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Abstract

Congestion games allow to model competitive resource sharing in various distributed systems.
Pure Nash equilibria, that are stable outcomes of a game, could be far from being socially
optimal. Our goal is to identify combinatorial structures that limit the inefficiency of equilibria.
This question has been mainly investigated for congestion games defined over networks. Instead,
we focus on symmetric matroid congestion games, where the strategies of every player are the
bases of a given matroid. We derive new upper bounds on the Price of Anarchy (PoA) of
congestion games defined over k-uniform matroids and paving matroids with delay functions in
class D. For both affine and polynomial delay functions, our bounds indicate that the inefficiency
of pure Nash equilibria is limited by these combinatorial structures.

1 Introduction

Congestion games are a class of strategic games that provide an appealing paradigm to model
resource sharing among selfish players. In a congestion game, a set of resources is given, and each
player selects a feasible subset of the resources in order to minimize their cost function. The cost
of a player’s strategy is the sum of the delays of the resources selected by the player, and the
delay of each resource is a function of the total number of players using it. The game is called
symmetric if all players have the same strategy set. An example are network congestion games,
where the resources are the arcs of a given digraph and the strategies of each player are paths in
the network. Congestion games are practically relevant for various problems related to resource
sharing in distributed systems, e.g., routing, network design and scheduling.

A pure Nash equilibrium (PNE) is a configuration where no player can decrease their cost by
unilaterally deviating to another strategy, and it represents a stable outcome of the game. However,
since the players act selfishly and independently in a non-cooperative fashion, a PNE might be far
from minimizing the social cost, which is commonly defined as the sum of all players’ costs. Two
classic metrics for quantifying the inefficiency of equilibria are the Price of Anarchy (PoA) [19] and
the Price of Stability (PoS) [3].

Congestion games always admit a PNE [27]. However, the complexity of computing a PNE in a
congestion can be significantly affected by its combinatorial structure. While symmetric congestion
games and asymmetric network congestion games are PLS-complete [13], Fabrikant et al. gave a
strongly polynomial-time algorithm to find a PNE in symmetric network congestion games [13],
which was later extended to symmetric totally unimodular congestion games by Del Pia et al. [12].

Our main goal is to better understand how the combinatorial structure of a congestion game
might affect the inefficiency of equilibria. For nonatomic congestion games, where each single player
has a negligible impact on congestion, structure has no impact on the PoA. In fact, Roughgarden
proved that the worst-case PoA is equal to ρ(D), a function that only depends on the class D of
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delay functions [29]1. On the other hand, in atomic games, where each single player can affect the
other players’ decisions, there are structures that might reduce the inefficiency of equilibria. In the
absence of structure, Awerbuch et al. [4, 5] and Christodoulou and Koutsoupias [10] independently
provided an upper bound of 5/2 on the PoA for general atomic congestion games with affine delays.
This bound can be improved to (5N − 2)/(2N + 1) if the game is symmetric [10], where N is the
number of players. For atomic congestion games with polynomial delays of highest degree p, Aland
et al. [2] obtained exact values for the worst-case PoA, see also [10, 4, 5]. These exact values
admit a lower bound of bφpcp+1 and an upper bound of φp+1

p , where φp ∈ Θ(p/ ln p) is the unique
nonnegative real solution to (x+ 1)p = xp+1. In the general case, Bhawalkar et al. [6] proved that
the worst-case PoA can be achieved in symmetric games.

However, in the symmetric case the PoA can significantly decrease if the players’ strategy sets
have a special structure. Most of the existing literature has focused on graph structures in network
congestion games. Lücking et al. [21, 22] studied symmetric congestion games on parallel links and
proved that the PoA is 4/3 for linear delay functions. Fotakis later extended this result to network
congestion games defined over extension-parallel networks and proved that for these networks the
worst-case PoA is equal to ρ(D), if the delays belong to class D [15]. Recently, Hao and Michini
explored a further extension to the larger family of series-parallel networks. For affine delays,
they proved that the worst-case PoA is in [27/19, 2] [16]; for polynomial delays of highest degree p
they showed that the worst-case PoA is at most 2p+1 − 1, which is significantly smaller than the
worst-case PoA in general network congestion games [17].

In this paper we focus on another combinatorial structure, namely matroids. Matroid congestion
games are congestion games where each player’s strategy set is the set of bases of a given matroid.
For this class of games, a PNE equilibrium can be efficiently computed, both in the symmetric and in
the asymmetric case [1, 12]. Concerning the inefficiency of equilibria, Kleer and Schäfer [18] showed
that the PoS in general matroids is upper bounded by ρ(D) when the delay functions belong to class
D. However, the PoA of matroid congestion games is not well understood. For affine delays, the
worst-case PoA of general congestion games, that is equal to 5/2, can be asymptotically achieved
in asymmetric instances of singleton congestion games —that coincide with 1-uniform matroid
congestion games— when the number of players goes to infinity [9]. In the symmetric case, the
PoA of general matroid congestion games is still not completely understood. For graphic matroids
and N = 2, 3, 4 or infinity the PoA can be as large as the worst-case PoA of symmetric congestion
games, which is equal to 5N−2

2N+1 [14]. However, for arbitrary N or different delay functions we don’t
know whether the the worst-case PoA of symmetric congestion games can be achieved by symmetric
matroid congestion games. Interestingly, the worst-case PoA of k-uniform matroid congestion games
with affine delays cannot exceed 1.4131 and it is equal 1.35188 when the number of players goes
to infinity [11]. Moreover, for symmetric k-uniform matroid congestion games with polynomial
delays of highest degree p the worst-case PoA is in O(2p(p+1)) and in Ω(2p) [20]. This indicates that
the combinatorial structure of k-uniform matroids significantly limits the inefficiency of equilibria.
However, k-uniform matroids are very special matroids, since every subset of the ground set of
size at most k is independent. Are there weaker matroid structures that affect the inefficiency of
equilibria? In this paper we focus on paving matroids, i.e., matroids whose circuits have cardinality
greater than or equal to the matroid rank. Unlike k-uniform matroids, paving matroids exhibit
a notable predominance within the enumeration of matroids. It has been conjectured that, in an
asymptotic sense, the majority of matroids are paving matroids [23]. This conjecture holds if the
ground set has size at most 9 [7, 24]. Pendavingh and van der Pol [26] more recently proved that,
as the size of the ground set goes to infinity, the ratio of logarithms between the total number of

1The formal definition of ρ(D) is recalled later in equation (2)
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matroids and the number of sparse paving matroids, a subclass of paving matroids, converges to 1.

Our contributions. First, we provide a lower bound of 13/9 on the worst-case PoA for symmetric
paving matroid congestion games with affine delays. This ratio is worse than the previously known
best upper bound ≈ 1.41 on the PoA of symmetric congestion games with affine delay functions
over k-uniform matroids, which are a subclass of paving matroids. Thus, relaxing the structure
of players’ strategy sets from uniform matroids to paving matroids can increase the inefficiency of
pure Nash equilibria.

Theorem 1 The worst-case PoA of symmetric paving matroid congestion games with affine delay
functions is at least 13/9.

We next turn to the question of finding upper bounds on the PoA of symmetric paving matroid
congestion games. Given the class of delay functions D, we define the parameter z(D) as

z(D) = sup
d∈D, x∈N+

d(x+ 1)

d(x)
.

Since the delay functions d(x) are non-negative and non-decreasing, we have z(D) ≥ 1. Our first
main result is an upper bound on the worst-case PoA in symmetric paving matroid congestion
games with delay functions in class D.

Theorem 2 The PoA of symmetric paving matroid congestion games with delay functions in class
D is at most z(D)2ρ(D).

When D is the class of polynomial functions of maximum degree p, we have z(D) = 2p and
ρ(D) ∈ Θ(p/ln p). Thus, the worst-case PoA is in O(4pp/ ln p). For p ≥ 6 our bound is smaller
than the worst-case PoA that can be achieved in general symmetric congestion games, that is in
Θ(p/ ln p)p+1 [2]. Thus, the worst-case PoA of symmetric congestion games cannot be achieved in
paving matroids.

We also prove —with a substantially different approach— that this is the case for p = 1,
i.e., when the delay functions are affine. In this case, the worst-case PoA for general symmetric
congestion games is 5/2.

Theorem 3 The PoA of symmetric paving matroid congestion games with affine delay functions
is at most 17/7.

Finally, the approach used to prove Theorem 2 also provides a new upper bound on the worst-
case PoA in symmetric k-uniform matroid congestion games with delay functions in class D.

Theorem 4 The PoA of symmetric k-uniform matroid congestion games with delay functions in
class D is at most z(D)ρ(D).

When D is the class of polynomial functions of maximum degree p, we obtain that the worst-
case PoA is in O(2pp/ln p). This significantly improves on the previously known upper bound of
O(2p(p+1)) [20] and partially closes the gap with the lower bound of Ω(2p) [20].

Our approach. Our approach is based on representing the “difference” between a PNE f and
a social optimum o of a matroid congestion game as a flow on a complete directed graph, whose
nodes correspond to the resources. Each unit of flow on arc (r, r′) corresponds to a player replacing
r with r′ in their strategy. The overloaded resources (those with more players in f than in the
o) act as supply nodes and the underloaded resources (those with more players in the o than in
the f) act as demand nodes. If every path from supply u to demand v is such that the costs of
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u and v in the PNE are related through a constant α, then we can establish that the PoA is at
most αρ(D) (Theorem 7). When the delay functions are in class D, we can determine values of
α for the case where the matroid is k-uniform (Lemma 8) or paving (Lemma 10). These results
allow us to establish Theorems 2 and 4. Note that our definition of flows generalizes the idea of the
“augmenting paths” used by de Jong et al. [11], extending it from k-uniform matroids with affine
delay functions to general matroids with delay functions in class D.

For a paving matroid congestion game with affine delays we require a different approach in order
to prove Theorem 3. Given f , o and the associated flow, we construct another congestion game
with two states s and q such that cost(f)

cost(o) ≤
cost(s)
cost(q) . We show that s and q and their associated flow

satisfy some special properties, which are used to establish that cost(s)/cost(q) ≤ 17/7 (Theorem
12).

2 Preliminaries

In this section, we first recall some basics of matroid theory and then we introduce some fundamental
notions of congestion games.

Matroids. A matroid is a pair (R, I) where the ground set R consists of a finite set of elements
and I is a nonempty collection of subsets of R such that: (i) if I ∈ I and J ⊆ I, then J ∈ I; and
(ii) if I, J ∈ I and |I| < |J |, then I ∪ {z} ∈ I for some z ∈ J \ I. Given a matroid M = (R, I), a
subset I of R is called independent if I belongs to I, and dependent otherwise. A subset B ⊆ R is
called a basis if B is an inclusion-wise maximal independent subset. That is, B ∈ I and there is no
Z ∈ I with B ⊂ Z ⊆ R. The common size of all bases is called the rank of the matroid, denoted
by r(M). A circuit of a matroid is an inclusion-wise minimal dependent set. For every basis B and
every element in R \B, there is a unique circuit contained in B ∪ {x}, that is called a fundamental
circuit. Next, we introduce the bijective basis-exchange property :

Theorem 5 ([8]) Let B be the collection of bases of a matroid. For any B,B′ ∈ B, there is a
bijection π : B → B′ from B to B′, such that for every x ∈ B \B′, B \ {x} ∪ {π(x)} is a basis.

A matroid is called k-uniform matroid if its independent sets are all the subsets of R of cardi-
nality at most k, i.e. every k+1-element subset of R is a circuit. A matroid is called paving matroid
if every circuit of M has cardinality r(M) or r(M) + 1. The following proposition characterizes
paving matroids in terms of their circuits.

Proposition 6 ([25]) Let C be a collection of non-empty subsets of a set R such that each each
member of C has size either t or t+1. Let C′ ⊆ C consist only of the t-element members of C. Then
C is the set of circuits of a paving matroid on R of rank t if and only if

1. if two distinct members C1 and C2 of C′ have t − 1 common elements, then every t-element
subset of C1 ∪ C2 is in C′; and

2. C \ C′ consists of all the (t+ 1)-element subsets of R that contains no member of C′.

Congestion games. We consider a congestion game with N players and resources set R. For
n ∈ N, we denote by [n] the set {1, . . . , n}. The set Xi ⊆ R is the strategy set of player i. We call
the game symmetric if all the players have the same strategy set, i.e. Xi = Xj for all i, j ∈ [N ].
A state of the game is a strategy profile s = (s1, . . . , sN ) where si ∈ Xi is the strategy chosen by
player i, for i ∈ [N ]. The set of states of the game is denoted by X = X1 × · · · ×XN .

For each r ∈ R we have a nondecreasing delay function dr : [N ] → R≥0. Given a state s we
denote the number of players using resource r by sr. Each player using r incurs a cost equal to dr(sr),
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i.e., the cost of r depends on the total number of players that use r in s. Since dr is a nondecreasing
function, dr(j+1) ≥ dr(j) for j ∈ [N−1], which models the effect of congestion. We denote the cost
of a resource r with respect to state s by costs(r) = dr(sr). We also define cost+

s (r) = dr(sr + 1).
Finally, the social cost of state s is denoted by cost(s) =

∑
r∈R srdr(sr) =

∑
r∈R srcosts(r).

Matroid congestion games. A matroid congestion game is a congestion game where the strategy
set of each player i is the set of bases Bi of a given matroid Mi = (Ri ⊆ R, Ii). For an arbitrary
state s of the matroid congestion game, we denote by Bi

s the strategy of player i in s. A paving
matroid congestion game is a matroid congestion game where Mi is a paving matroid for all i ∈ [N ].
A k-uniform matroid congestion game is a congestion game where Mi is a k-uniform matroid for
all i ∈ [N ] and k ∈ [mini |Ri|].
Pure Nash Equilibria and social optima. A pure Nash equilibrium (PNE) is a state s =
(s1, . . . , si, . . . , sN ) such that, for each i ∈ [N ] we have

costs(s
i) ≤ costs̃(s̃

i) ∀s̃ = (s1, . . . , s̃i, . . . , sN ) ∈ X.

A PNE represents a stable outcome of the game, since no player i ∈ [N ] can improve their cost if
they select a different strategy s̃i.

We are also interested in a social optimum (SO), which is a state that minimizes cost(s) over

all the states s ∈ X. The Price of Anarchy (PoA) is the maximum ratio cost(f)
cost(o) such that o is a SO

and f is a PNE. In other words, to compute the PoA we consider the “worst” PNE, i.e., a PNE
whose social cost is as large as possible.

3 Upper bounds on the PoA for delays in class D
In this section, our goal is to prove Theorems 2 and 4. For a matroid congestion game over resource
set R, we let G = (R,E) be a complete directed graph, where the nodes correspond to the resources
in R. Let s and q be two states of the congestion game. We define the following two sets:

R−(s, q) = {r ∈ R : sr > qr} R+(s, q) = {r ∈ R : sr < qr} ,

and we let l =
∑

r∈R−(s,q)(sr − qr) =
∑

r∈R+(s,q)(qr − sr). In G, every node r ∈ R− has supply

sr − qr, and every node r ∈ R+ has demand qr − sr. A (single-commodity) flow F ∈ ZR×R in G is
a non-negative vector such that for every node r ∈ R

F (δ−(r))− F (δ+(r)) = qr − sr, (1)

where δ−(r) contains all the arcs whose head is r and δ+(r) contains all the arcs whose tail is r. We
call F a (s, q)-difference flow. Note that the above definitions can be applied to a generic congestion
game. For a matroid congestion game, we can construct a special (s, q)-difference flow F , that we
call (s, q)-exchange flow, as follows. According to Theorem 5, for each pair (Bi

s, B
i
q), there is a

bijection πi(x) : Bi
s → Bi

q such that for every r ∈ Bi
s \ Bi

q there is an unique πi(r) ∈ Bi
q \ Bi

s and
Bi
s\{r}∪{πi(r)} ∈ B. Starting from the zero vector, for every i ∈ [N ], r ∈ Bi

s\Bi
q, we add one unit

of flow to the arc (r, πi(r)) to G in order to obtain F . We observe that F can be decomposed into l
paths, each one starting from a node in R−(s, q) and ending at a node in R+(s, q), and carrying one
unit of flow. Each path in the exchange flow can be interpreted as a sequence of resource exchanges
such that each arc (r, r′) in the path corresponds to some player replacing resource r with resource
r′ in their strategy.

In the next theorem, we consider an (f, o)-exchange flow. For any (u, v)-path from R−(f, o) to
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R+(f, o), if costf (u) is equal to at least a fraction α of cost+
f (v), then we can upper bound the ratio

between the social costs of f and o by αρ(D). We recall that the function ρ(D), initially introduced
by Roughgarden [28], is defined as ρ(D) := supd∈D ρ(d), where

ρ(d) = sup
x≥y≥0

xd(x)

yd(y) + (x− y)d(x)
. (2)

Theorem 7 Let F be an (f, o)-exchange flow. Let R− = R−(f, o) and R+ = R+(f, o). For all
paths p contained in F from u ∈ R− to v ∈ R+, if αcost+f (v) ≥ costf (u) for some α ≥ 1 then we
have cost(f) ≤ αρ(D)cost(o).

Proof. For every resource r ∈ R−, inequality (2) and α ≥ 1 imply

frcostf (r) = frdr(fr) ≤ ρ(D)(ord(or) + (fr − or)d(fr))

≤ ρ(D)(αord(or) + (fr − or)d(fr)) (3)

Let {p1, . . . , pl} be an arbitrary decomposition of the flow F , where each pk is from r−k to r+
k

such that r−k ∈ R
− and r+

k ∈ R
+. We have

∑
r∈R+

(or − fr)costo(r) =

l∑
k=1

costo(r
+
k ) ≥

l∑
k=1

cost+
f (r+

k )

≥
l∑

k=1

1

α
costf (r−k ) =

1

α

∑
r∈R−

(fr − or)costf (r), (4)

where the equalities hold by the definition of F and equality (1), the first inequality holds because
of the definition of R+, and the second inequality holds because by assumption. Let R̄ = {r ∈ R :
fr = or} = R \ (R− ∪R+).

cost(f) =
∑
r∈R−

frcostf (r) +
∑
r∈R+

frcostf (r) +
∑
r∈R̄

frcostf (r)

≤
∑
r∈R−

frcostf (r) +
∑
r∈R+

frcosto(r) +
∑
r∈R̄

orcosto(r)

≤ ρ(D)
∑
r∈R−

αorcosto(r) + ρ(D)
∑
r∈R−

(fr − or)costf (r)

+ αρ(D)
∑
r∈R+

frcosto(r) +
∑
r∈R̄

orcosto(r)

≤ ρ(D)
∑
r∈R−

αorcosto(r) + ρ(D)
∑
r∈R+

(or − fr)costo(r)

+ αρ(D)
∑
r∈R+

frcosto(r) +
∑
r∈R̄

orcosto(r)

= αρ(D)
∑

r∈R−∪R+

orcosto(r) +
∑
r∈R̄

orcosto(r) ≤ αρ(D)cost(o).

The first inequality holds because of the definition of R+ and R̄; the second inequality holds
because of inequality (3) and α ≥ 1, ρ(D) ≥ 1; the third inequality follows by applying (4); the last
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inequality follows because α ≥ 1, ρ(D) ≥ 1. �

We emphasize that the bound on the PoA provided by Theorem 7 is not restricted to the class
of paving matroids. In fact, the assumption of the theorem involves an exchange flow, which is
defined for any matroid, and a parameter α. Thus, for any matroid, if we are able to find such α,
we are able to bound the PoA.

The next lemma implies that for k-uniform matroids α = z(D) satisfies the assumption of The-
orem 7. This lemma is an extension of Lemma 5 in [11] from affine delay functions to general delay
functions. Moreover, it can be verified that for polynomial delay functions the bound established
in Lemma 8 is tight.

Lemma 8 Suppose M is a k-uniform matroid. Let q be an arbitrary state of the game. For every
u ∈ R−(f, q) and v ∈ R+(f, q) we have z(D)cost+f (v) ≥ costf (u).

Proof. Let u∗ be the most expensive resource in R−(f, q), i.e., costf (r) ≤ costf (u∗) for every
resource r ∈ R−(f, q). To prove the lemma, we will show that for every v ∈ R+(f, q) we have
z(D)cost+

f (v) ≥ costf (u∗). By contradiction, suppose there exists a resource v ∈ R+(f, q) such that

z(D)cost+
f (v) < costf (u∗). (5)

Since qv > fv, we have fv < N , thus there exists at least one player i who does not use v in f , i.e.,
v /∈ Bi

f . We claim that, for all r ∈ Bi
f , we have

costf (r) ≤ cost+
f (v). (6)

This follows from the fact that, since M is a k-uniform matroid Bi
f \ {r} ∪ {v} is a basis of M for

all r ∈ Bi
f . Thus, if (6) did not hold, player i could deviate from r ∈ Bi

f to v to decrease their

cost. As a consequence, z(D)cost+
f (v) < costf (u∗) implies that v /∈ Bi

f . Moreover, recalling that

z(D) ≥ 1, we have cost+
f (r) ≤ z(D)costf (r) for all r ∈ R. Combining this with (5) and (6), we

obtain that, for all r ∈ Bi
f

cost+
f (r) < costf (u∗). (7)

Note that (7) implies u∗ /∈ Bi
f . Since u∗ ∈ R−(f, q), fu∗ > ou∗ ≥ 0, thus there is at least one player

j using u∗ in f , i.e., u∗ ∈ Bj
f . Since M is a k-uniform matroid, Bj

f \ {u
∗} ∪ {r} is a basis of M for

all r ∈ Bi
f . Moreover, since u∗ /∈ Bi

f and |Bi
f | = |B

j
f | = k, we can conclude that |Bi

f \B
j
f | ≥ 1. I.e.

there exists at least one resource r∗ ∈ Bi
f such that r∗ /∈ Bj

f . Thus, by (7), player j could deviate
from u∗ to r∗ to decrease their cost. This contradicts the fact that f is a PNE. �

Applying Theorem 7 and Lemma 8, we can immediately derive Theorem 4.
Next, we show that for paving matroids α = z(D)2 satisfies the assumption of Theorem 7. To

this purpose, we first introduce an auxiliary result.

Lemma 9 Consider a symmetric matroid congestion game with delays in class D. Let f be a PNE,
and o a SO. Let v be a resource that is not used by player i in f and let Civ be the unique circuit
in Bi

f ∪ {v}. Then, for all r ∈ Civ we have cost+f (r) ≤ z(D)costf (r) ≤ z(D)cost+f (v).

Proof. Assume that there exists a resource r ∈ Civ such that costf (r) > cost+
f (v). Since Civ is

the unique circuit that satisfies Civ \ {v} ⊆ Bi
f , we have that Bi

f \ {r} ∪ {v} ∈ B, i.e., exchanging

7



r and v defines a feasible strategy for player i. By performing this exchange player i is able to
lower their cost, thus contradicting the fact that f is a PNE. Thus, we can conclude that for each
r ∈ Civ we have costf (r) ≤ cost+

f (v). This implies that z(D)costf (r) ≤ z(D)cost+
f (v). Finally, by

the definition of z(D), thus we have cost+
f (r) ≤ z(D)costf (r). �

For an arbitrary state q, consider an (f, q)-exchange flow F and any path contained in it starting
from a node u ∈ R−(f, q) and ending at a node v ∈ R+(f, q). If the matroid is paving, the next
lemma implies that cost+

f (v) cannot be smaller than a fraction of costf (u).

Lemma 10 Suppose M is a paving matroid with r(M) = t ≥ 1. Let q be an arbitrary state of
the game and let F be an (f, q)-exchange flow. Let R− = R−(f, q) and R+ = R+(f, q). For
all paths p contained in F from u ∈ R− to v ∈ R+, and for every resource r in p we have
costf (r) ≤ z(D)2cost+f (v).

Proof. Let r∗ be the most expensive resource of path p in f , i.e., costf (r) ≤ costf (r∗) for every
resource r in p. Since t ≥ 1 we know that r∗ is used by at least one player in f . We will prove
costf (r∗) ≤ z(D)2cost+

f (v). By contradiction, suppose

costf (r∗) > z(D)2cost+
f (v). (8)

Define

S = {r ∈ R : cost+
f (r) < costf (r∗)}, S̄ = {r ∈ R : z(D)cost+

f (r) < costf (r∗)}.

Since z(D) ≥ 1, we have S̄ ⊆ S. Moreover, we have the following property.

Claim 1. |S̄| ≥ t.

Proof of claim. Since v is the last node in p, there exists a player j such that v /∈ Bj
f . Let Cjv be

the fundamental circuit in Bj
f ∪{v}. By Lemma 9, for all r ∈ Cjv we have cost+

f (r) ≤ z(D)cost+
f (v).

Thus:
z(D)cost+

f (r) ≤ z(D)2cost+
f (v) < costf (r∗),

where the last inequality comes from (8). This implies that Cjv ⊆ S̄. Since in a paving matroid of
rank t every circuit has size at least t we obtain |S̄| ≥ t. �

Note that v ∈ S, since z(D) ≥ 1, and r∗ /∈ S. Since p traverses both r∗ and v, there is an arc
(a, b) in p such that a /∈ S and b ∈ S. Since (a, b) is contained in F there exists a player i such that
a ∈ Bi

f , b /∈ Bi
f and Bi

f \ {a} ∪ {b} ∈ B.

First, a ∈ Bi
f \ S = Bi

f \ (Bi
f ∩ S). Thus 1 ≤ t− |Bi

f ∩ S|. We have

|S̄ \Bi
f | = |S̄| − |S̄ ∩Bi

f | ≥ t− |S̄ ∩Bi
f | ≥ t− |S ∩Bi

f | ≥ t+ (1− t) = 1,

where the first inequality follows from Claim 1. Thus S̄ \ Bi
f 6= ∅. Let w ∈ S̄ \ Bi

f . Let Ciw be the

fundamental circuit in Bi
f ∪ {w}. By Lemma 9 for all r ∈ Ciw we have

cost+
f (r) ≤ z(D)cost+

f (w) < costf (r∗),

where the last inequality holds because w ∈ S̄.
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This implies Ciw ⊆ S. Recall that Ciw\{w} ⊆ Bi
f . Since the matroid is paving, |Ciw\{w}| ≥ t−1.

Finally, as a ∈ Bi
f \ S we can conclude that Bi

f \ {a} = Ciw \ {w} ⊆ S. Since b ∈ S, we have

Bi
f \ {a} ∪ {b} ⊆ S. We now prove that every t-element subset of S is a circuit. This immediately

contradicts the fact that Bi
f \ {a} ∪ {b} is a basis.

Claim 2. Every t-element subset of S is a circuit of the paving matroid M .

Proof of claim. Let h be a player such that r∗ ∈ Bh
f and let r be an arbitrary resource in S \Bh

f .

We show that Bh
f \ {r∗} ∪ {r} is a circuit. Consider the fundamental circuit Chr in Bh

f ∪ {r}. We

argue that r∗ is not in Chr . If that was the case, we would have cost+
f (r) ≥ costf (r∗) by Lemma

9, which contradicts r ∈ S. Since we have a paving matroid Chr ≥ t, thus Chr = {r} ∪ Bh
f \ {r∗}.

This proves that Bh
f \ {r∗} forms a circuit with every resource r ∈ S \ Bh

f . By applying the first

statement in Proposition 6 we can conclude that every t-element subset of S∪Bh
f \{r∗} is a circuit.

By the definition of S we have r∗ /∈ S, so S ⊆ S ∪ Bh
f \ {r∗} and every t-element subset of S is a

circuit. �

�

Lemma 10 implies that for paving matroids α = z(D)2 satisfies the assumption of Theorem 7.
Thus, Theorem 2 directly follows.

Remark 11 It can be verified that the bound of Lemma 10 is tight for polynomial delay functions,
however we conjecture that the bound of Theorem 2 is not tight for the same class of delays. In
fact, instances where the bound of Lemma 10 is tight can have PoA smaller than the upper bound
of Theorem 2. An intuitive explanation is the following: when the bound in Lemma 10 is tight,
in the PNE there is an “expensive” resource used by many players and a “cheap” resource used
by few players. For this state to be a PNE, the circuits of the matroid must prevent single player
deviations where the expensive resource is replaced by the cheap one. The existence of these circuits
requires the existence of other resources with comparable costs both in the PNE and in the SO (this
is implied by Lemma 9). As a result, the PoA in these instances will be lower than the upper bound
of Theorem 2.

4 Lower bound on the PoA of paving matroid congestion games
with affine delays

In this section, we consider symmetric paving matroid congestion game with affine delays, i.e., we
assume that the delay function of each resource r ∈ R is of the form dr(x) = arx+ br with ar ≥ 0
and br ≥ 0. Our goal is to prove Theorem 1, stating that the worst-case PoA is at least 13/9. This
lower bound is higher than the previously best known lower bound of ≈ 1.35, which is achieved
in the symmetric k-uniform matroid congestion games [11]. Moreover, this lower bound indicates
that the upper bound of ≈ 1.41 for symmetric k-uniform matroid congestion games does not hold
for paving matroids.

Proof. [Proof of Theorem 1] We prove the theorem by constructing an instance of a symmetric
paving matroid congestion game with affine delays that achieves the PoA of 13/9. Let R = {r1} ∪
R2 ∪R3, where R2 = {r2, r3, r4, r5} and R3 = {r6, . . . , r13}. Let

C1 = {{r1, r6+2i, r6+2i+1} : ∀i ∈ {0, 1, 2, 3}},
C2 = {S ⊂ R : |S| = 4 and S′ 6⊂ S, ∀S′ ∈ C1}.
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Let C = C1 ∪ C2. Using Proposition 6 with C′ = C1 and C = C we can easily check that C is the
set of circuits for a paving matroid of rank 3 defined over R.

Next we define a symmetric congestion game overM. Let the delay function of r1 be dr1(x) = 1,
and for i ∈ {2, 3, . . . , 13} let dri(x) = x. Let the number of players be N = 6. The strategy set of
each player is the set of bases of the paving matroid. In a PNE, players 1 and 2 select resources
{r1, r2, r3} and for i ∈ {3, 4, 5, 6}, player i selects resources {r4, r6, r7}, {r4, r8, r9}, {r5, r10, r11},
{r5, r12, r13}, respectively. Note that players will not deviate from r4 or r5 to r1, since this would
form a circuit in C1. The social cost of this PNE state is 26. In the SO, each player i ∈ [N ] selects
resources {r1, r1+i, r7+i}. It can be easily checked that those strategies contain no circuit and the
social cost is 18. Thus, the PoA of this instance is at least 26/18 = 13/9. �

5 Upper bound on the PoA of paving matroid congestion games
with affine delays

In this section, we prove Theorem 3. Consider a symmetric matroid congestion game with N
players over resource set R, and suppose that every delay function is affine. Let s and q be two
arbitrary states of the game such that cost(s) ≥ cost(q), and let R− = R−(s, q), R+ = R+(s, q).
We consider the graph G defined in Section 3, where each node r ∈ R− has supply sr − qr and
each node r ∈ R+ has demand qr − sr, and we let Φ be a (s, q)-difference flow in G. The following

theorem identifies some special properties of Φ that can be used to upper bound cost(s)
cost(q) . The proof

of the theorem is deferred to the end of the section.

Theorem 12 Suppose that Φ is an acyclic (s, q)-exchange flow satisfying the following properties:

1. For every arc (u, v) with positive flow in Φ, costs(u) ≤ cost+s (v).

2. For every path p from u ∈ R− to v ∈ R+, cost+s (v) ≥ 1
4costs(u).

3. Let (v, w) be an arc with positive flow in Φ. If for every path to v starting at a node u ∈ R−
we have costs(v) ≥ 1

2costs(u), then w /∈ R+.

4. For all r ∈ R+, sr = 0 and Φ(δ+(r)) = 0.

5. For all r /∈ R+, the delay function of r is linear.

Then cost(s)/cost(q) ≤ 17/7.

Now consider a symmetric paving matroid congestion game with N players over resource set
R, and suppose that the delay functions d = (dr)r∈R are affine. Let f and o be a PNE and a
SO, respectively, that achieve the PoA. We consider an (f, o)-exchange flow F . We then apply five
steps, to map S = (R, d, f, o, F ) to a tuple S ′ = (R′, d′, s, q,Φ) that defines a symmetric 1-uniform
matroid congestion game over R′ with affine delays d′ = (d′r)r∈R, where s and q are two states of
the game, and Φ is a (s, q)-exchange flow satisfying the assumptions in Theorem 12, and such that

cost(f)

cost(o)
≤ cost(s)

cost(q)
.

Then using Theorem 12 we can conclude that the worst-case PoA of symmetric paving matroid
congestion games is at most 17/7.

Let S0 = (R, d, f, o, F ). F is an (f, o)-exchange flow of a matroid congestion game, thus for every
arc (u, v) with positive flow in F there exists a player i who could replace resource u with resource
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v in their strategy. Since f is a PNE, player i is not able to decrease their cost by exchanging u
and v, implying that F satisfies property 1. Moreover, since for affine delays z(D) = 2, Lemma 10
implies that also property 2 is satisfied. We apply the following four steps, that preserve properties
1 and 2. Moreover, the construction guarantees

∑
r∈R sr =

∑
r∈R qr in every step. This implies

that in every step we can construct an instance of a symmetric 1-uniform matroid congestion game
on resource set R where s and q are two states that are obtained by assigning players to resources
so that for each r ∈ R we have sr players using r in s and qr players using r in q. The corresponding
(s, q)-exchange flow is redefined accordingly. Note that s and q are not necessarily a PNE and a
SO of the game.
Step 1. First, we let s = f , q = o and Φ = F . We redefine (R, d, s, q,Φ) as follows. For every
resource v ∈ R+(f, o) such that fv > 0, we add a new resource v′ with constant delay equal to
costo(v). We set sv = qv = fv, sv′ = 0 and qv′ = ov−fv > 0. Note that qv′ > sv′ , i.e., v′ ∈ R+(s, q),
while qv = sv, i.e., v /∈ R+(s, q). Moreover we define the flow Φ on arc (v, v′) to be ov − fv. At

the end, Φ is a (s, q)-exchange flow that satisfies property 4. Finally we show that cost(f)
cost(o) ≤

cost(s)
cost(q)

after Step 1. Denote the set of nodes we added in this step by V ′. According to the construction
in Step 1, we have

cost(s) =
∑
r∈R

srcosts(r) +
∑
r∈V ′

srcosts(r) =
∑
r∈R

frcostf (r) + 0 = cost(f),

and

cost(q) =
∑

r∈R\V

qrcostq(r) +
∑
r∈V

qrcostq(r) +
∑
r∈V ′

qrcostq(r)

=
∑

r∈R\V

orcosto(r) +
∑
r∈V

frcostq(r) +
∑
r∈V

(or − fr)costo(r)

<
∑

r∈R\V

orcosto(r) +
∑
r∈V

frcosto(r) +
∑
r∈V

(or − fr)costo(r) = cost(o),

where the inequality holds because costq(r) = dr(fr) < dr(or) = costo(r). By combining the above

inequalities we obtain cost(f)
cost(o) ≤

cost(s)
cost(q) .

Step 2. For each resource v ∈ R+(s, q) receiving t1, . . . , th units of flow from h ≥ 2 resources
u1, . . . , uh through arcs (u1, v), . . . , (uh, v) in Φ, we redefine (R, d) by replacing v with h new nodes
v1, . . . , vh, each having delay function dv. We redefine (s, q) by setting svi = 0 and qvi = ti for all
i ∈ [h]. Next, we redefine Φ by replacing arc (ui, v) with (ui, vi) having flow value ti, for all i ∈ [h].
After this step, for each v ∈ R+(s, q) there is only one resource sending flow to v. Let (s, q), (s′, q′)

denote the input and output states of Step 2, respectively. We show that cost(s)
cost(q) ≤

cost(s′)
cost(q′) holds

after Step 2. For each v ∈ R+(s, q) that we selected in Step 2, we replaced it with v1, . . . , vh. By
the construction we have:

svcosts(v) =
h∑
i=1

s′vicosts′(vi) = 0,

and

qvcostq(v) =

h∑
i=1

q′vicostq(v) =

h∑
i=1

q′vidv(qv) ≥
h∑
i=1

q′vidv(q
′
v) =

h∑
i=1

q′vicostq′(vi).

Thus, the social cost of s stays the same and the social cost of q decreases after Step 2, so we have
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cost(s)
cost(q) ≤

cost(s′)
cost(q′) .

Step 3. For each resource v ∈ R+(s, q), let r∗ be the most expensive resource in R−(s, q) that
is connected to v along a path carrying at least one unit of flow in Φ. Let u be the only resource
sending flow to v in Φ, and let h be the flow of Φ on arc (u, v). If cost+

s (v) > 1
2costs(r

∗), we redefine
(R, d) by replacing v with h new nodes v1, . . . , vh having delay function 1

2cost+
s (v)x for i ∈ [h].

Moreover, we add h new resource w1, . . . , wh with constant delay function 1
2cost+

s (v) for i ∈ [h].
We redefine (s, q) by setting svi = 1, swi = 0 and qvi = qwi = 1 for i ∈ [h]. Thus, property 4 is
preserved. Finally, we redefine Φ by setting to one the flow of arcs (u, vi) and (vi, w) for i ∈ [h]. We
repeat this step until for all v ∈ R+(s, q) we have cost+

s (v) ≤ 1
2costs(r

∗), thus achieving property
3. As in Step 2, let (s, q), (s′, q′) denote the input and output states of each iteration in Step 3,

respectively. We show that cost(s)
cost(q) ≤

cost(s′)
cost(q′) holds after each iteration of Step 3. Note that for each

v ∈ R+(s, q) that we selected in an iteration of Step 3, v is replaced by v1, . . . , vh and w1, . . . , wh.
By our construction we have:

svcosts(v) = 0 <
h∑
i=1

(vicosts′(vi) + wicosts′(wi)) =
h∑
i=1

1

2
cost+

s (v),

and

qvcostq(v) = hcostq(v) ≥ hcost+
s (v) =

h∑
i=1

1

2
cost+

s (v) +

h∑
i=1

1

2
cost+

s (v)

=
h∑
i=1

q′vicostq′(vi) +
h∑
i=1

q′wi
costq′(wi).

The above inequalities imply that after each iteration of Step 3 the social cost of s increases and

the social cost of q decreases, so we have cost(s)
cost(q) ≤

cost(s′)
cost(q′) .

Step 4. For every resource r /∈ R+(s, q), suppose dr(x) = ax+ b where a, b ≥ 0. We redefine the

delay function of r as costs(r)
sr

x = asr+b
sr

x. Next we show that cost(s)
cost(q) ≤

cost(s′)
cost(q′) , where (s, q), (s′, q′)

are the input and output states of Step 4, respectively. According to the definition of the new delay
functions, it is easy to conclude that cost(s) = cost(s′). For every resource r ∈ R \R+(s′, q′), since
we have sr = s′r ≥ q′r = qr, then costq′(r) ≤ costq(r). For every resource r ∈ R+(s′, q′), since we
did not change the associated delay function, we have costq′(r) = costq(r). Thus, we can conclude

that cost(q′) ≤ cost(q), implying cost(s)
cost(q) ≤

cost(s′)
cost(q′) .

Step 5. We delete all the cycles in Φ to make the flow acyclic. At the end, we set S ′ =
{R, d, s, q,Φ} and S = S0. Thus, we achieve property 5.

Based on our discussion we obtain the following lemma.

Lemma 13 S ′ satisfies the six assumptions in Theorem 12 and cost(f)
cost(o) ≤

cost(s)
cost(q) .

Remark 14 The construction that we use in the proof of Theorem 3 relies on Lemma 10 to satisfy
property 2 in Theorem 12. As discussed in Remark 11, although there exist instances where the
bound in Lemma 10 is tight, these instances might still have PoA smaller than the upper bound of
Theorem 3. Thus, we conjecture that the upper bound of Theorem 3 is not tight.

We are now left with proving Theorem 12.
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Proof. [Proof of Theorem 12]By property 5, every node r /∈ R+ has a linear delay function. Thus,
for all r /∈ R+ we have

costs(r) =
sr

sr + 1
cost+

s (r), (9)

costq(r) =
qr

sr + 1
cost+

s (r). (10)

Then we can write

1 ≤ cost(s)

cost(q)
=

∑
r∈R\R+ srcosts(r)∑
r∈R qrcostq(r)

(11)

=

∑
r∈R\R+

s2r
sr+1cost+

s (r)∑
r∈R\R+

q2r
sr+1cost+

s (r) +
∑

r∈R+ qrdr(qr)
, (12)

≤
∑

r∈R\R+
s2r
sr+1cost+

s (r)∑
r∈R\R+

q2r
sr+1cost+

s (r) +
∑

r∈R+ qrcost+
s (r)

. (13)

Note that equality (11) holds because we have sr = 0 for all r ∈ R+ according to property
4, while equality (12) is implied by (9) and (10) and inequality (13) follows from the fact that
dr(qr) ≥ cost+

s (r) for all r ∈ R+.
Let r ∈ R. We define λ(r) = costs(r) − 1

2cost+
s (r). Let p = r0, . . . , rk be a path in Φ carrying

one unit of flow, where r0 ∈ R− and rk ∈ R+. For each h ∈ [k − 1] and i ∈ [h− 1] we define:

Ψ0(p, h) :=

(
1

2

)h
costs(r0), Ψi(p, h) :=

(
1

2

)i
λ(rh−i),

Ω(p, 0) :=
k−1∑
j=1

Ψ0(p, j), Ω(p, i) :=
k−1∑
j=i+1

Ψj−i(p, j) =
k−1∑
j=i+1

(
1

2

)j−i
λ(ri).

Moreover, we set Ω(p, k − 1) = 0, Ψ(p, 0) = 0, and for h ∈ [k − 1] we let Ψ(p, h) :=
∑h−1

i=0 Ψi(p, h).
It can be checked that

k−1∑
j=0

Ψ(p, j) =

k−1∑
j=0

Ω(p, j). (14)

Claim 3. We have that Ψ(p, h) ≤ 1
2cost+s (rh).

Proof of claim. We prove the claim by induction on h. Let h = 1. Since (r0, r1) is an arc in the
path p, by property 1 we have

Ψ(p, 1) =
1

2
costs(r0) ≤ 1

2
cost+

s (r1).
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Now assume that for rh with h < k − 1, the claim holds. Then for rh+1, we have

1

2
cost+

s (rh+1) ≥ 1

2
costs(rh) (15)

=
1

2
λ(rh) +

1

4
cost+

s (rh) (16)

≥ 1

2
λ(rh) +

1

2
Ψ(p, h) (17)

=
1

2
λ(rh) +

1

2

((
1

2

)h
costs(r0) +

h−1∑
i=1

(
1

2

)i
λ(rh−i)

)

=

(
1

2

)h+1

costs(r0) +
h∑
i=1

(
1

2

)i
λ(rh+1−i) = Ψ(p, h+ 1),

where (15) follows from applying property 1 to the arc (rh, rh+1) in the path p, equality (16) follows
from the definition of λ(rh), and inequality (17) holds because of our inductive hypothesis. �

Now let P = {p1, . . . , pl} be an arbitrary decomposition of the flow Φ where each path starts at
a node in R− and ends at a node in R+ and carries one unit of flow. By property 4, Φ(δ+(r)) = 0
for each r ∈ R+, thus in every path p ∈ P the only node in R+ is the sink of the path, denoted by
t(p). Moreover, for each resource r ∈ R we denote by P (r) the paths in P that contain r and by
P 0(r) the paths in P starting at r. Finally, for each resource r ∈ R and path p ∈ P (r) we use the
notation p(r) to identify the position of r in p, precisely p(r) = 0 if r is the start node of p, and
p(r) = i if r is the i-th node appearing after the start node of p. After summing up inequalities
(14) for every path p ∈ P we have∑

r∈R\R+

∑
p∈P (r)

Ψ(p, p(r)) =
∑

r∈R\R+

∑
p∈P (r)

Ω(p, p(r)). (18)

For each resource r ∈ R, we define ar := Φ(δ−(r)), br := Φ(δ+(r))− Φ(δ−(r)). Note that we have
ar = |P (r) \ P 0(r)| and br = |P 0(r)| because Φ is acyclic and thus each path p ∈ P is simple. For
each r ∈ R \R+ and each path in P (r) \ P 0(r) we apply Claim 3. Summing up we obtain

Θr :=
ar
2

cost+
s (r)−

∑
p∈P (r)\P 0(r)

Ψ(p, p(r)) ≥ 0.

Since the fraction in (13) is at least 1, by subtracting the non-negative constant
∑

r∈R\R+ Θr to
both the numerator and the denominator we obtain an upper bound. By using (18) and the fact
that Ψ(p, 0) = 0 for every p ∈ P we obtain

cost(s)

cost(q)
≤
∑

r∈R\R+ Ar∑
r∈R\R+ Br

≤ max
r∈R\R+

Ar
Br
, (19)
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where

Ar =
(sr)

2

sr + 1
cost+

s (r) +
∑

p∈P (r)

Ω(p, p(r))− ar
2

cost+
s (r), (20)

Br =
(qr)

2

sr + 1
cost+

s (r) +
∑

p∈P (r)

Ω(p, p(r)) +
∑

p∈P 0(r)

cost+
s (t(p))− ar

2
cost+

s (r). (21)

In the remaining part of the proof we will show that Ar
Br
≤ 17

7 for all r ∈ R \R+.
Let zr := sr−ar−br = qr−ar. Thus we have sr = zr+ar+br and qr = zr+ar. First, we remark

that zr ≥ 0 for all r ∈ R. This is because Φ is a (s, q)-exchange flow, thus for every node r ∈ R we
have that Φ(δ+(r)) is exactly the number of players using r in s and not in q. This number is clearly
upper bounded by sr, the number of players using r in s, thus sr ≥ Φ(δ+(r)) = ar + br, implying
zr ≥ 0. For r ∈ R\R+ we have sr ≥ qr. If qr = sr then we have Br−Ar =

∑
p∈P 0(r) cost+

s (t(p)) ≥ 0,

which implies that Ar
Br
≤ 1. Thus, to upper bound Ar

Br
we now assume that sr ≥ qr + 1, i.e., r ∈ R−.

Since sr = zr + ar + br and qr = zr + ar, this implies that we have br ≥ 1. Moreover, since sr ≥ 1
we have that λ(r) = costs(r)− 1

2cost+
s (r) = ( sr

sr+1 −
1
2)cost+

s (r) ≥ 0. This implies:

Ω(p, p(r)) ≥ 0 ∀ p ∈ P (r) \ P 0(r) (22)

Ω(p, p(r)) ≥ 1

2
λ(r) ∀ p ∈ P (r) \ P 0(r) : t(p) > p(r) + 1. (23)

Let

P 0
1 (r) :={p ∈ P 0(r) : cost+

s (t(p)) ≥ costs(r)}

P 0
2 (r) :={p ∈ P 0(r) :

1

2
costs(r) ≤ cost+

s (t(p)) < costs(r)}

P 0
3 (r) :={p ∈ P 0(r) :

1

4
costs(r) ≤ cost+

s (t(p)) <
1

2
costs(r)}.

Note that we have P 0 = P 0
1 ∪P 0

2 ∪P 0
3 . In fact, Lemma 10 and z(D) = 2 for the class of affine delay

functions imply cost+
s (r) ≤ 4cost+

s (t(p)) for every path p ∈ P 0.
First, recalling the definition of Ω(p, 0) and the fact that delay functions are nonnegative, we

obtain that for every path p ∈ P 0(r)
Ω(p, 0) ≥ 0. (24)

Secondly, we prove that for every path p ∈ P 0
2 (r) we have

Ω(p, 0)− 1

2
costs(r) ≥ 0. (25)

In fact, for every path p ∈ P 0
2 (r), there must exists at least one resource between r and t(p).

Otherwise (r, t(p)) would be an arc in p and cost+
s (t(p)) < costs(r), which contradicts property

1. Thus, from the definition of Ω(p, 0) and the fact that p has at least three nodes, we have
Ω(p, 0) ≥ 1

2costs(r), which implies (25).
Finally, for every path p ∈ P 0

3 (r) there must exists at least two resources between r and
t(p). Otherwise, if there is no resource between them, then (r, t(p)) would be an arc in p and
cost+

s (t(p)) < costs(r), which contradicts property 1. If there is one resource r′ between r and t(p),
then we have two edges (r, r′) and (r′, t(p)). By property 1 and the definition of z(D) we have
costs(r) ≤ cost+

s (r′) ≤ z(D)costs(r
′). Since for affine delays z(D) = 2, so 1

2costs(r) ≤ costs(r
′).
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Because p ∈ P 0
3 (r), we also have cost+

s (t(p)) < 1
2costs(r) ≤ costs(r

′), which contradicts property 1
on the edge (r′, t(p)). Thus, we have Ω(p, 0) ≥ (1

2 + 1
4)costs(r) which implies

Ω(p, 0)− 3

4
costs(r) ≥ 0. (26)

From now on we denote by r∗ the most expensive resource with respect to state s among all
the resources u ∈ R− such that there exists a path from u to r in the directed graph induced by
Φ. We denote by p∗ a path from r∗ to r in this graph. Next we need to analyze the following two
cases.
Case(i): costs(r) ≤ 1

2costs(r
∗)

In this case, we show that if Ar
Br
≥ 1, then Ar

Br
≤ 7

3 . We first argue that for every path p ∈ P 0(r),
we have

cost+
s (t(p)) ≥ 1

2
costs(r). (27)

By contradiction, suppose there exists a path p ∈ P 0(r) such that cost+
s (t(p)) < 1

2costs(r). Then,
since we are assuming costs(r) ≤ 1

2costs(r
∗), we have that cost+

s (t(p)) < 1
4costs(r

∗). Then we can
combine the path p∗ from r∗ to r and the path p from r to t(p) to obtain a path from r∗ ∈ R− to
t(p) ∈ R+ that carries at least one unit of flow in Φ. This contradicts to the property 2.

By (22) we have
∑

p∈P (r)\P 0(r) Ω(p, p(r)) ≥ 0. Since Ar/Br ≥ 1 we can subtract from both the
numerator and the denominator this nonnegative constant and obtain an upper bound. Thus, by
using (20) and (21) we get

Ar
Br
≤

(sr)2

sr+1cost+
s (r) +

∑
p∈P 0(r) Ω(p, 0)− ar

2 cost+
s (r)

(qr)2

sr+1cost+
s (r) +

∑
p∈P 0(r) (Ω(p, 0) + cost+

s (t(p)))− ar
2 cost+

s (r)
. (28)

Because of inequality (27), we have P 0(r) = P 0
1 (r) ∪ P 0

2 (r). Thus, from (28) we obtain

Ar
Br
≤

(sr)2

sr+1cost+
s (r) +

∑2
i=1

∑
p∈P 0

i (r) Ω(p, 0)− ar
2 cost+

s (r)

(qr)2

sr+1cost+
s (r) +

∑2
i=1

∑
p∈P 0

i (r)

(
Ω(p, 0) + 1

2i−1 costs(r)
)
− ar

2 cost+
s (r)

. (29)

To upper bound the right-hand-side of (29) we do the following. First, for every p ∈ P 0
1 (r),

we subtract Ω(p, 0) − 1
2costs(r) from the numerator and subtract Ω(p, 0) from the denominator.

Because Ω(p, 0) ≥ 0 for all p ∈ P 0
1 (r) and Ar

Br
≥ 1, this will increase the right-hand-side of inequality

(29). Secondly, for every p ∈ P 0
2 (r), we subtract Ω(p, 0)− 1

2costs(r) from both the numerator and
the denominator. This will also increase the right-hand-side of (29) because Ω(p, 0)− 1

2costs(r) ≥ 0

and Ar
Br
≥ 1. We obtain

Ar
Br
≤

(sr)2

sr+1cost+
s (r) +

∑
p∈P 0(r)

1
2costs(r)− ar

2 cost+
s (r)

(qr)2

sr+1cost+
s (r) +

∑
p∈P 0(r) costs(r)− ar

2 cost+
s (r)

(30)

=

(sr)2

sr+1cost+
s (r) +

∑
p∈P 0(r)

1
2

(sr)
sr+1cost+

s (r)− ar
2 cost+

s (r)

(qr)2

sr+1cost+
s (r) +

∑
p∈P 0(r)

(sr)
sr+1cost+

s (r)− ar
2 cost+

s (r)
, (31)

where equation (31) follows from (9) and r /∈ R+. Finally, we rewrite the right-hand-side of (31)
by factoring out cost+

s (r) and exploiting |P 0(r)| = br, sr = ar + br + zr, qr = ar + zr. Next, we
derive an upper bound by considering the maximum over all possible values of ar, br and zr. We
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obtain

Ar
Br
≤

(ar+br+zr)2

ar+br+zr+1 + br
1
2

(ar+br+zr)
ar+br+zr+1 −

ar
2

(ar+zr)2

ar+br+zr+1 + br
(ar+br+zr)
ar+br+zr+1 −

ar
2

≤ max
a,z≥0,b≥1

(a+b+z)2

a+b+z+1 + 1
2b

(a+b+z)
a+b+z+1 −

a
2

(a+z)2

a+b+z+1 + b (a+b+z)
a+b+z+1 −

a
2

≤ 7

3
.

Case(ii): costs(r) >
1
2costs(r

∗) In this case, we show that if Ar
Br
≥ 1, then Ar

Br
≤ 17

7 . Let p be a path

in P (r) \ P 0(r). We first argue that there exists at least one resource between r and t(p) in p. By
assumption we have costs(r) >

1
2costs(r

∗), where by definition r∗ is such that costs(r
∗) ≥ costs(u)

for every resource u ∈ R− such that there is a path from u to r in the directed graph induced by
Ψ. Thus, property 3 implies that each arc of the form (r, w) with positive flow in Φ has w /∈ R+.
We can the conclude that w 6= t(p) ∈ R+. This implies p(t(p)) > p(r) + 1. By (23) we then have
Ω(p, p(r)) ≥ 1

2λ(r) for all p ∈ P (r) \ P 0(r). We have

Ar
Br

=

(sr)2

sr+1cost+
s (r) +

∑
p∈P (r) Ω(p, p(r))− ar

2 cost+
s (r)

(qr)2

sr+1cost+
s (r) +

∑
p∈P (r) Ω(p, p(r)) +

∑
p∈P 0(r) cost+

s (t(p))− ar
2 cost+

s (r)

≤
(sr)2

sr+1cost+
s (r) + 1

2λ(r) +
∑

p∈P 0(r) Ω(p, 0)− ar
2 cost+

s (r)

(qr)2

sr+1cost+
s (r) + 1

2λ(r) +
∑

p∈P 0(r) (Ω(p, 0) + cost+
s (t(p)))− ar

2 cost+
s (r)

(32)

≤
(sr)2

sr+1cost+
s (r) + 1

2λ(r) +
∑3

i=1

∑
p∈P 0

i (r) Ω(p, 0)− ar
2 cost+

s (r)

(qr)2

sr+1cost+
s (r) + 1

2λ(r) +
∑3

i=1

∑
p∈P 0

i (r)

(
Ω(p, 0) + 1

2i−1 costs(r)
)
− ar

2 cost+
s (r)

(33)

Inequality (32) holds because Ω(p, p(r)) ≥ 1
2λ(r) for all p ∈ P (r) \ P 0(r) and Ar

Br
≥ 1. Inequality

(33) holds because we have P 0 = P 0
1 ∪ P 0

2 ∪ P 0
3 .

To derive an upper bound on the right-hand-side of (33), we do the following. First, for every
p ∈ P 0

1 (r), we subtract Ω(p, 0) − 3
4costs(r) from the numerator and subtract Ω(p, 0) from the

denominator. Because Ω(p, 0) ≥ 0 for all p ∈ P 0
1 (r) by inequality (24) and Ar

Br
≥ 1, this yields an

upper bound. Secondly, for every p ∈ P 0
2 (r), we subtract Ω(p, 0) − 3

4costs(r) from the numerator
and we subtract Ω(p, 0)− 1

2costs(r) from the denominator. This will also produce an upper bound,

because Ω(p, 0) − 1
2costs(r) ≥ 0 by inequality (25) and Ar

Br
≥ 1. Finally, for every p ∈ P 0

3 (r), we

subtract Ω(p, 0) − 3
4costs(r) from both the numerator and the denominator. This will yield an

upper bound because Ω(p, 0) − 3
4costs(r) ≥ 0 by inequality (26) and Ar

Br
≥ 1. Then from (33) we

have

Ar
Br
≤

(sr)2

sr+1cost+
s (r) + 1

2λ(r) +
∑

p∈P 0(r)
3
4costs(r)− ar

2 cost+
s (r)

(qr)2

sr+1cost+
s (r) + 1

2λ(r) +
∑

p∈P 0(r) costs(r)− ar
2 cost+

s (r)
(34)

=

(sr)2

sr+1cost+
s (r) + ar

2 ( sr
sr+1 −

1
2)cost+

s (r) +
∑

p∈P 0(r)
3
4

(sr)
sr+1cost+

s (r)− ar
2 cost+

s (r)

(qr)2

sr+1cost+
s (r) + ar

2 ( sr
sr+1 −

1
2)cost+

s (r) +
∑

p∈P 0(r)
(sr)
sr+1cost+

s (r)− ar
2 cost+

s (r)
, (35)

where the equation (35) follows from (9) and λ(r) = costs(r)− 1
2cost+

s (r). Finally, we rewrite the
right-hand-side of (35) by factoring out cost+

s (r) and exploiting |P 0(r)| = br, sr = ar + br + zr, and
qr = ar + zr. Next, we derive an upper bound by considering the maximum over all possible values
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of ar, br and zr. We obtain

Ar
Br
≤

(ar+br+zr)2

ar+br+zr+1 + ar
2 ( ar+br+zr

ar+br+zr+1 −
1
2) + br

3
4

(ar+br+zr)
ar+br+zr+1 −

ar
2

(ar+zr)2

ar+br+zr+1 + ar
2 ( ar+br+zr

ar+br+zr+1 −
1
2) + br

(ar+br+zr)
ar+br+zr+1 −

ar
2

(36)

≤ max
a,z≥0,b≥1

(a+b+z)2

a+b+z+1 + a
2 ( a+b+z
a+b+z+1 −

1
2) + 3

4b
(a+b+z)
a+b+z+1 −

a
2

(a+z)2

a+b+z+1 + a
2 ( a+b+z
a+b+z+1 −

1
2) + b (a+b+z)

a+b+z+1 −
a
2

≤ 17

7
. (37)

This completes the proof of the theorem. �

6 Conclusion

We have investigated the impact of matroid structures on the PoA of symmetric congestion games.
In the symmetric case, the PoA of general matroid congestion games is still not completely under-
stood. For graphic matroids and N = 2, 3, 4 or infinity with affine delay functions, the PoA can
be as large as the worst-case PoA of symmetric congestion games, which is equal to 5N−2

2N+1 [14].
However, for arbitrary N or different delay functions we don’t know whether the the worst-case
PoA of symmetric congestion games can be achieved by symmetric matroid congestion games. Our
results indicate that if we restrict to paving matroid, the worst-case PoA is significantly smaller
than that of symmetric congestion games. A similar result had been previously established by De
Jong et al. [11] for k-uniform matroids and affine delays. However, k-uniform matroids are only
a mild generalization of singleton congestion games. Paving matroid, on the other hand, are a
substantial generalization of k-uniform matroids, since they are conjectured to represent the vast
majority of matroids. Since paving matroid are quite more complex that k-uniform matroids, it is
not as easy to characterize the worst-case PoA. There is still a gap between our upper and lower
bounds, and we conjecture that the our upper bounds are not tight (see Remarks 11 and 14) .

Our approach to bound the PoA relies on a constant α that we have quantified for both k-
uniform matroids and paving matroids (Theorem 7). In particular, we can set α = z(D) for
k-uniform matroids and α = z(D)2 for paving matroids. Since paving matroids of rank k contain
circuits whose size is smaller than the circuit size of k-uniform matroids, this suggests that the
difference between the sizes of bases and circuits might impact the PoA. Let δ be a parameter
that is equal to the rank of the matroid minus the size of the smallest circuit in the matroid. We
conjecture that for δ ≥ 0 we can satisfy the assumptions of Theorem 7 with α = z(D)2(δ+1). Thus,
we would get an upper bound on the PoA which is equal to ρ(D)z(D)2(δ+1). For polynomial delays
of highest degree p, this bound is in O((Cp)(p/lnp)), where C = 4δ+1. For fixed δ and large p
this bound is still better than the PoA of general congestion games, that is in O((p/lnp)p+1). To
summarize, it is possible that our approach could be extended to upper bound the PoA in arbitrary
matroid congestion games where we have an upper bound on δ. On the other hand, our approach
might fail to provide meaningful upper bounds for small values of p or when the circuits can be
much smaller than the rank. Besides the size of the circuits, we suspect that the way in which
the circuits overlap can affect the PoA. For example, circuits of k-uniform matroids are highly
symmetric. When dealing with paving matroids, we observed that instances with highly symmetric
circuits displayed a lower PoA. On the other hand, the paving matroid congestion game example
in Section 4, whose PoA is larger than the worst-case PoA of uniform matroid congestion games,
has circuits that more often overlap on a single resource. In conclusion, it is open to find lower
and upper bounds of symmetric matroid congestion games that depend on the size of the matroid
circuits and/or on their degree of symmetry.
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