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A B S T R A C T
Ensuring the effective placement of firebreaks across the landscape is a critical issue in wildfire
prevention, as their success relies on their ability to block the spread of future fires. To address
this challenge, it is essential to recognize the stochastic nature of fires, which are highly unpre-
dictable from start to finish. The issue is closely linked to the wider problem of climate change,
which is causing more frequent and severe wildfires worldwide due to rising temperatures and
changing rainfall patterns. Determining the optimal placement of firebreaks in a landscape is a
stochastic combinatorial optimization problem that involves the interplay of different manage-
ment options with the possibilities of a random variable representing the spread of fires, which is
currently not well understood. To tackle this issue, our research presents a two-stage stochastic
programming approach to model uncertainty in the spread of fires. We thus propose a mixed-
integer linear programming formulation to determine the placement of firebreaks, taking into
account both the minimization of the expected loss due to wildfires and the expected loss in
worst-case scenarios measured based on the Conditional Value-at-Risk function (CVaR). We as-
sess the effectiveness of our proposed solutions by comparing their performance with random
plans, where our preliminary numerical results indicate an average reduction of 5% and 9% in
the expected burned area and the average of the 10% most intense wildfires, respectively.

1. Introduction
The available evidence suggests that the frequency and severity of large wildfires, as well as fire-weather conditions,

are increasing as a result of human-induced warming (Jones et al., 2020; Westerling, 2016), which in turn has had a
negative impact on both biodiversity (Keeley et al., 2019; Kelly et al., 2020; Miranda et al., 2023) and human health
through erosion, smoke release and greenhouse gas emissions, among other effects (Delfino et al., 2009; Dennekamp
and Abramson, 2011; Johnston, 2009; Johnston et al., 2012). Given these alarming trends, it has become imperative
to adopt not only reactive measures but also preventive ones to address the current unfavorable conditions and foster
fire-resilient landscapes.

Among the various preventive measures that can be applied in a forest landscape, one is to place firebreaks across
it. This involves identifying suitable areas and replacing existing vegetation with non-flammable material, and thus if
a future fire reaches these areas, the firebreaks will act as a barrier, blocking the fire’s progress. Natural firebreaks can
also be present in a landscape, such as rocks, lakes, rivers, canyons, etc. Both natural and human-made barriers can
impede the spread of wildfire and can act in combination. The implementation of fuel management techniques allows
the creation of artificial barriers. According to Agee et al. (2000), using firebreaks will alter fire behavior, limiting both
the sizes of wildfires and reducing the severity of damage from them. Moreover, fire patterns can be modified by land
cover design and proper forest and vegetation management (Amiro et al., 2001; Kim et al., 2009; Cheney et al., 1993;
Carrasco et al., 2023). However, a fundamental question that thus arises is how to place them strategically across a
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landscape. Current research focuses on the field of preventive management, specifically on finding the best possible
placement of firebreaks to minimize the impact of wildfire on the landscape using two-stage stochastic programming.

Operations Research (OR) has addressed this problem in a number of ways, but the application of these models
to wildfire management is relatively recent (Martell, 2007). Numerous studies have integrated basic fire ignition and
propagation models into spatially explicit integer and dynamic programming frameworks (e.g., Bettinger (2009); Kim
et al. (2009); Konoshima et al. (2008); González-Olabarria and Pukkala (2011)). More sophisticated approaches inte-
grate the element of fire uncertainty through stochastic linear programming (SLP), which introduces randomness into
various parameters, including factors like fuel moisture content, treatment costs, and meteorological variables (such
as temperature, humidity, wind speed and direction, precipitation, and atmospheric stability). This incorporation of
randomness serves to address the inherent uncertainties tied to fire behavior and weather conditions. For instance,
Boychuk and Martell (1996) developed a multistage stochastic programming model for sustainable timber supply at
the forest level, incorporating fire risk through probability distributions to estimate the likelihood and potential impact
of fire events and the effectiveness of different fire management strategies. Meanwhile, Kabli et al. (2015) proposed
a two-stage stochastic programming model to optimize fuel treatment decisions in forest management. In that paper,
the authors used probabilistic distributions to represent uncertainty in fire ignition and spread and generated different
scenarios to assess fire risk and treatment effectiveness.

A commonly used parameter in wildfire management and OR models is burn probability (BP), which is typically
determined through an iterative and concatenated process of simulating spatially explicit fire ignition and growth
scenarios across the landscape (Parisien et al., 2005; Finney, 2005). Specifically, BP is calculated as the percentage
of simulations where a fire reaches a specific point or area (Parisien et al., 2005). Wildfire simulation models such as
FARSITE (Finney, 1998), Burn-P3 (Parisien et al., 2005), and Cell2Fire (Pais et al., 2021a) are capable of generating
multiple fire spread simulations and calculating burn probability. BP models have been used to support fuel reduction
strategies such as prescribed burns and firebreaks by identifying areas where fuel reduction efforts will have the greatest
impact on reducing burn probability (Carrasco et al., 2023; Ager et al., 2010; Oliveira et al., 2016).

The placement of effective firebreaks at the landscape scale is a fascinating challenge for decision support modeling,
representing an open problem in the fields of Natural Resources and Operations Research in Forestry (Martell, 2007;
Rönnqvist et al., 2015). This challenge persists due to several unaddressed aspects, mainly resulting from i) the common
focus on simple forest landscapes; ii) the use of simplified fire spread simulators that allow for multiple simulations
but potentially sacrifice accuracy over extensive landscapes (Bettinger, 2009; Kim et al., 2009; Konoshima et al.,
2008; González-Olabarria and Pukkala, 2011); iii) BP-based models provide point estimates of wildfire probability
for individual pixels, ignoring confidence bounds and spatial correlations between adjacent pixels (Kuhlmann et al.,
2015). From our perspective, a firebreak plan should have a high probability of spatially overlapping with future
wildfire events, and its effectiveness will depend on it. Therefore, to advance firebreak placement strategies, it is
critical to address these limitations and encourage innovative approaches that encompass the complexity of real-world
scenarios and contribute to more robust and effective fire management strategies.

In this paper, we present a novel approach based on a two-stage stochastic programming framework to address
firebreak placement. This model represents a pioneering step by introducing spatially explicit fire scenarios gener-
ated through a simulator that incorporates a fire behavior system, which has not been done before. Specifically, our
framework takes into account the uncertainties related to wildfire behavior, incorporating simulations from Cell2Fire,
integrated through the directed graph associated with the fire, into the two-stage stochastic programming model. Ini-
tially, we focus on minimizing the expected value of the burned forest area, which generally yields satisfactory results.
However, we acknowledge its limitations in unfavorable scenarios. To address this, we propose incorporating risk
measures into the problem modeling, either by including terms in the objective function to measure risk exposure and
mitigate undesirable outcomes or by constraining the feasible solution space to limit the probability and magnitude
of adverse events. In this context, we suggest incorporating Conditional Value-at-Risk (CVaR) into the two-stage
programming model to account for the probabilistic nature of wildfires and enable more robust decisions regarding
firebreak placement.

The remaining part of this paper is organized as follows. Section 2 provides a theoretical background and introduces
the basic notations and assumptions for the problem. In Section 3, we introduce a two-stage stochastic programming
formulation for the problem. Computational experiments and results are presented in Section 4. Finally, the conclu-
sions and directions for further work are discussed in Section 5.
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2. Material and Methods
In this section, we introduce the basic notations, assumptions, and wildfire concepts to formulate the firebreak

placement problem (FPP) as a stochastic optimization model.
2.1. Theoretical Background

The landscape is represented as a collection of cells denoted by  , automatically determined by the resolution of
the data layers (georeferenced ASCII files to include landscape information such as forest fuels, elevation, slope, and
aspect). These cells form the nodes of  = ( , ), the graph depiction of the landscape (see Fig. 1-A). In this context,
 represents the set of edges, with each cell having eight neighbors. To allow decision-makers to prioritize protection
for specific areas with high priority or value-to-protect (e.g., a biodiversity index), we introduce a parameter 𝑤𝑣 for
each 𝑣 ∈  , which represents the relevance of each cell 𝑣 ∈  in the landscape. Similarly, the edges in the graph can
represent both the underlying connectivity or other factors, such as distances between cell centers and transportation
costs, among other possibilities (Carrasco et al., 2023).

As mentioned in our Introduction, uncertainty arises from the occurrence of fires in the landscape, primarily di-
vided into two coupled processes: ignition and fire spread. The first process involves randomly selecting a cell where
the fire starts, which, depending on the origin of the ignition, natural or human-caused, may consider a uniform spatial
probability distribution or a probability model trained using historical ignitions, respectively (Carrasco et al., 2021).
The second process entails the spatial propagation of the fire, which depends on the heterogeneously distributed vege-
tation in the landscape, topography, and meteorological conditions. In our study, we will assume that fire ignitions are
uniformly distributed across the landscape due to their non-anthropic nature, mainly generated by lightning. Further-
more, the fire spread will be simulated using the Cell2Fire simulator (Pais et al., 2021a). When a fire occurs during a
simulation 𝑠 ∈  – with  being the set of simulation – a messaging process is triggered between the nodes of  that
generates a directed graph  𝑠 = (𝑠, 𝑠), where 𝑠 ⊆  is the set containing all the cells burned during the simulation
𝑠. The set of edges 𝑠 is constructed from these signals to represent fire propagation between adjacent cells (see more
details in Pais et al. (2021b)).

Cell2Fire, powered by the Canadian Fire Behaviour Prediction (FBP) System, has the capability to calculate various
aspects of fires, including fuel consumption, fire intensity, fire rate of spread, and fire type (surface or crown) (Hirsch,
1996), based on environmental conditions. Fig. 1-A depicts a simulation example of a wildfire produced with Cell2Fire
for a landscape in Canada. In it, we can see different colors for the cells corresponding to different fuel types. Specifi-
cally, in FBP, fuel types correspond to identifiable associations of vegetation/forest elements of distinctive species, size,
shape, arrangement, and continuity that will exhibit a certain fire behavior under defined burning conditions (Hirsch
et al., 2001). Seventeen discrete fuel types are currently recognized, which are grouped into coniferous, deciduous,
mixed wood forest stands, coniferous logging slash, and open grasslands. Gray is reserved for non-flammable cells
such as rocks, lakes, bare soils, etc.. Fig. 1-A also displays the ignition point (black circle) and the perimeter (black
solid line) of the arbitrarily chosen fire, along with the propagation lines of the graph  𝑠. Hereafter, the particular
forest depicted in Fig. 1-A will be referred to as Sub20.
2.2. Feasible solutions

There is evidence that fire patterns can be influenced by land cover arrangement and appropriate forest and vege-
tation management practices (Amiro et al., 2001; Cheney et al., 1993). These activities, referred to as fuel treatment,
may involve firebreak creation, prescribed burns, clear-cutting, thinning, or a combination of these methods (North
et al., 2015). As mentioned above, our study focuses on the problem of firebreak placement, which consists of replac-
ing a number of cells that have forest fuel with a non-flammable one, i.e., it is assumed here that the application of a
firebreak to a landscape cell involves the complete removal of vegetation fuel at that location, rendering the firebreaks
non-flammable. So, we introduce binary decision variables represented by a vector 𝐲 ∈ {0, 1}||, where 𝑦𝑣 equals
one if cell 𝑣 is chosen for constructing a firebreak and zero otherwise. Due to the high costs involved in constructing
firebreaks and, broadly, fuel treatments, in practice, only a small percentage of the forest is managed (Oliveira et al.,
2016; Jingan et al., 2005), and that imposes a constraint on the decision variables. Other constraints could be consid-
ered, such as environmental restrictions, regulations, access feasibility, and costs, among others. In this first study, the
set of feasible solutions is defined as follows:

𝕐 ∶= {𝐲 ∈ {0, 1}|| ∶
∑

𝑣∈
𝑦𝑣 ≤ 𝛼||} (1)
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Ignition point

Fire perimeter

Burnt cell C-1 Boreal Mixedwood

C-2 Boreal Spruce

C-3 Mature Jack or Lodgepole Pine

O-1 a/b Matted or Standing Grass  Non-fuel

C-4 Immature Jack, Lodgepole Pine, densely stocked 

M-1/2 Boreal Mixedwood  

SCENARIO DATATIME APCP TMP RH WS WD

S1 16-10-01 13:00 0.0 17.7 20 21 225

S1 16-10-01 14:00 0.6 16.9 18 25 225

S1 16-10-01 15:00 1.2 16.1 20 27 225

S1 16-10-01 16:00 0.0 15.8 20 37 225

S1 16-10-01 17:00 5.3 13.9 25 43 225

S1 16-10-01 18:00 0.0 12.1 35 45 225

S1 16-10-01 19:00 0.0 10.6 41 46 225

S1 16-10-01 20:00 0.0 11.3 39 18 270

APCP: Average Precipitation (mm) TMP: Temperature (ºC) 

RH: Relative Humidity (%) WS: Wind Speed (Km/h) 

WD: Wind Direction (º) 

Figure 1: A: Graph representation of the landscape, and a wildfire; B: Example of a fire-weather scenario.

where the parameter 𝛼 ∈ [0, 1], represents the percentage of the landscape to be treated or firebreak intensity.
2.3. Expected value

When a fire 𝜏 occurs on the landscape, it affects a number of cells, say 𝜏 , and there is a probability that its
spread will be blocked by the presence of firebreaks. From this fact, the decision 𝐲 will be as efficient as its ability
to intersect the fire 𝜏. Let 𝐿 (𝐲;𝐰, 𝜏) be the random variable that represents the burned cells due to a random fire 𝜏
on the landscape  , given the decision variables 𝐲 and the weighted vector 𝐰, from this, we can define the function
Φ(𝐲,𝐰) = 𝔼𝜏

[

𝐿 (𝐲,𝐰, 𝜏)
] as the expected value of a random variable 𝐿 (𝐲,𝐰, 𝜏) where 𝜏 represents the randomness

in our study. Thus, the firebreak placement problem (FPP) is formulated as follows:
min
𝐲∈𝕐

Φ(𝐲,𝐰) ∶= 𝔼𝜏
[

𝐿 (𝐲,𝐰, 𝜏)
] (2)

The optimization model of Eq. (2) aim to find a optimal firebreak plan 𝐲 (or simply as an optimal plan).
The distribution of 𝐿 (𝐲,𝐰, 𝜏) is an unknown function of the vector of decision variables 𝐲 and weighted vector 𝐰,

but realizations of 𝐿 (𝐲,𝐰, 𝜏) can be observed through simulation experiments with Cell2Fire (Pais et al., 2021a). With
this software, we can simulate a set 𝑇 ∶= {𝜏1,… , 𝜏

||} of independent and identically distributed (i.i.d.) simulations,
which generate 𝐿(𝐲,𝐰, 𝜏1), 𝐿(𝐲,𝐰, 𝜏2), ..., 𝐿(𝐲,𝐰, 𝜏||) values at any 𝐲 and 𝐰. With them, we can approximate the
function Φ(𝐲,𝐰) by:

Φ̄(𝐲,𝐰) = 1
||

||
∑

𝑠=1
𝐿(𝐲,𝐰, 𝜏𝑠) (3)

where the sampling errors can be controlled by increasing the number of i.i.d. simulations ||.
We conclude this section with three important points:
i) Φ(𝐲 = 0,𝐰) represents the expected loss if no fuel treatment action is taken on the landscape and can be approx-

imated by Eq. (3). Figure 1-A illustrates this situation.
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ii) Figure 2 illustrates two solutions, denoted as 𝐲1 (chart A) and 𝐲2 (chart B). Solution 𝐲2 proves to be more effective
than 𝐲1 for the wildfire depicted in both tiles, as it prevents the burning of 9 cells in contrast to 𝐲1 (assuming
𝐰 = 𝟏), which prevents three cells. In both cases, firebreaks are first placed in the landscape, followed by a
simulation of the fire’s progress from the same ignition point and under equivalent weather conditions.

iii) In terms of the function Φ̄, Φ̄(𝐲1,𝐰 = 𝟏) = 79 > Φ̄(𝐲2,𝐰 = 𝟏) = 73. However, for this example, we set || = 1.
In this example, 𝐲2 is better than 𝐲1, but it might not be for another fire scenario.
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Figure 2: The chart A shows a less efficient firebreak placement compared to that depicted in chart B.

2.4. Conditional Value-at-Risk
Conditional Value-at-Risk (CVaR) is a risk measure that is alternatively known as mean excess loss, mean shortfall,

or tail Value-at-Risk (VaR) and is typically used in portfolio theory. Thus, in the FPP context, we can intuitively be
seen the expected value of burned cells in the (1 − 𝛽) × 100% worst cases, where 𝛽 ∈]0, 1[. Formally, we follow the
paper of Rockafellar et al. (2000) to define the CVaR in the context of FPP.

Let 𝐹𝐿 be the cumulative probability distribution of our random variable 𝐿 ∶= 𝐿(𝐲,𝐰, 𝜏):
𝐹𝐿(𝐲,𝐰, 𝜑) = ℙ({𝜏 ∈ Γ ∶ 𝐿(𝐲,𝐰, 𝜏) ≤ 𝜑}). (4)

The Value-at-Risk at level 𝛽, or VaR𝛽 , of 𝐿 is defined by:
VaR𝛽(𝐿) = min{𝜑 ∈ ℝ ∶ 𝐹𝐿(𝐲,𝐰, 𝜑) ≥ 𝛽}, (5)

VaR𝛽(𝐿) thus corresponds to the 𝛽-percentile of the probability distribution of 𝐿. In the case where 𝐿(𝐲,𝐰, 𝜏) repre-
sents quantities of burned cells weighted, VaR𝛽(𝐿) can be interpreted as the largest possible burned cells that may be
observed once the (1 − 𝛽) × 100% worst potential outcomes have been excluded.
The Conditional-Value-at-Risk at level 𝛽 or CVaR𝛽 is defined by:

CVaR𝛽(𝐿) =
1

1 − 𝛽 ∫

1

𝛽
VaR𝛾 (𝐿)𝑑𝛾 (6)
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Following the result presented in Rockafellar et al. (2000), CVaR𝛽(𝐿) for the FPP can be expressed as the optimal
value of the following optimization problem:

CVaR𝛽(𝐿) = min
𝜑,𝐲∈𝕐

{

𝜑 + 1
1 − 𝛽

𝔼𝜏 [(𝐿(𝐲,𝐰, 𝜏) − 𝜑)+]
}

, (7)

where (∙)+ = max(∙, 0). This reformulation is widely used to reformulate scenario-based stochastic integer programs
involving a CVaR risk measure as mixed-integer linear programs. Likewise, in the EV, we assume that the random
variable 𝐿(𝐲,𝐰, 𝜏) has a finite and discrete set of 𝑆 possible realizations generated by Cell2fire simulator, each one
corresponding to a scenario equally probable 𝐿𝑠 ∶= 𝐿(𝐲,𝐰, 𝜏𝑠), the term 𝔼[(𝐿 − 𝜑)+] in the CVaR of Eq. (7), can
be replaced by the weighted sum of possible outcomes exceeding the risk level 𝜑, i.e., 1

||
∑

||
𝑠=1(𝐿

𝑠 − 𝜑)+, which can
easily be handled by adding a set of linear inequalities in the problem formulation.

3. FPP as a two-stage stochastic programming model
In this study, we present a novel approach to address the FPP. Our proposed methodology involves a two-stage

stochastic mixed-integer linear programming mathematical formulation. We assume that the underlying stochastic
input process has a finite probability space so that the information on the evolution of the uncertain parameters can be
represented by a discrete set of scenarios Ω = {1,… , |Ω|}. The probability for scenario 𝜔 is given by 𝜌𝜔, with a total
probability of 1 over all the scenarios, i.e., ∑𝜔∈Ω 𝜌𝜔 = 1.

Following the notation introduced in Section 2, 𝜏𝑠 is the wildfire scar resulting from a simulation 𝑠 of the Cell2Fire.
It is characterized by a directed acyclic graph  𝑠 = (𝑠, 𝑠), which represents a possible scenario in the two-stage
stochastic program. Let 𝑣(𝜔) be the node that denotes the ignition point of scenario 𝜔, i.e., the node that begins to
spread the wildfire. Additionally, let 𝛿𝜔+(𝑣) denote the set of nodes that are incident from node 𝑣 ∈ 𝜔. Thus, we can
define a scenario 𝜔 as a set of node 𝑉 𝜔, an ignition point 𝑣(𝜔) and the wildfire spread 𝛿𝜔+(𝑣) from one node to another
following the simulation of the Cell2Fire.

In this approach, the first stage is to decide the firebreak placement, i.e., determining which set of cells will be
treated, subject to 𝛼, which represents the percentage of land to be used as firebreak selected by the decision-maker.
Thus, we introduce a binary variable 𝑦𝑣 that takes the value 1 if the node 𝑣 ∈  is placed a firebreak and 0 other-
wise. Meanwhile, in the second stage, the performance of these firebreak placements is evaluated in each scenario.
Specifically, given the location of the firebreak determined in the first stage, the second stage calculates the number of
burned cells in each scenario, taking into account the spread of wildfire simulated. Thus, let 𝑥𝜔𝑣 be a binary variable
that takes value 1 if node 𝑣 ∈ 𝜔 is burned in the scenario 𝜔 after the firebreak placement and 0 otherwise. So the
value of 𝐿𝜔(𝐲,𝐰, 𝜏𝑠) can be calculated as ∑𝑣∈ 𝑤𝜔𝑥𝜔𝑣 . The objective is to balance the optimization of the expected
value (EV) and the conditional value at risk (CVaR) of the burned cell. Thus, we introduce the parameter 𝜆 ∈ [0, 1] to
balance the trade-off between both objectives. By incorporating EV and CVaR into the optimization process, we aim
to enhance the effectiveness and efficiency of firebreak placement strategies. This approach allows decision-makers to
study different balances between these two objectives.

Thus, it follows that the mathematical model can be expressed in the following manner:

minimize
𝐱,𝐲,𝜑,𝜂

𝜆

(

∑

𝜔∈Ω
𝜌𝜔

∑

𝑣∈
𝑤𝑣𝑥

𝜔
𝑣

)

+ (1 − 𝜆)

(

𝜑 + 1
(1 − 𝛽)

∑

𝜔∈Ω
𝜌𝜔𝜂𝜔

)

(8a)

subject to: ∑

𝑣∈
𝑦𝑣 ≤ 𝛼||, (8b)

𝑥𝜔𝑣(𝜔) = 1 𝜔 ∈ Ω, (8c)
𝑥𝜔𝑣 ≤ 𝑥𝜔𝑢 + 𝑦𝑢 𝑣 ∈  , 𝑢 ∈ 𝛿𝜔+(𝑣) 𝜔 ∈ Ω, (8d)
∑

𝑣∈𝜔
𝑤𝑣𝑥

𝜔
𝑣 − 𝜑 ≤ 𝜂𝜔 ∀𝜔 ∈ Ω, (8e)

𝜂𝜔 ≥ 0 ∀𝜔 ∈ Ω, (8f)
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𝜑 ≥ 0, (8g)
𝐱, 𝐲 ∈ {𝟎, 𝟏}. (8h)

Equation (8a) minimizes the convex combination of the expected value of weighted burned nodes and the condi-
tional value at risk. The first term corresponds to the sum of all burned cells v weighted by parameter 𝑤𝑣 over all
scenarios with a certain probability of occurrence 𝜌. Meanwhile, the second term seeks to minimize worst-case sce-
narios represented by the weighted sum of burned cells over the Value-at-Risk 𝜑. We introduce the variable 𝜂𝜔 that
allows linearization of the formulate (7). In particular, the constraint (8f) force the 𝜂 take the 𝐿(𝐲,𝐰, 𝜏𝜔)−𝜑, while the
constraint (8g) force to take only nonnegative values. Note that when the parameter 𝜆 is defined as 1, the optimization
model optimizes the EV; however, when the value is defined as 0, only the CVaR is minimized. Constraints (8b) define
the limit of cells used as a firebreak based on the value of 𝛼. Constraints (8c) establish the origin of the wildfire, and
Constraints (8d) define the propagation fire in each scenario. This is as follows: given a scenario 𝜔 if the node (or
cell) 𝑣 is burned, an incident node 𝑢 from node 𝑣 must also be burned unless a firebreak is allocated. Thus, given a
starting ignition node, 𝑣(𝜔) in each scenario, the firebreaks limit the wildfire spread, and a decision has to be made in
every node in which a firebreak can be assigned to stop the fire such that minimizes the objective function. Finally, the
constraint (8h) defines the binary variables 𝐱 and 𝐲 declaring that not half harvest can be done at each node. Note that
if the firebreak intensity is equal to zero (i.e., 𝛼 = 0), the constraints (8d) recover the fire scar of each scenario.
3.1. Computational experiments

We employed three real landscapes in our experiments: Sub20, Sub40, and Sub100, all situated in the Alberta
region of Canada. The Sub20 landscape, a 400-hectare forest patch depicted in Fig. 1, was chosen for assessing com-
putational performance and observing how the objective function evolves with changes in model parameters. To
evaluate the model’s computational efficacy over larger forest areas, we extended the study to include Sub40 (Fig.:10)
and Sub100 (Fig.:11) under specific parameter configurations. Each landscape is divided into 100× 100 m2 cells, and
detailed information about these landscapes can be found at https://github.com/fire2a/C2FFBP. Simulations
of multiple wildfires were conducted using Cell2Fire, requiring fire-weather scenarios (FWS) specific to the study area
(Parisien et al., 2005; Pais et al., 2021a). These scenarios include crucial factors such as temperature, relative humid-
ity, wind speed, wind direction, and fire weather indices—essential inputs for the Canadian Fire Behavior Prediction
(FBP) System (Hirsch, 1996) (see, e.g., Fig. 1-B).

The construction of fire-weather scenarios involved historical data obtained from the Climate Information Section
of the Agriculture and Forestry website of Alberta, as well as data from the Yaha Tinda Auto station (coordinates:
51.6547°, -115.3617°). This station was selected for its proximity to the coordinates of the forests used in the simula-
tion. To ensure representation of extreme conditions, we exclusively considered scenarios exceeding the 95th percentile
mean temperature.

The computational experiments conducted on the Sub20 forest were considered to analyze the performance of the
mathematical model, the number of scenarios |Ω|, the firebreak intensity 𝛼, and the parameter 𝜆. The values chosen
for the number of scenarios were |Ω| ∈ {20, 60, 100, 140, 180}. Additionally, our experiments set the 𝛼 values to
0.01, 0.02, 0.03, 0.04, 0.05 (or 1%, 2%, 3%, 4%, 5%, respectively). Lastly, the values assigned to parameter 𝜆 are
{0, 0.5, 1}. We randomly generated five instances for each combination of |Ω|, 𝛼, and 𝜆, resulting in a total of 375
instances. Remark that every individual occurrence is produced by a distinct simulation sample using C2F, which
randomly selects various combinations of ignition points and fire-weather conditions.

In order to simplify the analysis, we assigned the same protection priority to every cell; thus, for every node 𝑣 ∈  ,
we set the value of 𝑤𝜔 equal to 1. Also, the parameter 𝛽 was fixed on 0.9, meaning that CVaR will minimize the
expected shortfall, which would be the average loss in the 10% cases where the burned area exceeds its Value-at-Risk.

All procedures and mathematical formulations were implemented using Python programming language v3.10.9.
The optimization problems were solved using the GUROBI Optimizer v10.0.2. The experimental procedures were
executed on a computational framework featuring 12th Gen Intel(R) Core(TM) i5-12400 processor, with a speed of
2.50 GHz and 3,200 MHz Dual Channel 16 GB of RAM. The computations were performed on the Windows 10 Home
22H2 operating system.
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4. Results and discussion
Figures 3 and 4 displays the spatial arrangement of solutions using 𝛼 = 0%(A), 1%(B), 3%(C), and 5%(D), and

𝜆 = 1.0 and 𝜆 = 0.5, respectively. As the number of harvested cells increases, a clear reduction in burned areas can
be observed. However, no easily identifiable pattern emerges when examining the spatial distribution of firebreaks,
although some barriers form between 𝛼 levels of 3% and 5%. These results support the findings presented in (Finney
et al., 2007), which indicate that the selection of locations changes as 𝛼 varies. Some firebreak placements chosen at 1%
were not selected at 3%, and some of those chosen at 3% were not selected at 5%, suggesting that the solutions are not
a simple iterative process of aggregating harvested cells but rather a more complex selection process. Simultaneously,
the configuration of firebreaks undergoes alterations based on the 𝜆 parameter, resulting in modifications to the areas
being protected. It is worth mentioning that the solution provided by different value of 𝜆 also differ between them, the
firebreaks placed at 𝜆 = 0.5 tends to be more contiguous, separating the land into zones and preventing the formation
of large wildfires.
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Figure 3: Firebreak placement for the solution of the forest Sub20, using |Ω| = 100 and 𝜆 = 1. 𝛼 varies from 0% (A) to
5% (D). Firebreaks are depicted in black circles.

4.1. Computational assessment of the mathematical model
Extensive computational experiments were conducted to assess the performance of the proposed mathematical

model under various scenarios (|Ω|) and values of the 𝛼 and 𝜆 parameters. In order to ensure consistent and controlled
experimentation, a predetermined runtime limit of 1,800 seconds was set for each instance. These parameters were
applied uniformly across all instances of Sub20 described above.

The results are reported in Table 1. The column denoted as |Ω| represents the total number of scenarios employed
for solving the given instances. The column labeled MIP𝑔𝑎𝑝 provides the gap in percentage between the best lower

M. Vilches et al.: Preprint Page 8 of 19



A firebreak placement model using two-stage stochastic programming

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1A B

C D

B
ur

n 
pr

ob
ab

ili
ty

Figure 4: Firebreak placement for the solution of the forest Sub20, using |Ω| = 100 and 𝜆 = 0.5. 𝛼 varies from 0% (A) to
5% (D). Firebreaks are depicted in black circles.

bound and the best feasible solution obtained during the branch-and-cut algorithm in the GUROBI solver. In addition,
the column labeled C.TIME[min] reports the average CPU time in minutes spent.

From the experimental results, it is observed that as 𝛼 and |Ω| increase, either the runtime of the model, its MIP𝑔𝑎𝑝,
or both, tend to increase. For instance, when 𝛼 is set within the range of 1% to 2% of the forest size, all instances reach
optimality within the setting runtime limit. Conversely, instances became progressively more challenging to solve
for values of 𝛼 exceeding 2%. Note that, however, if we continue to increase the number of firebreaks to place until
𝛼|| = 8|Ω|, the solution becomes trivial because the firebreaks can effectively cover all possible fire propagation
routes from the ignition points in each scenario.

Regarding the parameter 𝜆, when the optimization is focused on the expected value-weighted metric (i.e., 𝜆 = 1.0),
the resulting MIP𝑔𝑎𝑝 values are consistently lower in comparison to experiments where the CVaR is included. In fact,
all instances were optimally resolved when optimizing for the expected value-weighted metric alone, except for a few
cases for the instances of 180 scenarios (|Ω|) and firebreak intensity of 5% (𝛼 = 5%).

In contrast, when seeking a balance between the expected value (EV) and CVaR metrics (i.e., 𝜆 = 0.5), it is
observed that only instances with a 2% treated landscape (𝛼 = 0.03) achieved optimality, even with up to 60 scenarios.
However, as the number of scenarios increased to 180 and 𝛼 was set at 0.05, the MIP𝑔𝑎𝑝 is almost 12%. Interestingly,
when we focus solely on optimizing for CVaR (𝜆 = 0), this results in slightly longer runtimes and MIP𝑔𝑎𝑝 values than
what we observed when 𝜆 was set to 0.5.
4.2. Efficiency analysis of the mathematical model solution for the forest Sub20

In the following subsection, we delve into an evaluation of the optimal firebreak placement 𝐲∗, derived from the
proposed stochastic optimization model. First, we examine the stochastic solution 𝐲∗ on the scenario sets Ω used to
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Table 1
Average computational time and gap by 𝛼, number of scenarios, and factor 𝜆.

𝛼 1% 2% 3% 4% 5%

𝜆 |Ω| C.TIME[min] MIP𝑔𝑎𝑝 C.TIME[min] MIP𝑔𝑎𝑝 C.TIME[min] MIP𝑔𝑎𝑝 C.TIME[min] MIP𝑔𝑎𝑝 C.TIME[min] MIP𝑔𝑎𝑝

0.0 20 0.01 0.00 0.03 0,00 0.20 0.00 0.83 0.00 0.87 0.00
60 0.06 0.00 0.72 0.00 6.17 0.00 13.72 1.94 14.07 2.00

100 0.15 0.00 1.68 0.00 12.31 1.36 27.93 5.04 30.00 7.18
140 0.23 0.00 2.85 0.00 20.93 1.94 30.00 7.60 30.00 10.18
180 0.37 0.00 4.65 0.00 27.24 3.30 30.00 7.48 30.00 11.88

0.5 20 0.01 0.00 0.03 0.00 0.15 0.00 1.05 0.00 0.71 0.00
60 0.06 0.00 0.72 0.00 7.28 0.00 12.96 1.22 15.60 2.00

100 0.12 0.00 2.10 0.00 11.04 1.12 27.86 5.06 30.00 7.46
140 0.22 0.00 3.78 0.00 21.21 2.16 30.00 7.78 30.00 10.84
180 0.40 0.00 5.12 0.00 26.52 3.10 30.00 7.60 30.00 11.36

1.0 20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
60 0.00 0.00 0.02 0.00 0.05 0.00 0.20 0.00 0.73 0.00

100 0.02 0.00 0.05 0.00 0.16 0.00 0.55 0.00 1.99 0.00
140 0.02 0.00 0.10 0.00 0.26 0.00 1.80 0.00 8.95 0.00
180 0.04 0.00 0.18 0.00 0.50 0.00 2.89 0.00 16.63 0.36

solve the optimization model. Second, to assess the robustness of the stochastic solution, we subject the solutions to a
test set comprising  simulations, provided by the Cell2Fire. In both instances, the stochastic solution 𝐲∗ is compared
to outcomes from random firebreak placements. The resultant findings are articulated under two primary wildfire
behavior assumptions: static fire and dynamic fire.

Static fire refers to the spreading of fire that remains unaffected by the implementation of the firebreak, based on the
assumption utilized in our mathematical formulation. Hence, the first evaluation involves determining the value of the
objective function achieved in each instance by the mathematical model proposal in Section 3, denoted FFP(𝐲∗,Ω, 𝜆).
In contrast, to evaluate the robustness, we obtain the graph 𝜏𝑠 that describes the scar of wildfire absence of firebreaks
in each one of the simulations  . These graphs are incorporated into the mathematical formulation. Then, we fixed
the stochastic solution 𝐲∗ obtained previously as first-stage variables to evaluate the objective function, denoted by
FFP(𝐲∗,Ω, 𝜆).

In contrast, the dynamic fire behavior assumption is deemed more realistic as it pertains to the fire’s propagation
pattern being altered when a firebreak is implemented as a barrier. Thus, we evaluated the quality of firebreak directly
on Cell2Fire. Namely, the location of the firebreaks in the optimization model is fixed in the Cell2Fire to assess both
the set of scenarios Ω used in the resolution model and the set of simulations  to examine robustness. We denoted
C2F(𝐲∗,Ω, 𝜆) and C2F(𝐲∗, 𝑆, 𝜆), respectively. This procedure is depicted in Fig. 5.

Forest geographic
and meteorological

data

Fire scar and
conectivity between
cells for all simulated

scenarios

Number of
simulations

Two-stage
stochastic programC2F simulation of

wildfires

C2F simulation
including firebreaks

New fire scar

Set of firebreaks
locations

Figure 5: Flowchart of the processes from C2F simulation of wildfires until the evaluation of solutions.

4.2.1. Static fire spread
In order to assess the performance of the stochastic solution, we analyzed the expected percentage of burned area

across all scenarios and the expected burned area for the (1 − 𝛽) scenarios where the burned area exceeds its Value-at-
Risk. We recall that 𝛽 = 0.9 was considered for all instances.
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The relation between 𝛼 and the expected burned area (resp. expected burned area for the (1 − 𝛽) scenarios) is
presented in Fig. 6a (resp. Fig. 6b). The figures report the average value of five instances where the model was solved
using 100 scenarios (FFP(𝐲∗,Ω, 𝜆), || = 100). The results suggest that increasing the number of firebreaks decreases
the value of both measures. However, the marginal reduction is smaller as value 𝛼 increases. For instance, when
𝜆 = 1, setting firebreak intensity to 0.01 reduces the average burned area of the forest by 4%. In contrast, increasing
𝛼 from 0.04 to 0.05 reduces the measurement by only 2%. Similarly, for 𝜆 = 0 and 𝜆 = 0.5, the average of the
10% worst-case scenario is reduced by 25% when compared to simulations of forests without firebreaks concerning
𝛼 = 0.01. In contrast, when 𝛼 is increased from 0.04 to 0.05, this value is reduced by only 8%. This phenomenon can
be attributed to the prioritization of firebreaks that are more effective at preventing fire spread. As 𝛼 increases, each
additional firebreak contributes less to reducing fire spread, which consequently results in a reduced impact on both
studied metrics.

On the other hand, in Fig. 6b, we see that the lower average percentage of the 10% of worst cases was achieved
using both 𝜆 = 0.5 and 𝜆 = 0. Consequently, considering that the expected burned area is lower using 𝜆 = 0.5 rather
than 𝜆 = 0, the results suggest that minimizing a convex combination of the expected burned area and the CVaR risk
measure is able to provide better results than only minimize the CVaR risk measure. It is important to note that for
some instances with 𝜆 = 0.5 and 𝜆 = 0, optimality was not achieved. This explains why, for 𝛼 = 0.03 and 𝛼 = 0.04,
the green curve is below the blue one.

In both evaluations, we introduced a random solution that entered the program as the first-stage variables, so we
only needed to capture the spread of fire resulting from that firebreak configuration. This random solution progressively
added additional firebreaks for increasing values of 𝛼. The results indicate that this solution performs worse than all
instances with different 𝜆 and 𝛼 values. In contrast with the random solution, 𝜆 = 1 achieves a reduction of almost
10% in the burned area for all five instances. For 𝜆 = 0, it accomplishes a significant 30% decrease in the average
burned area for the worst 10% of worst cases. This discrepancy arises due to the fact that the optimization model is
capable of generating not only feasible solutions but also the optimal firebreak placement.

Figure 7 presents the results of the evaluation of the solutions obtained from the resolution of the instances de-
scribed above into a test simulations set (FFP(𝐲∗, 𝑆, 𝜆), |𝑆| = 1, 000). The results show a better performance for
|Ω| = 180 and |Ω| = 100 in both measures, for all values of 𝜆 and 𝛼.

Furthermore, based on the findings, it can be observed that the solution derived from 20 scenarios outperforms
the random solutions. However, when the value of 𝛼 increases, the disparity between the two solutions decreases,
resulting in the random solution being more favorable in certain instances (refer to Figure 7 (b)). Simultaneously, the
enhancement is further amplified when the number of scenarios is increased to 100 and 180. However, the incremental
effect of raising the number of scenarios is diminished. Indeed, for 𝜆 = 0.0 and 𝛼 ≥ 0.04, the solutions exhibit neg-
ligible differences. The aforementioned observation implies the importance of establishing an appropriate quantity of
scenarios. Fewer scenarios may yield less competitive outcomes due to the presence of random solutions. Conversely,
an excessively high number of scenarios may not result in a substantial enhancement and unnecessarily inflate compu-
tational demand. This suggests the presence of a trade-off between the quality of the solution and the processing time
required.

If we compare this to the results presented in Fig. 6, it is possible to observe a decrease in the effectiveness of the
firebreaks, but achieving an important reduction in the percentage of burned area and average burned area for the 10%
of worst cases. This suggests that the sampling of scenarios is efficient and that the solutions are robust enough to
perform well when evaluated on a much larger set of scenarios.
4.2.2. Dynamic fire spread

Figure 8 portrays the dynamic fire behavior when assessing the solutions derived from the stochastic program
within the same set utilized for their formulation, i.e., C2F(𝐲∗, , 𝜆). An evaluation of the percentage of the burned
area reveals that the solution for 𝜆 = 1 consistently exhibits superior performance across all values of 𝛼, achieving
an average reduction of nearly 7%. When compared to the 20% reduction showcased in Fig. 6a, it becomes evident
that the alteration in fire behavior, induced by the introduction of a firebreak, leads to an increase in the burned area.
This transformation emphasizes that the stochastic solution serves as an approximation to the optimal placement when
considering fire dynamics. Consequently, even though it does not capture the complete fire spread pattern, it still
outperforms a random solution. A similar trend is observed for the average of the 10% worst cases, with only a 15%
reduction in contrast to the almost 50% reduction depicted in Fig. 6b. Regarding 𝜆, the best results were obtained using
𝜆 = 1 for 𝛼 =2% and 3% and 𝜆 = 0.5 for 𝛼 = 4% and 5%.
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(a) Percentage of burned area under different values of 𝜆
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(b) 10% worst-cases average under different values of 𝜆

Figure 6: Solutions provided by the model with |Ω| = 100 scenarios

Nonetheless, the numerical results suggest the model’s potential effectiveness, evaluating its performance on a
diverse range of wildfires is crucial to account for the inherent uncertainty associated with fire behavior. For this, we
assess the solution provided by the model through a simulation procedure based on the Cell2Fire simulator. Thus, the
obtained solutions were evaluated C2F(𝐲∗,Ω, 𝜆) using a different set of 1,000 (|Ω| = 1, 000) random simulations of
wildfires provided by Cell2Fire. The evaluation was conducted in the same forest as the validation, utilizing the same
geographic and meteorological conditions but a different combination of these and initial ignition points, resulting in a
different set of scenarios. This comprehensive assessment will provide a more accurate representation of the solution’s
actual capacity to mitigate forest fire damage during real incidents.

Figure 9 illustrates the percentage of burned area and the average for the worst 10% of cases for solutions derived
from 20, 100, and 180 scenario instances, evaluated across various sets of scenarios. It is crucial to note that these
scenarios are encompassed within larger set sizes; for instance, the 100-scenario set includes the 20-scenario set, and
the 180-scenario set includes both the 20 and 100 scenarios.

The results indicate a distinction between the performance of the stochastic solution during the scenario con-
struction phase and its performance in subsequent testing simulations. This underscores the importance of carefully
selecting representative cases to construct robust stochastic solutions. Remarkably, the graph highlights a significant
finding: the solutions derived from the 180-scenario instance perform at worst almost equal to other scenario sizes for
all of 𝛼 values and all 𝜆 values when comparing the percentage of burned area and the average for the 10% of worst
cases. Nevertheless, the difference between the results for |Ω| = 100 and |Ω| = 180 are lower than between |Ω| = 100
and |Ω| = 20, which suggests that the marginal gain for both measures decrease as the number of scenarios increases,
thus, employing a scenario set of |Ω| = 100 is sufficient to enhance the performance of lower-scenario instances and
yield more robust solutions, even matching larger scenario set sizes in some instances.

Regarding 𝜆, for both metrics, 𝜆 = 0.5 and 𝜆 = 0.0 exhibit similar behavior, performing slightly better than
𝜆 = 1.0 in terms of the percentage of burned area and the average of worst cases for scenario sizes of |Ω| = 100 and
|Ω| = 180. Overall, the best results are obtained using 𝜆 = 0.5 and |Ω| = 180, with slightly less favorable outcomes
using |Ω| = 100.

Regarding 𝛼, the curves presented in this section indicate a clear potential for improvement when higher levels of
the treated area are considered. Overall, the evaluation using different sets of scenarios confirms the model’s potential
effectiveness. The results demonstrate the robustness of the solution obtained from a larger number of scenarios while
also highlighting the diminishing marginal benefit of increasing the scenario quantity.

When comparing these results with Figure 7 it is possible to appreciate an increase in almost 9% in burned area
and nearly 30% of the average of burned area for the 10% of worst cases. This, as explained before, happens due to the
ability of fire to react to firebreaks and search paths that will provoke larger fire scars.
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(a) Average burned area by |Ω| for 𝜆 = 1.0.
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(b) 10% worst case average by |Ω| for 𝜆 = 1.0
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(c) Average burned area by |Ω|𝑡 for 𝜆 = 0.5.
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(d) 10% worst case average by |Ω| for 𝜆 = 0.5.
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(e) Average burned area by |Ω| for 𝜆 = 0.0.
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(f) 10% worst case average by |Ω| for 𝜆 = 0.0

Figure 7: Evaluation of the solutions on 1,000 scenarios, considering static fire, |Ω| size assessment.

4.3. Computational analysis on larger forests
The preceding section has outlined the findings for the Sub20 forest. However, it is important to underscore that

one of the objectives of this article is the application of the model to real-scale forest scenarios. In the subsequent
section, we present the computational results for the Sub40 and Sub100 forest configurations, each evaluated under
various parameter settings, specifically, 𝛼 = 0.01, 0.03, 0.05, 𝜆 = 0.5, 𝛽 = 0.9, and a scenario set size of |Ω| = 100.

The results, as illustrated in Table 2, reveal a noteworthy increase in optimality gap compared to the Sub20 forest,
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(a) Percentage of burned area under different values of 𝜆

0 1% 2% 3% 4% 5%
α

57.5%

60.0%

62.5%

65.0%

67.5%

70.0%

72.5%

75.0%

77.5%

��
��

�
��
	�
��
��
��
��

�
��
�
��
��
���



��
�

�����
�������
�����
�
�������������

(b) 10% worst-cases average under different values of 𝜆

Figure 8: Evaluation of the solutions using C2F on set Ω used for solving the model.

Table 2
Computational time and MIPGAP by 𝛼 and forest size.

𝛼 Forest C. Time [min] MIP𝑔𝑎𝑝 Forest C. Time [min] MIP𝑔𝑎𝑝
1% 1440 13.3 1440 35.2
3% Sub40 1440 32.9 Sub100 1440 19.5
5% 1440 35.7 1440 5.9

even when the optimization program was allotted a time limit of 24 hours. This escalation in the optimality gap can
be primarily attributed to the expansion of the forest’s scale, which consequently entails a proliferation in the number
of decision variables. Furthermore, an observable trend in the results is the amplification of the optimality gap as the
parameter 𝛼 increases. This behavior is a consequence of the augmented complexity associated with the placement
of additional firebreaks, as 𝛼 directly governs the proportion of land designated for firebreaks. Nevertheless, it is
intriguing to note that, for the Sub60 and Sub100 scenarios, the MIP𝑔𝑎𝑝 demonstrates a decrease as 𝛼 increases. This
phenomenon arises because 𝛼 represents a percentage of the total land area rather than a fixed count of firebreaks.
Thus, the number of firebreaks generated with 𝛼 = 0.05 for Sub40 is not equivalent to that for Sub100. Consequently,
when the quantity of firebreaks surpasses a specific threshold, the decision process tends to become trivial due to
the program’s inherent capacity to contain any initial ignition point effectively. In theory, this threshold is reached
when the number of firebreaks equals eight times the cardinality of the scenario set (𝛼|| = |Ω|). This configuration
theoretically ensures that the firebreaks can enclose every possible initial ignition point. However, in practice, this
threshold is achieved with a smaller number of firebreaks due to the relative homogeneity in weather conditions and
the improbability of a scenario set where the fire would simultaneously propagate in all eight conceivable directions
from a given ignition node.

5. Conclusions
In this study, we introduce an innovative two-stage stochastic optimization model for the strategic placement of

firebreaks, leveraging the spatially explicit scenarios generated by the Cell2Fire simulator. This addresses the inherent
unpredictability associated with wildfire spread and behavior.

Our comprehensive computational analysis sheds light on the approach’s robustness and efficacy. We have unveiled
that balancing the expected damage (EV) against risk (CVaR) — particularly with a preference parameter of 𝜆 = 0.5—
significantly curtails the extent of the burn area, including in the most severe 10% of cases. This balance illustrates the
potential for a calculated approach to mitigate wildfire destruction effectively.

Further, our findings explain that while augmenting the number of firebreaks typically leads to a reduction in burned
area, the benefits tend to decrease marginally beyond a certain threshold. This highlights the critical need for strategic
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(a) Average burned area by |Ω| for 𝜆 = 1.0.
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(b) 10% worst case average by |Ω| for 𝜆 = 1.0
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(c) Average burned area by |Ω| for 𝜆 = 0.5.
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(d) 10% worst case average by |Ω| for 𝜆 = 0.5.
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(e) Average burned area by || for 𝜆 = 0.0.

0 1% 2% 3% 4% 5%
α

55.0%

60.0%

65.0%

70.0%

75.0%

80.0%

85.0%

��
��
��
��
��
��
�

��
��
��
��
�
��
��
���
	�
��
�

�Ω������
�Ω��������
�Ω�������

��
�����������

(f) 10% worst case average by || for 𝜆 = 0.0

Figure 9: Evaluation of the solutions using C2F on 1,000 scenarios, |Ω| size assessment.

placement over sheer quantity, considering environmental trade-offs such as carbon footprint and biodiversity impacts.
In addition, our proposed approach innovatively incorporates cell-specific weights within the model, empowering

decision-makers to prioritize the protection of cells based on ecological value or proximity to human habitats. While the
current experimental setup did not explore the nuances of this weighting parameter, it certainly opens up a vital avenue
for future research. Analyzing how varying these weights impacts model outcomes can provide deeper understanding
and more tailored strategies for wildfire management, particularly in areas of high conservation value or significant
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human interest.
Looking ahead, future research should delve into incorporating dynamic wildfire behavior into optimization models

to enhance their practical applicability. Additionally, evaluating the model in a multi-period decision framework would
account for the dynamic nature of forest landscapes, offering insights into the long-term strategic planning of firebreaks.
In addition, to embed into evaluations the negative externalities produced by the treatments in the landscape, such as
the impact on carbon emissions and reduction of biodiversity, among others.

From a computational perspective, the inclusion of additional scenarios contributes to improved results. However,
the incremental advantages achieved become increasingly modest as the computational time required increases. This
observation underscores the existence of a trade-off between the benefits of incorporating additional scenarios and
the associated computational expenses. Therefore, future research should focus on developing algorithms that can
effectively address larger landscapes and employ scenario-selective strategies to avoid unnecessary increases in the
size of the optimization model.

In conclusion, our computational experiments have demonstrated the potential effectiveness of our mathematical
model for firebreak placement in mitigating forest fire damage. This study shows that incorporating fire behavior soft-
ware, such as Cell2Fire, proves to be a powerful tool by introducing actual fire spread dynamics into the optimization
program. This integration enables selecting a highly effective firebreak placement configuration to face the challenging
task of mitigating the spread of wildfire. Thus, the insights gained from our analysis of various scenarios and parameter
settings contribute to understanding optimal firebreak allocation strategies. As we continue to refine and expand our
understanding of this model, it holds promise for improving wildfire management strategies, ultimately minimizing
the ecological, humanitarian, and economic impacts of wildfires.
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A. Appendix

NF Non Fuel

Figure 10: Sub40 Forest.

NF Non Fuel

Figure 11: Sub100 Forest.
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