
Relaxation strength for multilinear optimization: McCormick strikes

back

Emily Schutte* Matthias Walter��

November 13, 2023

Abstract

We consider linear relaxations for multilinear optimization problems. In a recent paper, Khajavi-
rad proved that the extended flower relaxation is at least as strong as the relaxation of any recursive
McCormick linearization (Operations Research Letters 51 (2023) 146–152). In this paper we extend the
result to more general linearizations, and present a simpler proof. Moreover, we complement Khajavirad’s
result by showing that the intersection of the relaxations of such linearizations and the extended flower
relaxation are equally strong.

1 Introduction

We consider multilinear optimization problems

min
∑
I∈I0

c0I
∏
v∈I

xv (1a)

s.t.
∑
I∈Ij

cjI
∏
v∈I

xv ≤ bj ∀j ∈ {1, 2, . . . ,m} (1b)

xv ∈ [ℓv, uv] ∀v ∈ V, (1c)

where V denotes the variables and I0, I1, I2, . . . , Im ⊆ V are families of subsets thereof, where cjI ∈ R and
bj ∈ R are the coefficients of the monomials, and the right-hand side, respectively, and where ℓ, u ∈ RV

are the bounds on the variables. Note that every constraint (and the objective function) is a multilinear
polynomial, which means that every variable has an exponent equal to either 0 or 1 in each monomial. We
refer to the excellent survey [1] by Burer and Letchford for an overview of approaches for tackling mixed-
integer nonlinear optimization problems in general. One of these strategies is to introduce auxiliary variables
for intermediate nonlinear terms [19]. In our case, a straight-forward linearization is to introduce a variable zI
for every subset I of variables that appears in any of these polynomials, which yields the equivalent problem

min
∑
I∈I0

c0IzI (2a)

s.t.
∑
I∈Ij

cjIzI ≤ bj ∀j ∈ {1, 2, . . . ,m} (2b)

zI =
∏
v∈I

xv ∀I ∈ E (2c)

xv ∈ [ℓv, uv] ∀v ∈ V, (2d)

where E :=
⋃m

j=0 Ij denotes the union of all involved variable subsets. It is known well [21] that there
there exists an optimal solution in which each xv is at its bound, that is, xv ∈ {ℓv, uv} holds for all v ∈ V .
Hence, by an affine transformation we can replace (2d) by xv ∈ {0, 1} for all v ∈ V . We now focus on linear

*University of Luxembourg, Luxembourg. E-mail: emilyschutte@live.nl
�Department of Applied Mathematics, University of Twente, The Netherlands. E-mail: m.walter@utwente.nl
�The second author acknowledges funding support from the Dutch Research Council (NWO) on grant number

OCENW.M20.151.

1

relaxations for constraints (2c) and the requirement that x is binary, whose set of feasible solutions is called
the multilinear set. It is parameterized by the pair G = (V, E), which we can be interpreted as a hypergraph
whose nodes index the original x-variables and whose hyperedges correspond to the (multlilinear) product
terms [4]. We will not rely on hypergraph concepts, but merely use these to visualize instances. However,
many previous results exploit hypergraph structures such as various cycle concepts [5, 6, 3, 8, 9].

Every hypergraph G = (V, E) gives rise to a multilinear polytope, defined as the convex hull

ML(G) := conv{(x, z) ∈ {0, 1}V × {0, 1}E | zI =
∏
v∈I

xv ∀I ∈ E}.

of the multilinear set. Its simplest polyhedral relaxation is the standard relaxation

zI ≤ xv ∀v ∈ I ∈ E (3a)

zI +
∑
v∈I

(1− xv) ≥ 1 ∀I ∈ E (3b)

zI ≥ 0 ∀I ∈ E (3c)

xv ∈ [0, 1] ∀v ∈ V, (3d)

which dates back to Fortet [11, 12] and Glover and Wolsey [14, 15]. Unfortunately, this relaxation is often
very weak [18].

In this paper we relate two strengthing techniques to each other: the first is by augmenting (3) with
(extended) flower inequalities [5, 17], which are additional inequalities valid for ML(G). We will define the
inequalities and the tightened relaxation in Section 2. The second technique works by not linearizing each
variable zI =

∏
v∈I xv independently, but by using auxiliary variables for two disjoint subsets I1, I2 ⊆ I with

I = I1 ∪ I2 instead, and inequalities similar to (3a) and (3b) for the product zI = zI1 · zI2 . While this alone
does not strengthen the relaxation, it is well known that it does so in case these variables zI1 , zI2 appears in
several linearization steps. We will provide a concise definition of such a recursive McCormick linearization
in Section 3.

In a recent paper [17], Khajavirad showed that extended flower inequalities dominate recursive McCormick
linearizations in the sense that the latter can never give stronger linear programming bounds than the former.
Our main contribution is presented in Section 4, and states that the converse statement holds in some sense as
well: one may need to intersect several McCormick linearizations with each other to achieve the same strength
as that of extended flower inequalities. This may be considered a big drawback, but it is worth noting that
each McCormick linearization induces only a polynomial number of additional variables and constraints,
while there exist exponentially many flower inequalities whose separation problem is NP-hard [7]. In fact,
our result applies to linearizations that are more general than recursive McCormick linearizations, and we
provide a simpler proof of Khajavirad’s main result. In Section 5 we conclude the paper with the observation
that also computationally both approaches are equivalent, and highlight an interesting open problem.

2 Flower relaxation

To simplify our notation we will write z{v} := xv for all v ∈ V , and denote by S := {{v} | v ∈ V } the
corresponding set of singletons. Note that this may in principle lead to an ambiguity in case {v} is also part
of E . However, already the standard relaxation (3) would imply z{v} = xv in this case. Hence, we from now
on assume that |I| ≥ 2 holds for all I ∈ E . Let us now define extended flower inequalities [17], which are a
generalization of flower inequalities [5].

Definition 1 (extended flower inequalities, extended flower relaxation). Let I ∈ E and let J1, . . . , Jk ∈ E ∪S
be such that J1 ∪ J2 ∪ · · · ∪ Jk ⊇ I and Ji ∩ I ̸= ∅ holds for i = 1, 2, . . . , k. The extended flower inequality
centered at I with neighbors J1, J2, . . . , Jk is the inequality

zI +

k∑
i=1

(1− zJi) ≥ 1. (4)

The extended flower relaxation FR(G) ⊆ RE∪S is defined as the intersection of [0, 1]E∪S with all extended
flower inequalities.

2

Note that an extended flower inequality centered at I with neighbors J1, J2, . . . , Jk is called a flower
inequality if Ji ∩ Jj ∩ I = ∅ holds for all distinct i, j, that is, if the intersections (J1 ∩ I), (J2 ∩ I), . . . , (Jk ∩ I)
form a partition of I. The following proposition establishes validity of extended flower inequalities for the
multilinear set.

Proposition 2. For each hypergraph G = (V, E) we have ML(G) ⊆ FR(G).

Proof. Let z⋆ ∈ ML(G)∩{0, 1}S∪E be a vertex of ML(G) and consider an extended flower inequality centered

at I ∈ E with neighbors J1, J2, . . . , Jk ∈ E ∪ S. If
∑k

i=1(1 − z⋆Ji
) ≥ 1, then the extended flower inequality

is clearly satisfied. Otherwise,
∑k

i=1(1 − z⋆Ji
) = 0 implies z⋆Ji

= 1 for all i ∈ {1, 2, . . . , k}. From this and
J1 ∪ J2 ∪ · · · ∪ Jk ⊇ I we obtain z⋆{v} = 1 for all v ∈ I, which implies z⋆I =

∏
v∈I z

⋆
{v} = 1 since z⋆ ∈ ML(G).

This shows that the left-hand side of (4) is at least 1, which concludes the proof.

A key property of the extended flower relaxation is that it is compatible with projections in the sense that
the (orthogonal) projection of the extended flower relaxation is the flower relaxation of the corresponding
subgraph:

Lemma 3. Let G = (V, E) be a hypergraph, let E ′ := E \ {I⋆} be the set of hyperedges with I⋆ ∈ E removed,
and let G′ = (V, E ′) be the corresponding hypergraph. Then the projection of FR(G) onto the zI-variables for
all I ∈ E ′ ∪ S is equal to FR(G′).

Proof. Let P ⊆ RE′∪S denote the projection of FR(G) onto all variables but zI⋆ . Clearly, every extended
flower inequality (4) that does not involve zI⋆ is present in both relaxations. This already shows P ⊆ FR(G′).

For the reverse direction we apply Fourier-Motzkin elimination [10, 13, 20] to FR(G) and zI⋆ . To this end,
we need to consider pairs of inequalities (4) in which zI⋆ appears with opposite signs. Such a pair consists
of one extended flower inequality centered at I⋆ with neighbors H1, H2, . . . ,Hk ∈ E ∪ S and one extended
flower inequality centered at another edge J with neighbors I⋆,K1,K2, . . . ,Kℓ ∈ E ∪ S. The sum of the two
inequalities reads

zI⋆ +

k∑
i=1

(1− zHi
) + zJ + (1− zI⋆) +

ℓ∑
i=1

(1− zKi
) ≥ 1 + 1 (5)

We can assume that the H1, H2, . . . ,Hk are ordered such that Hi ∩ J ̸= ∅ holds if and only if i ≤ k′ holds,
where k′ ∈ {0, 1, . . . , k} is a suitable index. We can rewrite (5) as

zJ +

k′∑
i=1

(1− zHi
) +

ℓ∑
i=1

(1− zKi
) +

k∑
i=k′+1

(1− zHi
) ≥ 1

which is the sum of the extended flower inequality (4) centered at J with neighborsH1, H2, . . . ,Hk′ ,K1,K2, . . . ,Kℓ

and the bound inequalities 1−zHi ≥ 0 for all i ∈ {k′+1, k′+2, . . . , k}. By construction and by the choice of k′

the edges (or singletons) H1, H2, . . . ,Hk′ ,K1,K2, . . . ,Kℓ indeed cover J . Hence, the combined inequality is
implied by FR(G′), which establishes P ⊇ FR(G′). This concludes the proof.

3 Recursive linearizations and their relaxations

For a digraph and a node w we denote by Nout(w) and N in(w) the successors and predecessors of w, i.e.,
the sets of nodes u for which there is an arc from w to u and from u to w, respectively.

Definition 4 (recursive linearizations). Let V be a finite ground set. A recursive linearization is a simple
digraph D = (V,A) with S ⊆ V ⊆ 2V \{∅} that satisfies I ⊇ J for each arc (I, J) ∈ A as well as

⋃
J∈Nout(I) J =

I for each I ∈ V \ S. We say that D is a recursive linearization of a hypergraph G = (V, E) if E ⊆ V holds
and if each set I ∈ V with N in(I) = ∅ belongs to E ∪ S. Such a linearization is called partitioning if for
every node I ∈ V \ S all its successors J, J ′ ∈ Nout(I) (with J ̸= J ′) are disjoint, i.e., J ∩ J ′ = ∅ holds. It
is called binary if |Nout(I)| = 2 holds for each I ∈ V \ S. A recursive linearization that is both, partitioning
and binary, is called recursive McCormick linearization.

3

A recursive linearization encodes how each variable zI with I ∈ E is linearized by means of other variables.
First, such a variable zI is created for each node I ∈ V, where z{v} is the same as the variable xv for each
v ∈ V . It is supposed to encode the product of the xv for all v ∈ V , that is, zI =

∏
v∈I xv. This will actually

be done by encoding (using linear inequalities) that zI =
∏

J∈Nout(I) zJ holds for each I ∈ V. By induction

we can assume that zJ =
∏

v∈J xv holds, which yields zI =
∏

J∈Nout(I)

∏
v∈J xv. Since I is the union of

all sets Nout(I), a variable xv appears in this product if and only if v ∈ I holds. Unless the linearization
is partitioning, the variable may appear multiple times, but this does not harm since x2

v = xv holds for
xv ∈ {0, 1}. Notice that a linearization is partitioning if and only if, for every node I ∈ V and every v ∈ I,
there is a unique path from I to {v}. Figure 1 shows three different linearizations of the same hypergraph.

A recursive linearization states the interplay between the linearization variables. The actual linear in-
equalities associated with a linearization are stated in the following definition.

Definition 5 (relaxation, projected relaxation). Let D = (V,A) be a recursive linearization. Its relaxation
is the polyhedron P (D) ⊆ RV defined by

zI ≤ zJ ∀(I, J) ∈ A (6a)

zI +
∑

J∈Nout(I)

(1− zJ) ≥ 1 ∀I ∈ V \ S (6b)

z ∈ [0, 1]V . (6c)

Its projected relaxation with respect to a given set T ⊆ V of target nodes is the projection of P (D) onto the
variables zI for all I ∈ T ∪ S and is denoted by PT (D).

Before we turn to our main result, we show that requiring a recursive linearization to be partitioning
(resp. binary) is actually a restriction. This requires the following simply lemma.

Lemma 6. Let D = (V,A) be a recursive linearization and let I⋆, J⋆ ∈ V be two of its nodes. Then the
inequality zI⋆ ≤ zJ⋆ is valid for P (D) if and only if D contains a path from I⋆ to J⋆.

Proof. Sufficiency follows by considering a path from I⋆ to J⋆ and adding inequalities (6a) for all its arcs.
To see necessity, assume that D does not contain such a path. We define the vector z ∈ RV with

zI :=

{
0 if there exists a path from I to J⋆,
1
2 otherwise,

and claim that z ∈ P (D) holds. Inequality (6a) for an arc (I, J) ∈ A is clearly satisfied if zJ = 1
2 holds.

Otherwise, there exists a path from J to J⋆ in D, which can be extended to a path from I to J⋆ using arc
(I, J). This shows that in this case zI = 0 holds, and thus that the inequality is also satisfied. Similarly,
inequality (6b) for a node I is clearly satisfied since the definition of z yields 1− zJ ≥ 0.5 for each successor
J ∈ Nout(I), and since I has |Nout(I)| ≥ 2 such successors. From z ∈ P (D) and 1

2 = zI⋆ ̸≤ zJ⋆ = 0 we
conclude that zI⋆ ≤ zJ⋆ is not valid for P (D).

Proposition 7. Let D(2a) = (V(2a),A(2a)) be the recursive non-partitioning linearization (for hypergraph
G = (V, E)) from Figure 2a and let D = (V,A) be any recursive linearization with PE(D) ⊆ P (D(2a)). Then
D is also non-partitioning.

Proof. Inequalities z{1,2,3} ≤ z{1,2} and z{1,2,3} ≤ z{2,3} are valid for P (D(2a)). By Lemma 6, this implies
that D must contain a path from {1, 2, 3} to {1, 2} and one from {1, 2, 3} to {2, 3}. Due to the cardinalities
of the involved sets these paths must actually be arcs, which implies {1, 2}, {2, 3} ∈ Nout({1, 2, 3}). We
conclude that D is not partitioning.

Proposition 8. Let D(2b) = (V(2b),A(2b)) be the recursive non-partitioning linearization (for hypergraph
G = (V, E)) from Figure 2b and let D = (V,A) be any recursive linearization with PE(D) ⊆ P (D(2b)). Then
D is also non-binary.

Proof. We assume, for the sake of contradiction, that D is binary.
First, observe that z{1,2,3,4} ≤ z{1,3} and z{1,2,3,4} ≤ z{2,4} are valid for P (D(2b)). By Lemma 6, this

implies that D must contain paths from {1, 2, 3, 4} to {1, 3} and to {2, 4}. Due to the cardinalities of the

4

Multilinear optimization problem:

minx1x2x3 + x2x3x4 + x1x2 s.t. x ∈ {0, 1}4

Hypergraph:

1 2 3 4

{1, 2, 3} {2, 3, 4}

{1, 2}

(a) A multilinear optimization problem with its hyper-
graph representation. Nodes are indicated as squares and
hyperedges via ellipses.

{1, 2, 3}

{2, 3, 4}

{1, 2}

{1}

{2}

{3}

{4}

(b) The standard linearization D(b) with z{1,2,3} = z{1} ·
z{2} ·z{3}, z{2,3,4} = z{2} ·z{3} ·z{4}, z{1,2} = z{1} ·z{2} and
z{2,3} = z{2} · z{3}, which is non-binary but partitioning.

{1, 2, 3}

{2, 3, 4}

{1, 2}

{2, 3}

{1}

{2}

{3}

{4}

(c) A recursive McCormick linearization D(c) with
z{1,2,3} = z{1} · z{2,3}, z{2,3,4} = z{2,3} · z{4}, z{1,2} =
z{1} · z{2} and z{2,3} = z{2} · z{3}.

{1, 2, 3}

{2, 3, 4}

{1, 2}

{2, 3}

{1}

{2}

{3}

{4}

(d) A binary non-partitioning linearization D(d) with
z{1,2,3} = z{1,2} · z{2,3}, z{2,3,4} = z{2,3} · z{4}, z{1,2} =
z{1} · z{2} and z{2,3} = z{2} · z{3}.

Figure 1: Three linearizations for the minimization problem in Figure 1a with the depicted hypergraph
G = (V, E) with V = {1, 2, 3, 4} and E = {{1, 2, 3}, {2, 3, 4}, {1, 2}, {2, 3}}. The arcs that leave a node I ⊆ V
indicate the product that is used to represent zI .

Consider the point z(1) ∈ RScupE with z
(1)
{2,3,4} = 0, z

(1)
{1,2,3} = z

(1)
{1,2} = z

(1)
{1} = z

(1)
{2} = z

(1)
{3} = 1

2 and z
(1)
{4} = 1.

It is contained in P (D(b)). However, it is contained in neither PE(D(c)) nor in PE(D(d)) since in both

linearizations the arc from {1, 2, 3} to {2, 3} implies z
(1)
{2,3} ≥ 1

2 and since z
(1)
{2,3,4}+(1−z

(1)
{2,3})+(1−z

(1)
{4}) ≥ 1

implies z
(1)
{2,3} ≤ 0.

Consider the point z(2) ∈ RE∪S with z
(2)
{1,2,3} = 0, z

(2)
{2,3,4} = z

(2)
{1,2} = z

(2)
{2} = z

(2)
{3} = z

(2)
{4} = 1

2 and z
(2)
{1} = 1. It

is contained in P (D(b)) and in PE(D(d)). However, it is not contained in PE(D(c)) since the arc from {2, 3, 4}
to {2, 3} implies z

(2)
{2,3} ≥ 1

2 and since z
(2)
{1,2,3} + (1− z

(2)
{2,3}) + (1− z

(2)
{1}) ≥ 1 implies z

(2)
{2,3} ≤ 0.

Consider the point z(3) ∈ RE∪S with z
(3)
{1,2} = 0 and z

(3)
{1,2,3} = z

(3)
{2,3,4} = z

(3)
{1} = z

(3)
{2} = z

(3)
{3} = z

(3)
{4} = 1

2 . It is

contained in P (D(b)) and in PE(D(c)). However, it is not contained in PE(D(d)) since the arc from {1, 2, 3}
to {1, 2} implies 1

2 = z
(3)
{1,2,3} ≤ z

(3)
{1,2} = 0.

5

{1, 2, 3}

{1, 2}

{2, 3}

{1}

{2}

{3}

(a) A non-partitioning recursive Mc-
Cormick linearization whose relaxation is
not dominated by any partitioning recur-
sive linearization.

{1, 2, 3, 4, 5, 6}

{1, 2}

{3, 4}

{5, 6}

{1, 2, 3, 4}

{1, 2, 5, 6}

{3, 4, 5, 6}

{1, 3}

{2, 4}

{1, 5}

{2, 6}

{3, 5}

{4, 6}

{1}

{2}

{3}

{4}

{5}

{6}

(b) A non-binary recursive McCormick linearization whose relaxation
is not dominated by any binary recursive linearization.

Figure 2: Recursive McCormick linearizations showing that being partitioning or binary is a restriction.

involved sets, these paths must actually be arcs, which implies Nout({1, 2, 3, 4}) = {{1, 3}, {2, 4}} since D is
binary.

Second, inequalities z{1,2,3,4,5,6} ≤ z{1,2}, z{1,2,3,4,5,6} ≤ z{3,4} and z{1,2,3,4,5,6} ≤ z{5,6} are valid for

P (D(2b)). Again by Lemma 6, this implies that D must contain paths from {1, 2, 3, 4, 5, 6} to {1, 2}, {3, 4}
and to {5, 6}. Since D is binary, two such paths must have a common second node (after {1, 2, 3, 4, 5, 6}). By
symmetry we can assume that these are the paths to {1, 2} and to {3, 4}. Hence, this common node must be
{1, 2, 3, 4}. Due to Nout({1, 2, 3, 4}) = {{1, 3}, {2, 4}}, this contradicts the presence of the three paths from
{1, 2, 3, 4, 5, 6} to {1, 2}, {3, 4} and to {5, 6}. We conclude that D is not binary.

This shows that in principle a single non-binary or non-partitining linearization may be more powerful
than any single recursive McCormick linearization. However, in the next section we show that combinations
of several McCormick linearizations are as powerful as the general recursive linearization.

4 Comparison of projected relaxations

Theorem 9. Let G = (V, E) be a hypergraph. Then the following polyhedra are equal:

(i) flower relaxation FR(G);

(ii) intersection of the projected relaxations PE(D) for all recursive linearizations D of G;

(iii) intersection of the projected relaxations PE(D) for all recursive McCormick linearizations D of G.

The fact that (i) is contained in (iii) was established in [17]. This was proved by applying Fourier-Motzkin
elimination to the relaxation of a McCormick linearization, showing the all resulting inequalities are implied
by extended flower inequalities. In contrast to this, our proof works via the projection of the extended flower
relaxation and is surprisingly simple.

Proof that (i) is contained in (ii). Let D = (V,A) be a recursive linearization of a hypergraph G = (V, E).
We need to show FR(G) ⊆ PE(D). To this end, we consider the hypergraph G′ = (V, E ′) with E ′ := V \ S
and claim that FR(G′) ⊆ P (D) holds. Note that E ′ ⊇ E holds, that is, G′ contains all of G’s hyperedges.

First, for any arc (I, J) ∈ A, (6a) is equivalent to the extended flower inequality (4) centered at J with
neighbor I. Second, for any node I ∈ V \ S, (6b) is equivalent to the extended flower inequality (4) centered
at I with neighbors Nout(I). Third, for any v ∈ V, also 0 ≤ zv ≤ 1 follows from the definition of FR(G′).
This proves FR(G′) ⊆ P (D).

For the projection P of FR(G′) and for that of P (D), both onto the variables zI for I ∈ E ∪ S, we thus
obtain P ⊆ PE(D). Successive application of Lemma 3 to P (D) for every edge from E ′ \E yields P = FR(G).

6

Hence, FR(G) ⊆ PE(D) holds. Since FR(G) is contained in each such projected relaxation, it is also contained
in their intersection, which concludes the proof.

Proof that (ii) is contained in (iii). This holds since every recursive McCormick linearization is a recursive
linearization.

Proof that (iii) is contained in (i). It suffices to show that for any hypergraph G = (V, E) and any non-
redundant extended flower inequality (4) there exists a recursive binary partitioning linearization D = (V,A)
whose projected relaxation with respect to E implies this inequality.

To this end, consider an inequality (4) centered at I⋆ with neighbors J⋆
1 , J

⋆
2 , . . . , J

⋆
k . Suppose there exists

a neighbor J⋆
i⋆ that is not required for all (other) neighbors to cover I⋆. Now consider the extended flower

inequality

zI⋆ + (1− zJ⋆
1
) + (1− zJ⋆

2
) + · · ·+ (1− zJ⋆

i⋆−1
) + (1− zJ⋆

i⋆+1
) + · · ·+ (1− zJ⋆

k−1
) + (1− zJ⋆

k
) ≥ 1

in which neighbor J⋆
i⋆ was removed. Adding 1− zJ⋆

i⋆
≥ 0 to it yields our considered inequality, which shows

that the latter is redundant. Hence, from now on we assume that

for each i ∈ {1, 2, . . . , k} there exists a node v ∈ I⋆ ∩ J⋆
i that belongs to no other neighbor. (7)

We partition I⋆ into the sets

Li := I⋆ ∩

J⋆
i \

i−1⋃
j=1

J⋆
j

 i = 1, 2, . . . , k. (8)

Note that Li⋆ ̸= ∅ holds by (7). We construct our linearization D = (V,A) as follows. First, start with
V := {I⋆, L1, L2, . . . , Lk}∪S. Second, for i = k, k−1, . . . , 3, 2, add the node L1∪L2∪· · ·∪Li−1 to V and the
arcs from L1 ∪ L2 ∪ · · · ∪ Li to L1 ∪ L2 ∪ · · · ∪ Li−1 and to Li. Note that this yields a binary tree with root
I⋆ and leaves Li. We will later add paths from these leaves to the singletons, and for this purpose initialize
the set U of unprocessed nodes as U := {L1, L2, . . . , Lk}.

We now extend D to also include the neighbors J⋆
i , processing all i ∈ {1, 2, . . . , k} one by one. Throughout

this process all nodes I ∈ V will be subsets of I⋆ or of those J⋆
i that were processed so far. If J⋆

i = Li, then
there is nothing to do and we continue with the next iteration i+ 1. Otherwise, (7) implies J⋆

i /∈ V. Hence,
we add this node J⋆

i and the node J⋆
i \ Li (unless it exists) to V, add the arcs (J⋆

i , Li), (J
⋆
i , J

⋆
i \ Li) to A,

and add J⋆
i \ Li to U . An example of such an incomplete linearization is depicted in Figure 3.

63

9

10

7

8

4 51 2

11 12

13

14

15

I⋆
= L1J⋆

1

L2

J⋆
2

L3

J⋆
3L4J⋆

4

(a) Support hypergraph with a center
edge I⋆ and four neighbors J⋆

1 , J⋆
2 , J⋆

3

and J⋆
4 along with the four sets Li as

defined in (8).

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

{1, 2, 3, 4, 5, 6, 7, 8}

{1, 2, 3, 4, 5, 6}

{1, 2, 3} {4, 5, 6} {7, 8} {9, 10}

{4, 5, 6, 11, 12} {7, 8, 13}

{9, 10, 14, 15}

{11, 12} {13} {14, 15}

(b) Corresponding incomplete McCormick linearization from the proof.
The unprocessed nodes U = {{1, 2, 3}, {4, 5, 6}, {7, 8}, {9, 10}, {11, 12},
{13}, {14, 15}} are depicted with a dashed border. These are pairwise
disjoint and hence the completion of the linearization is arbitrary.

Figure 3: Hyperedges for a flower inequality with four neighbors and the corresponding incomplete lineariza-
tion from the proof that (iii) is contained in (i).

7

After all J⋆
i have been processed, we process all unprocessed nodes: While U ̸= ∅, pick a node I ∈ U . If

I ∈ V, then we continue. Otherwise, |I| ≥ 2 must hold due to S ⊆ V. Arbitrarily partition I = I1 ∪ I2 with
I1, I2 ̸= ∅. Add the nodes I1, I2 to V (unless they exist) and the arcs (I, I1), (I, I2) to A. Remove I from U
and add I1 and I2 to it. Note that this process terminates since the cardinalities of the nodes I1, I2 that are
added to U are smaller than that of the removed set I.

It is now easily verified that D is a recursive linearization for G that is, by construction, binary and
partitioning. It has the following properties: D contains, for each i ∈ {1, 2, . . . , k} a path (of length 0 or 1)
from J⋆

i to Li as well as a path from I⋆ to Li (of length k− i+ 1 with the inner nodes L1 ∪L2 ∪ · · · ∪Lj for
j = k, k − 1, . . . , i+ 1 in that order). We claim that the following inequalities are valid for P (D):

(1− zJ⋆
i
)− (1− zLi) ≥ 0 i = 1, 2, . . . , k (9a)

z(L1∪L2∪···∪Lj) + (1− z(L1∪L2∪···∪Lj−1)) + (1− zLj
) ≥ 1 j = 2, 3, . . . , k (9b)

Note that if Li = J⋆
i , the two variables in (9a) are the same, and otherwise the inequality follows from (6a)

due to the arc (J⋆
i , Li) ∈ A. Inequality (9b) corresponds to (6b) for the two arcs that leave L1∪L2∪· · ·∪Lj .

The sum of all inequalities (9b) reads

zI⋆ +

k∑
i=1

(1− zLi) ≥ 1.

Adding (9a) for i = 1, 2, . . . , k yields the desired flower inequality (4) centered at I⋆ with neighbors J⋆
1 ,

J⋆
2 , . . . , J

⋆
k . Clearly, this inequality is also implied by the projection PE(D) of P (D) onto the variables zI for

I ∈ E ∪ S, which concludes the proof.

5 Discussion

We would like to conclude our paper with the following consequences for computational complexity. Suppose
we have a family of hypergraphs G = (V, E) for which we can solve the separation problem for extended flower
inequalities (4) in polynomial time. For instance, this is the case if the degree of the linearized polynomials
is bounded by a constant, since then we need to consider only flowers whose number of neighbors is bounded
by a constant. The straight-forward way of using such a separation algorithm is to maintain a subset of
generated extended flower inequalities and, whenever necessary, query the algorithm with a point ẑ ∈ RS∪E

to check if ẑ ∈ FR(G) holds or, if a violated inequality is determined, augment our subset. Note that such a
point ẑ then typically satisfies the generated inequalities, say, in the context of the Ellipsoid method [16] or
when doing row generation using the Simplex method [2]. As an alternative, we could now maintain a set of
recursive linearizations. For a point ẑ we can now run the same algorithm, but apply our construction from
the proof of Theorem 9 (that (iii) is contained in (i)) to obtain a new linearization that we add to our set.
The disadvantage is that adding such a new recursive linearization requires us to add new variables and new
inequalities. An advantage could be that a new recursive linearization can imply several flower inequalities
at once. This potential is illustrated in Figure 4, where a quadratic number of flower inequalities is replaced
by only one additional node in the recursive linearization.

Let us consider the intersection of two projected relaxations PE(D(1)), PE(D(2)) for linearizations D(j) =
(V(j),A(j)), j = 1, 2 for some hypergraph G = (V, E). When working with recursive linearizations one
would not carry out the projection, but actually maintain variables for all nodes in V(1) and in V(2). The
intersection is achieved by identifying the variables zI for all I ∈ E . However, if there is another variable

I ∈ (V(1) ∩ V(2)) \ E , then it formally exists in both formulations, say as z
(1)
I and z

(2)
I and has the intended

meaning of z
(j)
I =

∏
i∈I xi for j = 1, 2 in both linearizations. Hence, we can identify these variables z

(1)
I = z

(2)
I

with each other. First, this reduces the number of variables. Second, if some arcs (that involve I) exist in both
recursive linearizations, then this may also reduce the number of inequalities. Notice that, after doing this,
there might be multiple inequalities (6b) for a single I ⊆ V . Third, this might strengthen the formulation.
In fact, running intersection inequalities [6] can be seen as a strengthened version of flower inequalities.
We leave it as an open problem to investigate how this strengthening of intersected recursive linearizations
compares to strengthening of flower inequalities to running intersection inequalities.

8

u1 u2

v1

v2
v3

v4

v5

v6

v7

v8
v9

v10

v11

v12

Figure 4: An instance in which several extended flower inequalities are captured by one recursive Mc-
Cormick linearization. The hypergraph G = (V, E) has V = {{vi, wi} | i = 1, 2, . . . , k} ∪ {{u1, u2}} and
E = {{u1, u2, vi, wi} | i = 1, 2, . . . , k} (for k = 12). It has k(k − 1) non-redundant extended flower in-
equalities by considering each edge as the center edge and choosing any other edge as the unique neighbor.
However, it admits a recursive McCormick linearization with one additional variable z{u1,u2} and 2k + 3
extra inequalities (z{u1,u2,vi} ≤ z{u1,u2} and z{u1,u2,vi} + (1 − z{u1,u2}) + (1 − zvi) ≥ 1 for i = 1, 2, . . . , k
as well as those for z{u1,u2} = zu1 · zu2), which turn 3k inequalities (z{u1,u2,vi} ≤ zu1 , z{u1,u2,vi} ≤ zu2 and
z{u1,u2,vi} + (1− zu1 + (1− zu2) + (1− zvi) ≥ 1 for i = 1, 2, . . . , k) from the standard relaxation redundant.

References

[1] Burer, S., Letchford, A.N.: Non-convex mixed-integer nonlinear programming: A survey. Surveys in
Operations Research and Management Science 17, 97–106 (2012)

[2] Dantzig, G.B.: Maximization of a linear function of variables subject to linear inequalities. In: Koop-
mans, T.C. (ed.) Activity Analysis of Production and Allocation. pp. 339–347. Cowles Commission
Monograph No. 13, John Wiley & Sons, Inc. (1951)

[3] Del Pia, A., Di Gregorio, S.: Chvátal rank in binary polynomial optimization. INFORMS Journal on
Optimization (2021)

[4] Del Pia, A., Khajavirad, A.: A Polyhedral Study of Binary Polynomial Programs. Mathematics of
Operations Research 42(2), 389–410 (2017)

[5] Del Pia, A., Khajavirad, A.: The multilinear polytope for acyclic hypergraphs. SIAM Journal on Opti-
mization 28(2), 1049–1076 (2018)

[6] Del Pia, A., Khajavirad, A.: The running intersection relaxation of the multilinear polytope. Mathe-
matics of Operations Research (2021)

[7] Del Pia, A., Khajavirad, A., Sahinidis, N.V.: On the impact of running intersection inequalities for
globally solving polynomial optimization problems. Mathematical Programming Computation 12(2),
165–191 (2020)

[8] Del Pia, A., Walter, M.: Simple odd β-cycle inequalities for binary polynomial optimization. In: Aardal,
K., Sanità, L. (eds.) Integer Programming and Combinatorial Optimization. pp. 181–194. Springer In-
ternational Publishing (2022)

[9] Del Pia, A., Walter, M.: Simple odd β-cycle inequalities for binary polynomial optimization. Mathemat-
ical Programming (Jul 2023)

[10] Dines, L.L.: Systems of linear inequalities. Annals of Mathematics pp. 191–199 (1919)

9

[11] Fortet, R.: Applications de l’algebre de boole en recherche opérationelle. Revue Française de Recherche
Opérationelle 4(14), 17–26 (1960)

[12] Fortet, R.: L’algebre de boole et ses applications en recherche operationnelle. Trabajos de Estadistica
4, 17–26 (1960)

[13] Fourier, J.B.J.: Analyse des travaux de i’academie royale des sciences pendant i’annee 1824. Partie
mathematique, Histoire de l’Academie Royale des Sciences de l’Institut de France 7, xlvii–lv (1827)

[14] Glover, F., Woolsey, E.: Further reduction of zero-one polynomial programming problems to zero-one
linear programming problems. Operations Research 21(1), 156–161 (1973)

[15] Glover, F., Woolsey, E.: Converting the 0-1 Polynomial Programming Problem to a 0-1 Linear Program.
Operations Research 22(1), 180–182 (1974)

[16] Khachiyan, L.: A polynomial algorithm in linear programming. Doklady Akademii Nauk 244, 1093–1096
(1979)

[17] Khajavirad, A.: On the strength of recursive mccormick relaxations for binary polynomial optimization.
Operations Research Letters 51(2), 146–152 (2023)

[18] Luedtke, J., Namazifar, M., Linderoth, J.: Some results on the strength of relaxations of multilinear
functions. Mathematical Programming 136(2), 325–351 (2012)

[19] McCormick, G.P.: Computability of global solutions to factorable nonconvex programs: Part i — convex
underestimating problems. Mathematical Programming 10(1), 147–175 (1976)

[20] Motzkin, T.S.: Beiträge zur Theorie der linearen Ungleichungen. Ph.D. thesis, Universität Basel (1936)

[21] Tawarmalani, M., Sahinidis, N.V.: Convex extensions and envelopes of lower semi-continuous functions.
Mathematical Programming 93, 247–263 (2002)

10

	Introduction
	Flower relaxation
	Recursive linearizations and their relaxations
	Comparison of projected relaxations
	Discussion

