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Abstract

We propose two new classes of valid inequalities (VIs) for the binary knapsack polytope,

based on non-minimal covers. We also show that these VIs can be obtained through neither

sequential nor simultaneous lifting of well-known cover inequalities. We further provide condi-

tions under which they are facet-defining. The usefulness of these VIs is demonstrated using

computational experiments on fixed charge transportation problems, a well-known class of NP-

hard problems, which help improve their lower bounds by more than 9% on average. This helps

save CPU time by around 77% to 94% when used in the absence of CPLEX-generated cuts,

depending on the problem parameters. This also reduces the CPU time by around 28% to 16%

when used in conjunction with CPLEX-generated cuts.

Keywords: Knapsack polytope, Valid inequalities, Facets, Non-minimal cover,

Integer programming, Fixed charge transportation problem
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1 Introduction

Consider a binary knapsack set Y = P ∩ Bn, where P = {y ∈ Rn :
∑

i∈N aiyi ≤ b}, ai > 0 ∀i ∈

N, b > 0. Let KP denote the knapsack polytope, i.e., KP = Conv(Y ). We assume that KP is

full-dimensional, i.e., dim(KP ) = |N |, which happens only when ai <= b ∀i ∈ N . A set C ⊆ N is a

cover of Y if
∑

i∈C ai > b, and its surplus λ is defined as the extra weight included in C beyond the

knapsack capacity, b, i.e., λ =
∑

i∈C ai − b. A cover is minimal if λ ≤ min
i∈C

{ai}, else non-minimal,

i.e., when λ > min
i∈C

{ai}. Given a cover C, it is well-known that the following is valid inequality

(VI) for KP:

∑
i∈C

yi ≤ |C| − 1 (1)

(1) is popularly referred to in the literature as Cover Inequality (CI). Let KPC = {y ∈ KP :

yi = 0 ∀i ∈ N\C}. Then, (1) defines a facet to KPC if and only if C is minimal (Padberg, 1975;

Balas, 1975; Wolsey, 1975; Hammer et al., 1975). Hence, (1) defined by a non-minimal cover is

dominated by one defined by a minimal cover, and is, therefore, generally not used in the literature.

Minimal CIs, which define facets of KPC , are generally not facet-defining for KP . Lifting is a

popular technique used in the literature to strengthen minimal CIs to make them facet-defining for

KP (Balas and Zemel, 1978; Gu et al., 1998, 1999). For a detailed literature review on knapsack

polytopes, we suggest the reader refer to (Hojny et al., 2020)

In this paper, we make use of non-minimal covers to propose two new classes of VIs and derive

the conditions under which they define facets of KP . Further, we show that the facets of KP

obtained from one of our proposed classes of VIs can never be obtained through sequential lifting

of minimal CIs. Our computational experiments on the fixed charge transportation problem, a

well-known class of NP-hard problem, highlight the usefulness of the facets from our proposed VIs,

which help improve the lower bounds by more than 9% on average. This helps save the CPU time

by around 77% to 94% when used in the absence of CPLEX-generated cuts. This also reduces the

CPU time by around 28% to 16% when used in conjunction with CPLEX-generated cuts.

The rest of the paper is organized as follows. We introduce two types of valid inequalities and

derive their facet defining condition in section 2. Computational results are presented in section 3.
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Finally, we conclude in section 4.

2 Valid Inequalities based on Non-Minimal Covers

In this Section, we propose two new classes of VIs based on the idea of partitioning non-minimal

covers. In Section 2.1, we partition a non-minimal cover C based on its surplus, whereas its partition

in Section 2.2 is based on the idea of an exclusion set, which is defined as a subset of items whose

exclusion from C makes it no longer a cover. For each of these classes of VIs, we further derive the

conditions under which they define facets of KPC , as well as KP . For the rest of the paper, we use

the following notation.

C ′ : N \ C

max(C) : the highest weight among all items in set C

maxj(C) : the jth highest weight among all items in set C

min(C) : the lowest weight among all items in set C

minj(C) : the jth lowest weight among all items in set C

cj : cardinality of set Cj

λ : surplus of cover C, i.e., λ =
∑

i∈C ai − b

Additionally, for C = ∅, max(C) = min(C) = maxj(C) = minj(C) = 0.

2.1 Surplus-based Partition

Proposition 1. Given a cover C and its partition C1 = {i ∈ C : ai < λ} and C2 = {i ∈ C : ai ≥ λ},

(a) the following is a VI for KP:

∑
i∈C1

yi + 2
∑
i∈C2

yi ≤ c1 + 2c2 − 2 (2)

(b) (2) cuts off fractional extreme points ȳ ∈ P characterized as:

(i) ȳi = 1 ∀i ∈ (C2 ∪ C1\{j, k} : aj + ak > λ) , ȳj = 0, ȳk =
aj+ak−λ

ak

(ii) ȳi = 1 ∀i ∈ ((C1\{j}) ∪ (C2\{k}) : aj + 0.5ak > λ), ȳj = 0, ȳk =
aj+ak−λ

ak
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(iii) ȳi = 1 ∀i ∈ (C1 ∪ (C2\{j}) : aj > λ), ȳj =
aj−λ
aj

.

Proof. (a) In general, the following are (trivial) VIs for KP:

∑
i∈C1

yi ≤ c1 (3)

∑
i∈C2

yi ≤ c2 (4)

Multiplying (4) by 2 and adding it to (3), we get the following valid inequality:

∑
i∈C1

yi + 2
∑
i∈C2

yi ≤ c1 + 2c2

Next, we show that any solution y ∈ Y can be one of the following three mutually exclusive

and exhaustive types, and in each case, it satisfies (2):

• yi = 1 ∀i ∈ C1: Since ai ≥ λ ∀i ∈ C2, for any feasible solution to KP, ∃ at least one

i ∈ C2 : yi = 0. Therefore,
∑

i∈C2
yi ≤ c2 − 1, which implies

∑
i∈C1

yi + 2
∑

i∈C2
yi ≤

c1 + 2c2 − 2.

• yi = 1 ∀i ∈ C2: Since ai < λ ∀i ∈ C1, for any feasible solution to KP, ∃ one pair

i, j ∈ C1 : j! = i, yi = yj = 0. Therefore,
∑

i∈C1
yi ≤ c1 − 2, which implies

∑
i∈C1

yi +

2
∑

i∈C2
yi ≤ c1 + 2c2 − 2.

• ∃ at least one i ∈ C1 : yi = 0 and ∃ at least one i ∈ C2 : yi = 0: Since ai ≥ λ ∀i ∈ C2, such

a solution is always feasible to KP. Further,
∑

i∈C1
yi+2

∑
i∈C2

yi ≤ c1− 1+2(c2− 1) <

c1 + 2c2 − 2.

(b) (i) Substituting the fractional point ȳ in the knapsack inequality makes it binding, which

immediately shows that it is an extreme point of P . Further, substituting it in (2) gives

the LHS = c1 = 2c2 − 2 +
aj+ak−λ

ak
> c1 = 2c2 − 2 = RHS, and hence, violates it.

Proofs for (ii) and (iii) are omitted as the steps involved are exactly the same as for (i).

We refer to (2) as a 2-partition cover inequality (2PCI).
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Remark 1. (a) When C1 = ∅, i.e., λ ≤ min(C), (2) reduces to the following minimal CI:∑
i∈C2

yi ≤ c2 − 1.

(b) When C2 = ∅, i.e., λ > max(C), (2) reduces to the following Extended Cover Inequality

(ECI):
∑

i∈C1
yi ≤ c1 − 2.

(c) As a result of the above two remarks, we only consider 2PCIs with C1 ̸= ∅ and C2 ̸= ∅, i.e.,

min(C) < λ ≤ max(C).

We use the following as an illustrative example.

Example 1. Consider Y = {y ∈ Bn :
∑

i∈N aiyi <= b}

with n = 15, a = {19, 17, 14, 14, 14, 13, 13, 12, 11, 10, 10, 9, 9, 7, 5}, and b = 158.

Clearly, C = N is a non-minimal cover since
∑

i∈C ai = 177, λ = 177−158 = 19 > mini∈C{ai} = 5.

C2 = {1} since a1 = 19 ≥ λ, C1 = N\{1}, and c1 = 14, c2 = 1. Hence, the corresponding 2PCI is

2y1 + y2 + · · · + y15 ≤ 14 + 2 × 1 − 2 = 14. Consider the following fractional point: ȳi = 1 ∀i ∈

C2∪C1\{10, 11}, ȳ10 = 0, ȳ11 = 1/10. Clearly,
∑

i∈C aiȳi = 158. Hence, this ȳ is an extreme point of

P . Here, a10 + a11 = 10 + 10 = 20 > 19 = λ, and ȳ11 =
a10+a11−λ

a11
= 10+10−19

10 . Hence, this extreme

point is of the type as characterized by Proposition 1.b.i. Further,
∑

i∈C1
ȳi+2

∑
i∈C2

ȳi = 14.1 > 14;

hence, ȳ is cut off by the above 2PCI.

Theorem 1. (2) defines a facet of KPC if and only if the following two conditions are satisfied:

(a) c1 ≥ 3

(b) (i). λ ≤ max(C1) +min(C1); (ii). λ ≤ max2(C1) +max3(C1)

Proof. First, we will prove that condition (a) is necessary. Condition (a) can be violated only in

the following two cases: (i) c1 = 1, (ii) c1 = 2. Next, we will show that in neither of the two cases

can (2) define a facet of KPC .

(i) c1 = 1: Say c2 = k ≥ 1. Then, (2) can be written as: y1+2(y2+· · ·+yk+1) ≤ 1+2k−2 = 2k−1.

This inequality can define a facet of KPC only if there exist k+1 affinely independent points in

KPC for which it is binding. Clearly, the following k points are the only affinely independent

points in KPC for which this inequality is binding. Hence, with c1 = 1, (2) cannot define a

facet of KPC .

5





y1 y2 y3 yk yk+1

0 0 1 1 1 y1

0 1 0 1 1 y2

0 1 1 1 0 1 yk−1

0 1 1 1 0 yk


(ii) c1 = 2: Say c2 = k ≥ 1. Then, (2) can be written as: y1+y2+2(y3+ · · ·+yk+2) ≤ 2+2k−2 =

2k. This inequality can define a facet of KPC only if there exist k + 2 affinely independent

points in KPC for which it is binding. Clearly, the following k+1 points are the only affinely

independent points in KPC for which this inequality is binding. Hence, with c1 = 2, (2)

cannot define a facet of KPC .



y1 y2 y3 yk yk+1 yk+2

0 0 1 1 1 1 1 y1

1 1 0 1 1 1 1 y2

1 1 1 0 1 1 1 y3

1 1 1 1 1 0 1 yk

1 1 1 1 1 1 0 yk+1


This proves that condition (a) is necessary, i.e., c1 ≥ 3.

Next, we will prove that condition (b) is necessary. For this, we need to show that any set of c

affinely independent points in KPC , for which (2) is binding, must satisfy condition (b). For this,

let yk ∈ KPC be a point defined as yki = 1∀i ∈ C1 ∪ (C2\{k}) and yki = 0 for i = k. Clearly,

{yk : k ∈ C2} is a set of c2 affinely independent points as shown below using matrix M1. Further,

for each yk defined above, (2) is binding since
∑

i∈C1
yi+2

∑
i∈C2

yi = c1+2(c2− 1) = c1+2c2− 2.
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M1 =
(
P Q

)
=



y1 y2 yc1 yc1+1 yc1+2 yc−1 yc

1 1 1 1 0 1 1 1 1 y1

1 1 1 1 1 0 1 1 1 y2

1 1 1 1 1 1 1 0 1 yc2−1

1 1 1 1 1 1 1 1 0 yc2


Clearly, Q is a c2 × c2 matrix with c2 affinely independent rows.

Now, we need to generate the remaining c1 affinely independent points (since c = c1 + c2).

For this, we first show that if λ ≤ max(C1) + min(C1) is violated, then it is not possible to

generate c1 affinely independent points in KPC for which (2) is binding. To that end, let us assume

max(C1) +min(C1) < λ ≤ max(C1) +min2(C1). In this case, clearly, the top c1 − 2 points shown

below are affinely independent points. Beyond this set, clearly, the remaining two at the bottom are

the only ones such that the set of c1 points are affinely independent points. Of these two, yc1−1 /∈ Y

since λ > max(C1) +min(C1). This proves λ ≤ max(C1) +min(C1) is a necessary condition.

Now, we show that condition (b) is sufficient. Clearly, when λ ≤ max(C1) +min(C1), the first

c1−1 points are affinely independent points in KPC as shown below using matrix M2. In addition,

yc1 ∈ KPC only if λ ≤ max2(C1) +max3(C1).

M2 =
(
R S

)
=



y1 y2 y3 · · · yc1−1 yc1 yc1+1 · · · yc

0 0 1 · · · 1 1 1 · · · 1 yc2+1

0 1 0 1 1 1 1 · · · 1 yc2+2

0 1 1 1 0 1 1 · · · 1 yc−2

0 1 1 1 1 0 1 · · · 1 yc−1

1 0 0 1 1 1 1 · · · 1 yc


︸ ︷︷ ︸

C1

︸ ︷︷ ︸
C2

The set of c2 affinely independent points and the set of c1 affinely independent points, as gen-

erated above, can be together represented using the following c× c matrix:

M =

M1

M2

 =

P Q

R S
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Since the c2 rows of M1 are affinely independent and the c1 rows of M2 are affinely independent, all

c1 + c2 rows of M are affinely independent. This proves that conditions (a) and (b) are necessary

and sufficient for (2) to define a facet of KPC .

Example 1 (Continued). 2y1 + y2 + · · · + y15 ≤ 14 defines a facet of KPC since it satisfies both

the conditions of Theorem 1 as shown below:

(a) c1 = 14 > 3

(b) λ = 19,max(C1) = 17,min(C1) = 5,max2(C1) = max3(C1) = 14. Hence, λ < max(C1) +

min(C1) and λ < max2(C1) +max3(C1)

Theorem 2. (2) defines a facet of KP if and only if it defines a facet of KPC and any of the

following conditions is satisfied:

(a) C = N

(b) λ ≤ max(C2)−max(C ′)

(c) λ ≤ max(C1) +max2(C1)−max(C ′)

Proof. To prove the theorem, we show that each of the conditions (a), (b), and (c) is necessary in

the absence of the remaining two.

(a) It is easy to see that if C = N , then a facet of KPC will also be facet of KP (since KP =

KPC).

(b) Suppose that condition (b) is not true. Accordingly, suppose max(C2) − max(C ′) < λ ≤

max(C2)−max2(C
′). In order to prove that (2) defines a facet of KP , we need to generate

additional c′ affinely independent points. However, if λ ≤ max(C2)−max2(C
′), then we can

only generate c′ − 1 additional affinely independent points as shown below.

Consider n× n matrix

M =
(
P Q R

)
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Where P is a matrix of dimension n × c1 with all entries equal to 1, Q is a matrix of order

n× c2 with entries equal to [0, 1, . . . , 1], and R is an identity matrix of order n× c′ as shown

below.

R =



1 0 0 · · · 0 y1

0 1 0 · · · 0 y2

0
...

1 0 yn−1

0 0 0 · · · 1 yn


Now we prove the sufficiency of condition (b). If λ ≤ max(C2) − max(C ′), then we can

generate c′ affinely independent points. This proves the necessity of condition (b) in the

absence of conditions (a) and (c).

(c) We omit the proof of this part as it can be done using similar steps as for part (b).

Example 1 (Continued).

• 2y1 + y2 + · · ·+ y15 ≤ 14 defines a facet of KP since C = N (using condition 2.(a).

• Let us consider another cover C = N\{15}. For this cover, λ = 14, C2 = {1, . . . , 5}, C1 =

{6, . . . , 14}, C ′ = {15}. Hence, c1 = 9, c2 = 5 and the corresponding 2PCI is 2(y1 + · · · +

y5) + y6 + · · · + y14 ≤ 2 × 5 + 9 − 2 = 17. It defines a facet of KPC since it satisfies

both the conditions of Theorem 1: (a) c1 = 9 > 3; (b) λ = 14,max(C1) = 13,min(C1) =

7,max2(C1) = 13,max3(C1) = 12; hence, λ < max(C1) + min(C1) and λ < max2(C1) +

max3(C1). Further, 2(y1 + · · · + y5) + y6 + · · · + y14 ≤ 17 also defines a facet of KP since

it satisfies conditions (b) and (c) of Theorem 2 as follows: (b) max(C2) = 19,max(C ′) = 5;

hence, λ = 14 ≤ max(C2) − max(C ′) = 14; (c) max(C1) = 13,max2(C1) = 13; hence,

λ = 14 < max(C1) +max2(C1)−max(C ′) = 21.

Proposition 2. (2) can be obtained through neither sequential nor simultaneous lifting of any

minimal CI.
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Proof. We prove this for sequential and simultaneous lifting in parts (a) and (b), respectively. For

this, Consider (2) corresponding to a 2-partition C1, C2 of a non-minimal cover C. Further, consider

a minimal cover C0 obtained by removing a subset of items from C.

(a) Clearly, c0 ≤ cmax
0 = c1 + c2 − 1. The CI corresponding to a minimal cover with cardinality

cmax
0 has its RHS = c1 + c2 − 2 < c1 + 2c2 − 2 ∀c1 > 0, c2 > 0. We also know that sequential

lifting of a minimal CI does not alter its RHS. Hence, (2) can be never obtained through

sequential lifting of such a minimal CI. Furthermore, a CI corresponding to any other cover

with cardinality strictly less than cmax
0 will have its RHS c1 + c2 − 2. Hence, sequential lifting

of such a CI can never produce (2).

(b) By definition, C0 ∋ i ∀i ∈ C2. To prove (2) cannot be obtained through simultaneous lifting

of any minimal CI, we consider the following two mutually exclusive (and exhaustive) cases:

(i) C0 ∋ at least one i ∈ C1: Let C1
0 be the set of items from C1 contained in C0. CI

corresponding to C0 is
∑

i∈C0
yi ≤ c0−1. Any inequality obtained through simulatenous

lifting of this CI will be of the form:

∑
i∈C0

yi +
∑

i∈C1\C1
0

1

α
yi

=
∑
i∈C1

0

yi +
∑

i∈C0\C1
0

yi +
∑

i∈C1\C1
0

1

α
yi

=
∑
i∈C1

0

yi +
∑
i∈C2

yi +
∑

i∈C1\C1
0

1

α
yi ≤ c0 − 1

The coefficients of the variables in the set C1 \ C1
0 have 1 in the numerator since the

corresponding terms in a 2PCI appear with a coefficient of 1. The above inequality can

be rewritten as:
∑

i∈C1
0
αyi+

∑
i∈C2

αyi+
∑

i∈C1\C1
0
yi ≤ α(c0−1). For this inequality to

be a 2PCI, the coefficients of the variables in the set C2 must be 2, i.e., α = 2. However,

this makes the coefficients of the variables in C1
0 ⊂ C1 also equal to α = 2, which prevents

it from being a 2PCI.

(ii) C0 ∋ no i ∈ C1: In this case, C0 = C2 =⇒ c2 ≥ 2. Also, c1 ≥ 1 (since C is a

non-minimal cover). So, the CI corresponding to C0 = C2 is
∑

i∈C2
yi ≤ c2 − 1. Any
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inequality obtained through simulatenous lifting of this CI will be of the form:

∑
i∈C2

yi +
∑
i∈C1

1

α
yi ≤ c2 − 1

=⇒
∑
i∈C2

αyi +
∑
i∈C1

yi ≤ α(c2 − 1)

For this inequality to be a 2PCI, the coefficients of the variables in the set C2 must be 2,

i.e., α = 2. Also, the RHS of the inequality must be equal to c1 + 2c2 − 2. This implies

that 2(c2 − 1) = c1 + 2c2 − 2 =⇒ c1 = 0, which contradicts the initial requirement that

c1 ≥ 1. Hence, a 2PCI can never be obtained from simultaneous lifting of this CI.

Example 1 (Continued). The facet-defining 2PCI 2y1 + y2 + · · · + y15 ≤ 14 cannot be obtained

from the sequential lifting of any minimal CI: This can be easily seen as follows. First, any CI with

RHS = 14 is defined only for C = N . However, for C = N , the cover is non-minimal, as discussed

earlier. Hence, this facet cannot be obtained from the sequential lifting of a minimal CI.

Similarly, it can be shown that the other facet-defining 2PCI 2(y1+ · · ·+y5)+y6+ · · ·+y14 ≤ 17

can not be obtained through the sequential lifting of any minimal CI.

Proposition 2 highlights that the facets given by (6) will, in general, complement the facets

obtained through sequential liftings of minimal CIs in characterizing Conv(KP ).

Proposition 3. Given a cover C, and its partition C1 = {any one i : ai < λ} or {i, j ∈ C : j ̸=

i, ai + aj < λ}, C2 = {i,∈ C : ai < λ ≤ ai +max(C1)}, and C3 = {i ∈ C : ai ≥ λ},

(a) the following is a VI for KP:

∑
i∈C1

yi + 2
∑
i∈C2

yi + 3
∑
i∈C3

yi ≤ c1 + 2c2 + 3c3 − 3 (5)

(b) (2) cuts off fractional extreme points ȳ ∈ P characterized as:

(i) ȳi = 1 ∀i ∈ (C3 ∪ C2 ∪ C1\{j, k, l}: aj + ak + al > λ), ȳk = ȳl = 0, ȳj =
aj+ak+al−λ

aj

(ii) ȳi = 1 ∀i ∈ ((C1\{j}) ∪ (C2\{k}) ∪ C3 : aj + ak > λ),
(
ȳj = 0, ȳk =

aj+ak−λ
ak

)
, or(

ȳk = 0, ȳj =
aj+ak−λ

aj

)
11



(iii) ȳi = 1 ∀i ∈ (C1 ∪ C2 ∪ (C3\{j}) : aj > λ), ȳj =
aj−λ
aj

.

We refer to (5) as a 3-partition cover inequality (3PCI).

Proof. (a) Following the steps of the proof for Proposition 1(a), we get the following valid in-

equality:

∑
i∈C1

yi + 2
∑
i∈C2

yi + 3
∑
i∈C3

yi ≤ c1 + 2c2 + 3c3

Next, we show that any solution y ∈ Y can be one of the following four mutually exclusive

and exhaustive types, and in each case, it satisfies (5).

• yi = 1 ∀i ∈ C1 ∪ C2: Since ai ≥ λ ∀i ∈ C3, for any feasible solution to KP, ∃ at least

one i ∈ C3 : yi = 0. Therefore,
∑

i∈C3
yi ≤ c3 − 1, which implies

∑
i∈C1

yi +2
∑

i∈C2
yi +

3
∑

i∈C3
yi ≤ c1 + 2c2 + 3c3 − 3.

• yi = 1 ∀i ∈ C2 ∪ C3: Since ai + aj < λ ∀i, j : i! = j ∈ C1, for any feasible solution

to KP, ∃ at least one triplet i, j, k ∈ C1 : i! = j! = k, yi = yj = yk = 0. Therefore,∑
i∈C1

yi ≤ c1− 3, which implies
∑

i∈C1
yi+2

∑
i∈C2

yi+3
∑

i∈C3
yi ≤ c1+2c2+3c3− 3.

• yi = 1 ∀i ∈ C1 ∪ C3: Since ai < λ ∀i ∈ C2, for any feasible solution to KP, ∃ at least

one pair i, j ∈ C1 : i! = j, yi = yj = 0. Therefore,
∑

i∈C2
yi ≤ c2 − 2, which implies∑

i∈C1
yi + 2

∑
i∈C2

yi + 3
∑

i∈C3
yi ≤ c1 + 2c2 + 3c3 − 4 < c1 + 2c2 + 3c3 − 3.

• yi = 1 ∀i ∈ C3: Since ai < λ ∀i ∈ C2 and ai + aj < λ ∀i, j : i! = j ∈ C1, for any

feasible solution to KP, ∃ at least one pair i, j : i ∈ C1, j ∈ C2, yi = yj = 0. Therefore,∑
i∈C1

yi + 2
∑

i∈C2
yi ≤ (c1 − 1) + 2(c2 − 1), which implies

∑
i∈C1

yi + 2
∑

i∈C2
yi +

3
∑

i∈C3
yi ≤ c1 + 2c2 + 3c3 − 3.

(b) Proof for part (b) can be done using similar steps as for Proposition 1(b).

We refer to (5) as a 3-partition cover inequality (3PCI).

Remark 2. Given a cover C:

(a) by definition, C1 = ∅ and C2 ̸= ∅ is not possible.
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(b) from (a), C1 = C3 = ∅ is not possible.

(c) when C1 = C2 = ∅, (5) reduces to the following minimal CI:
∑

i∈C3
yi ≤ c3 − 1.

(d) when C2 = C3 = ∅, (5) reduces to the following ECI:
∑

i∈C1
yi ≤ c1 − 3.

(e) from (b), (c), (d), we only consider only either one of C1, C2, and C3 is ∅ or none of them is

empty.

(f) when only C1 = ∅, then from (a) and (c), (5) reduces to CI.

(g) As a result of (e) and (f), we only consider 3PCIs with either: (i) only C2 = ∅, (ii) only

C3 = ∅, or (iii) none is empty.

Example 1 (Continued). Again, we consider a non-minimal cover C = N . For this cover, λ =

19, C3 = {1}, C2 = {2, 3, . . . , 11}, C1 = {12, 13, 14, 15}, c1 = 4, c2 = 10, c3 = 1. Hence, the

corresponding 3PCI is 3y1+2(y2+· · ·+y11)+y12+y13+y14+y15 ≤ 4+2×10+3×1−3 = 24. Consider

the following fractional point: ȳi = 1 ∀i ∈ C3 ∪ C2 ∪ C1\{13, 14, 15}, ȳ14 = ȳ15 = 0, ȳ13 = 2/9.

Clearly,
∑

i∈C aiȳi = 158. Hence, this ȳ is an extreme point of P . Here, a13+a14+a15 = 9+7+5 =

21 > 19 = λ, and ȳ13 = a13+a14+a15−λ
a13

= 9+7+5−19
9 = 2

9 . Hence, this extreme point is of the type as

characterized by Proposition 3.b.i. Further,
∑

i∈C1
ȳi+2

∑
i∈C2

ȳi+3
∑

i∈C3
ȳi = 24.22 > 24; hence,

ȳ is cut off by the above 3PCI.

Similarly, we can verify that the above-described 3PCI also cuts off the following two additional

fractional extreme points of P as characterized by (3).b.ii: ȳi = 1 ∀i ∈ C3 ∪ C2\2 ∪ C1\{15}, ȳ15 =

0, ȳ2 =
a15+a2−λ

a2
= 5+17−19

19 = 3
19 . or ȳ2 = 0, ȳ15 = a15+a2−λ

a15
= 5+17−19

5 = 3
5 . For this example, there

exists no extreme point of type (3).b.iii because a1 ≥ λ.

Theorem 3.A. If C2 = ∅, then (5) defines a facet of KPC if the following conditions are satisfied:

(a) c1 ≥ 4

(b) λ ≤ max(C1) +min(C1) +min2(C1)

(c) λ ≤ max2(C1) +max3(C1) +max4(C1)
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Proof. We omit the proof for the part (a), as it is similar to the proof stated in theorem 1 (a).

To prove that (5) defines a facet we need to show that c = c1 + c3 affinely independent points

exists that are binding. We observe that when C2 = ∅, then (5) reduces to
∑

i∈C1
yi +3

∑
i∈C3

yi ≤

c1 + 3c3 − 3. By definition of set C3, it is easy to see that we can generate c3 affinely independent

points. Next, we will show that to generate the remaining c1 affinely independent points, we need

conditions (b) and (c). Using condition (b), we can generate c1 − 1 affinely independent points.

condition (c) allows the generation of the additional one affinely independent point.

Theorem 3.B. If (C3 = ∅) or (C1 ̸= ∅, C2 ̸= ∅, C3 ̸= ∅), then (5) defines a facet of KPC if the

following conditions are satisfied:

(a) c1 ≥ 3

(b) λ ≤ max(C2) +min(C1): This condition allows us to generate c1 affinely independent points.

(c) λ ≤ max(C1) +max2(C1) +max3(C1)

Proof. Again we omit the proof for the part (a), as it is similar to the proof stated in theorem 1 (a).

First, we prove the case when C3 = ∅.

To prove that (5) defines a facet we need to show that c = c1 + c2 affinely independent points

exists that are binding. We observe that when C3 = ∅, then (5) reduces to
∑

i∈C1
yi +2

∑
i∈C2

yi ≤

c1 + 2c2 − 3. This can only be binding in one of the following ways: (i) yi = 0 i ∈ C1, and

yj = 0 j ∈ C2 (ii) yi = yj = yk = 0 i, j, k ∈ C1

If λ ≤ max(c2) +min(C1) then we can generate c1 affinely independent points as shown in the

below matrix.



y1 y2 · · · · · · yc1 yc1+1 yc1+2 · · · yc

1 1 · · · 1 0 0 1 · · · 1 y1

1 1 1 0 1 0 1 · · · 1 y2

...
...

...
...

...
...

1 0 1 1 0 1 · · · 1 yc1−1

0 1 1 1 0 1 · · · 1 yc1


By definition of set C1 and C2, we can see that the following additional c2 − 1 affinely independent

points points we can generate as shown in the below matrix.
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y1 y2 y3 y4 · · · · · · yc1 yc1+1 yc1+2 yc1+3 · · · yc

0 1 1 1 · · · 1 1 0 1 1 · · · 1 yc1+1

0 1 1 1 · · · 1 1 1 0 1 · · · 1 yc2+2

1
...

0 1 1 1 · · · 1 1 0 1 · · · 0 1 yc−2

0 1 1 1 · · · 1 1 0 1 · · · 1 0 yc−1

0 0 0 1 · · · 1 1 1 1 · · · 1 1 yc


The last point yc as shown in the above matrix can be generated only if condition λ ≤ max(C1)+

max2(C1) +max3(C1) is satisfied.

In the other case, when (C1 ̸= ∅, C2 ̸= ∅, C3 ̸= ∅), we will need additional C3 affinely indepen-

dent points that are binding to (5). It is easy to see that we can generate additional C3 affinely

independent points by definition of set C3.

We state the following results without their proof.

Theorem 4.A. If C2 = ∅, then (5) defines a facet of KP if it defines a facet of KPC and any of

the following conditions is satisfied:

(a) C = N

(b) λ ≤ max(C3)−max(C ′)

(c) λ ≤ max(C1) +max2(C1) +max3(c1)−max(C ′)

Theorem 4.B. If C3 = ∅, then (5) defines a facet of KP if it defines a facet of KPC and any of

the following conditions is satisfied:

(a) C = N

(b) λ ≤ max(C1) +max(C2)−max(C ′)

(c) λ ≤ max(C1) +max2(C1) +max3(C1)−max(C ′)

Theorem 4.C. If C1, C2, and C3 all are non-empty, then (5) defines a facet of KP if it defines a

facet of KPC and any of the following conditions is satisfied:
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(a) C = N

(b) λ ≤ max(C3)−max(C ′)

(c) λ ≤ max(C1) +max(C2)−max(C ′)

(d) λ ≤ max(C1) +max2(C1) +max3(C1)−max(C ′)

Proposition 4. Given a non-minimal cover C and its n-partition C1 = {i ∈ C : sum of any n-1 elements <

λ ≤ sum of any n elements}, C2 = {i ∈ C\C1 : max(C1)+· · ·+maxn−3(C1)+ai < λ ≤ max(C1)+

· · ·+maxn−2(C1)+ai}, . . . , Cj = {i ∈ C\(C1∪C2∪. . . Ci−1) : max(C1)+· · ·+maxn−j−1(C1)+ai <

λ ≤ max(C1) + · · · + maxn−j(C1) + ai}, . . . , Cp = {i ∈ C : ai ≥ λ} such that ∪p
j=1Cj = C, the

following is a VI for KP:

∑
i∈C1

yi + 2
∑
i∈C2

yi + · · ·+ n
∑
i∈Cn

yi ≤ c1 + 2c2 + · · ·+ ncn − n (6)

We refer to (6) as a n-partition cover inequality (nPCI).

Remark 3. (a) When C1 = C2 = · · · = Cn−1 = ∅, (6) reduces to the following minimal CI:∑
i∈Cn

yi ≤ cn − 1.

(b) When C2 = C3 = · · · = Cn = ∅, (6) reduces to the following ECI:
∑

i∈C1
yi ≤ |C1| − n.

(c) As a result of the above two remarks, we only consider nPCIs that satisfies the conditions

neither in (a) nor in (b).

Example 2. Consider Y = {y ∈ Bn :
∑

i∈N aiyi <= b} with n = 7, a = {8, 7, 6, 4, 6, 6, 6}, and

b = 22.

Clearly, C = N is a non-minimal cover since
∑

i∈C ai = 43, λ = 43 − 22 = 21 > mini∈C{ai} = 4.

Clearly, the following is a 4-partition of C: C1 = N\{1}, C2 = {1}, C3 == c4 = ∅. Hence, the

corresponding 4PCI is 2y1 + y2 + · · ·+ y7 ≤ 2× 1 + 6− 4 = 4.

2.2 Minimal Exclusion-based Partition

We now define our second class of VIs of KP obtained from a non-minimal cover. For this, we first

use the following definitions.
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Definition 1. Exclusion set: Given a cover C, an exclusion set is a subset of C whose exclusion

makes C no longer a cover.

Example 2 (Continued). Consider Y = {y ∈ Bn :
∑

i∈N aiyi <= b}

with n = 15, a = {19, 17, 14, 14, 14, 13, 13, 12, 11, 10, 10, 9, 9, 7, 5}, and b = 158. Consider a cover

C = N \ {14, 15}. Here,
∑

i∈C ai = 165, λ = 7. Clearly, any non-empty subset of C is an exclusion

set.

Definition 2. Minimal exclusion set: Given a cover C, a minimal exclusion set Ce is an exclusion

set such that the inclusion of any i ∈ Ce back to C \ Ce makes C again a cover.

Example 2 (Continued). We discussed above that any non-empty subset of C = N \ {14, 15} is its

exclusion set. Among them, let us consider the following exclusion set: Ce = {1, 2}.
∑

i∈C\Ce ai =

165 − 19 − 17 = 129. Clearly, it is a non-minimal exclusion set since including i = 1 back to

C \ Ce gives
∑

i∈C\Ce ai = 129 + 19 = 148 < b; similarly, including i = 2 back to C \ Ce gives∑
i∈C\Ce ai = 129 + 17 = 146 < b. However, any subset of C containing only one element is a

minimal exclusion set of C.

Definition 3. Maximum minimal exclusion set: Given a cover C, the maximum minimal exclusion

set is that minimal exclusion set that contains the maximum number of elements among all minimal

exclusion sets. We use p to denote the cardinality of the maximum minimal exclusion set of a cover.

Example 2 (Continued). In the above-discussed example, all minimal exclusion sets contain only

one element. Hence, p = 1. Clearly, this is true for any minimal cover. Let us now consider a

non-minimal cover C = N . Here,
∑

i∈C ai = 177, λ = 19. For this cover, we have multiple minimal

exclusion sets possible, e.g., Ce
1 = {1}, Ce

2 = {2, 15}, Ce
3 = {13, 14, 15}. Clearly, out of these, Ce

3 is

the maximum minimal exclusion set and p = 3. However, C has several other maximum minimal

exclusion sets, e.g., Ce
4 = {11, 14, 15}, Ce

5 = {9, 14, 15}, Ce
6 = {10, 14, 15}, all with p = 3.

The problem of finding p can be stated as an optimization problem. For this let, zi = 1 if
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element i ∈ C belongs to the exclusion set Ce, 0 otherwise.

max
∑
i∈C

zi

s.t.
∑
i∈C

ai(1− zi) ≤ b

∑
i∈C

ai(1− zi) + aj ≥ (b+ ϵ)zj ∀j ∈ C

Clearly, p = 1 for a minimal cover. However, for a non-minimal cover, p > 1. In Section 2.1, we

defined minimal and non-minimal covers based on the surplus of a cover. Now, definition 3 provides

alternate the following definitions of minimal and non-minimal covers. A minimal cover is a cover

with p = 1, while a non-minimal cover has p > 1.

Proposition 5. Given a cover C, the cardinality p of its maximum minimal exclusion set, and a

p-partition of C as follows:

• C1 = Ce

• C2 = {i ∈ C\C1 : max(C1) + max2(C1) + · · · + maxp−2(C1) + ai ≥ λ and max(C1) +

max2(C1) + · · ·+maxp−3(C1) + ai < λ}

• Cj = {i ∈ C\(C1∪C2 . . . Cj−1) : max(C1)+max2(C1)+· · ·+maxp−j(C1)+ai ≥ λ and max(C1)+

max2(C1) + · · ·+maxp−j−1(C1) + ai < λ} ∀j < p

• Cp = {i ∈ C : ai ≥ λ},

(a) the following is a VI for KP:

∑
i∈C1

yi + 2
∑
i∈C2

yi + · · ·+ p
∑
i∈Cp

yi ≤ c1 + 2c2 + · · ·+ pcp − p (7)

(b) (7) cuts off fractional extreme points ȳ ∈ P characterized as:

(i) ȳi = 1 ∀i ∈ (C \ C1 :
∑

i∈C1
ai > λ), ȳi = 0 ∀i ∈ (C1 \ {j}), ȳj =

∑
i∈C1

ai−λ

aj

(ii) ȳi = 1 ∀i ∈ (C1 ∪ C2 ∪ . . . (Cp\{j}) : aj > λ), ȳj =
aj−λ
aj

.

Proof. The proof follows using similar steps as used in proving Propositions 1 and 3.
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We refer to (7) as a maximum minimal exclusion p-partition cover inequality (MMEpPCI).

Remark 4. (a) C1 ̸= ∅ since C1 = Ce

(b) When C2 = C3 = · · · = Cp = ∅, then (7) reduces to yi = 0 ∀i ∈ C1

(c) If set C1 of nPCI and set C1 of MMEpPCI are identical, then inequality (6) and (7) are also

identical.

Further, we state the following additional results without their proof.

Theorem 5. For p = 3, (7) defines a facet of KPC if and only if the following two conditions are

satisfied:

(a) λ ≤ max(C1) +min(C2)

(b) λ ≤ max(C2) +min(C1)

Theorem 6. For p = 3, (7) defines a facet of KP if it defines a facet of KPC and any of the

following conditions is satisfied:

(a) C = N

(b) λ ≤ max(C3)−max(C ′)

(c) λ ≤ max(C2) +max(C1)−max(C ′)

(d) λ ≤ max(C1) +max2(C1) +max3(C1)−max(C ′)

Proposition 6. Given a cover C, the cardinality p of its maximum minimal exclusion set, and a

(p+ 1)-partition of C as follows:

• C1 = { select any p− 1 element from C such that their sum is less than λ}.

• C2 = {i ∈ C\C1 : max(C1)+max2(C1)+· · ·+maxp−2(C1)+ai < λ ≤ max(C1)+max2(C1)+

· · ·+maxp−1(C1) + ai}.

• Cj = {i ∈ C\C1 ∪ C2 : max(C1) +max2(C1) + · · · +maxp−j−1(C1) + ai < λ ≤ max(C1) +

max2(C1) + · · ·+maxp−j(C1) + ai}.
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• Cp+1 = {i ∈ C : ai ≥ λ}

the following is a valid inequality for KP:

∑
i∈C1

yi + 2
∑
i∈C2

yi + · · ·+ (p+ 1)
∑

i∈Cp+1

yi ≤ c1 + 2c2 + · · ·+ (p+ 1)cp+1 − (p+ 1) (8)

We refer to (8) as a maximum minimal exclusion p+1-partition cover inequality (MMEp+1PCI).

3 Computational Experiments

We first propose the separation problem for nPCI in Section 3.1. We then test the effectiveness of

our proposed VIs in efficiently solving the fixed charge transportation problem (FCTP). Our choice

of FCTP is motivated by its following two properties: (i) it is NP-hard; (ii) 2PCI and 3PCI occur

frequently as VIs for the knapsack substructures derived from FCTP, as shown in Section 3.2. The

datasets used in our computational experiments are described in Section 3.3, and the results of our

experiments are presented and discussed in Section 3.4.

3.1 Separation Problem

Here, we describe the separation problem for 2PCI. For this, let zi1 = 1 if item i belongs to C1 of a

2-partition cover C, 0 otherwise. Similarly, let zi2 = 1 if item i belongs C2, 0 otherwise. Then, the

separation of the most violated 2PCI can be mathematically stated as follows.
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Maximize
∑
i∈C

(ȳi − 1)zi1 + 2
∑
i∈C

(ȳi − 1)zi2 + 2 (9)

Subject to∑
i∈N

ai(zi1 + zi2) ≥ b+ 1 (10)

aizi1 ≤
∑
i∈N

ai(zi1 + zi2)− b− 1 (11)

aizi2 ≥
∑
i∈N

ai(zi1 + zi2)− b−M(1− zi2) (12)

zi1 + zi2 ≤ 1 j = 1 . . . n (13)∑
i∈N

zi1 ≥ 1 (14)

∑
i∈N

zi2 ≥ 1 (15)

zi1, zi2 ∈ {0, 1} (16)

(9) maximizes the violation of a 2PCI. (10) ensures that C1 ∪C2 is a cover. (11) ensures that item

i belongs to C1 only if ai < λ =
∑

i∈N ai(zi1 + zi2)− b. (12) ensures that item i belongs to C2 only

if ai ≥ λ. (13) forces each item to either belong to C1 or C2 of cover C or lies outside C. (14)

and (15) ensure that neither C1 not C2 is empty, i.e., C is strictly a non-minimal cover (refer to

Remark 1). The separation problem for a general nPCI can be similarly stated.

We show the separation of a 2PCI using the following binary knapsack problem as an illustrative

example:

Example 3.

Maximize 2y1 + 3y2 + 4y3 + 5y4

Subject to

5y1 + 4y2 + 3y3 + 2y4 <= 10

y1, y2, y3, y4 ∈ {0, 1}
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The optimal solution to its LP relaxation is: y1 = 0.2, y2 = y3 = y4 = 1. The most violated

CI by this solution is: y1 + y2 + y4 <= 2, while the most violated 2PCI, as obtained by solving

(9)-(16), is: 2y1 + 2y2 + y3 + y4 <= 4. While it can be easily verified that the violated CI defines

a facet to the convex hull of the above knapsack polytope, the violated 2PCI only defines a face.

Nonetheless, addition of either VI to the above knapsack problem gives the optimal integer solution

as: y1 = 0, y2 = y3 = y4 = 1.

3.2 Knapsack Set as a Substructure in FCTP

FCTP is a generalization of the well-known transportation problem that includes a fixed cost of

transportation between any source and destination, in addition to the variable cost per unit of trans-

portation. It has a wide range of applications, primarily in distribution, transportation, scheduling,

and location (Adlakha and Kowalski, 2003; Mingozzi and Roberti, 2018). Furthermore, FCTP has

also been used to solve problems such as process selection (Hirsch and Dantzig, 1968), teacher as-

signment (Hultberg and Cardoso, 1997), and industrial waste management (Maniezzo et al., 1998).

FCTP is formally defined in the literature as follows. Consider a set of sources (origins) S =

{1, 2, . . . s}, each with a supply capacity ai > 0, and a set of sinks (destinations) T = {1, 2, . . . t},

each with demand bj > 0. We assume that the problem is balanced, i.e.
∑

i∈S ai =
∑

j∈T bj . There

is a unit shipping cost cij plus a fixed cost fij for every i-j pair. Let mij = min {ai, bj}. If xij

represents the quantity shipped from source i to sink j, and yij = 1 if the link from i-j is used, 0

otherwise, then FCTP can be mathematically stated as:
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min
s∑

i=1

t∑
j=1

(Cijxij + Fijyij) (17)

subject to

t∑
j=1

xij = ai i ∈ S (18)

s∑
i=1

xij = bj j ∈ T (19)

xij ≤ mijyij ∀i ∈ S, j ∈ T (20)

xij ≥ 0, yij ∈ {0, 1} ∀i ∈ S, j ∈ T (21)

Clearly, it is the presence of the fixed costs in the problem that results in a mixed-integer linear

program (MILP) based model for FCTP, as opposed to a pure linear program for the transportation

problem. Hence, while the transportation problem is polynomially solvable, FCTP is known to be

NP-hard. There have been a few studies on solving FCTP (Agarwal and Aneja, 2012; Roberti

et al., 2015) more efficiently using the current MILP solvers, but even the state-of-the-art method

struggles to solve general instances of even medium-size. In this paper, we propose a new class of

valid inequalities for FCTP that help improve its lower bound, thereby aiding the MILP solver to

solve the problem faster.

Clearly, (22) and (23) given below are VIs to (17)-(21) since each term in the LHS of (22) and

(23) are upper bounds on the corresponding terms in (18) and (19).

t∑
j=1

mijyij >= ai i ∈ S (22)

s∑
i=1

mijyij >= bj j ∈ T (23)

(22) and (23) represent knapsack inequalities of the form
∑

i∈N aixi ≥ d. An FCTP with s = |S|

supply nodes and t = |T | demand nodes has s = t such knapsack polytopes. To be consistent with

the knapsack literature, (22) and (23) can be restated as
∑

i∈N aiyi <= b using the standard trick

of replacing variables by their complements. However, the above VIs are not useful since they are
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always satisfied by any fractional solution to (17)-(21). Nonetheless, there exist well-known classes

of useful VIs (e.g., CIs) for knapsack polytopes, which can be added to (17)-(21) to strengthen its

lower bound. Furthermore, our two classes of VIs based on non-minimal covers can also be used.

The next proposition guarantees the existence of 2PCIs and 3PCIs for any FCTP.

Proposition 7. Let M1 = {i ∈ S : ai ≤ bj ∀j ∈ T} and M2 = {j ∈ T : bj ≤ ai ∀i ∈ S}. Then an

FCTP with s supply nodes and t demand nodes will have at least s+ t−m 2PCIs at least an equal

number of 3PCIs, where m = |M1|+ |M2|.

Proof. The knapsack inequality (22) can be rewritten as:

t∑
j=1

mijzij ≤
t∑
j

mij − ai i ∈ S (24)

where zij = 1− yij . For a given i ∈ S, consider a cover C for the knapsack set given by (24) such

that C = T , in which case its surplus λ = ai. Then, the following three mutually exclusive and

exhaustive conditions arise.

(a) ai ≤ bj ∀j ∈ T : In this case, λ ≤ min(C), and hence, C is a minimal cover. Therefore, no

2PCI or 3PCI exists. Let M s = {i ∈ S : ai ≤ bj ∀j ∈ T}.

(b) ai < bj ∀j ∈ T ′ ⊂ T : In this case, min(C) < λ ≤ max(C), and hence, at least one 2PCI

exists (using Remark 1(c) and at least one 3PCI exists (using Remark 2(g)).

(c) ai > bj ∀j ∈ T : In this case, C3 = ∅ in a 3-partition of C. Further, C1 ̸= ∅, C2 ̸= ∅, and

hence, at least one 3PCI exists (using Remark 2(g)). However, for a 2-partition of C, C2 = ∅.

Hence, no 2PCI exists for C = T (using Remark 1(b)). Nonetheless, ∃C ⊂ T : min(C) < λ ≤

max(C), and hence, at least one 2PCI will exist for such a cover C (using Remark 1(c)).

A similar argument holds true for knapsack inequality (23). Hence, m = |M1|+ |M2| represents

the number of knapsack inequalities defined by (22) and (23) for which neither 2PCI nor 3PCI

exists, and the remaining s+ t−m knapsack inequalities are guaranteed to have at least one 2PCI

and one 3PCI.
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Example 3. The binary knapsack set considered in Example 1 is a knapsack substructure in FCTP

with s = t = 15 from Dataset 1 described in Section3.3. The complete convex hull of this knapsack

set (excluding the trivial facets yi ≥ 0 and yi ≤ 1), as obtained using PANDA Lörwald and Reinelt

(2015), is shown in Table 5 in the Appendix. Of the 29 non-trivial facets, the first 19 are CIs. The

next 6 (20-25) are nPCIs, while the last 4 (26-29) are minimal exclusion set-based CIs. This high-

lights the significance of our proposed VIs, besides the well-known CIs, in completely characterizing

a knapsack polytope, which appears as a local substructure within FCTP.

3.3 Datasets

For our computational experiments, we consider two benchmark datasets. Dataset 1 is introduced

by Agarwal and Aneja (2012). It consists of instances with 15 origins and 15 destinations, while

ai and bj are randomly generated using the uniform distribution U ∼ [1, 20]. Fixed and variable

costs are generated using U ∼ (200, 800). θ is the ratio between the total variable and fixed costs.

Instances with θ = 0.0 represent a pure fixed charge transportation problem (PFCTP). Dataset

2 is introduced by Roberti et al. (2015). It consists of instances similar to Dataset 1, except for

the larger number of origins and destinations. In our experiments, we considered instances with 30

origins and 30 destinations1.

3.4 Results

All the runs were conducted on a single core of an Intel(R) Xeon(R) Gold 6240 CPU @ 2.60GHz

server with 16GB of RAM. The model of FCTP (17)-(21) is implemented in C++ and solved using

CPLEX 22.1. All our VIs are generated only at the root node of the branch-and-bound tree using

complete enumeration, which are added if violated by the LP relaxation of the problem and satisfy

the facet-defining condition. For a given knapsack inequality, 2PCI with c = n is unique, while

there are only n− 1 such 2PCIs with c = n− 1. So, these VIs can be easily enumerated. However,

there can be multiple 3PCIs with c = n, and we have arbitrarily generated one of them.

In all the experiments, a CPU time limit of 3,600 seconds is used for instances from Dataset

1. Instances from Dataset 1 are relatively easier to solve; hence, we solve them without the cplex-
1In our experiments, instances for Dataset 1 are used as received from the authors, while those for Dataset 2 are

randomly generated using the scheme described in the paper
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generated cuts to better assess the efficacy of our facets. The results from our computational

experiments corresponding to Dataset 1 are shown in Table 1 for θ = 0.2 and Table 2 for θ = 0. As

clear from Table 1, the facets from our nPCIs help improve the lower bound of FCTP by 9% (from

81.9% to 89.2% of the IP optimal objective function value), which helps cut down the CPU time

by around 77% (from 1,418.6 seconds to 330.1 seconds). The corresponding savings for θ = 0, as

evident from Table 2, are around 13.5% and 94% in the lower bound and CPU time, respectively.

Instances from Dataset 2 are much more difficult; hence, we use a higher CPU time limit of

7,200 seconds, and solve them with the cplex-generated cuts. However, we turn off the cover

inequalities generted by cplex, again to better assess the efficacy of our facets. The results from

our computational experiments corresponding to Dataset 2 are shown in Table 3 for θ = 0.2 and

Table 4 for θ = 0. As clear from Table 3, the facets from our nPCIs help improve the lower bound of

FCTP by 9% (from 84.2% to 91.8%), which helps cut down the CPU time by around 16.5% (from

3,392.6 seconds to 2,847.1 seconds). The corresponding savings for θ = 0, as evident from Table 4,

are around 9% and 28% in the lower bound and CPU time, respectively.

Table 1: Dataset 1, s = t = 15, θ = 0.2, Without CPLEX-generated cuts

Without nPCI With nPCI

Ins. IP LP% CPU/ BBTS 2PCI 2PCI 3PCI LP% CPU/ BBTS

Obj. (Gap%) c = n c = n− 1 c = n (Gap%)

1 10017 81.8 1037.9 11.31 13 4 2 89.0 47.3 0.19
2 10075 82.1 687.0 15.04 14 4 3 88.9 42.5 0.19
3 9327 83.5 141.2 0.89 16 9 5 91.2 3.3 0.01
4 11093 78.7 7.83% 20.83 17 3 3 86.6 2573.7 10.28
5 10312 80.3 1132.0 28.12 10 4 3 87.5 39.9 0.19
6 10086 86.6 38.0 1.02 9 17 3 91.9 6.0 0.02
7 9913 82.1 323.5 1.90 9 6 2 88.7 21.1 0.09
8 10495 80.3 5.84% 22.42 14 5 4 87.5 532.6 2.41
9 10137 83.5 26.3 1.10 12 9 1 91.3 3.1 0.01
10 9939 80.2 0.59% 25.22 13 6 2 89.6 31.4 0.16

Avg 10139 81.9 1418.6(1.43%) 12.8 13 7 3 89.2 330.1(0%) 1.40

Ins.: Instance; IP Obj.: IP optimal; LP%: LP relaxation as a % of IP Obj.; CPU/Gap%: Computation
time (time limit = 3600 seconds) / Optimality Gap in %; BBTS: Branch-and-bound tree size in millions of nodes
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Table 2: Dataset 1, s = t = 15, θ = 0, Without CPLEX-generated cuts

Without nPCI With nPCI

Ins. IP LP% CPU/ BBTS 2PCI 2PCI 3PCI LP% CPU/ BBTS

Obj. (Gap%) c = n c = n− 1 c = n (Gap%)

1 6683 74.5 1184.6 11.31 19 7 5 86.4 38.0 0.15
2 6903 73.2 1542.4 15.04 17 5 5 80.5 88.1 0.41
3 6210 77.7 100.6 0.89 15 16 4 89.6 3.9 0.01
4 7753 71.1 9.8% 20.83 21 3 3 82.1 366.0 1.50
5 7360 69.1 2.7% 28.12 12 1 2 80.3 88.3 0.43
6 6911 80.2 109.1 1.02 13 14 2 88.6 7.9 0.03
7 6434 77.7 194.2 1.90 10 6 1 86.6 17.6 0.08
8 7254 73.6 7.4% 22.42 14 1 2 83.2 285.9 1.46
9 7119 80.0 119.6 1.10 10 8 1 88.8 9.3 0.04
10 6843 72.1 5.4% 25.22 14 9 3 85.4 143.5 0.65

Avg 6947 74.9 1765.1(1.43%) 12.79 15 7 3 85.1 104.9(0%) 0.48
Ins.: Instance; IP Obj.: IP optimal; LP%: LP relaxation as a % of IP Obj.; CPU/Gap%: Computation
time (time limit = 3600 seconds) / Optimality Gap in %; BBTS: Branch-and-bound tree size in millions of nodes

Table 3: Dataset 2, s = t = 30, θ = 0.2, With CPLEX-generated cuts

Without nPCI With nPCI

Ins. IP LP% CPU/ BBTS 2PCI 2PCI 3PCI LP% CPU/ BBTS

Obj. (Gap%) c = n c = n− 1 c = n (Gap%)

1 13367 82.8 4695.8 0.41 23 62 10 90.7 4082.1 0.37
2 13447 82.3 2.19% 0.58 23 45 7 88.9 1.40% 0.44
3 13953 83.0 5785.2 0.53 18 53 2 91.6 3978.0 0.44
4 13477 84.9 266.0 0.04 28 47 5 93.4 219.7 0.04
5 13387 86.0 1485.8 0.16 29 71 15 93.3 863.4 0.10
6 13704 86.1 126.2 0.03 22 27 5 93.0 70.2 0.01
7 13412 84.9 2349.2 0.25 28 105 11 92.5 1284.7 0.14
8 13600 80.2 3.00% 0.62 28 44 11 89.8 2.59% 0.60
9 13683 86.2 1600.6 0.16 24 46 10 93.0 265.3 0.04
10 13605 85.8 3217.4 0.32 22 106 8 92.2 3307.9 0.30

Avg 13564 84.2 3392.6(0.52%) 0.31 25 61 8 91.8 2847.1(0.40%) 0.25
Ins.: Instance; IP Obj.: IP optimal; LP%: LP relaxation as a % of IP Obj.; CPU/Gap%: Computation
time (time limit = 7200 seconds) / Optimality Gap in %; BBTS: Branch-and-bound tree size in millions of nodes
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Table 4: Dataset 2, s = t = 30, θ = 0, With CPLEX-generated cuts

Without nPCI With nPCI

Ins. IP LP% CPU/ BBTS 2PCI 2PCI 3PCI LP% CPU/ BBTS

Obj. (Gap%) c = n c = n− 1 c = n (Gap%)

1 11109 80.9 2467.2 0.24 25 55 3 89.1 750.2 0.09
2 10622 83.0 2514.6 0.30 33 40 8 91.4 1504.0 0.20
3 10886 80.0 0.31% 0.74 27 34 10 87.9 3775.2 0.42
4 11316 79.5 4754.8 0.47 23 84 13 90.7 4381.8 0.40
5 10717 82.9 1711.6 0.17 34 54 13 91.8 684.4 0.08
6 10391 83.0 1458.3 0.16 34 58 7 92.6 1575.1 0.16
7 10919 81.1 2520.1 0.20 30 67 14 91.5 2207.9 0.19
8 10908 82.8 601.3 0.10 23 83 3 92.4 238.3 0.05
9 10744 77.9 4.31% 0.56 33 40 2 86.8 3.33% 0.53
10 10903 81.9 741.9 0.07 32 63 12 91.9 180.8 0.03

Avg 10852 81.3 3117.0(0.46%) 0.30 29 58 9 90.6 2249.8(0.33%) 0.22
Ins.: Instance; IP Obj.: IP optimal; LP%: LP relaxation as a % of IP Obj.; CPU/Gap%: Computation
time (time limit = 7200 seconds) / Optimality Gap in %; BBTS: Branch-and-bound tree size in millions of nodes

4 Conclusions and Future Work

In this paper, we studied the polyhedral structure of the binary knapsack polytope. For this, we

exploited non-minimal covers of a knapsack, as opposed to minimal covers, popularly used in the

literature. Using non-minimal covers, we proposed two new classes of VIs and derived the conditions

under which they define facets of KP . Further, we proved that the facets of KP obtained from

one of our proposed classes of VIs can never be obtained through sequential lifting of minimal cover

inequalities. Our computational experiments on a well-known class of NP-hard problems highlighted

the usefulness of the facets from our proposed VIs.

In our computational experiments, we used 2PCIs only for c = n and c = n − 1 and 3PCIs for

c = n. For c = n, the corresponding cover is unique and so is its 2-partition and a finite number of

3-partitions possible. For c = n−1, there are only n different covers, each again resulting in a unique

2-partition. So, for these cases, the resulting 2PCIs and 3PCIs, which are finite in number, could be

easily enumerated. However, for c <= n− 2, the number of covers becomes large, and so does the

number of resulting 2PCIs and 3PCIs, which may be computationally inefficient to enumerate. In

such cases, the most violated 2PCI and 3PCI can be separated by solving an optimization problem,
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as show in Section 3.1 for 2PCI. Since the separation problem for nPCI is NP-hard, we plan to

propose heuristics to separate them. We anticipate even greater computational efficiency with the

addition of such separated 2PCIs and 3PCIs. We also aim to test the effectiveness of MMEpPCI

and MMEp+1PCI.
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A Facets of Example 1

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
ai 19 17 14 14 14 13 13 12 11 10 10 9 9 7 5 b = 158

S. No. α1 α2 α3 α4 α5 α6 α7 α8 α9 α10 α11 α12 α13 α14 α15 RHS Type

1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 12 CI, C = N \ {11, 15}, λ = 4
2 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 12 CI, C = N \ {12, 15}, λ = 5
3 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 12 CI, C = N \ {13, 15}, λ = 5
4 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 12 CI, C = N \ {14, 15}, λ = 7
5 1 1 1 1 1 1 1 1 1 0 1 1 1 0 1 12 CI, C = N \ {10, 14}, λ = 2
6 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 12 CI, C = N \ {12, 13}, λ = 1
7 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 12 CI, C = N \ {13, 14}, λ = 3
8 1 1 1 1 1 1 1 1 1 1 0 1 1 0 1 12 CI, C = N \ {11, 14}, λ = 2
9 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 12 CI, C = N \ {12, 14}, λ = 3
10 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0 12 CI, C = N \ {10, 15}, λ = 4
11 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 12 CI, C = N \ {7, 15}, λ = 1
12 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 12 CI, C = N \ {8, 15}, λ = 2
13 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 12 CI, C = N \ {6, 15}, λ = 1
14 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 12 CI, C = N \ {9, 15}, λ = 3
15 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 12 CI, C = N \ {9, 14}, λ = 3
16 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 13 CI, C = N \ {2}, λ = 2
17 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 13 CI, C = N \ {3}, λ = 5
18 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 13 CI, C = N \ {4}, λ = 5
19 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 13 CI, C = N \ {5}, λ = 5
20 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 14 2PCI, C = N,λ = 19
21 2 2 2 2 2 1 1 1 1 1 1 1 1 1 0 17 2PCI, C = N \ {15}, λ = 14
22 2 2 2 2 2 2 2 2 1 1 1 1 1 0 1 20 2PCI, C = N \ {14}, λ = 12
23 2 2 2 2 2 2 2 2 2 2 2 1 0 1 1 23 2PCI, C = N \ {13}, λ = 10
24 2 2 2 2 2 2 2 2 2 2 2 0 1 1 1 23 2PCI, C = N \ {12}, λ = 10
25 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 24 3PCI, C = N,λ = 19
26 3 2 2 2 2 2 2 2 1 2 2 2 2 1 1 25 MMEpPCI, C = N , Ce = {9, 14, 15}, p = 3
27 3 2 2 2 2 2 2 2 2 1 2 2 2 1 1 25 MMEpPCI, C = N , Ce = {10, 14, 15}, p = 3
28 3 2 2 2 2 2 2 2 2 2 1 2 2 1 1 25 MMEpPCI, C = N , Ce = {11, 14, 15}, p = 3
29 4 3 3 3 3 3 3 2 2 2 2 2 2 1 1 33 MMEp+1PCI, C = N , Ce = {9, 14, 15}, p = 3

Table 5: Facets of the form
∑

i∈N αiyi ≤ RHS generated using PANDA Lörwald and Reinelt (2015)
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