.e.,
no subproblem needs to be activated, then, we claim that the current solutions constitute
the optimal policy of the entire problem. If the method stops because of infeasibility at
the root node, then the whole problem is infeasible, because we operate with relaxations.
Hence, if a relaxation is infeasible, so is the true problem. We also observe that for each
set of decisions, the algorithm employed to impose the SD constraint terminates in finitely
many steps discovering infeasibility or identifying an optimal solution. This is due to the
fact that the Lorenz functions of random variables with finitely many realizations are
piece-wise linear; cf. also Dentcheva and Martinez [2012], Theorem 4. The approximation
of the risk measure for a fixed random variable converges to its true value due to the
convergence of the cutting plane method because the subdifferential set Aϱ is a closed and
bounded convex set. In the case of the mean-semideviation of first order, or the average
value at risk combined with the expected value, we shall obtain an exact calculation after
finitely many steps because the dual set is polyhedral, otherwise, we need to terminate
the approximation when a prescribed numerical accuracy is reached. In such a case,
only finitely many cuts are used to approximate the measure of risk up to the prescribed
accuracy. Finally, the multicut method approximates the optimal value of the recourse
function by objective cuts and its domain by feasibility cuts. It is convergent due to the
convergence of the cutting plane method. For polyhedral functions, the method converges
in finitely many iterations (see, Ruszczyński and Shapiro [2003], Chapter 3).

5 Computational evidence
In this section, an extended set of computational results is presented with the aim of
validating the proposed methodology and discussing the most relevant financial evidence.
Following the ALM problem in (6), we consider an ALM manager seeking a minimal initial
capital injection, sufficient however to fund an investment strategy, with periodic revision,
able to cover all liabilities and minimize the shortfall with respect to an exogenously
defined regulatory capital over the following 10 years. We present through the section
the results collected assuming either a base liability scenario, we may also refer to as
ongoing ALM scenario, or a stressed liability scenario, as the one recently experienced in
insurance markets. In particular, the main features of the data set used to generate the
assets’ and liability scenario trees are first summarized with their statistical properties in
Section 5.1. We then present in Section 5.2 the evidence collected on the decomposition
method developed to solve the optimization problem. Section 5.3 focuses on the results
on risk capital allocation and interest rates exposures induced by the optimal solutions.
The impact of stochastic dominance constraints is analyzed specifically in Section 5.4 with
final results on the Intermediary solving conditions over a 10 year planning horizon.
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5.1 Data inputs and experimental design
We take the perspective of a generic European insurance intermediary with a 10-year
planning horizon for strategic asset allocation and liability hedging, see Consigli et al.
[2012]. The asset universe includes the following Exchange Traded Funds (ETF), or
benchmarks (in round brackets the ID ticker for Yahoo! Finance, see Yahoo!Finance
[2023]):

• Money market index: UCITS ETF C-EUR (SMART.MI);

• 1-3 year bond index: iShares Govt Bond 1-3yr UCITS ETF (IBGS.L);

• 5-7 year bond index: Xtrackers II Eurozone Govt Bond 5-7 UCITS ETF (DBXR.DE);

• 10 year bond index: SPDR Bloomberg 10+ Year Euro Govt Bond UCITS ETF
(SYBV.DE);

• IG corporate bond index: iShares iBoxx Investment Grade Corporate Bond ETF
(LQD);

• Inflation linked bond index: iShares Eur Inflation Linked Govt Bond UCITS ETF
(IBCI.AS);

• Large cap equity index: iShares Core MSCI Europe UCITS ETF EUR (IMEU.AS);

• Small cap equity index: iShares Russell 2000 ETF (IWM);

• Emerging markets equity index: iShares MSCI Emerging Markets ETF (EEM).
The statistical models are calibrated with a data history of monthly observations from

December 2018 to December 2022. The subset I1 of the assets includes five fixed income
treasury ETFs (SMART.MI, IBGS.L, DBXR.DE, SYBV.DE, IBCI.AS), and one IG cor-
porate bond ETF (LQD). The subset I2 includes a global equity ETF (IMEU.AS), the
small cap equity ETF (IWM) and an ETF for emerging markets (EEM). The decision
space is thus I = I1 ∪ I2. Following the details in Table 1, the ETFs in class I1 are
classified as constant-to-maturity (CTM) fixed income benchmarks carrying by construc-
tion a relatively stable duration coefficient. The asset-liability duration matching will rely
on such simplifying assumptions. Insurance liabilities do instead carry a time dependent
declining duration, as explained below.

Index i ∈ I1 ETF code Duration δx
i

Money market index Smart.MI 0.25 year
1-3 year bond index IBGS.L 1.6 years
5-7 year bond index DBXR.DE 5.6 years
10 year bond index SYBV.DE 14.5 years
IG corporate bond index LQD 8.4 years
Inflation linked bond index IBCLAS 8.1 years

Table 1: Durations δx
i,t of fixed-income assets i ∈ I1.

The following settings are assumed in the case study:
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• ALM planning horizon of 10 years with stages T := {0, 1
2 , 1, 3, 5, 7, 10} years.

• A scenario tree with branching [12 − 10 − 4 − 2 − 2 − 2] resulting into N6 = 3840
scenarios and N = 7333 nodes. Stochastic values for asset returns and liability
costs are determined by applying the models described in Section 3 and the scenario
generation procedure summarized in Appendix B.

• Different risk-reward trade-offs in the objective function can be considered by vary-
ing the coefficients α and β in eq. (6a). Parameter α determines the trade-off be-
tween the risk capital shortfall and the cumulative investment profit. By contrast, β
acts uniquely on the initial portfolio estimate and will determine the optimal initial
risk capital to be allocated in the form of a given root node portfolio allocation. In
our numerical experiments, we assume α = {0.25, 0.5, 0.75} and β = {1, 2}.

• Liability evaluation horizon Tλ = 20 years.

• Investment lower and upper bounds θm
i = 0.05 and θM

i = 0.4 respectively on all
assets i ∈ I to facilitate portfolio diversification. Transaction costs are set to ϕ+ =
ϕ− = 0.001.

• Maximum duration mismatching between assets and liabilities ∆(x,λ) = {1, 0.75}
years. These values help analysing the effectiveness of the portfolio immunization
strategies. The AL manager will allocate the investment portfolio to hedge against
liability interest rate exposure.

• Regulatory capital is determined relying on a very simple model, surely not intended
to be on it’s own compliant with the ongoing regulatory reforms in this context. Still
we believe that the assumptions are sufficient to validate the overall ALM problem
formulation and derive interesting insights. We assume in particular that the reg-
ulatory capital Kt increases over the 10 years at a constant 1-year interest rate,
determined from the yield curve estimated at t = 0, with continuous compounding.
At the initial stage, K0 is determined based on two alternative assumptions: (i)
based on a rule of thumb very approximate estimate, or (ii) based on potential asset
and liability losses. See Section 5.3 for further details.

.

Asset statistics and scenario tree process Table 2 compares the average monthly
returns and standard deviation from historical data to those associated at the horizon
with the tree process for each asset.

Liability scenarios The liability estimates follow the case study developed in Consigli
et al. [2011a] for a large P&C company with an estimated first year cash inflows c0 due
to collected premiums of 4.2 Mln €, with mean µρ = 0.5% and volatility σρ = 1%, and
cash outflows due to casualties associated with a liability L1,n of 2.2 Mln € and estimated
1% average annual increase µ1,ξ and a 3% volatility σ1,ξ. These forecasts correspond to
the base scenario case. We consider a stressed scenario by assuming an annual average
increase of µ1,ξ = 5%. Based on these estimates we derive two possible evolutions of the
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Historical moments Moments at t = 10
Mean Std Mean Std

Smart.MI −0.0003 0.0002 −0.0003 0.0001
IBGS.L 0.0023 0.0208 0.0022 0.0069
DBXR.DE 0.0013 0.0073 0.0013 0.0024
SYBV.DE 0.0013 0.0237 0.0012 0.0079
LQD 0.0019 0.0187 0.0020 0.0063
IBCI.AS 0.0025 0.0130 0.0025 0.0044
EEM 0.0038 0.0496 0.0038 0.0165
IMEU.AS 0.0038 0.0452 0.0038 0.0151
IWM 0.0097 0.0641 0.0096 0.0214

Table 2: Mean and standard deviation (Std) of returns ri,t of assets i ∈ I: historical
versus simulation evidence at the end of year 10.

insurance liability reserves Λn, shown in Fig. 1: in particular under the base scenario the
current (time 0) liability estimate is Λ0 = 496.34 Mln €, while under the stressed scenario,
ceteris paribus, this amount increases to Λ0 = 519.85 Mln €.

Fig. 1: Liability estimates Λn, n ∈ Nt, t ∈ T in the ongoing business scenario (left) and
in the stressed liability scenario (right).

The purpose of introducing a stressed liability scenario is twofold: first, between 2020
and 2021 most insurance companies have faced an even more negative scenario due to
unprecedented increase of health-policies insurance costs, further impacted by persisting
very low interest rates. Second, to further validate the adopted methodology and problem
formulation, we consider a greater penalty on the initial capital allocation and reduce the
duration maximum mismatching between asset and liabilities.
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Stage t ∈ T 0 1 2 3 4 5 6
N. of problems P(n), n ∈ Nt 1 12 120 480 960 1920 3840
N. of P(n) continuos variables 46 43 37 35 35 35 32
N. of P(n) constraints 85 78 54 46 46 46 14
CPU time spent on stage t 0.02% 0.19% 1.82% 6.62% 13.20% 26.41% 51.74%

Table 3: Number and size of problems Pn, n ∈ Nt and CPU time allocation over stages
t ∈ T .

5.2 Problem decomposition: numerical results
On the available data set we applied the solution method described in Section 4. We chose
the mean-semideviation of order 1 as a risk measure ρt (see Ruszczyński and Shapiro
[2003]), which allowed as to formulate problems (29) as linear programs. Specifically,
we set the weighting parameter between mean and semideviations in the risk-measure
specification to 0.1. As a lower bound on the value of the risk measure we considered
w = −106. Parameters α and β in the objective function (6a) have been set to 0.5 and
1 respectively. Solutions for different values of these parameters are investigated in the
following paragraph. All computational experiments were run on an ASUS laptop with a
3 GHz Intel Core i7-5500U Processor and 4 GB of RAM using solver Gurobi under GAMS
24.7.4 environment. We start with solving the problems at the leaf nodes by considering
the solution of the worst-case liability scenario as initial guess for the variables at their
ancestor nodes (x0

a(n), z0
a(n)). This choice allows us to start the numerical procedure with

a feasible solution in the leaf nodes. One iteration of the algorithm consists in solving all
N = 7333 problems P(n) in the scenario tree. At each iteration, problems P(n), n ∈ N
are solved following a backward approach, from the leaf nodes to the root. In terms of
order in which the subproblems are solved, to take into account the three rules described
in Section 4, we control the set of problems to be solved by means of a binary parameter
ON(n), which is set to 1 if problem P(n) needs to be solved and to 0 otherwise. Once
problem P(n) is solved, we set ON(n) = 0 and we compare the solution provided at the
current iteration with the previous one: if problem P(n) has a new solution, we send an
activation signal to the ancestor and to the children nodes of node n (i.e., ONa(n) = 1
and ONm = 1, m ∈ C(n)). At each iteration, we only solve problems with ONn = 1,
since ONn = 0 implies that the solution of the problem P(n) does not differ from the one
determined before. The number of iterations required by the algorithm described above
in the base case instance is 4. Thanks to the specific initialization procedure, problems
P(n), n ∈ N are always feasible in all iterations: this prevents from the generation
of feasibility cuts. The total CPU time needed to solve the problem is 18817 seconds,
corresponding to 5 hours 13 minutes and 37 seconds. With respect to the stressed liability
case, this stressed situation does not affect the performance of the solution algorithm,
keeping the number of iterations the same as in the base case, not requiring further
feasibility cuts. We present in Table 3 additional evidences on the solution times and
the dimension of the subproblems at the last iteration of the solution algorithm. As can
be noticed, the size of the problems P(n) decreases over the stages due to the decreasing
branching degree assumed in our instance. Despite the smaller size of problems in the leaf
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nodes, due to their large cardinality, most of the CPU time is spent solving the problem
at the last stage. Results on stochastic dominance constraints will be described later in
Section 5.4.

5.3 Capital allocation and risk management
The ALM manager first decision is related to the optimal amount of capital to be allocated
in t = 0: this amount will evolve in the following stages, following eq. (6h) as a result
of ongoing portfolio evolution relative to liability reserves and investment profit or losses.
Alternatively, we may consider the stressed scenario case. From an economic viewpoint
the risk capital is understood as that amount of financial resources the intermediary
will allocate to hedge against negative asset-liability scenarios over the next stage. This
amount will then be negatively affected by decreasing asset portfolio values and increasing
liability costs. We assume a regulatory capital Kt = K0e

y0,1t where y0,1 is the 1 year risk-
free interest rate estimated at time 0 and K0 is determined by considering two alternative
approaches: a standard capital model and an internal capital model. More precisely,
in the standard capital model we simply assume an exogenuous capital requirement K0
of 100 Mln €. Instead, in the internal capital approach, the joint risks of the asset
portfolio devaluation and liability increase are taken into account by computing the initial
regulatory capital as K0 = [qX0 + Λ0.99

1 − Λ0], where X0 is the optimal portfolio value at
stage 0 in the standard capital model approach, q ∈ [0, 1] expresses the possible asset
portfolio loss and Λ0.99

1 is the 99% quantile of the liabilities distribution at the end of
stage 1 (i.e., at 6 months). We first consider a q = 10% loss for the asset portfolio,
leading to a capital requirement K0 = 178 Mln €. We then further increase the possible
loss to q = 15%, obtaining an initial regulatory capital of 212.65 Mln €. The evidence is
summarized in Table 4.

The first two lines refer to the ongoing and stressed scenario results under the standard
capital model: we show the average evolution of the risk capital kn in each stage and its
standard deviation. Lines 3 and 4 of the table refer to the stressed liability scenario
under the internal capital model for the regulatory capital Kt, respectively with q = 10%
and q = 15%. As can be noticed, the four instances show a similar evolution of the risk
capital kn, which increases in the first five years and dramatically falls at the seventh year,
when part of the portfolio is liquidated to attain high investment profits. In addition, the
stressed condition for liabilities, together with the higher capital requirements, results into
a significant increase of the capital to be allocated over the 10 years: due to the high cost
of capital, such a scenario would be highly undesirable. Table 5 provides for each stage
the percentage of nodes in the different instances with a shortfall, which is the positive
part of the difference between regulatory capital and risk capital sn = (Kt − kn)+. As can
be seen, since the risk capital is usually above the regulatory capital, the shortfall occurs
only in a limited number of cases. However, with respect to the base case scenario (line
1), the stressed values for liabilities and the higher capital requirements make regulatory
capital harder to meet, inducing an increase of the shortfall frequency at the horizon (see
lines 2, 3 and 4).

24



Year
µ1,ξ α β 0 1/2 1 3 5 7 10

1% 0.5 1 Kt 100 100.50 101.05 103.05 105.13 107.25 110.52
kn 135.83

(0)
152.97
(39.97)

170.41
(53.34)

277.97
(94.94)

360.89
(127.86)

142.66
(54.12)

221.54
(97.59)

5% 0.5 1 Kt 100 100.50 101.05 103.05 105.13 107.25 110.52
kn 161.84

(0)
177.36
(48.99)

189.31
(64.29)

281.55
(110.61)

364.35
(133.66)

171.77
(77.46)

254.71
(165.57)

5% 0.5 1 Kt 178 178.90 179.80 183.46 187.20 191.01 196.87
kn 241.95

(0)
264.02
(49.49)

275.58
(65.87)

381.23
(113.82)

464.61
(138.84)

253.05
(86.98)

345.44
(174.99)

5% 0.5 1 Kt 212.65 213.72 214.80 219.18 223.64 228.19 235.20
kn 270.09

(0)
292.36
(49.27)

309.76
(65.52)

419.83
(114.91)

503.42
(140.45)

287.29
(88.39)

385.27
(178.78)

5% 0.5 2 Kt 212.65 213.72 214.80 219.18 223.64 228.19 235.20
kn 181.44

(0)
220.41
(48.15)

258.23
(66.13)

419.92
(114.90)

503.41
(140.44)

287.29
(88.38)

385.26
(178.78)

1% 0.25 1 Kt 100 100.50 101.05 103.05 105.13 107.25 110.52
kn 111.80

(0)
142.95
(39.52)

148.54
(54.20)

277.05
(109.65)

131.35
(83.85)

129.27
(74.96)

218.17
(95.69)

1% 0.75 1 Kt 100 100.50 101.05 103.05 105.13 107.25 110.52
kn 192.27

(0)
185.33
(40.05)

184.85
(55.27)

278.31
(96.28)

406.63
(119.62)

142.87
(50.23)

225.04
(88.79)

Table 4: Evolution of the regulatory capital Kt and mean (with in parenthesis standard
deviation) of allocated risk capital kn, n ∈ Nt in each stage t ∈ T for different values of
parameters µ1,ξ, α, β and K0.

Year
µ1,ξ α β K0 0 1/2 1 3 5 7 10
1% 0.5 1 100 0% 8.33% 8.33% 3.33% 0.83% 0.16% 5.70%
5% 0.5 1 100 0% 8.33% 9.17% 7.29% 1.46% 0.16% 13.80%
5% 0.5 1 178 0% 8.33% 7.50% 5.83% 0.94% 0.10% 13.93%
5% 0.5 1 212.65 0% 8.33% 7.50% 4.79% 0.83% 0.16% 14.14%
5% 0.5 2 212.65 100% 41.67% 25.83% 4.79% 0.83% 0.16% 14.14%
1% 0.25 1 100 0% 25.00% 22.50% 2.71% 1.04% 0.21% 7.16%
1% 0.75 1 100 0% 0% 5.83% 3.13% 0.63% 0.05% 4.60%

Table 5: Percentage at each stage t ∈ T of nodes with positive shortfall sn = (Kt −
kn)+, n ∈ Nt for different values of parameters µ1,ξ, α, β and K0.

5.3.1 Risk preferences and initial capital allocation

The coefficient α ∈ [0, 1] defines a convex combination between the risk capital expected
semideviation from the exogenous regulatory capital and the expected investment profit
over all stages but the first. The coefficient β represents instead a penalty coefficient on
the initial investment. We can then associate different risk profiles of the ALM manager
to each pair. A {0.5, 1}-type of AL manager would assign same relevance to the shortfall
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minimization and cumulative investment profits, while being sufficiently safe with the
current capital endowment. A {0.75, 1}-type of AL manager would instead be more
concerned with capital requirement, while a {0.5, 2}-type of AL manager would seek
an initial capital minimization. Lines 6 and 7 of Tables 4 and 5 are associated with
the solution of the base case scenario with different relevance assigned to the shortfall
minimization and cumulative investment profits. Table 4 shows how the different weights
assigned to α have a limited impact on x̂0,0, and thus on the initial risk capital value k0.
Over the following stages, the three instances associated with the base case scenario show
a similar evolution of the risk capital, with, however, an exception for α = 0.25 in year 5:
here the sharp decrease of the risk capital in year 5 is caused by the liquidation of part
of the asset portfolio to attain a higher investment profit. From a financial perspective,
this is consistent with the higher relevance of investment profits in the objective function
of the problem. From Table 5 it can be noticed how higher values of α reduce the
occurrence of the shortfall, especially in the early stages. From a financial perspective
this is consistent with the extra-weight assigned to the risk capital shortfall minimization
in the objective function of the problem. With regard to parameter β, line 5 of Tables 4
and 5 assesses the impact of a higher weight β = 2 for the initial cash account deposit
under the highest capital requirement K0 scenario. With respect to the case β = 1 (line
4), results show a significant reduced risk capital k0, which leads to a higher occurrence
of shortfall, especially in the early stages.

Table 6 displays the optimal asset allocation in the root node for selected risk profiles,
by providing the portfolio initial value ∑

i∈I xi,0 and its division into fixed income ETFs,
equity ETFs and cash.

µ1,ξ α β K0
∑

i∈I xi,0 (Mln €) Fixed Income ETFs Equity ETFs Cash
1% 0.5 1 100 632.17 64% 36% 0%
5% 0.5 1 100 681.69 63% 37% 0%
5% 0.5 1 178 761.98 57% 43% 0%
5% 0.5 1 212.65 789.95 57% 43% 0%
5% 0.5 2 212.65 701.30 61% 39% 0%
1% 0.25 1 100 608.14 64% 36% 0%
1% 0.75 1 100 688.61 66% 34% 0%

Table 6: Optimal root node portfolio value ∑
i∈I xi,0 and equity-bond portfolio allocation

for different values of parameters µ1,ξ, α, β and K0.

5.3.2 Interest rate risk

The ALM model (6) includes a specific set of constraints associated with the exposure
to yield curve fluctuations. The AL manager seeks an optimal strategy while imposing a
relatively strict constraint on duration mismatching between assets and liabilities. We are
then considering only first-order impact of yield curve movements along the tree jointly
on the asset and the liability portfolios. In presence of an excess asset portfolio duration
over liabilities, then increasing interest rates will affect negatively the exposure to risk.
On the contrary, in presence of an excess duration of liabilities over assets, decreasing
interest rates will be detrimental.
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We assess the interest rate risk exposure through the duration-matching constraint
(6g). For duration mismatch we distinguish the following four cases, under each of the
above bounds:

• −∆(x,λ): constraint (6g) is active and liabilities duration exceed assets duration.

• (−∆(x,λ); 0]: constraint (6g) is not active with liabilities durations exceeding assets
durations.

• (0; ∆(x,λ)): constraint (6g) is not active with assets durations exceeding liabilities
duration.

• ∆(x,λ): constraint (6g) is active and assets durations exceed liabilities durations.

Fig. 2 shows for the ongoing business scenario the percentage of nodes with duration
mismatching across the four groups in stages t ∈ T ′ for different weights assigned to
parameter α and for ∆(x,λ) = 1. The evidence is of a prevalent exposure to decreasing
interest rates over the investment horizon. For β = 1, when reducing the weight on the
risk capital shortfall in favour of trading profit (α = 0.25), we see in Fig. 2 that a slightly
more balanced A-L duration matching takes place from the early stages.

Fig. 2: Percentage of nodes with specific assets-liabilities duration mismatches at different
stages for β = 1 and α = 0.25 (left), α = 0.50 (center) and α = 0.75 (right) in the ongoing
business scenario.

We also consider a tightening of the duration matching constraint to [−0.75; 0.75] (9
months). This was motivated by observing that in the base case most of the nodes showed
a duration mismatch in the extreme values −1 and 1. As expected, by reducing to 0.75 the
maximum duration mismatch, most of the nodes still lie at the boundaries of the domain.
In addition, when tightening the duration constraint and at the same time considering
the stressed liability scenario, the incentive to invest in fixed income assets increases but,
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overall, the search of superior portfolio performance leads to a relevant equity investment
in the problem instance {µ1,ξ, α, β} = {5%, 0.5, 1} (see Table 6).

5.4 Impact of multi-period stochastic dominance constraints
In our numerical experiments, we test the quantile function decomposition method using
the event cuts as described in Section 4. Second order stochastic dominance constraints
significantly affect the optimal investment policy, especially in the last stages of the plan-
ning horizon. Indeed, in the optimal solution with coefficients α = 0.5 and β = 1,
stochastic dominance constraints are active in 752 nodes (i.e., 21.5% of the total number
of nodes on which these constraints are imposed): 746 are at stage 5 (i.e., year 7), and
the remaining 6 nodes are at stage 4 (i.e., year 5). The activation of the constraints in
the last stages of the planning horizon is consistent with the numerical results presented
in the previous paragraph. In fact, as previously shown in Tables 4 and 5, in order to
obtain large investment profits, a relevant fraction of assets is sold in year 7, causing a
dramatic fall of the asset portfolio value and therefore increasing the shortfall at the end
of the planning horizon. However, the imposition of second order stochastic dominance
constraints guarantees a stable solvency condition for the financial intermediary also at
the horizon. With respect to the stressed liability scenario, by increasing the annual lia-
bility growth rate µ1,ξ from 1% to 5%, to cover the higher liabilities, stochastic dominance
constraints become active in a larger number of nodes, namely 30% instead of 21.5% of
the base case. To further analyze the impact of stochastic dominance constraints, the
base case solution has been compared with the solution of the model (6a)−(6h), (6j),
(6k), not including stochastic dominance constraints (6i) of order k = 2. Fig. 3 shows
second order (left panel) and first order (right panel) CDFs for assets and liabilities in the
children nodes of node 3345 ∈ N5, that we choose for the sake of presentation. Similar
results are obtained for all other nodes where constraints (6i) are active. In particular,
three distributions are compared in Fig. 3: the distribution of liabilities (solid line), of the
assets portfolio with (dashed line) and without (dotted line) stochastic dominance con-
straints. As can be noticed, second order stochastic dominance constraints shift the CDFs
for the assets portfolio to the right so that they dominate the distribution of liabilities.
The model increases the initial deposit of the cash account x̂0,0 in order to purchase more
assets at t = 0, thus rising the portfolio value over all stages. Indeed, when no stochas-
tic constraints are considered, the model allocates an initial cash account deposit x̂0,0 of
611.53 Mln €, which is 21.27 Mln € lower than the solution with stochastic dominance
constraints, not allowing to cover liabilities.

6 Conclusions
In this paper, we provide a novel formulation for a long-term ALM problem under interest
rate, inflation and credit risk exposure, with solvency and funding protection. The pro-
posed model represents a significant extension of a practically and operationally relevant
ALM model for a large insurer. For the first time in the literature, a sufficient funding
condition is enforced in the model through multistage second-order stochastic dominance
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Fig. 3: Second order (left) and first order (right) CDFs in node 3345 for liabilities and
assets portfolio with and without stochastic dominance constraints (6i) of order k = 2.

of the asset portfolio distribution with respect to the liability distribution over time. Al-
though the adoption of stochastic dominance principles in an ALM context is not new,
for the first time in the literature stochastic-ordering relations and dynamic risk measures
for constructing immunized portfolios are included in a multistage framework. The model
here formulated jointly manages the initial capital injection, the dynamic control of exter-
nal regulatory requirements and the internal profit generation. Thus, the solution to such
a model enables the AL managers to satisfy capital requirements, preserve the company
funding status and fulfil liability obligations, while spanning different risk profiles.

To tackle the problem, we develop an efficient decomposition scheme and discuss its
convergence. Specifically, by using the dynamic programming formulation of the problem,
we propose a recursive solution approach based on a version of the multi-cut method in
which additional cuts approximate the stochastic order constraints and the risk measures
in the objective function.

The proposed methodology is validated on a case study inspired by an European insur-
ance intermediary over a 10-year planning horizon, with portfolio rebalancing occurring in
seven stages, assuming either a base or a stressed liability scenario. Computational results
show the effectiveness of the proposed method, which converges to the optimal solution
in 4 iterations with a scenario tree with 7333 nodes and 3840 scenarios. Moreover, the
stressed scenario does not affect the computational performances of the proposed method.
From a financial perspective, we notice how the stressed condition for liabilities implies
a significant increase of the dedicated capital, which would make such a scenario highly
undesirable due to the high cost of capital. However, the base and the stressed liability
scenarios show a similar evolution for the assets portfolio, which is managed so as to limit
the occurrence of the shortfall, while pursuing investment profits.

A post-optimality analysis based on a sensitivity of the weights of shortfall, profits
and initial invested capital shows that, when more relevance is assigned to the investment

29



profits in the objective function, the occurrence of the shortfall is increased, especially in
the early stages, and the allocated risk capital is modified to attain higher investment prof-
its. On the other hand, higher penalties for the initial investment determine a significant
reduction of the initial risk capital, making the shortfall more frequent. We further assess
the interest rate risk exposure through the duration-matching constraint. Numerical ex-
periments show a prevalent exposure of the financial intermediary to decreasing interest
rates over the investment horizon, having liabilities duration exceeding assets duration.
When further tightening the duration constraint by reducing the maximum duration mis-
match, we observe that the incentive to invest in fixed income assets increases but, overall,
the search of superior portfolio performance leads to a relevant equity investment.

Finally, we assess the impact of SD constraints on the optimal solution. Results
show that second order SD constraints significantly affect the optimal investment policy,
especially under the stressed liability scenario, raising from 21.5% to 30% of the nodes in
which they are active. Furthermore SD constraints imply an increased initial investment
value in order to purchase more assets at the beginning of the investment horizon, thus
rising the portfolio value over all stages to cover the liabilities.
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Ogryczak, W. and Ruszczyński, A. (2002). Dual stochastic dominance and related mean-
risk models. SIAM Journal on Optimization, 13(1):60–78.

Pflug, G. and Pichler, A. (2014). Multistage Stochastic Optimization. Springer Series,
New York.
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A Statistical models parameters estimation
In this appendix we present results for the estimation by OLS method of the coefficients
associated with the statistical models introduced in Section 3. Input data are monthly
observations from December 2018 to December 2022. The statistical evidences for yield
curve parameters are presented in Tables A.1 and A.2. Specifically, Table A.1 provides
statistics for the estimated coefficients by

j,t, j = 1, 2, 3 and λt of the Nelson-Siegel-Svensson
model (7), while Table A.2 shows the symmetric variance and covariance matrix of coeffi-
cients by

j,t, j = 1, 2, 3, which is needed in order to implement the arbitrage free calibration
method described in Christensen et al. [2009]. Table A.3 provides estimates and stan-
dard errors for coefficients ay

j , j = 0, 1, 2, 3 of the decay factor model (8), απ and σπ

of the inflation model (9), and cj, j = 0, 1, 2, of the credit spread model (10). With

by
1,t by

2,t by
3,t λt

Mean 0.0247 −0.0187 −0.0179 4.9924
Std 0.0160 0.0096 0.01199 2.7213
q(0.25) 0.0111 −0.0254 −0.0269 3.6704
q(0.5) 0.0263 −0.0185 −0.0184 4.5455
q(0.75) 0.0403 −0.0114 −0.0114 5.6551

Table A.1: Statistics for coefficients by
j,t, j = 1, 2, 3 and λt of the yield curve model (7).

by
1,t by

2,t by
3,t

by
1,t 0.000257 − −

by
2,t −0.000063 0.000093 −

by
3,t 0.000012 −0.000062 0.000144

Table A.2: Variance and covariance symmetric matrix for coefficients by
j,t, j = 1, 2, 3.

regard to asset price returns, Table A.4 provides estimates of the regression coefficients
bi = (bi,0, bi,1, bi,2, bi,3, bi,4)⊤, i ∈ I, in models (17), (18), and (19) and the corresponding
coefficients of determination R2.

Decay factor (8) Inflation (9) Credit Spread (10)
ay

0 ay
1 ay

2 ay
3 απ σπ c0 c1 c2

Mean 7.0549 47.7621 121.3425 50.8006 −0.0053 0.8569 0.0614 0.9479 4.1689
Std 0.3831 11.0799 21.8113 16.4272 0.0002 0.0280 0.0351 0.0189 1.1905

Table A.3: Estimates and standard errors for coefficients ay
j , j = 0, 1, 2, 3 of the decay

factor model (8), απ and σπ of the inflation model (9), and cj, j = 0, 1, 2 of the credit
spread model (10).
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Asset i ∈ I bi,0 bi,1 bi,2 bi,3 bi,4 R2

Smart.MI 0.0001 0.2997 0.0398 −0.0032 0.82
IBGS.L 0.0324 −0.1358 4.4568 −0.4895 0.79
DBXR.DE 0.0029 −0.0354 0.4042 −0.2334 0.74
SYBV.DE −0.0007 0.0048 0.3902 0.3065 0.68
LQD 0.0019 −0.0156 −0.1251 −0.0757 0.59
IBCLAS 0.0148 −0.1042 0.0876 −0.9850 0.0675 0.71
EEM −0.0252 0.0154 −5.7660 −1.2073 0.8823 0.63
IMEU.AS −0.0380 −0.1206 −7.0718 0.9165 −0.8562 0.66
IWM −0.0089 −0.0422 −5.4131 −1.1704 −2.0308 0.64

Table A.4: Estimation of the regression coefficients bi = (bi,0, bi,1, bi,2, bi,3, bi,4)⊤, i ∈ I.

B Scenario generation algorithm
Let θ be the vector including all statistical coefficients estimated by OLS method according
to the models from (7) to (20) and all the parameters of the yield curve model, the inflation
and the credit spread process specified at t = 0. Let ξn := {ri,n, gi,n, λj,n, Λn, Lj,n, cn, δλ

j,n}
be a coefficient tree process on the node n ∈ N of the scenario tree. This vector will
then include all the random parameters specified in the ALM model. Since returns ri,n

of assets i ∈ I in node n and values λj,n of liability j ∈ J in node n depend on the
yield curve yt,τ , the inflation process πt and the credit spread process sIG

t , values for the
vector ξn are generated by applying a two-step procedure, with the first step being the
generation of a random vector process ωn := (yn,τ , πn, sIG

n ) for yield curve rates, inflation
and credit spread, and the second step being the generation of the stochastic ALM model
coefficients. Values for the random vector process ωn, referred to as the core economic
model, are determined by applying Algorithm 1. Specifically, the input to the algorithm is
represented by the vector θ. According to the planning horizon T , to the stage composition
T and to the branching degree vector, the Nodal Partition Matrix (NPM) is generated.
Such a matrix has NT rows and T + 1 columns. Each row of the matrix is a scenario for
the core economic model, determined by applying models (7), (9) and (10) with monthly
increments from t = 0 to T .

The scenarios of the core economic model are input to the asset returns and liability
costs models, which determine the scenarios of the coefficient process ξn, as detailed in
Algorithm 2. The initial conditions of the scenario generation are defined at the root node
by ξ0 := {ri,0, gi,0, λj,0, Lj,0, c0}. We distinguish here between the investment horizon T
and the liability valuation horizon Tλ: this term reflects the number of years in the future
in which liabilities are accounted for to determine the evolution of Λt, from which the
capital requirements can be derived. The algorithm to determine values for ξn consists of
a forward pass and a backward pass. Similarly to the previous algorithm, in the forward
pass we generate scenarios for parameters ri,n, gi,n, Lj,n, and cn by applying the statistical
models introduced in Sections 3.2 and 3.3 with monthly increments from t = 0 to Tλ. We
then determine with a backward recursion the stochastic values of parameters λj,n and
δλ

j,n by discounting the expected payments according to equations (15) and (16). Finally,
the total liability value in each node Λn = ∑

j∈J λj,n is computed.
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Algorithm 1 Scenario generation - core economic model
Input Vector θ:

(a) Nelson-Siegel-Svensson parameters by
1,0, by

2,0, by
3,0, λ0 plus stochastic coefficients for by

j,t,
j = 1, 2, 3 and for λt = λ(by

j,t).
(b) inflation process coefficients απ, σπ and π0.
(c) credit spread process coefficients c0, c1, c2 and initial condition sIG

0 .
(d) errors distributions for each model.

1. Specify planning horizon T and stage composition T .

2. Generate the Nodal Partition Matrix (NPM) of NT rows and T + 1 columns.

3. For t = 1 : T

For n ∈ Nt

For h = (ta(n), ta(n) + ∆t, ..., tn − ∆t, tn), ∆t monthly increments between nodes
∗ generate yield curve inter-stage increments from (7):

yh,τ = y(by
1,h, by

2,h, by
3,h, λh),

∗ generate inflation increments (9) πh = π(απ, σπ),
∗ generate credit spread increments from (10) sIG

h = s(c0, c1, c2).
End For

End For

End For

Output yn,τ , πn, sIG
n scenario paths.
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Algorithm 2 Scenario generation - coefficient process
Input Initial conditions for ξ0 := {ri,0 = gi,0 = 0, λj,0, Lj,0, c0}.
Input ALM horizon T , stage composition T and liability evaluation horizon Tλ.
Input Initial term structure of interest rates y0,τ .

1. Generate NPM for liability evaluation: NT rows and Tλ + 1 columns.

2. For t = 1 : Tλ forward pass

For n ∈ Nt

For h = (ta(n), ta(n) + ∆t, ..., tn − ∆t, tn)
Compute {ri,h, gi,h, Lj,h, ch} from (11), (12), (13), (14), (17), (18), (19),
(20)

End For

End For

End For

3. For t = Tλ : 0 backward recursion

For n ∈ Nt

– For j = 1, 2, .., J
Compute λj,n and δλ

j,n from (15) and (16).
End For

– Compute Λn = ∑
j∈J λj,n.

End For

End For

Output ri,n, gi,n, Lj,n, cn, λj,n, δλ
j,n, Λn
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Fig. B.1: 10-year simulation outputs for Nelson-Siegel-Svensson parameters by
j,t, j =

1, 2, 3.

We report in Fig. from B.1 to B.3 the simulation outputs of the scenario generation
algorithms. Specifically, Fig. B.1 and B.2 show the 4-year data history and the 10-year
simulation outputs for the parameters by

j,t, j = 1, 2, 3 of the Nelson-Siegel-Svensson model
(7), the inflation process πt (9) and the credit spread sIG

t (10). Scenarios for cash outflows
and infows are illustrated in Fig. B.3. Notice that here we assume a valuation horizon of
Tλ = 20 years to properly determine the liability value.
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Fig. B.2: 10-year simulation outputs for inflation process πt and credit spread sIG
t .

Fig. B.3: 20-year simulation outputs for cash outflows L1,t and cash inflows ct.
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