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Abstract

In this paper, a novel approach is presented to address a challenging optimization problem

known as Generalized Order Acceptance Scheduling. This problem involves scheduling a set

of orders on a single machine with release dates, due dates, deadlines, and sequence-dependent

setup times judiciously to maximize revenue. In view of resource constraints, not all orders can

be accommodated; accordingly, a careful selection and sequencing process is required. Our pro-

posed method leverages a hybrid genetic algorithm in conjunction with approximate dynamic

programming to address sequencing and acceptance decisions, respectively. The algorithm’s

performance is enhanced through custom-built local searches, guided by order-specific weights

that inform acceptance and rejection choices. Additionally, a rank-based representation is used

to quantify the differences between individuals and to promote diversity among the popula-

tion. Numerical evaluations conducted on a well-established benchmark dataset demonstrate

the effectiveness of our approach. The results of our comparative analysis against six baseline al-

gorithms from the literature indicate that our method has the potential to significantly improve

the outcome of order acceptance scheduling.

Keywords: Order Acceptance, Scheduling, Genetic Algorithm, Dynamic Programming

1 Introduction

Order Acceptance Scheduling (OAS) is a combinatorial optimization problem focused on efficiently

managing orders to maximize overall revenue. In its simplest form, this problem revolves around

a single machine tasked with handling numerous orders, each characterized by different processing

times, deadlines, and revenue impacts. To optimize total revenue, the OAS problem involves the

selection of a subset of orders from a given pool and the organization of their processing on a single

machine. The complexity arises from the constraints imposed by factors such as release times,

processing times, setup times, due dates, and deadlines for each order. The interplay of these

constraints creates a complex decision space where the objective is to make judicious choices in

order selection and sequencing to attain the highest possible revenue.
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The significance of OAS lies in its extensive applicability across various sectors. For instance,

in manufacturing, OAS plays a pivotal role, as this sector heavily relies on the timely processing

of orders to meet customer expectations and sustain competitiveness. Similarly, OAS is crucial in

supply chain management, where the timing and selection of orders are instrumental in maintaining

optimal inventory levels and ensuring on-time deliveries. Moreover, it is worth noting that the OAS

problem extends beyond industrial sectors and finds relevance in service sectors. For example, in

healthcare, optimizing the allocation of medical resources is essential to achieve the best possible

outcomes for patients.

The body of literature on OAS and its variations is extensive. For instance, Esmaeilbeigi et al.

(2016) introduced new Mixed Integer Linear Programming (MILP) formulations for OAS along

with valid inequalities. Additionally, de Weerdt et al. (2021) proposed an exact algorithm based

on dynamic programming to address OAS, and Wang et al. (2015) extended OAS to two parallel

machines, offering two heuristics and a Lagrangian relaxation-based exact solution methods. How-

ever, the primary focus of this paper is on a particular variant of OAS, which has received relatively

less attention in the OAS literature due to its complexity. This variation was first introduced by

Og et al. (2010), to the best of our knowledge, and it involves sequence-dependent setup times.

Throughout this paper, we will use the term Generalized Order Acceptance Scheduling (GOAS) to

refer to this variant. To provide a better context for our contributions, a brief literature review on

GOAS is provided next.

1.1 Literature Review

A Mixed Integer Linear Programming (MILP) approach is used by Og et al. (2010) to formulate

the GOAS problem, which is capable of providing optimal solutions for up to 15 orders. The

authors propose three heuristic algorithms for solving larger instances. The study also generates

a benchmark set of instances that has been used in most of the subsequent studies. A variety of

algorithms have been proposed to solve the GOAS problem, both exact and heuristic. There is

a branch-and-bound algorithm proposed by Nobibon and Leus (2011) that is capable of solving

instances with a size up to 50 orders to optimality. An arc-time-indexed mathematical formulation

and two exact algorithms based on it are proposed by Silva et al. (2018), including a Lagrangian

relaxation method and a column generation algorithm.

In the literature, heuristic algorithms have been used more frequently for the solution of GOAS

problems. A Tabu Search is proposed by Cesaret et al. (2012) for solving the problem. A solution is

represented by a vector in which the ith entry indicates the position of the order oi in the sequence if

accepted, whereas zero if not accepted. Lin and Ying (2013) use an Artificial Bee Colony algorithm,

in which a solution is represented by a linear permutation of orders. A similar representation of

the solution is offered by Chaurasia and Singh (2017) in two evolutionary algorithms. In both of

these papers, orders that violate the deadline constraint are rejected in a simple manner. Artificial

bee colonies-based heuristics are also proposed by Wang et al. (2013) for a variation of a GOAS

involving two machines. A Genetic algorithm for GOAS based on tree representations have been

2



proposed by both Park et al. (2013) and Nguyen (2016). A genetic algorithm based on dispatching

rules is proposed by Nguyen et al. (2015), in which each individual is divided into T segments and T

dispatching rules are selected from a set of candidate rules. A biased random-key genetic algorithm

was developed by He et al. (2019) in which each chromosome is represented by a vector of numbers

between 0 and 1. For decoding, the orders are sorted according to their gene values and those not in

violation of the deadline are scheduled. By using an ALNS algorithm, they improve GA’s solution

further. Mahmoudinazlou et al. (2023) hybridizes an Imperial Competitive Algorithm (ICA) with

Simulated Annealing (SA). ICA is a fairly new population-based metaheuristic algorithm. To

solve GOAS, Tarhan and Oğuz (2022) employ a combination of metaheuristic algorithms and

mathematical programming. The proposed algorithm is comprised of a time-bucket MILP model,

a variable neighborhood search algorithm, and a tabu search algorithm.

1.2 Contributions

To solve GOAS problem, two decisions must be made: first, selecting some tasks out of the available

orders, and second, scheduling them in an order to maximize revenue. To achive this, a hybrid

genetic algorithm is proposed in this study, where the GA is responsible for sequence-level decisions

and an approximate dynamic programming algorithm is used to deal with acceptance-level decisions.

This approach was motivated by our previous work (Mahmoudinazlou and Kwon, 2024), where a

divide and conquer approach was employed to address the Multiple Traveling Salesman Problem.

In that study, the GA places the cities in order, whereas the DP splits the sequence into m different

tours. Additionally, in this study, some neighborhood searches are performed to facilitate faster

convergence to (near) optimal solutions. Among the major contributions of this paper are:

1. A permutation-based representation is used to encode the solution, which includes all the

orders. To handle the acceptance/rejection decisions for the given sequence, an approximate

dynamic programming approach is applied, which improves the efficiency of the decision-

making process.

2. A new crossover is designed that takes into account both sequence-related and acceptance-

related decisions.

3. To enable smart removal and addition of orders to the solution, local searches are performed

by assigning a weight to each job.

4. By using a rank-based representation, the differences between individuals in the population

are quantified in order to increase the diversity of the population.

5. As part of our evaluation, we tested our algorithm against a well-known benchmark set and

compared it to six baseline algorithms. The results show that our algorithm outperforms all

six baseline algorithms.
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Below is an overview of the paper’s organization. In section 2 the problem is formally described.

The details of our proposed method are outlined in Section 3. The results of the computational

experiments are presented in section 4, which compares our results with those of the baseline

algorithms. Lastly, we conclude the paper in Section 5 and make suggestions for future research.

2 Problem Description

In GOAS, there are n orders that can be processed on a single machine. Orders are assigned a

specified timeframe within which they can be completed. It may be impossible to accomplish all

tasks within the specified time frame due to a lack of resources. Therefore, in order to maximize

the total revenue, some tasks must be selected and scheduled. Let O = {o1, o2, ..., on} be collection
of all available orders. The release time and processing time of order oi are represented by ri and

pi respectively. The setup time between order oi and order oj if scheduled consecutively, is shown

by Sij . In case oj is the first scheduled order, the setup time of the machine is S0j . The processing

of a particular order oi is only possible after it has been released. Once the order has been released

and is ready for scheduling, the machine will be set up accordingly. It is important to note that

even the setup process cannot be initiated prior to ri. The order will be processed within pi time

units once the machine has been set up. Let us assume that order oj occurs immediately after

order oi. Let Cj be the completion time for the order oj . Therefore, Cj = max(Ci, rj) + Sij + pj is

the completion time for order oj .

The due date and deadline of order oi are represented by di and d̄i respectively. The tardiness

of order oi can be calculated as li = max(0, di − Ci) If order oi is completed prior to or on the

due date, revenue ei is earned. The revenue will decrease proportionally to the amount of lateness

if the order is completed after the due date but before the deadline. The order will not generate

revenue if the task is completed after the deadline. Let wi be tardiness cost of order oi where

wi =
ei

d̄i − di
. Therefore, the reduction in revenue between di and d̄i is linear. Consequently, order

oi would generate revenue of max(0, ei − wi × li). The optimal solution of GOAS is a subset of

{o1, o2, ..., on} scheduled on machine in a sequence that maximizes the total gained revenue.

3 A Hybrid Genetic Algorithm

The purpose of this section is to describe the structure and details of our proposed Hybrid Genetic

Algorithm (HGA). It is best to begin by discussing the representation of the chromosomes and

their evaluation mechanism. The chromosome representation in our GA is a sequence of all orders.

For instance, [3, 2, 5, 4, 1] is a chromosome representation for a problem with size n = 5. However,

due to the nature of the orders, which have specific release times and deadlines, and the fact that

there is only one machine to process them, not all of the orders can be successfully completed in

the optimal solution. This requires a decision to be made regarding the acceptance or rejection of

each order. As a naive approach, one would accept as many orders in the sequence as the machine
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Figure 1: The mechanism of acceptance/rejection decision making by DP (or ADP).

resources would allow. For the population to thrive quickly, however, a more efficient approach is

necessary.

3.1 Approximate Dynamic Programming

In order to evaluate a chromosome, acceptance/rejection decisions must be made without changing

the sequence of orders. A dynamic programming approach may be designed to make these decisions

in an optimal manner. The DP will take a sequence of orders and select the best possible subset

of those orders without changing their sequence (Figure 1). We define α(k, t) as the subproblem of

optimally deciding acceptance and rejection decisions for orders o1, ..., ok up to time t. Let F (k, t)

represent the optimal reward for subproblem α(k, t). By using Bellman optimality equations in

forward propagation and starting with F (0, 0) = 0, we aim to find F (n, t) for all t ≤ max(d̄),

where d̄ is the vector that represents the deadlines. We can obtain the optimal solution of DP by

using maxt(F (n, t)). Assuming k2 > k1 and t′ > t, the Bellman optimality equations are F (k2, t
′) =

max
k1,t

(
F (k1, t) +R(k1, k2, t, t

′)
)
, where R(k1, k2, t, t

′) is the revenue obtained by scheduling the order

in position k2 right after the order in position k1, starting from somewhere after t so that it ends

at time t′. If such scheduling is not possible, then R(k1, k2, t, t
′) = 0.

The proposed dynamic programming approach will produce a unique solution for any sequence

of orders. In this way, we can be assured that at least one sequence of orders will provide the

optimal solution to the GOAS problem. It is, however, not possible to use the proposed DP at

large scales due to its high computational cost. The proposed dynamic programming has a time

complexity of O(n2 × max (d̄)). In cases where n = 100 orders are involved and max(d̄) > 1000,

using DP for chromosome evaluation would be illogical.

In order to overcome this issue, we propose an approximate dynamic programming method,

which takes a sequence of jobs and determines the near-optimal acceptance/rejection for the given

sequence. This is achieved by removing the time dimension from the proposed DP. Although the

output of ADP might not be the optimal acceptance/rejection decision, it produces much better

solutions than the naive policy. A detailed discussion of approximate dynamic programming can

be found in Algorithm 1. Let O = {o1, o2, ..., on} represent the sequence of orders. If we divide

the problem into maximizing the revenue for acceptance/rejection decisions of a subsequence of
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O from o1 to ok, then Bellman’s optimality equation can be used for forward propagation. Let

Fk represent the near-optimal revenue from making acceptance/rejection decisions up to order

ok. Assuming k2 > k1, we can use forward propagation to obtain Fk2 from Fk1 by equation

Fk2 = max
k1

(Fk1 +R(k1, k2)), where R(k1, k2) is the revenue of scheduling order ok2 after order ok1 ,

and is calculated as revenue in Lines 7-9. Accordingly, calculating Fn leads to the final solution.

Tk is used to keep track of completion times, whereas Pk is used to extract the final solution. An

order’s predecessor level is represented by Pk.

Algorithm 1 Approximate Dynamic Programming

1: Fk ← 0 ∀k = 0 to n
2: Tk ← 0 ∀k = 1 to n
3: Pk ← 0 ∀k = 1 to n
4: o0 = 0
5: for k1 = 0 to n− 1 do
6: for k2 = k1 + 1 to n do
7: t = max(Tk1 , r[ok2 ]) + Sok1 ,ok2

+ p[ok2 ]
8: tardiness = max(0, t− d[ok2 ])
9: revenue = max(0, e[ok2 ]− tardiness ∗ w[ok2 ])

10: if Fk1 + revenue > Fk2 then
11: Fk2 ← Fk1 + revenue

12: Tk2 ← t
13: Pk2 ← k1
14: end if
15: end for
16: end for
17: return maxnk=1(Fk)

By using the approximate dynamic programming for a given sequence of orders, the near-

optimal acceptance/rejection decisions can be determined in O(n2), where n is the total number of

orders.

According to our experiments, approximate DP provided a better trade-off between computa-

tional time and solution quality.

3.2 GA Structure

A detailed description of the HGA is provided in Algorithm 2. As a starting point, heuristic methods

are used in order to generate µ individuals (line 1). Each of the following steps is repeated until

the stopping condition is met (lines 2-15). The algorithm terminates when there is no improvement

after Itstop iterations or tstop seconds, whichever occurs first. In the first step, the population is

sorted according to fitness that is calculated based on the revenue and a diversification multiplier

(line 3). The diversification method will be discussed in more detail in Section 3.6. Two individuals

will then be selected as parents from the population (line 4). In this study, Tournament Selection

was used to select the parents. In tournament selection, a subset of individuals is selected at
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random from a population. In this paper, ktournament represents the number of individuals within

the subset, which is a user-defined parameter. Each individual within this subset competes against

the other, and the one with the highest fitness value is selected as a parent. This process is repeated

for selecting the second parent. Using crossover with two parents will result in one child (line 5)

that is subjected to the ADP algorithm for fitness evaluation (line 6). Next, neighborhood search

functions will be applied to the new offspring in order to improve it (line 7). Once the population

reaches the size of µ+λ, a survival plan is implemented. The population is sorted based on objective

function, and the best µ individuals are maintained and the rest are discarded (line 9-11). As a

further effort to help the algorithm avoid local optima, the population will be diversified when no

improvement is observed after Itdiv iterations. This step consists of keeping nbest top individuals,

discarding the rest, and generating new individuals until the population size returns to µ. Creating

new individuals follows the same process as generating the initial population (lines 12-14).

Algorithm 2 Hybrid Genetic Algorithm

1: Ω = initial population() ▷ Section 3.3, Algorithm 3
2: while Stopping condition is not met do
3: sort(Ω) ▷ Based on fitness and diversification factor
4: Select ω1 and ω2 from Ω
5: ω ← crossover(ω1, ω2) ▷ Section 3.4
6: evaluate(ω) ▷ Approximate Dynamic Programming, Algorithm 1
7: neighborhood search(ω) ▷ Section 3.5
8: Ωf ← Ωf ∪ {ω}
9: if size(Ω) = µ+ λ then

10: select survivors(Ω)
11: end if
12: if best(Ω) not improved for ItDIV iterations then
13: diversify(Ω)
14: end if
15: end while
16: Return best(Ω)

The remainder of this section is summarized as follows: Section 3.3 describes the process of

generating the initial population. Section 3.4 provides an explanation of two crossover functions

developed in this study. Then, we explain in section 3.5 the neighborhoods that are used in local

search to improve the generated offspring. Finally, the

3.3 Initial population

Based on our chromosome representation and evaluation, any permutation of orders can lead to a

feasible solution if ADP is applied to it. In evolutionary algorithms, however, the quality of the

initial population plays a very important role in determining the speed of convergence. Therefore,

it is much more beneficial to begin with solutions that are superior to random solutions. Algorithm

3 describes the process for generating initial solutions in this study. First, the orders are sorted
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according to their release date. The available orders are listed at each time point and based on

probabilities proportional to RTR =
revenue

time on machine
, an order is selected. An order’s ratio

increases if revenue is higher and time spent on the job is shorter. In this way, orders that produce

more revenue in less time have a greater chance of being scheduled. In addition, since sampling

is being used, each time the solution will be different. Algorithm 3 is used to generate the initial

population and to diversify when necessary.

Algorithm 3 Generating initial greedy solution

1: t← 0
2: S∗ ← ∅
3: R← {o1, o2, ..., on} ▷ List of all orders
4: l← 0 ▷ Last scheduled order
5: repeat
6: J = {oi ∈ R|r[oi] <= t} ▷ All available orders at time t
7: if J = ∅ then
8: t← min

oi∈R
(r[oi])

9: else
10: for oi ∈ J do
11: Coi = t+ Sl,oi + p[oi] ▷ Completion time
12: tardiness = max(0, Coi − d[oi])
13: revenue = max(0, e[oi]− tardiness ∗ w[oi])
14: RTRoi =

revenue

Coi − t
▷ Revenue to time ratio

15: end for
16: l = sample(J) proportional to RTRoi

17: S∗ ← S∗ ∪ l
18: end if
19: until There is no job in R that can be scheduled with positive revenue
20: Return S∗ ▷ One initial solution

3.4 Crossover

A total of three crossovers are used in our GA in order to achieve a greater degree of diversity. The

representation of the chromosomes in our study allows the use of any permutation-based crossover.

The Order Crossover (OX1) (Davis et al., 1985) is selected from the literature to be used in this

study. OX1 creates two crossover points randomly in the parent, then copies the segment between

the crossover points to the offspring. Next, the remaining unused numbers from the second parent

are copied to the child, in the same order in which they appear in the second parent.

As OX1 is a crossover over the permutations, the decision as to whether to accept or reject

orders will be solely based on ADP. Therefore, two additional crossovers have been developed that

are more aligned with the specifics of the problem. The first one is a new crossover that inherits

the acceptance/rejection decision from one parent and the sequence decision from the other parent.

The term Acceptance Sequence Crossover (ASX) was coined for this purpose (Figure 2). The first
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1 2 3 4 5 6 7 8 9 10 4 10 7 3 8 6 1 5 9 2

Parent 1 Parent 2

1 2 4 6 7 10

accepted

1 4 10 6 1 2 7

4 10 7 6 1 24 10 7 6 1 2 3 5 8 9

sequence

greedy
remaining

2

3

4Child

Figure 2: An example of ASX crossover. The highlighted genes in parents represent the rejected
orders.

1 2 3 4 5 6 7 8 9 10 4 10 7 3 8 6 1 5 9 2

Parent 1 Parent 2

4 6 1 2 7 8 10

inherited from: p2 p1 p2 p1 p1 p2 p1

start over

4 6 1 2 7 8 10 3 5 9add remaining orders:

Child

Figure 3: An example of SSX crossover. The highlighted genes in parents represent the rejected
orders.

parent’s accepted jobs are taken (step 1), then they are arranged in accordance with the order in

which they appear in the second parent’s solution (step 2). Furthermore, jobs that are accepted in

the first parent but not in the second, are inserted into the sequence greedily, i.e., we try each of

the jobs in all positions and insert them where it yields the highest revenue (step 3). It is necessary

to add all the unaccepted jobs to the end of the child in order to preserve its full size (step 4).

The second new crossover is designed to account for the sequence-dependent setup time char-

acteristic (Figure 3). A random parent is selected, and the first job in its solution is added to the

child. Then, the following process is repeated: let oj be the last scheduled job on the child. Using

the other parent, we find oj and add the job immediately after it. In the event that this process is

unsuccessful in finding a new job, we revert to step one and start over. The reason may be that oj

is not present in the solution of the other parent, or it is the last job in the solution, or it was added

previously. The remaining jobs must also be added at the end of the child (last step). A Sequence

to Sequence Crossover (SSX) is what we call this crossover. The use of these three crossovers allows

OX1 to diversify the population in terms of sequence, while ASX and SSX add diversity in terms

of acceptance and sequence.

3.5 Neighborhood search

Our hybrid method employs local searches in order to facilitate faster convergence. Following the

crossover, we employ local searches to improve the quality of the generated offspring. There is,

however, a potential trade-off here. A population can be trapped in local optima if too much local
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search is performed. Therefore, we attempt to improve the offspring with a probability that we

set equal to τ . During our experiments, we observed that tight due dates necessitated more local

searches. In this study, five different neighborhoods are taken into account, as shown in Figure

4. S represents the sequence of acceptable jobs for the individual, while S′ represents the list of

rejected jobs. The following is a detailed description of each neighborhood.

• N1: Selects a job from S′ and places it in S.

• N2: Selects a job from S′ and places it between two consecutive jobs in S, while swapping

them.

• N3: Replaces a job from S with a job from S′.

• N4: Removes a job from S while selecting a job from S′ and placing it in S.

• N5: Selects two jobs from S′, replaces one with a job in S while adding the other to S

It can be seen that all of the neighborhoods are primarily related to the acceptance level of

the decision. Therefore, sequence-level decisions are left to crossover functions in GA. In order to

improve the efficiency of the local search process, two ideas have been implemented to make the

search smarter. First, neighborhood selections are made according to probabilities which are up-

dated through a roulette wheel mechanism. Thus, the algorithm will employ more beneficial neigh-

borhoods according to the specific instance. Secondly, the selection of jobs from S and S′ is not

subject to pure randomness. Two types of weights are introduced for orders, static weights and dy-

namic weights. An order’s static weight is equal to
e[oj ]

p[oj ] + Savg,oj + Soj ,avg
, which remains constant

throughout the algorithm. If an order oj is accepted, the dynamic weight is
revenue[oj ]

time on machine[oj ]
,

same as the RTR proposed in Section 3.3. Adding a job from S′ to S is done by random sampling

with probabilities proportional to static weights. Consequently, we increase the chances of jobs that

lead to higher revenues within a shorter period of time. Similarly, we use probabilities proportional

to the inverse of dynamic weights when removing a job from S.

Further, we select the location of the new job that is to be added to S only from positions that

are compatible with the deadline. The starting and completion times of all jobs are pre-recorded

for this purpose.

3.6 Diversification

Generally, genetic algorithms tend to produce populations that are similar to the best individual,

especially when populations are small. This may lead to the algorithm being trapped in local

optima. The chances of reaching global optima are higher for a diverse population because it has

more exploration opportunities. The process of mutation is one of the methods employed by GAs

to diversify their populations. We have however not used any mutations in this study due to the

fact that our experiments showed that they were not very effective in our method. In this study,
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Figure 4: Illustration of local search functions (L1 − L8)

diversifying the population is accomplished in two ways. We do not allow the coexistence of two

individuals with identical solutions in our GA.

To further diversify the population, we evaluate the chromosome’s fitness based on the revenue

its solution generates, as well as its distance from its adjacent chromosomes after sorting by fitness.

In order to quantify the distance between the two individuals, we first convert the OAS solution

into a rank-based representation. The rank-based representation of each individual consists of

an array with size n, which represents the position of all jobs in the solution. A value will be

assigned to each job in this representation, which represents its position within the solution. The

corresponding value will be zero if a job is not accepted. Consider P = [4, 3, 8, 5, 10, 7] as the solution

of a chromosome when n = 10. Therefore, the rank-based representation of this chromosome

would be R = [0, 0, 2, 1, 4, 0, 6, 3, 0, 5]. A distance between two individuals P1, P2 with rank-based

representations R1, R2 can be calculated as follows:

δ(P1, P2) =
1

n

n∑
i=1

|R1[i]−R2[i]|
Mr

,

where Mr is the maximum rank value in R1 and R2.

The distance between two representations is measured between zero and one, where distances

close to zero indicate similar representations and distances close to one indicate differences. Di-

versity is quantified by calculating the diversity contribution ∆(P ) based on the average distance

between an individual P and two of its closest neighbors. In order to calculate the fitness function

of each individual, the following formula is used:

fitness(P ) = revenue(P )× γ∆(P ),
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where revenue(P ) is calculated using ADP and γ is the diversification factor, a hyperparameter of

the algorithm.

4 Computational results

In order to test the performance of our algorithm, we used a well-studied benchmark set of instances

generated by Cesaret et al. (2012). Data set instances range in size from 10, 20, 15, 25, 50 and 100.

However, we report results only for instances greater than or equal to 25. Each problem size has been

categorized with different tardiness factors τ and due date ranges R. These factors have an impact

on the generation of release times, due dates, as well as deadlines for orders. A detailed description

of the generation of instances can be found in Cesaret et al. (2012). Five values of 0.1, 0.3, 0.5, 0.7

and 0.9 are considered for τ and R. Ten samples are generated for each combination, so there are

250 samples per size.

The baseline algorithms used for comparison are TS (Cesaret et al., 2012), ABC (Lin and

Ying, 2013), DRGA (Nguyen et al., 2015), GA, LOS (Nguyen, 2016) and HSSGA (Chaurasia and

Singh, 2017). All algorithms solve each instance ten times and all reports are based on average

performance over 10 runs including our algorithm.

4.1 Parameter settings

The algorithm is implemented using Julia programming language on a Mac computer with 16 GB

of RAM and an Apple M1 processor. The parameters used in our HGA are µ = 20, λ = 10,

ktournament = 2, Itdiv = 1500, nbest = 0.2µ, γ = 1.2, Itstop = 50000 and tstop is set to 5, 30 and

60 seconds for n = 25, 50 and 100 respectively. Therefore, the computational times for all of the

instances with size n = 25, 50 and n = 100 are less than 5, 30 and 60 seconds respectively.

4.2 Analysis of results

As mentioned earlier, for each combination of n, τ and R, there exist 10 instances in the dataset.

While reporting the results on this benchmark set, all studies use columns named Min, Avg., and

Max. The numbers in the tables represent the gap between the results of a method and the upper

bound obtained from MILP Cesaret et al. (2012). The gap for each instance i is calculated using

the following formula:

gapi =
UBi − LBheuristic

i

UBi
× 100%

We have provided detailed comparisons of results between our HGA and the baseline algorithms

in Tables 1, 2 and 3. The Min, Avg., and Max columns represent the minimum, average, and

maximum gaps over 10 instances of each (n, τ,R) combination. With the exception of HSSGA,

all baseline algorithms have rounded their gaps to integers. The method of rounding was not

discernible in these studies as to whether it was rounding to the nearest integer or rounding down.

Therefore, we follow Chaurasia and Singh (2017)’s method of reporting to two decimal places.
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TS ABC DRGA GA LOS HSSGA HGA

τ R Min Avg. Max Min Avg. Max Min Avg. Max Min Avg. Max Min Avg. Max Min Avg. Max Min Avg. Max

0.1 0.1 1 4 6 1 3 4 2 3 4 1 2 3 1 2 3 1.09 2.40 3.16 0.76 1.86 2.74
0.3 2 3 6 1 2 6 1 2 6 1 2 5 0 2 5 0.69 1.88 5.78 0.69 1.56 2.86
0.5 1 2 4 0 1 2 1 1 3 0 1 2 0 1 3 0.00 0.86 1.81 0.00 0.73 1.45
0.7 0 1 4 0 1 3 0 1 3 0 0 2 0 0 2 0.00 0.39 1.67 0.00 0.36 1.38
0.9 0 1 2 0 0 2 0 1 2 0 0 2 0 0 2 0.00 0.35 2.09 0.00 0.24 1.74

0.3 0.1 2 4 5 1 3 5 2 3 5 1 3 4 1 3 4 1.21 2.53 4.55 0.89 2.37 3.99
0.3 3 5 7 1 3 6 2 3 5 1 3 4 2 3 5 1.12 3.13 5.57 1.72 3.02 4.42
0.5 2 3 6 2 2 5 2 2 3 0 2 3 0 2 3 1.12 1.80 3.50 0.89 1.68 3.50
0.7 1 2 6 1 2 5 1 2 5 0 1 5 0 1 5 0.00 1.61 4.61 0.00 1.47 4.62
0.9 0 2 4 0 1 3 0 1 3 0 1 2 0 1 2 0.00 1.32 3.38 0.00 0.85 2.50

0.5 0.1 3 6 7 3 5 7 2 4 7 1 4 6 1 4 5 1.68 4.01 6.76 1.68 3.88 6.45
0.3 3 5 9 3 4 7 2 5 8 2 4 7 1 4 7 1.68 4.19 7.29 1.72 3.92 7.15
0.5 2 5 8 2 4 6 1 5 6 1 4 6 1 4 6 0.97 4.14 6.37 0.97 4.15 6.05
0.7 2 6 11 0 3 12 2 4 7 0 4 7 0 4 7 0.64 4.37 7.47 0.64 4.17 7.17
0.9 1 4 7 1 3 7 1 3 7 1 3 7 1 3 6 1.03 3.05 6.79 0.68 2.99 6.79

0.7 0.1 3 9 18 1 8 16 1 8 16 0 7 14 0 7 15 0.93 7.48 14.86 0.93 7.43 15.64
0.3 7 10 14 5 9 12 5 9 13 5 8 12 5 8 12 5.78 8.61 12.50 5.05 8.32 12.40
0.5 7 12 15 5 10 14 6 10 14 5 10 14 5 10 14 6.61 10.43 14.03 5.37 10.00 14.03
0.7 2 8 14 2 7 12 2 7 12 1 6 12 1 6 12 1.69 6.65 12.08 1.69 6.49 12.08
0.9 3 10 15 0 8 14 1 8 14 0 8 13 0 8 13 0.01 8.07 13.64 0.01 8.07 13.64

0.9 0.1 0 1 6 0 1 5 0 1 5 0 1 5 0 1 5 0.00 0.54 5.42 0.00 0.54 5.42
0.3 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0.00 0.00 0.01 0.00 0.00 0.01
0.5 0 4 12 0 3 12 0 2 12 0 2 12 0 2 12 0.00 2.49 12.30 0.00 2.49 12.30
0.7 0 8 25 0 7 21 1 7 21 0 6 21 0 6 21 0.00 6.76 20.99 0.00 6.62 20.99
0.9 0 7 22 0 6 19 1 6 20 0 6 19 0 6 19 0.00 6.08 19.33 0.00 5.99 19.10

Avg. 2 5 9 1 4 8 1 4 8 1 4 7 1 4 8 1.05 3.73 7.84 0.95 3.57 7.54

Table 1: Performance of HGA compared to baseline algorithms for n = 25

As can be seen in Table 1, almost all algorithms have similar performance for instances with

size n = 25. A detailed comparison of ABC, DRGA, GA, and LOS is difficult due to rounding

errors. HGA, however, performs better in Min, Avg., and Max gaps when compared to HSSGA.

The HGA clearly outperforms the baseline algorithms on all measures for instances with n = 50

and n = 100 according to Tables 2 and 3.

5 Conclusions

A hybrid genetic algorithm was developed in this study to address the complex optimization chal-

lenge presented by the generalized order acceptance problem in the scheduling domain. Our ap-

proach carefully combines genetic algorithms with approximate dynamic programming in order to

ensure proficient handling of both sequencing and acceptance decisions. Incorporating intelligent

local searches, which are driven by order-specific weightings, enhances convergence while using a

rank-based representation fosters population diversity. The empirical evaluations of our proposed

method, conducted on a widely recognized benchmark dataset, provide compelling evidence of its

effectiveness.

The findings of this study also underscore the importance of using a combination of heuristics

and exact algorithms. There is a great deal of value in heuristics, which are prized for their speed,

and they complement the precision of exact algorithms that ensure superior outcomes. As a result

of this amalgamation, we are able to benefit from the strengths of both approaches. By refining
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TS ABC DRGA GA LOS HSSGA HGA

τ R Min Avg. Max Min Avg. Max Min Avg. Max Min Avg. Max Min Avg. Max Min Avg. Max Min Avg. Max

0.1 0.1 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1.03 1.46 2.17 0.69 0.96 1.56
0.3 1 2 4 1 2 2 1 2 3 1 2 4 1 2 3 0.71 1.24 1.74 0.78 1.05 1.41
0.5 1 2 2 0 1 2 1 1 2 0 1 2 0 1 2 0.34 0.54 0.97 0.03 0.39 0.89
0.7 0 3 16 0 2 16 0 2 16 0 2 16 0 2 16 0.00 1.67 16.39 0.00 1.65 16.39
0.9 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0.00 0.00 0.00 0.00 0.00 0.00

0.3 0.1 2 3 3 2 3 4 2 3 4 1 2 4 1 2 3 1.02 2.20 3.63 1.02 1.87 2.84
0.3 3 4 5 2 3 4 2 3 4 2 3 4 2 3 4 1.55 2.22 3.05 1.43 1.81 2.68
0.5 1 3 5 1 2 4 1 2 4 1 2 4 1 2 3 1.55 1.69 3.88 0.37 1.41 3.64
0.7 0 1 3 0 1 2 0 1 2 0 0 1 0 1 2 0.00 0.48 1.18 0.00 0.12 0.45
0.9 0 1 3 0 1 2 0 1 2 0 0 1 0 0 1 0.00 0.32 1.83 0.00 0.16 0.98

0.5 0.1 3 4 5 2 3 4 3 4 5 1 2 3 1 3 4 1.33 2.61 3.54 1.19 2.20 2.90
0.3 3 6 8 3 4 6 3 5 7 2 3 6 2 4 6 2.58 3.86 5.80 2.11 3.29 5.42
0.5 2 4 8 2 4 7 2 4 8 1 3 6 1 3 7 1.03 3.58 6.82 1.03 2.90 6.07
0.7 2 3 5 1 2 4 1 3 6 0 2 4 0 2 4 0.38 2.10 4.05 0.23 1.76 3.82
0.9 2 4 6 1 2 4 0 2 5 0 1 4 0 1 4 0.00 1.76 4.20 -4.42 1.15 3.96

0.7 0.1 4 7 9 3 5 6 4 5 7 2 4 5 2 4 5 2.42 4.33 5.59 2.42 4.03 4.90
0.3 4 7 11 4 6 9 4 7 10 3 5 8 3 5 9 3.70 5.48 8.58 2.79 4.67 8.06
0.5 7 9 13 5 7 11 6 8 12 4 6 11 5 6 11 4.98 6.98 11.92 4.78 6.36 10.76
0.7 2 9 18 2 8 15 3 8 15 2 7 15 2 7 14 2.92 7.73 15.60 1.39 6.88 14.82
0.9 6 11 18 4 8 14 4 9 14 3 7 13 3 7 13 3.30 7.94 14.29 3.00 7.52 13.17

0.9 0.1 8 13 18 7 11 17 8 12 19 6 11 16 7 11 16 6.93 11.18 16.77 6.59 10.95 16.84
0.3 13 17 23 9 14 18 9 14 18 9 13 17 9 13 17 9.28 13.77 18.60 9.28 13.45 17.65
0.5 10 17 23 3 13 17 4 13 19 3 12 17 3 12 16 3.28 12.56 16.88 3.11 12.27 16.52
0.7 11 16 21 6 12 18 7 13 18 5 11 17 6 11 17 5.81 11.76 17.98 5.70 11.39 17.72
0.9 11 16 19 10 12 16 10 13 17 9 12 16 10 12 16 9.27 12.55 15.92 9.86 12.32 16.06

Avg. 4 7 10 3 5 8 3 5 9 2 5 8 2 5 8 2.54 4.80 8.06 2.14 4.42 7.58

Table 2: Performance of HGA compared to baseline algorithms for n = 50

TS ABC DRGA GA LOS HSSGA HGA

τ R Min Avg. Max Min Avg. Max Min Avg. Max Min Avg. Max Min Avg. Max Min Avg. Max Min Avg. Max

0.1 0.1 1 2 3 1 2 2 1 1 2 1 2 3 2 3 5 1.09 1.65 2.48 0.92 1.11 1.34
0.3 2 2 3 1 1 2 1 1 2 2 2 3 1 3 4 0.81 1.14 1.51 0.71 0.94 1.31
0.5 0 1 3 0 1 1 1 1 1 1 1 2 1 1 2 0.00 0.37 0.64 0.17 0.31 0.57
0.7 0 0 1 0 0 0 0 1 1 0 0 0 0 0 2 0.00 0.03 0.30 0.00 0.00 0.00
0.9 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0.00 0.00 0.00 0.00 0.00 0.00

0.3 0.1 1 3 4 1 2 3 2 3 4 2 3 4 4 6 7 1.49 2.18 2.89 0.90 1.53 2.10
0.3 2 3 5 1 2 4 1 3 4 1 2 4 2 5 7 1.15 1.91 3.36 0.99 1.57 2.86
0.5 1 2 4 1 2 2 2 2 3 1 2 3 3 4 6 1.15 1.37 2.05 0.68 1.09 1.49
0.7 0 2 3 0 1 1 1 1 1 0 1 2 1 2 4 0.00 0.52 1.16 0.00 0.25 0.70
0.9 0 1 2 0 0 1 0 1 1 0 0 1 0 1 3 0.00 0.31 0.74 0.00 0.02 0.19

0.5 0.1 2 4 5 3 3 4 3 5 7 3 4 6 7 8 11 1.96 3.18 4.24 1.96 2.57 3.25
0.3 3 4 6 2 3 4 4 4 6 3 4 5 6 7 9 2.02 2.98 3.74 1.62 2.37 3.09
0.5 3 4 5 2 3 4 3 4 6 2 4 5 5 7 10 1.66 3.00 5.11 1.13 2.37 3.32
0.7 2 3 4 1 2 3 1 3 4 0 2 3 2 5 7 0.77 1.81 2.80 0.31 1.16 1.98
0.9 1 2 5 1 1 3 1 2 4 0 1 3 2 3 6 0.35 1.35 2.69 0.04 0.64 2.31

0.7 0.1 3 5 6 3 4 5 4 6 8 4 5 6 7 9 11 2.83 4.05 5.23 2.52 3.23 3.99
0.3 4 7 11 2 5 7 4 6 9 3 5 8 6 9 13 2.19 5.00 7.71 1.71 4.01 6.45
0.5 4 6 13 3 5 12 4 7 15 3 6 12 6 10 18 2.25 5.54 11.61 2.47 4.62 11.20
0.7 3 7 13 3 5 7 5 8 12 4 6 9 6 9 13 3.11 6.41 9.68 2.26 5.26 7.77
0.9 5 8 13 4 6 8 4 7 10 4 6 9 5 9 12 3.36 6.46 9.07 3.10 5.46 7.54

0.9 0.1 7 9 12 5 7 9 6 9 12 5 7 9 8 11 14 5.50 7.15 10.79 4.10 6.25 8.86
0.3 9 15 23 5 9 12 8 12 16 6 10 13 11 14 18 6.68 10.01 14.39 5.65 9.41 12.04
0.5 13 16 18 9 12 17 11 14 19 8 12 17 12 16 20 9.84 12.53 18.05 8.91 11.73 16.66
0.7 11 16 20 8 11 13 10 14 16 9 12 15 11 16 19 8.75 12.18 15.12 8.12 11.57 13.64
0.9 12 16 22 4 11 17 8 13 19 6 12 17 8 15 22 4.07 11.61 17.79 4.02 11.49 17.27

Avg. 4 6 8 2 4 6 3 5 7 3 4 6 5 7 10 2.44 4.11 6.13 2.09 3.56 5.20

Table 3: Performance of HGA compared to baseline algorithms for n = 100
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and expanding our methodology, we anticipate that it will be applicable to a diverse array of

real-world problems, particularly those that are characterized by limited resources and complex

decision-making processes.

This area of research holds promising possibilities for future exploration. First, dynamic resource

allocation mechanisms might be considered to adapt scheduling decisions in real-time in order to

take account of varying resource availability. Second, incorporating dynamic order arrivals, where

new orders enter the system in real-time, presents an interesting challenge. A dynamic algorithm

could be developed that would be able to adapt to these arrivals and optimize schedules on the fly as

they occur. Moreover, multi-objective optimization scenarios, in which conflicting objectives such

as optimizing revenue, minimizing costs, and ensuring timely delivery coexist, provide an exciting

opportunity for further research.
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