
ROBIST: Robust Optimization by Iterative
Scenario Sampling and Statistical Testing

Justin Starreveld
Department of Business Analytics, University of Amsterdam, Amsterdam, 1001 NL, Netherlands, j.s.starreveld@uva.nl

Guanyu Jin
Department of Quantitative Economics, University of Amsterdam, Amsterdam, 1001 NL, Netherlands, g.jin@uva.nl

Dick den Hertog
Department of Business Analytics, University of Amsterdam, Amsterdam, 1001 NL, Netherlands, d.denhertog@uva.nl

Roger J. A. Laeven
Department of Quantitative Economics, University of Amsterdam, Amsterdam, 1001 NL, Netherlands, r.j.a.laeven@uva.nl

In this paper, we propose ROBIST, a simple, yet effective, data-driven algorithm for optimization under

parametric uncertainty. The algorithm first generates solutions in an iterative manner by sampling and

optimizing over a relatively small set of scenarios. Then, using statistical testing, the robustness of the

solutions is evaluated, which can be done with a much larger set of scenarios. ROBIST offers a number

of practical advantages over existing methods as it is: (i) easy to implement, (ii) able to deal with a wide

range of problems and (iii) capable of providing sharp probability guarantees that are easily computable

and independent of the dimensions of the problem. Numerical experiments demonstrate the effectiveness of

ROBIST in comparison to alternative methods.

Key words : optimization; parametric uncertainty; robust; data-driven

1. Introduction

The field of optimization under parametric uncertainty has undergone rapid develop-

ment over the past few decades. However, despite this development, we observe that

the existing methods in this field are still underutilized in practice. In this paper, we

propose a new method that is able to circumvent some of the practical limitations of

existing methods.

We propose an algorithm for treating uncertain convex programs (UCP), which

appear in a wide variety of real-world problems such as supply chain planning, portfolio

optimization, inventory control, engineering design, and so on. Such problems can be

formulated as follows:

max
x∈X

g(x)

s.t. f(x,z)≤ 0,
(UCP)

where x∈Rdx is a decision vector, restricted to a closed convex feasible set X , z ∈ Rdz

is an uncertain parameter vector, g(x) is a concave function and f(x,z) is a scalar-valued

1

mailto:j.s.starreveld@uva.nl
mailto:g.jin@uva.nl
mailto:d.denhertog@uva.nl
mailto:r.j.a.laeven@uva.nl

2 Starreveld et al.: Robust Optimization by Iterative Scenario Sampling and Statistical Testing

function that is convex in x (for any z). Without loss of generality, we can assume here

that there is no uncertainty in the objective function g(x), as one can always move the

uncertainty to the constraints by using an epigraph formulation. Furthermore, note that

multiple constraints can be incorporated into a single constraint by defining f(x,z) :=

max
j=1,...,m

{fj(x,z)} ≤ 0, for m individual constraints f1(x,z)≤ 0, . . . , fm(x,z)≤ 0.

The problem (UCP) as formulated above is not well-defined as it does not specify how

the uncertain constraint f(x,z)≤ 0 should be treated. In the context of this paper, we

assume that one is interested in obtaining a “robust” solution to (UCP), i.e., a solution x

that is “likely” to be feasible despite the uncertainty in regard to the parameter z. One

way to define this more precisely in mathematical terms, is to formulate (UCP) as a

chance-constrained program (CCP):

max
x∈X

g(x)

s.t. P(f(x, z̃)≤ 0)≥ 1− ϵ, (1)

where the uncertain parameter z is modeled as a random variable z̃ with a probability

distribution P and ϵ represents some acceptable probability of constraint violation. First

proposed by Charnes and Cooper (1959), such formulations have been widely studied

within the field of stochastic programming (see e.g., Shapiro et al. (2009) and Birge and

Louveaux (2011)) and applied to a variety of problems (Birge 1997, Wallace and Ziemba

2005). However, the “true” probability distribution P is often unknown in practice.

Moreover, even if P is known, exact tractable reformulations of (1) are only known

for a limited number of situations (Shapiro and Nemirovski 2005). As such, various

data-driven techniques have been proposed to deal with the ambiguous nature of P
and alternative problem formulations have been proposed to circumvent probabilistic

constraints such as (1).

1.1. Existing Approaches and Their Practical Limitations

In the following paragraphs we review four well-known approaches for dealing with

uncertain constraints and highlight limitations to their application in practice. Though

each approach formulates the problem differently, they share a common goal: to obtain

a solution that satisfies Constraint (1) with a sufficient degree of confidence.

1.1.1. Sample Average Approximation. The sample average approximation (SAA)

approach replaces the unknown probability in (1) with an empirical distribution, con-

structed from a data set {z1, . . . ,zN}. That is, Constraint (1) is replaced by:

1

N

N∑
i=1

1{f(x,zi)≤0} ≥ 1− ϵ, (2)

Starreveld et al.: Robust Optimization by Iterative Scenario Sampling and Statistical Testing 3

where 1{f(x,zi)≤0} indicates whether the constraint is satisfied for the realization zi.

Theoretical results from Luedtke and Ahmed (2008) and Pagnoncelli et al. (2009) show

that if the sample size N is sufficiently large, SAA offers a good approximation of (1),

both in terms of optimal objective value and feasible region. However, the theoretically

required sample size can be prohibitively large in practice. Moreover, Constraint (2) is

typically non-convex. Such problems are commonly solved by reformulating the problem

as a mixed-integer optimization problem (Luedtke et al. 2010, Luedtke 2014), or by

resorting to convex inner approximations, such as the CVaR method by Nemirovski and

Shapiro (2007), or the ALSO-X and ALSO-X+ methods by Ahmed et al. (2017) and

Jiang and Xie (2022).

1.1.2. Robust Optimization. Robust optimization (RO) operates in a fully deter-

ministic paradigm. In RO, one constructs an “uncertainty set” U and enforces the con-

straint to hold for all realizations z within the set U . The uncertain constraint f(x,z)≤ 0

is thus formalized as:

f(x,z)≤ 0, ∀z∈ U . (3)

This approach has emerged as a tractable alternative to stochastic programming for

high-dimensional problems, see, for example, Bandi and Bertsimas (2012). By choosing

the uncertainty set U properly, (3) can be used as a safe approximation for (1) (see

e.g., Bertsimas et al. (2018) and Hong et al. (2021)). For an extended overview of RO

and its applications, we refer to Ben-Tal et al. (2009) and Bertsimas and den Hertog

(2022).

While RO has proven to be an effective approach in various applications, its effective-

ness is highly dependent on the choice of the uncertainty set U . As we demonstrate via

numerical experiments in this paper, some of the aforementioned RO methods may scale

poorly in the dimension of the uncertain parameter dz, or result in overly conservative

solutions. The conservativeness of RO methods is a well known limitation of the “hard”

robust constraint approach. However, we note that many alternative approaches have

been proposed to alleviate this issue, see e.g., Fischetti and Monaci (2009), Ben-Tal

et al. (2010, 2017) and Roos and den Hertog (2020).

In many cases, RO relies on the ability to reformulate (3) to a tractable robust coun-

terpart, which is not always possible in practice. Moreover, certain reformulated robust

counterpart may involve complex nonlinear constraints and/or an unacceptably large

number of additional variables and constraints (Bertsimas et al. 2011). Furthermore, if

4 Starreveld et al.: Robust Optimization by Iterative Scenario Sampling and Statistical Testing

the function f is non-concave in z, exact reformulations of (3) are known only for spe-

cific combinations of the function f and uncertainty set U (Bertsimas and den Hertog

2022, Chapter 16). For the general case, safe approximations can be derived (Bertsimas

et al. 2023). However, this requires many additional variables, which, along with the

complexity of the methodology, may pose significant hindrances to its application in

practice.

1.1.3. Distributionally robust optimization In distributionally robust optimiza-

tion (DRO), the distribution P is regarded as uncertain, yet restricted to an “ambiguity

set” P of possible distributions. The uncertain constraint can then be formulated as:

P(f(x, z̃)≤ 0)≥ 1− ϵ, ∀P∈P. (4)

If P contains the true probability distribution, then a solution that satisfies (4) also

satisfies (1). For an overview of DRO we refer to Rahimian and Mehrotra (2019). For

a survey on methods for dealing with ambiguous stochastic constraints such as (4) we

refer to Postek et al. (2018).

Similarly to RO, the key challenge in DRO lies in the choice of the ambiguity set P.

Data-driven DRO has emerged as a popular approach, where one uses data to determine

the ambiguity set P. This can be done by estimation of the statistical moments of

the distribution, see e.g., the method proposed by Delage and Ye (2010), or by using

distance measures, see e.g., Mohajerin Esfahani and Kuhn (2018). Data-driven DRO

offers advantages over RO in terms of conservativeness, however this may come at the

cost of increased computational effort (Wang et al. 2022).

The ability to reformulate (4) to a tractable robust counterpart is, as with RO,

dependent on the situation and not always possible in practice. There exist settings in

which exact reformulations of (4) are possible, see, for example, Calafiore and Ghaoui

(2006) and Jiang and Guan (2016). Various types of ambiguity sets with tractable

counterparts are presented in Hanasusanto et al. (2015) and Postek et al. (2016). Nev-

ertheless, DRO suffers from the same practical limitations as RO in terms of its general

applicability and ease of implementation.

1.1.4. Scenario Optimization. Scenario optimization (SO) is a data-driven tech-

nique that enforces the uncertain constraint to be satisfied for all elements in a set of

Starreveld et al.: Robust Optimization by Iterative Scenario Sampling and Statistical Testing 5

scenario’s (see Calafiore and Campi (2005), Nemirovski and Shapiro (2006)). More pre-

cisely, given a set of i.i.d. data {z1, . . . ,zN}, the scenario optimization approach aims to

solve the following scenario convex program (SCP):

max
x∈X

g(x)

s.t. f(x,zi)≤ 0, ∀zi ∈ S.
(SCP)

The SO approach is straightforward to implement and can be applied to a wide variety

of problems (e.g., it does not require concavity of f in z). Furthermore, an elegant, the-

oretical result established by Calafiore and Campi (2005) and later tightened by Campi

and Garatti (2008) connects the number of randomly sampled scenarios included in S

with the robustness of solutions obtained by solving (SCP). This result allows one to

assert, with a certain level of confidence, that any solution to (SCP), where the scenar-

ios in S are randomly sampled from P, satisfies probability guarantee (1). We refer to

Theorem 1 in Campi and Garatti (2008) for the details.

The practical limitations of this approach are the following. First, while the result

from Campi and Garatti (2008) was proven tight for the special class of “fully-

supported” (UCP), this method can be overly conservative for various problems encoun-

tered in practice, as we demonstrate via numerical experiments in this paper. Second,

the required number of randomly sampled scenarios grows linearly with the number of

decision variables (Oishi 2007). For large-scale problems, a large number of sampled

scenarios implies a large number of dense constraints in (SCP), which can make solv-

ing the problem numerically challenging (Bertsimas et al. 2018). As such, the classic

approach proposed by Calafiore and Campi (2005) is considered generally impractical

for medium- and large-scale optimization problems.

A variety of methods have been proposed to remedy these limitations. For an overview

on such methods, we refer to Alamo et al. (2015). In the numerical experiments presented

in Section 4.3 of this paper, we apply the methods proposed by Carè et al. (2014),

Calafiore (2017), Garatti et al. (2022) and demonstrate that these methods remain

limited in their ability to deal with large-scale problems.

1.2. Our Method and its Advantages

Our method utilizes scenario optimization to generate solutions. However, instead of

utilizing an a priori probabilistic guarantee, as in the classic approach of Calafiore and

Campi (2005), we employ a posteriori probabilistic guarantees, which are derived via

statistical testing. We do this because a posteriori guarantees, which are computed after

6 Starreveld et al.: Robust Optimization by Iterative Scenario Sampling and Statistical Testing

the solution x is known, are often significantly tighter than a priori guarantees, which

are derived before x is known (Guzman et al. 2016, Shang and You 2020, Bertsimas

et al. 2021). This key difference allows our method to utilize a smaller set of scenarios

when solving (SCP), which is computationally advantageous.

The use of a posteriori evaluations is not unique to our method. For example, this

is also used in the works by Chamanbaz et al. (2015) and Calafiore (2017). However,

our evaluation procedure for assessing the “robustness” of solutions differs from theirs

in significant ways. First, our a posteriori testing procedure is based on a ϕ-divergence

test statistic. It provides an asymptotic confidence lower bound on the true probability

of feasibility of a solution according to the central limit theorem, requiring only an

independence assumption. The tightness of the guarantee depends only on the size of

the test. By contrast, the probabilistic guarantee provided by the bounds in Chamanbaz

et al. (2015) and Calafiore (2017) requires, in addition to the independence assumption,

that the optimization problems have unique optimal solutions or that a suitable tie-

break rule is applied. Furthermore, the tightness of their guarantee depends on whether

the optimization problem is “fully supported”. Second and importantly, the algorithm

proposed in Chamanbaz et al. (2015) requires a new set of validation samples with

increasing sample size at each iteration. Our a posteriori evaluation procedure does

not require this, being unaffected by the number of iterations performed. Third, the

application of our confidence bound is not only limited to chance-constrained problems,

but can also be extended to optimization problems involving expectation-based risk

measures.

Besides the aforementioned works, a “wait-and-judge” approach is also proposed

in Campi and Garatti (2018) and applied in the method of Garatti et al. (2022). How-

ever, this evaluation procedure assesses the “robustness” of a solution by counting the

number of “support constraints”, which also differs significantly from our statistical

testing approach.

An important aspect of our approach is that the statistical tests are carried out on

the univariate Bernoulli random variable 1[f(x,z̃)≤0], where x is fixed. Since we are only

concerned with the feasibility of x, there are only two “classes” (i.e., f(x, z̃) ≤ 0 and

f(x, z̃)> 0). This provides probability guarantees that are independent of the dimension

of the decision variables as well as the dimension of the uncertain parameters. This

allows our evaluation procedure to scale better, as the problem size and/or the amount

of data increases, than the evaluation procedures proposed by Yanıkoğlu and den Hertog

(2013) and Campi and Garatti (2018), which is demonstrated in Sections 4.1.1 and 4.3.1.

Starreveld et al.: Robust Optimization by Iterative Scenario Sampling and Statistical Testing 7

Our main contribution is to propose a method that offers practical advantages over

existing methods in the literature. The advantages of ROBIST are the following.

First, our method is computationally more efficient than many existing methods.

By iteratively selecting which scenario(s) to sample and optimize for, we can reduce

the total number of scenarios with which (SCP) is solved. Our evaluation procedure

is independent of dx and dz and scales well with the amount of data available, which

allows the algorithm to efficiently deal with large-scale optimization problems.

Second, our method is more versatile than many existing methods, as it is able to deal

with a wide variety of problem types. These include optimization problems with: joint

chance-constraints, constraints with non-concave uncertainty, expectation-based risk

measures, regret-based risk measures and adaptive decision variables with non-fixed

recourse.

In an effort to lower the hurdle for practical usage, we have implemented ROBIST in

Python, which is a popular programming language amongst practitioners. The code is

publicly available at: https://github.com/JustinStarreveld/ROBIST.

1.3. Structure

The remainder of the paper is organized as follows. In Section 2, we describe the ROBIST

algorithm with the help of an illustrative example and provide theoretical analysis of its

convergence. In Section 3, we discuss various possible generalizations and extensions.

Then, in Section 4, we compare ROBIST to existing methods and demonstrate the

efficiency and versatility of our proposed method via a variety of numerical experiments.

Finally, we provide concluding remarks in Section 5. Additional technical details, proofs

and extra numerical results are relegated to the Online Appendices.

1.3.1. Notation. We denote a random variable by the tilde sign, i.e., x̃. Lowercase

bold letters such as x denote vectors, where e denotes a vector of all ones. Calligraphic

uppercase characters such as X denote sets.

2. Methodology

As discussed in Section 1, explicitly modeling and optimizing over a constraint such

as (1) is difficult. Moreover, the underlying probability distribution P of z̃ is rarely known

in practice. However, given a data set DN = {z1, . . . ,zN} of N independent realizations

of z̃ and a solution x, it is possible to use statistical testing to assert, with confidence

greater than or equal to 1−α, that x satisfies the following probabilistic guarantee:

P(f(x, z̃)≤ 0)≥ γ. (5)

https://github.com/JustinStarreveld/ROBIST

8 Starreveld et al.: Robust Optimization by Iterative Scenario Sampling and Statistical Testing

Henceforth, we will refer to γ as a feasibility certificate. Note that if a solution x satis-

fies (5) with γ ≥ 1−ϵ, one can state, with a certain level of confidence, that x satisfies (1).

This insight serves as the foundation to our proposed algorithm.

2.1. Algorithm

Our algorithm, ROBIST, consists of two main procedures: (i) a generation procedure in

which we use a training data set Dtrain
N1

=
{
ẑ1, . . . , ẑN1

}
to generate solutions, and (ii) a

two-step evaluation procedure in which we use a validation data setDvalid
N2

=
{
ž1, . . . , žN2

}
to evaluate all the candidate solutions generated by ROBIST, and a third test set

Dtest
N3

=
{
z̈1, . . . , z̈N3

}
that evaluates the robustness of the final solution selected from

the candidates. By embedding these two procedures in an iterative algorithm, we look

to obtain solutions x that satisfy (5) with γ ≥ 1 − ϵ, while minimizing the objective

function g(x). A complete description of ROBIST is provided using pseudo-code in

Algorithm 1.

2.1.1. Generation procedure. In each iteration i of the algorithm, we solve the

following variant of (SCP) to generate solution xi:

max
x∈X

g(x)

s.t. f(x, ẑj)≤ 0, ∀ẑj ∈ Si,
(SCPi)

where Si ⊆Dtrain
N1

is a finite set of scenarios. The generated solution xi is required to be

feasible for all scenarios ẑj in Si. Optimizing over a larger set Si is therefore likely to

result in a more robust solution xi. However, to avoid overly conservative solutions and

reduce the computational cost of solving (SCPi), our algorithm is designed to keep the

size of Si to a minimum.

2.1.2. Evaluation procedure. Given a data set DN = {z1, . . . ,zN} and a solution xi,

one can evaluate the robustness of xi using DN and derive a feasibility certificate γi via

statistical testing. Our procedure is as follows.

First, for each scenario zj ∈DN , we compute f(xi,z
j) and check whether f(xi,z

j)≤ 0

is satisfied. This provides an empirical estimate p of the probability that xi is feasible:

p :=
1

N

N∑
j=1

1[f(xi,zj)≤0]. (6)

Second, we construct a statistical confidence interval around (6) using the modified

χ2-distance, which is a member of the family of ϕ-divergences (see Online Appendix A

for further details). This results in the following 1−α confidence region:

Qϕ(p,N,α) :=

{
q ∈R : q≥ 0,

(q− p)2

p
+

(q− p)2

1− p
≤

χ2
1,1−α

N

}
, (7)

Starreveld et al.: Robust Optimization by Iterative Scenario Sampling and Statistical Testing 9

where α is determined by the user and χ2
1,1−α is the 1− α quantile of the chi-squared

distribution with 1 degree of freedom. As shown by Pardo (2006), asN →∞,Qϕ(p,N,α)

contains the true probability that xi is feasible with confidence of at least 1−α. We note

that this confidence region (7) is one-dimensional, which allows us to bypass the curse of

dimensionality stemming from the number of the uncertain parameters dz (in contrast

to the ϕ-divergence-based confidence sets utilized in Yanıkoğlu and den Hertog (2013)

and Ben-Tal et al. (2013)). Furthermore, we note that (7) defines a family of possible

distributions (i.e., an ambiguity set), which captures a degree of ambiguity (dependent

on α) in the underlying probability distribution P of z̃.

Third, we determine feasibility certificate γi, which implies a probabilistic guarantee

equivalent to (5) for solution xi, by computing:

γi := min
q∈Qϕ(p,N,α)

q. (8)

This can be easily computed, as shown by the following lemma (see Online Appendix B.1

for the proof).

Lemma 1. The problem stated in (8) has the following closed-form solution:

min
q∈Qϕ(p,N,α)

q=max
{
p−

√
p(1− p)r,0

}
, with r=

χ2
1,1−α

N
. (9)

Furthermore, γi is an increasing function in p.

Note that certificates derived via (8) are only statistically valid if the scenarios zj ∈DN

are i.i.d. samples.

It is for this reason that ROBIST separates the available data into training, validation

and testing data sets. The purpose of the validation data Dvalid
N2

is to derive a reasonable

proxy certificate γ̌i for each generated solution xi, which we use to select a final solution.

Then, to account for multiple hypothesis testing1, the test data Dtest
N3

is used to derive a

statistically valid feasibility certificate for the final solution. Note that our probabilistic

guarantee is only asymptotically valid (as N3→∞).

Remark 1. Alternatively, one can also use the validation set Dvalid
N2

to perform mul-

tiple hypothesis testing by constructing feasibility certificates that hold simultaneously

for all candidate solutions. This can be done by enlarging the confidence region (7).

However, as we observed in practice, this approach can be too conservative and may

not be as effective as using a third test sample for the final assessment.

1 Though each feasibility certificate is valid for each solution, it does not hold simultaneously for all solutions.
Hence, adjustment for multiple hypothesis testing is needed.

10 Starreveld et al.: Robust Optimization by Iterative Scenario Sampling and Statistical Testing

Algorithm 1 ROBIST

Input: Sets Dtrain
N1

=
{
ẑ1, . . . , ẑN1

}
, Dvalid

N2
=

{
ž1, . . . , žN2

}
and Dtest

N3
=

{
z̈1, . . . , z̈N3

}
.

Acceptable probability of constraint violation ϵ, statistical confidence level α, time

limit Tmax, iteration limit imax and probability of taking opposite action υ.

Output: Best found solution xi∗.

1: Let T represent the current running time of the algorithm

2: Initialize set S0 with nominal or random scenario from Dtrain
N1

3: Set iteration counter i← 0

4: while T < Tmax and i < imax do

5: Solve (SCPi) to obtain xi

6: Derive proxy certificate γ̂i via (9) using the scenarios in Dtrain
N1

7: Draw random variable ι∼U(0,1)

8: if (γ̂i ≤ 1− ϵ and ι > υ) or (γ̂i > 1− ϵ and ι < υ) then

9: Randomly add a scenario from {ẑj ∈Dtrain
N1

: f(xi, ẑ
j)> 0} to Si+1

10: else

11: Randomly remove a scenario from Si to create Si+1

12: end if

13: i← i+1

14: end while

15: Derive proxy certificates γ̌j, j = 0, . . . , i− 1 via (9) using the scenarios in Dvalid
N2

16: if ∃γ̌j : γ̌j ≥ 1− ϵ then

17: i∗ := argmaxj{g(xj) : γ̌j ≥ 1− ϵ}

18: else

19: i∗ := argmaxj{γ̌j}

20: end if

21: Derive valid feasibility certificate γ̈i∗ via (9) using the scenarios in Dtest
N3

22: Return xi∗ with certificate γ̈i∗

2.1.3. The scenario selection strategy. The initial set S0 contains only a single sce-

nario. If available, we utilize the nominal scenario, otherwise we pick a random scenario

from Dtrain
N1

. Then, at each iteration i, the set Si+1 is constructed by either adding a

scenario to Si, or removing a scenario from Si.
We inform this decision by constructing a proxy certificate γ̂i, derived using Dtrain

N1

instead of Dvalid
N2

. The idea is that γ̂i, while statistically invalid, can act as an estimate

of γ̈i and steer the algorithm’s generation procedure. If γ̂i < 1− ϵ, one suspects that

Starreveld et al.: Robust Optimization by Iterative Scenario Sampling and Statistical Testing 11

the solution xi is insufficiently robust, implying that we should add a scenario to Si. If
γ̂i ≥ 1− ϵ, the solution xi might be overly conservative, implying that we should remove

a scenario from Si. The decision of whether to add or remove a scenario, is mainly driven

by this proxy certificate γ̂i. However, with user-defined probability υ, the opposite action

is taken. This random component is added to ensure theoretical convergence of our

algorithm, which we discuss in Section 2.3. We analyze the effect of υ using numerical

experiments in Online Appendix C.1.1.

In an effort to keep the algorithm as simple as possible, when adding a scenario,

we randomly pick a scenario from the set of currently violated scenarios {ẑj ∈ Dtrain
N1

:

f(xi, ẑ
j)> 0}. We numerically compare this strategy with alternative selection strategies

in Online Appendix C.1.2. When removing a scenario, we randomly pick a scenario from

Si.
We note that the efficiency of Algorithm 1 can, in certain cases, be improved. When-

ever a scenario ẑj is removed from Si and the dual variable corresponding to the con-

straint f(xi, ẑ
j)≤ 0 is zero, one can skip Step 5 as xi+1 = xi. Furthermore, the evaluation

of xi+1 can be skipped in Steps 6 and 15, as γ̂i+1 = γ̂i and γ̌i+1 = γ̌i.

Finally, we note that the proposed algorithm is highly parallelizable. First, the evalu-

ations performed in Steps 6, 15 and 21 can be done independently per scenario. Second,

one could conduct multiple while loops (lines 4-14 of Algorithm 1) in parallel. Doing

so would result in less correlated sets Si and is likely to generate a more diverse set of

solutions.

2.1.4. Stopping criteria and final solution. The algorithm terminates when a pre-

scribed time limit or a maximum number of iterations is reached. If the algorithm is

not able to find a solution with feasibility certificate γi ≥ 1− ϵ, it returns the solution

with the highest certificate. Otherwise, it returns the solution xi with maximal objective

value g(xi), while requiring that γi ≥ 1− ϵ.

2.2. Illustrative Example

Consider the following toy problem:

max
x1,x2≤1

x1+x2 (10)

s.t. z1x1+ z2x2 ≤ 1, (11)

where z1 and z2 are uncertain parameters, both uniformly distributed with sup-

port [−1,1]. Note that Problem (10)-(11) is an example of (UCP), where X = {x : x1 ≤
1, x2 ≤ 1}, g(x) = x1+x2 and f(x,z) = z1x1+ z2x2− 1.

12 Starreveld et al.: Robust Optimization by Iterative Scenario Sampling and Statistical Testing

Imagine we have access to a data set of N = 300 realizations of (z̃1, z̃2) and would

like a solution to satisfy Constraint (11) with probability greater than or equal to 90%

(i.e., ϵ= 0.1). In the following paragraphs we illustrate the application of Algorithm 1

to this problem.

First, we randomly split the data set into three equal-sized sets Dtrain
N1

=
{
ẑ1, . . . , ẑN1

}
,

Dvalid
N2

=
{
ž1, . . . , žN2

}
and Dtest

N3
=
{
z̈1, . . . , z̈N3

}
, each containing N1 =N2 =N3 = 100 sce-

narios. We use Dtrain
N1

to generate and (informally) evaluate the robustness of solutions

during the iterative phase of the algorithm. Then, in the evaluation phase of the algo-

rithm, we utilize Dvalid
N2

to evaluate the generated solutions and select the most promising

solution. Finally, we utilize Dtest
N3

to derive a statistically valid probability guarantee for

the selected solution.

Suppose we initialize S0 = {z̄} with the expected/nominal case z̄ = (z1, z2) = (0,0).

Then, solving (SCPi) with S0 provides an initial solution: x0 = (x1, x2) = (1,1) with

objective value g(x0) = 2. The next step is to use our evaluation procedure to assess the

robustness of x0. First we compute an empirical estimate of the probability of violating

Constraint (11) by determining whether f(ẑj,x0)≤ 0, ∀ẑj ∈ Dtrain
N1

. See Figure 1 for a

visual aid.

1.0 0.5 0.0 0.5 1.0
z1

1.0

0.5

0.0

0.5

1.0

z 2

feasible scenarios
violated scenarios
nominal scenario
1.0z1 + 1.0z2 1

Figure 1 Visualization of S0 and the evaluation of the constraint f(x0, ẑ
j)≤ 0 of the solution x0 = (1,1) on

the training data Dtrain
N1

. The data points for which the constraint is feasible/infeasible are indicated

in blue/red.

We find that solution x0 is feasible for 87
100

of the scenarios in the training data Dtrain
N1

.

Setting the probability of making a type I error less than or equal to 1% (i.e., α= 0.01),

we use Equation (9), with p= 0.87,N = 100 and α= 0.01, to derive a proxy certificate

of γ̂0 = 0.78.

Starreveld et al.: Robust Optimization by Iterative Scenario Sampling and Statistical Testing 13

Assume that we have set the probability of taking the opposite action υ = 0. Then,

as our proxy certificate γ̂0 does not yet meet the desired level of robustness (γ̂0 = 0.78<

1− ϵ= 0.90) the algorithm will randomly pick one of the 13 currently violated scenarios

(indicated by red stars in Figure 1) and add this scenario to our set. Suppose scenario

ẑ11 = (0.96,0.60) is chosen, then S1 = {z̄, ẑ11} and we proceed to the next iteration.

Using an enlarged set of scenarios S1, we solve (SCPi) and retrieve solution: x1 =

(0.4,1) with objective value g(x1) = 1.4. While adding a scenario/constraint to our opti-

mization problem has lowered the objective value, it is likely to ensure that the resulting

solution is more robust. Again, we evaluate the robustness of our newly generated solu-

tion x1 using the scenarios in Dtrain
N1

(see Figure 2). We find that our new solution x1 is

feasible for 97
100

of the scenarios, from which we derive a proxy certificate γ̂1 = 0.93.

1.0 0.5 0.0 0.5 1.0
z1

1.0

0.5

0.0

0.5

1.0

z 2

feasible scenarios
violated scenarios
sampled scenarios
0.4z1 + 1.0z2 1

Figure 2 Visualization of S1 and the evaluation of solution x1 = (0.4,1) on the training data.

As this exceeds our desired level of feasibility (γ̂1 ≥ 1− ϵ= 0.90), the algorithm will

remove a scenario from S1 in the following iteration. The algorithm continues adding or

removing scenarios and evaluating the resulting solutions on Dtrain
N1

in this manner until

either the time limit or iteration limit is reached.

In this example, we set a limit of 100 iterations and once this stopping criteria is

reached, we use the “out-of-sample” validation data Dvalid
N2

to evaluate each generated

solution xi and obtain proxy feasibility certificates γ̌i. These evaluations can then be

used to construct a trade-off curve and aid in choosing the most promising solution.

The orange line in Figure 3 depicts such a trade-off curve, where each orange square

represents a non-dominated solution (with respect to the validation data). Recall that we

would like our solution to be feasible with probability ≥ 90%, thus we select the solution

with the highest objective value while requiring that the proxy certificate derived from

14 Starreveld et al.: Robust Optimization by Iterative Scenario Sampling and Statistical Testing

the validation data is greater than or equal to 0.90. Finally, we utilize Dtest
N3 to provide

a valid feasibility certificate for this solution. In this example, the algorithm returns a

solution to Problem (10)-(11) with objective value 1.37 and feasibility certificate 0.93.

0.75 0.80 0.85 0.90 0.95 1.00
Feasibility Certificate

1.2

1.4

1.6

1.8

2.0

Ob
je

ct
iv

e
Va

lu
e

training
validation
testing

Figure 3 Trade-off curves constructed from a set of solutions generated by ROBIST. The blue circles depict

proxy certificates derived using the training data, the orange squares represent proxy certificates

derived using the validation data and the green hexagon represents the final feasibility certificate

provided by the testing data. The vertical dotted line represents the desired level of robustness

(1− ϵ).

2.3. Convergence

In this section, we study the optimality of the final solution generated by Algo-

rithm 1, which we define given a realization of the training and validation data

sets (Dtrain
N1

and Dvalid
N2

). Let S̃1, . . . , S̃2N1 denote all the possible subsets of Dtrain
N1

. Let

xi ∈ argmaxx∈X {g(x) | f(x,zj) ≤ 0,∀zj ∈ S̃i}. Let γ̌i denote the proxy feasibility cer-

tificate of xi, as derived via (8) using Dvalid
N2

. Then, we have the following definition of

optimality.

Definition 1. Given Dtrain
N1

and Dvalid
N2

, an optimal solution x∗ with respect to the

data is defined as an element of the set argmaxi=1,...,2N1{g(xi) | γ̌i ≥ 1− ϵ}.

The following lemma shows that Algorithm 1 yields a solution that is optimal with

respect to the training and validation data, if the modeler sets no limitation on the

running time and the number of iterations of the algorithm (see Online Appendix B.2

for the proof).

Lemma 2. Assume that in Algorithm 1 the modeler has set Tmax = imax =∞ and υ >

0. Suppose that for all possible subsets Si ⊆Dtrain
N1

, the solution to (SCPi) is unique, and

that there exists a (SCPi) such that its solution achieves a proxy certificate γ̌i ≥ 1− ϵ.

Starreveld et al.: Robust Optimization by Iterative Scenario Sampling and Statistical Testing 15

Then, the probability that the solution obtained from Algorithm 1 after finitely many

iterations, is optimal with respect to the data, is 1.

Remark 2. The assumption used in the proof of Lemma 2 on the uniqueness of the

solutions of (SCPi) for all possible subsets Si ⊆Dtrain
N1

is unnecessary if the solver that is

used to solve (SCPi) does not output different solutions when a redundant constraint is

removed or added. Here, we consider a constraint “redundant” if its addition or removal

does not change the optimal objective value of the optimization problem.

3. Generalizations and Extensions

In this section we describe how ROBIST can be applied to a variety of problem types.

Depending on the type of problem, certain modifications are made to Algorithm 1.

3.1. Uncertainty in the Objective Function

Although Algorithm 1 as described in Section 2 is already able to deal with parametric

uncertainty in the objective function, minor modifications can be made to improve its

performance. Consider an uncertain convex problem of the form:

max
x∈X

f(x,z). (12)

Problem (12) can be reformulated such that the uncertain parameters only appear in

the constraints of the problem, by introducing an epigraph variable θ:

max
x,θ

θ (13)

s.t. θ− f(x,z)≤ 0, (14)

x∈X . (15)

Note that the epigraph variable θ ∈ R can always be adjusted such that (14) is satisfied.

As such, Constraint (14) should be treated differently.

We slightly alter Steps 15 and 21 in Algorithm 1 in the following manner. For a

given solution (xi, θi), instead of computing the value of γi for which we can claim with

confidence of at least 1−α that:

P(f(xi, z̃)≥ θi)≥ γi, (16)

we are now interested in determining the maximum value of θi, let this be denoted by θ∗i ,

for which we can claim, with confidence of at least 1−α, that:

P(f(xi, z̃)≥ θ∗i)≥ 1− ϵ. (17)

16 Starreveld et al.: Robust Optimization by Iterative Scenario Sampling and Statistical Testing

We determine θ∗i in the following manner. First, we determine (via golden-section

search) the thresholds for the number of scenarios in Dvalid
N2

and Dtest
N3

for which (14)

would have to be satisfied in order to claim (17). Denote these thresholds by Nmin
2 and

Nmin
3 . Then, depending on whether we are in Step 15 or Step 21, we sort the function

evaluations f(xi,z
j) for all scenarios zj ∈Dvalid

N2
(or Dtest

N3
) and set θ∗i equal to the Nmin

2 -th

(or the Nmin
3 -th) largest evaluation.

Finally, since there are no uncertain constraints in Problem (12), there is no trade-

off between feasibility and optimality. In such situations, the problem becomes a one-

dimensional search for the maximal θ∗i for which we can claim (17). As such, Steps 16-20

in Algorithm 1 are also adjusted, where we now define i∗ := argmaxj{θ∗j}.

3.2. Adaptive Optimization Problems

In this subsection, we show how ROBIST can be extended to deal with two-stage adap-

tive optimization problems. We note that the approach can also be applied to multi-stage

problems (with minor modifications). However, for ease of exposition, in this paper we

focus on a two-stage setting. Consider the following problem:

max
x∈X

g(x) (18)

s.t. V (x,z)≤ 0, (19)

where

V (x,z) := max
y∈Y (x)

f(x,z,y). (20)

Here the decision vector x represents first-stage “here-and-now” decisions and the deci-

sion vector y consists of second-stage “wait-and-see” decisions. The y variables are

adaptive, i.e., they are able to adapt to the realization of z̃. Moreover, the second-stage

decisions y are restricted to some closed convex feasible set Y (x), which may depend

on the first-stage decisions x.

We are still able to generate solutions to Problem (18)-(20) by solving, at each iter-

ation i, a scenario convex program with respect to some set of scenarios Si. However,
this now involves the inclusion of recourse decision vectors yj for each scenario ẑj ∈ Si.
This amounts to solving the following optimization problem:

max
x,y

g(x) (21)

s.t. f(x, ẑj,yj)≤ 0, ∀ ẑj ∈ Si, (22)

yj ∈Y (x), ∀ ẑj ∈ Si, (23)

x∈X . (24)

Starreveld et al.: Robust Optimization by Iterative Scenario Sampling and Statistical Testing 17

By solving (21)-(24) we are able to generate a here-and-now solution xi at each iter-

ation i. The evaluation of the solution requires more computation than in the static

setting. Given a data set of N independent scenarios {z1, . . . ,zN}, instead of performing

simple function evaluations (e.g., evaluating f(xi,z
j) for j = 1, . . . ,N), one now evalu-

ates V (xi,z
j) for j = 1, . . . ,N by solving N instances of Problem (20). This allows one to

determine whether there exists a recourse decision y such that uncertain constraint (19)

could be satisfied. With this information one can compute empirical estimate p, where:

p :=
1

N

N∑
j=1

1[V (xi,zj)≤0].

This estimate p can then be used to derive feasibility certificate γi by computing (8).

3.3. Statistical Confidence Bounds on Expectation

Throughout this paper we primarily focus on obtaining a solution that is robust in the

sense of a probability guarantee such as (5). However, our method can be extended to

incorporate expectation-based risk measures. In this subsection, we discuss how one can

use a posteriori statistical testing to derive (asymptotic) upper and lower confidence

bounds on:

EP[f(x, z̃)], (25)

where EP denotes the expectation with respect to P, the distribution of z̃.

Given a solution xi, assume that we have bounded support [lxi
, uxi

] for f(xi, z̃) and

denote by Pxi
the distribution of f(xi, z̃) on [lxi

, uxi
]. One can construct a partition

{[ek, ek+1]}Kk=1, where lxi
= e1 ≤ e2 ≤ · · · ≤ eK+1 = uxi

. Then, the following inequality

must hold:

EP[f(xi, z̃)] =

K∑
k=1

∫ ek+1

ek

dPxi
≤

K∑
k=1

ek+1Pxi
([ek, ek+1]).

Let vector p∈RK be an empirical estimate of the probability (under Pxi
) that f(xi, z̃)

resides in each of the K intervals. One can compute this estimate using N independent

scenarios zj, where the k-th element of p, pk, is computed as follows:

pk :=
1

N

N∑
j=1

1[f(xi,zj)∈[ek,ek+1]].

Then, one can construct the following ϕ-divergence based (1 − α)-confidence region

around p (see Appendix A for further details):

Qϕ(p,N,α) =

{
q∈RK : q≥ 0,e⊺q= 1, Iϕ(q,p)≤

ϕ′′(1)

2N
χ2
K−1,1−α

}
. (26)

18 Starreveld et al.: Robust Optimization by Iterative Scenario Sampling and Statistical Testing

As N → ∞, the set (26) contains the true probability that f(xi, z̃) resides in each

of the K intervals. As such, one can get an asymptotic upper confidence bound ui

on EP[f(xi, z̃)], by computing:

ui := max
q∈Qϕ(p,N,α)

K∑
k=1

ek+1qk. (27)

Similarly, one can also construct a lower confidence bound li on EP[f(xi, z̃)] by comput-

ing:

li := min
q∈Qϕ(p,N,α)

K∑
k=1

ekqk. (28)

The optimization problems stated in (27) and (28) are both convex and easy to solve.

3.4. Regret-Based Guarantees

Within optimization under uncertainty it is also common to consider regret minimiza-

tion. In this subsection, we show how our methodology can be extended to provide

statistical guarantees in regard to the regret associated with any given solution xi.

Given a solution xi, we define the regret R(xi,z
j) with respect to a realized scenario zj,

as:

R(xi,z
j) :=

g∗(zj)− g(xi), if f(xi,z
j)≤ 0,

+∞, otherwise,
(29)

where:

g∗(zj) :=max
x∈X
{g(x) : f(x,zj)≤ 0}. (30)

The regret measures the ex-post difference between the achieved objective value and

the best objective value that could have been obtained if the realization of z̃ had been

known before making the decision.

Incorporating regret into our approach requires only a minor adjustment to the eval-

uation procedure. For each scenario zj ∈ DN , instead of evaluating f(xi,z
j), we eval-

uate R(xi,z
j), as defined in (29). These evaluations can then be used to claim, with

confidence of at least 1−α, that:

P(R(xi, z̃)≤ τ)≥ βi, (31)

where τ represents some threshold value and βi is an asymptotic lower bound on the

probability that the regret of solution xi is less than τ . Additionally, using the approach

described in Section 3.3, it is also possible to derive a (1 − α)-statistical confidence

interval [li, ui] for the expected regret EP[R(xi, z̃)] for any given solution xi.

Starreveld et al.: Robust Optimization by Iterative Scenario Sampling and Statistical Testing 19

4. Numerical Experiments

In this section, we present numerical experiments to test the performance of ROBIST

on five different applications:

1. Toy problem: comparison with Yanıkoğlu and den Hertog (2013), with additional

analysis of ROBIST (see Section 4.1 and Online Appendix C.1).

2. Linear CCP: comparison with SAA-based methods of Ahmed et al. (2017) and

Jiang and Xie (2022) (see Section 4.2).

3. Weighted distribution problem: comparison with the scenario optimization meth-

ods of Calafiore and Campi (2005), Carè et al. (2014), Calafiore (2017) and Garatti

et al. (2022) (see Section 4.3).

4. Portfolio management problem: comparison with the classical robust optimization

approach of Bertsimas et al. (2018) (see Online Appendix C.2).

5. Two-stage adaptive lot-sizing problem: comparison with sampling approach of

Vayanos et al. (2012) (see Online Appendix C.3).

For all experiments we utilize synthetic randomly generated data and split the data

equally and randomly into the training, validation and testing data sets. Furthermore, in

Step 2 of Algorithm 1 we initialize S0 with a random scenario from Dtrain
N1

and set υ= 0.01

(see Online Appendix C.1.1 for numerical experiments that analyze the effect of this

parameter).

All computations are conducted on a 64-bit Windows machine equipped with a 2.80

GHz Intel Core i7 processor with 32 GB of RAM. All mathematical programs are coded

in Python 3.10 using CVXPY 1.3 and solved with Gurobi 10.0.0. The code is publicly

available at https://github.com/JustinStarreveld/ROBIST.

4.1. Toy Problem

In this subsection, we consider the toy problem from Yanıkoğlu and den Hertog (2013),

which is similar to the illustrative example presented in Section 2.2, but now in k

dimensions. The problem is formulated as follows:

max
x

e⊺x (32)

s.t. P (z̃⊺x≤ 1)≥ 1− ϵ, (33)

x≤ 1, (34)

where x,z∈Rk, and e⊺ = (1,1, . . . ,1)∈Rk. The random variables z̃1, . . . , z̃k are assumed

to be independently and uniformly distributed in [−1,1].

https://github.com/JustinStarreveld/ROBIST

20 Starreveld et al.: Robust Optimization by Iterative Scenario Sampling and Statistical Testing

4.1.1. Comparison with Yanıkoğlu and den Hertog (2013). In the following exper-

iments, we compare ROBIST with the method proposed by Yanıkoğlu and den Hertog

(2013), which is abbreviated as Y&dH. For the numerical experiments presented in this

subsection, we set ϵ= 0.05, α= 0.01 and imax = 200.

For the details in regards to Y&dH, we refer to Section 3.2 of their paper. In these

experiments we copy their settings, using the modified χ2-distance as the ϕ-divergence

function, along with an ellipsoidal uncertainty set with an initial radius of 0.1 and a

step size of 0.01. Furthermore, we follow the implementation of Y&dH and construct

the cells such that the support of z̃ is divided into 10k cells of equal geometry.

Two limitations mentioned in Yanıkoğlu and den Hertog (2013) are that, as the num-

ber of uncertain parameters increases, (i) the required number of data points increases

and (ii) the computational performance deteriorates. This is due to the evaluation pro-

cedure with which their probability guarantees are derived, which is dependent on the

dimension of z̃. By contrast, the probability guarantees utilized in ROBIST are inde-

pendent of the dimension of z̃. We illustrate this difference in the following numerical

experiments.

For Y&dH, the dimension of z̃ influences the number of “cells” and thus the amount

of data required.2 For ROBIST there is no strict minimum or maximum regarding the

amount of data and the algorithm is given access to N = 1000 randomly generated

realizations of z̃.

In Table 1 we report the total computation time for both methods, as well as the best

objective value (belonging to a solution for which the associated feasibility certificate

is greater than or equal to 1− ϵ = 0.95). To control for the effect of randomness the

experiment is repeated 100 times and we report the average.

Even for the relatively small problem instances considered in Table 1, we find that,

as the problem size k increases, the amount of data required by Y&dH quickly becomes

unmanageable and the computational performance of the method deteriorates. In con-

trast, for ROBIST we observe that having access to 1,000 data points is sufficient for

these problem instances and that the increase in time is relatively small.

We also observe that ROBIST is able to provide solutions with higher objective

values than the solutions generated by Y&dH, while possessing comparable feasibility

certificates. Even though the target probability of constraint satisfaction was set to

2 We adhere to the rule of thumb stated in Yanıkoğlu and den Hertog (2013) that each cell should contain “at
least five observations”. It follows that, when applying Y&dH to this problem, a minimum of 5× 10k data points
is required. To be on the safe side, Y&dH is provided with twice this minimum amount (i.e., 10k+1 randomly
generated data points).

Starreveld et al.: Robust Optimization by Iterative Scenario Sampling and Statistical Testing 21

Table 1 Results from applying Yanıkoğlu and den Hertog (2013) and ROBIST to Problem (32)-(34) as the

dimension of the problem (represented by k) increases. Here, N indicates the total amount of data utilized by

the respective methods.

N Time (s) Objective value Feasibility certificate

k Y&dH ROBIST Y&dH ROBIST Y&dH ROBIST Y&dH ROBIST

2 1000 1000 4.3 1.4 1.19 1.28 0.972 0.956

3 10000 1000 7.4 2.1 1.42 1.54 0.958 0.954

4 100000 1000 27.8 2.5 1.67 1.76 0.952 0.951

5 1000000 1000 200.2 3.1 1.85 1.93 0.951 0.952

0.95, we find, by using additional out-of-sample testing (with N = 106), that the average

empirical probability of constraint satisfaction for the solutions generated by Y&dH

is actually much higher at 0.984. The final solutions provided by ROBIST are less

conservative and closer to the target, with an average empirical probability of 0.966.

4.1.2. Analysis of ROBIST. In this subsection, we analyze ROBIST on a slightly

altered version of our toy problem. We add an additional constraint (1+
∑k−1

j=1 xj ≤ xk)

to (32)-(34), which allows us to analytically derive the true probability that (33) is

satisfied:

p∗(x) := P (z̃⊺x≤ 1) =
1

2
+

1

2xk

. (35)

Furthermore, to expand the feasible region of the problem, we slightly alter Con-

straint (34), which becomes x≤ k. Therefore, given knowledge of the true distribution

of z̃, one could solve the following optimization problem:

θ∗ :=max
x

{
e⊺x :

1

2
+

1

2xk

≥ 1− ϵ, x≤ k, 1+

k−1∑
j=1

xj ≤ xk

}
, (36)

to obtain an optimal, sufficiently robust, solution. In the following sets of experiments

we utilize (35) and (36) to assess the robustness and optimality of solutions obtained

via Algorithm 1.

In the first set of experiments, we analyze the impact of the total amount of available

data N . We do this for a problem setting with k = 2 and ϵ= 0.05. Using α= 0.10 and

imax = 1,000. We apply ROBIST to the (altered) toy problem and for each iteration i,

we store each obtained solution xi along with its proxy certificate γ̌i (obtained using the

validation data). We repeat this procedure 100 times and evaluate the following three

metrics:

22 Starreveld et al.: Robust Optimization by Iterative Scenario Sampling and Statistical Testing

1. optimality gap of the best found “sufficiently robust” solution:

θ∗−maxi{g(xi) : γ̌i ≥ 1− ϵ, p∗(xi)≥ 1− ϵ}
θ∗

;

2. mean absolute error (MAE) of the proxy feasibility certificates:

1

imax

imax∑
i=1

|p∗(xi)− γ̌i|;

3. total elapsed computation time of the algorithm.

1.5 × 103
1.5 × 104

1.5 × 105
1.5 × 106

N

0

2

4

6

8

10

12

Op
tim

al
ity

 G
ap

 (%
)

1.5 × 103
1.5 × 104

1.5 × 105
1.5 × 106

N

0.00

0.01

0.02

0.03

Ce
rti

fic
at

e
M

AE

1.5 × 103
1.5 × 104

1.5 × 105
1.5 × 106

N

10

20

30

40

50

60

Ti
m

e
(s

)
Figure 4 Box-and-whisker plots (with “outliers” omitted) displaying three metrics (optimality gap, certificate

MAE and computation time) for ROBIST when applied to a slightly altered version of Problem (32)-

(34) for k= 2. We plot the results as a function of the amount of available data (N).

The results are presented in Figure 4. For optimality gap and certificate MAE we see

a very similar trend as N increases. While the two metrics might seem unrelated at first

glance, the sharpness of the probability guarantees plays an important role in reducing

conservativeness and thus closing the optimality gap. We find that the computation

time increases as N increases. However, the increase is modest in proportion to the

increase in N and can be further reduced via parallelization. We infer from this analysis

(along with other numerical experiments) that ROBIST is able to produce higher quality

solutions and tighter probability guarantees when provided with more data, without

inordinate increases in computation time.

In the second set of experiments, we analyze the efficiency of Algorithm 1 as the

problem size k increases. Here we evaluate the following metrics:

1. irobust : number of iterations required to find a sufficiently robust solution:

irobust =min{i : p∗(xi)≥ 1− ϵ};

2. iopt : number of iterations required to obtain an optimality gap of less than 1%:

iopt =min

{
i :

θ∗− g(xi)

θ∗
< 0.01, γ̌i ≥ 1− ϵ, p∗(xi)≥ 1− ϵ

}
;

Starreveld et al.: Robust Optimization by Iterative Scenario Sampling and Statistical Testing 23

3. |Si|max : maximum size of the scenario sets used to solve SCPi:

|Si|max =max
i
{|Si|}.

We utilize the same setup as before (ϵ = 0.05, α = 0.10 and imax = 1,000), but with

a fixed number of data points (N = 1.5 × 106). The results of these experiments are

displayed in Figure 5.

2 20 200 2000
k

0

10

20

30

40

i ro
bu

st

2 20 200 2000
k

0

10

20

30

40

i op
t

2 20 200 2000
k

0

10

20

30

40

|
i|m

ax

Figure 5 Box-and-whisker plots (with “outliers” omitted) displaying three metrics (irobust, iopt and |Si|max)

regarding the performance of ROBIST when applied to a slightly altered version of Problem (32)-

(34) of varying size (k).

The most striking finding is that irobust and |Si|max both increase at similar, mod-

est rates as the problem size increases. For example, while k increases 1000-fold, the

maximum size of |Si| becomes only 4.3 times as large (on average). We observe that 40

iterations is, in most cases, sufficient for ROBIST to obtain near optimal solutions for

this problem setting.

4.2. Linear Problem from Jiang and Xie (2022)

In this section, we compare the performance of ROBIST with methods from the sam-

ple average approximation literature. In this comparison, we consider the Linear CCP

proposed by Jiang and Xie (2022), which is formulated as:

max
x∈[0,1]k

c⊺x

s.t. P (a⊺x≤ 100)≥ 1− ϵ,

(37)

where a is an uncertain parameter uniformly distributed on the integers 1 to 50, and c

is a known vector, pre-generated randomly and uniformly on the integers 1 to 10.

24 Starreveld et al.: Robust Optimization by Iterative Scenario Sampling and Statistical Testing

4.2.1. Numerical Results. We emulate the numerical experiments reported by Jiang

and Xie (2022) and set ϵ= 0.1. Furthermore, we set α= 0.01, imax = 200 and compare the

performance of ROBIST with three alternative methods that can be used to solve the

SAA variant of (37) for a given number of scenarios N . These three methods are: (i) a

mixed-integer reformulation (abbreviated as MIO), (ii) ALSO-X and (iii) ALSO-X+.

For the latter two methods we copy the implementation details proposed in Jiang and

Xie (2022), see https://github.com/jnan97/ALSO-X for the code. To prevent excessive

computation times for the MIO method, we set a time limit equal to the running time

of ROBIST for the corresponding instance. The results are presented in Table 2.

Table 2 Comparison between MIO, ALSO-X, ALSO-X+ and ROBIST for solving a random realization of

Problem (37). The column “P(feas.)” shows an empirical estimation of the probability that a solution is

feasible (using 106 additional data points). For MIO, Gurobi is given a time limit equal to the running time of

ROBIST for the instance (the actual runtime of MIO is longer, as the solver continues until it finds a feasible

solution). For ROBIST, the feasibility certificates are also displayed in the final column “Cert.”

MIO ALSO-X ALSO-X+ ROBIST

k N Time (s) Obj. P(feas.) Time (s) Obj. P(feas.) Time (s) Obj. P(feas.) Time (s) Obj. P(feas.) Cert.

100 1000 16.0 33.28 0.892 14.4 32.16 0.941 69.6 34.03 0.864 14.6 32.72 0.879 0.830

5000 40.9 31.32 0.964 75.3 32.06 0.957 400.5 33.71 0.892 16.6 32.24 0.915 0.894

10000 106.6 11.05 1.000 153.0 31.90 0.960 780.7 33.61 0.897 15.7 32.26 0.913 0.892

50000 2006.5 10.29 1.000 952.4 31.84 0.958 4352.0 33.50 0.897 17.4 32.17 0.905 0.898

200 1000 22.4 34.17 0.908 36.3 33.77 0.927 189.6 35.63 0.829 20.2 34.26 0.860 0.820

5000 71.2 32.80 0.967 162.8 33.39 0.954 858.2 34.97 0.887 25.8 33.65 0.914 0.898

10000 190.6 10.33 1.000 298.8 33.43 0.955 1616.6 34.96 0.890 22.9 33.12 0.906 0.891

50000 3590.8 10.29 1.000 1802.4 33.37 0.959 8264.4 34.79 0.898 27.7 33.37 0.908 0.902

300 1000 29.1 34.28 0.932 43.2 34.58 0.913 241.1 36.42 0.815 26.4 35.59 0.819 0.772

5000 82.6 33.77 0.969 223.2 34.37 0.955 1322.4 35.67 0.888 30.3 34.82 0.900 0.873

10000 219.8 10.38 1.000 496.6 34.43 0.953 2756.3 35.76 0.883 29.8 34.59 0.905 0.887

50000 4675.5 10.29 1.000 2732.2 34.35 0.959 14982.2 35.57 0.898 37.5 34.37 0.904 0.900

We find that no single method dominates in terms of both objective value and prob-

ability of being feasible. ALSO-X+ is able to achieve the highest objective values. How-

ever, its solutions do not achieve the desired level of robustness (1− ϵ= 0.9). This is a

consequence of the fact that SAA can “overfit” the data. Indeed, according to Theorem

10 of Luedtke and Ahmed (2008), to achieve an (out-of-sample) feasibility guarantee ≥

0.9 for the problem instance with k = 100 would require N > 106. On the other hand,

we find that ALSO-X is the most consistent method for providing solutions that achieve

the desired level of robustness. However, in terms of objective value, its solutions are

generally not as good as the solutions produced by ROBIST. The MIO approach, when

https://github.com/jnan97/ALSO-X

Starreveld et al.: Robust Optimization by Iterative Scenario Sampling and Statistical Testing 25

given a time limit equal to ROBIST’s runtime, is not able to effectively solve instances

with N ≥ 10,000. For N = 50,000, simply finding a feasible solution using MIO takes

two orders of magnitude longer than ROBIST. For ROBIST (with imax = 200), we find

that N = 1,000 is not sufficient to achieve the desired level of robustness, due to the

high dimensionality k ≥ 100. However, for N ≥ 5,000, ROBIST is able to consistently

provide solutions of adequate robustness within relatively stable computation times.

More importantly, from the results presented in Table 2 we observe that the computa-

tion times of these three alternative methods do not scale as well as ROBIST as the

amount of data N increases. Therefore, we infer that for larger scale problems, where

one expects to require large amounts of data in order to adequately approximate the

chance-constraint, ROBIST is more computationally tractable than these three alter-

native methods.

4.3. Weighted Distribution Problem

In the next set of experiments, we consider the weighted distribution problem of Carè

et al. (2014). Suppose a company is able to produce and sell n different products with

the usage of m different machines. The goal is to determine an optimal production plan,

which specifies the amount of time xjk that each machine j = 1, . . . ,m will be used for

producing product k= 1, . . . , n. An optimal plan is one that maximizes the total profit

of the company subject to availability constraints.

Each machine j may only be used for a limited amount of time aj and incurs operating

costs cjk per unit of product k that is produced. Each unit of product k can be sold at a

price of uk and the leftover units incur holding costs hk. For this problem, there are the

following uncertain parameters: the demand d̃k for each product k and the quantity p̃jk

of product k that is produced per allocated unit of time for machine j. The optimization

problem is formulated as follows:

max
x

n∑
k=1

ukmin

{
m∑
j=1

pjkxjk, dk

}
−

m∑
j=1

n∑
k=1

cjkxjk−
n∑

k=1

hkmax

{
m∑
j=1

pjkxjk− dk,0

}
(38)

s.t.
n∑

k=1

xjk ≤ aj, j = 1. . . . ,m, (39)

xjk ≥ 0, j = 1. . . . ,m, k= 1. . . . , n. (40)

We note that this is a difficult problem to deal with using conventional robust optimiza-

tion techniques, since (38) is not convex in the uncertain parameter vectors d̃ and p̃.

26 Starreveld et al.: Robust Optimization by Iterative Scenario Sampling and Statistical Testing

For this problem, one is interested in obtaining a feasible and profitable production

plan x. However, due to the uncertainty in the demand of the products and the pro-

ductivity of the machines, the exact profit can not be computed ahead of time. As in

the portfolio management problem discussed in Appendix C.2 and the two-stage lot-

sizing problem discussed in Appendix C.3, the uncertain parameters occur only in the

objective. Hence, Algorithm 1 is slightly altered (see Section 3.1 for the details).

For this problem, we are interested in robust solutions for which one can state with

confidence of at least 1−α that, if implemented, the realized profit will be larger than

some threshold value with probability of at least 1−ϵ. In other words, our objective is to

maximize this threshold value (i.e., the Value-at-Risk), which represents a probabilistic

lower bound on the realized profit.

4.3.1. Numerical Results. We emulate the numerical experiments reported by Carè

et al. (2014), where ϵ = 0.01 and α = 10−9. The demand d̃j is drawn from a Dirichlet

distribution and the efficiency parameters p̃jk are assumed to be uniformly distributed

around some nominal values p̄jk with a ±5% maximum deviation. We refer to Carè

et al. (2014) for the exact nominal values associated with the original problem with

m = 5 machines and n = 10 products. For the larger problem instances (where m> 5

and n> 10), the nominal values are slightly perturbed. We let these nominal values be

uniformly distributed within ±10% of the original problem.

We compare the performance of ROBIST with four existing scenario optimization

methods from the literature. These are: C&C (Calafiore and Campi 2005), FAST (Carè

et al. 2014), RSD (Calafiore 2017) and ISO (Garatti et al. 2022).

We implement the methods with the following settings. For C&C we utilize Theorem 1

from Campi and Garatti (2008) to determine the number of randomly sampled scenar-

ios NC&C with which (SCP) is solved. For FAST we follow the suggested rule of thumb

to select the number of scenarios NFAST
1 with which (SCP) is solved (e.g., NFAST

1 =

20mn). For RSD, we set ϵ′ = 0.7ϵ, determine NRSD by requiring that the asymptotic

upper bound on the expected number of iterations is less than or equal to 10 and then

use Equation (18) in Calafiore (2017) to determine NRSD
o . For ISO we use Algorithm 2

of Garatti et al. (2022) to determine the set sizes N ISO
0 ,N ISO

1 , . . . ,N ISO
mn . Finally, for

ROBIST we allow access to N = 3,000 data points and use a maximum of 200 iterations

as stopping criteria. The results are reported for a single instance in Tables 3 and 4.

In Table 3 we find that, for the largest problem instance (m= 15, n= 30), the 10-hour

time limit was reached for C&C, RSD and ISO. This is due to having to solve (SCP)

Starreveld et al.: Robust Optimization by Iterative Scenario Sampling and Statistical Testing 27

with large sets of scenarios S. By design, ROBIST utilizes significantly fewer scenarios

when solving (SCP), which is clearly observed in the results corresponding to |S|max.

This key difference enables ROBIST to remain computationally tractable when applied

to the larger problem instances.

Table 3 Comparison between Calafiore and Campi (2005), Carè et al. (2014), Calafiore (2017), Garatti

et al. (2022) and ROBIST in terms of the amount of data used (N), the maximum number of scenarios with

which (SCP) is solved (|S|max) and the required computation time when applied to Problem (38)-(40) with

varying number of machines m and products n. A dash (-) signifies that the time limit was reached before the

relevant metric could be computed.

N |S|max Computation time (s)

m n C&C FAST RSD ISO ROBIST C&C FAST RSD ISO ROBIST C&C FAST RSD ISO ROBIST

5 10 10580 3062 28662 5678 3000 10580 1000 6017 5678 65 699 10 239 17367 35

10 20 34918 6073 41733 - 3000 34918 4000 26160 - 86 27541 311 12438 > 36000 76

15 30 74468 11073 - - 3000 74468 9000 60586 - 96 > 36000 3130 > 36000 > 36000 130

Next, in Table 4 we inspect the quality of the resulting solutions. We find that the four

methods perform similarly in terms of the out-of-sample 1%-VaR. However, ROBIST,

while having access to relatively few data points, is able to outperform the existing

methods in terms of the objective value. Note that, in many real-world situations there

may be a limited amount of data available and one may not have access to additional

out-of-sample data. In such a situation one can only consult the objective value in order

to determine the quality of a solution.

Table 4 Comparison between Calafiore and Campi (2005), Carè et al. (2014), Calafiore (2017), Garatti

et al. (2022) and ROBIST in terms of the objective value and out-of-sample performance of the resulting

solutions when applied to Problem (38)-(40) with a varying number of machines m and products n. A dash (-)

signifies that the time limit was reached before a solution was found. The out-of-sample results are computed

using 106 additional randomly generated scenarios.

Objective value Out-of-sample 1%-VaR

m n C&C FAST RSD ISO ROBIST C&C FAST RSD ISO ROBIST

5 10 457.8 441.4 464.7 458.7 455.3 473.5 477.3 476.3 471.7 475.0

10 20 973.2 945.5 974.6 - 962.1 1000.0 998.5 997.5 - 996.8

15 30 - 1469.7 - - 1491.7 - 1514.7 - - 1519.1

5. Conclusion

In this paper we propose ROBIST, a versatile, simple, data-driven and effective algo-

rithm for dealing with optimization problems with uncertain parameters. A key element

28 Starreveld et al.: Robust Optimization by Iterative Scenario Sampling and Statistical Testing

in ROBIST is the evaluation procedure, where probability guarantees are derived a pos-

teriori using statistical testing. This procedure provides sharp probability guarantees

that can be computed very efficiently, which allows the algorithm to identify and avoid

overly conservative solutions. ROBIST can be applied to a wide variety of problem types

and offers a number of practical advantages over existing methods. Furthermore, numer-

ical experiments across a variety of applications show that ROBIST outperforms many

alternative methods in terms of computational tractability as well as solution quality.

It is important to note that the probabilistic guarantees provided by the evaluation

procedure are based on asymptotics (as N →∞) and are therefore only approximately

valid. As such, ROBIST performs best when there is a large amount of data available.

Acknowledgments

The authors are very grateful to İhsan Yanıkoğlu, Dimitris Bertsimas, Vishal Gupta, Daniel Kuhn and

Simone Garatti for their cooperation in setting up the numerical experiments presented in this paper. The

authors also extend gratitude to the Editor, Associate Editor and anonymous reviewers whose thoughtful

comments led to significant improvements to the manuscript. This research was funded in part by the

Netherlands Organization for Scientific Research under grants NWO VICI 2020-2027 (Laeven and Jin)

and ESI.2019.003 (den Hertog and Starreveld).

Starreveld et al.: Robust Optimization by Iterative Scenario Sampling and Statistical Testing 29

References

Ahmed S, Luedtke J, Song Y, Xie W (2017) Nonanticipative duality, relaxations, and formulations for

chance-constrained stochastic programs. Mathematical Programming 162:51–81.

Alamo T, Tempo R, Luque A, Ramirez DR (2015) Randomized methods for design of uncertain systems:

Sample complexity and sequential algorithms. Automatica 52:160–172.

Bandi C, Bertsimas D (2012) Tractable stochastic analysis in high dimensions via robust optimization.

Mathematical Programming 134:23–70.

Basak S, Shapiro A (2001) Value-at-risk-based risk management: Optimal policies and asset prices. The

Review of Financial Studies 14:371–405.

Ben-Tal A, Bertsimas D, Brown DB (2010) A soft robust model for optimization under ambiguity. Oper-

ations Research 58(4-part-2):1220–1234.

Ben-Tal A, Brekelmans R, Den Hertog D, Vial JP (2017) Globalized robust optimization for nonlinear

uncertain inequalities. INFORMS Journal on Computing 29(2):350–366.

Ben-Tal A, den Hertog D, de Waegenaere A, Melenberg B, Rennen G (2013) Robust solutions of opti-

mization problems affected by uncertain probabilities. Management Science 59(2):341–357.

Ben-Tal A, El Ghaoui L, Nemirovski A (2009) Robust Optimization (Princeton university press).

Bertsimas D, Brown DB, Caramanis C (2011) Theory and applications of robust optimization. SIAM

Review 53(3):464–501.

Bertsimas D, de Ruiter F (2016) Duality in two-stage adaptive linear optimization: Faster computation

and stronger bounds. INFORMS Journal on Computing 28(3):500–511.

Bertsimas D, den Hertog D (2022) Robust and Adaptive Optimization (Dynamic Ideas LLC).

Bertsimas D, den Hertog D, Pauphilet J (2021) Probabilistic guarantees in robust optimization. SIAM

Journal on Optimization 31(4):2893–2920.

Bertsimas D, den Hertog D, Pauphilet J, Zhen J (2023) Robust convex optimization: A new perspective

that unifies and extends. Mathematical Programming 200(2):877–918.

Bertsimas D, Gupta V, Kallus N (2018) Data-driven robust optimization. Mathematical Programming

167(2):235–292.

Birge JR (1997) State-of-the-art-survey – Stochastic programming: Computation and applications.

INFORMS Journal on Computing 9(2):111–133.

Birge JR, Louveaux F (2011) Introduction to Stochastic Programming (Springer Science & Business

Media).

Calafiore GC (2013) Direct data-driven portfolio optimization with guaranteed shortfall probability. Auto-

matica 49(2):370–380.

Calafiore GC (2017) Repetitive scenario design. IEEE Transactions on Automatic Control 62(3):1125–

1137.

Calafiore GC, Campi MC (2005) Uncertain convex programs: Randomized solutions and confidence levels.

Mathematical Programming 102(1):25–46.

30 Starreveld et al.: Robust Optimization by Iterative Scenario Sampling and Statistical Testing

Calafiore GC, Ghaoui LE (2006) On distributionally robust chance-constrained linear programs. Journal

of Optimization Theory and Applications 130:1–22.

Campi MC, Garatti S (2008) The exact feasibility of randomized solutions of uncertain convex programs.

SIAM Journal on Optimization 19(3):1211–1230.

Campi MC, Garatti S (2018) Wait-and-judge scenario optimization. Mathematical Programming

167(1):155–189.

Carè A, Garatti S, Campi MC (2014) Fast—fast algorithm for the scenario technique. Operations Research

62(3):662–671.

Chamanbaz M, Dabbene F, Tempo R, Venkataramanan V, Wang QG (2015) Sequential randomized

algorithms for convex optimization in the presence of uncertainty. IEEE Transactions on Automatic

Control 61(9):2565–2571.

Charnes A, Cooper W (1959) Chance-constrained programming. Management Science 6(1):73–79.

Delage E, Ye Y (2010) Distributionally robust optimization under moment uncertainty with application

to data-driven problems. Operations Research 58(3):595–612.

Fischetti M, Monaci M (2009) Light robustness. Robust and Online Large-Scale Optimization: Models

and Techniques for Transportation Systems 61–84.

Garatti S, Carè A, Campi MC (2022) Complexity is an effective observable to tune early stopping in

scenario optimization. IEEE Transactions on Automatic Control 68(2):928–942.

Guzman YA, Matthews LR, Floudas CA (2016) New a priori and a posteriori probabilistic bounds

for robust counterpart optimization: I. unknown probability distributions. Computers & Chemical

Engineering 84:568–598.

Hanasusanto GA, Roitch V, Kuhn D, Wiesemann W (2015) A distributionally robust perspective

on uncertainty quantification and chance constrained programming. Mathematical Programming

151:35–62.

Hong LJ, Huang Z, Lam H (2021) Learning-based robust optimization: Procedures and statistical guar-

antees. Management Science 67(6):3447–3467.

Jiang N, Xie W (2022) Also-x and also-x+: better convex approximations for chance constrained pro-

grams. Operations Research 70(6):3581–3600.

Jiang R, Guan Y (2016) Data-driven chance constrained stochastic program. Mathematical Programming

158(1-2):291–327.

Laeven RJ, Stadje M (2014) Robust portfolio choice and indifference valuation.Mathematics of Operations

Research 39:1109–1141.

Luedtke J (2014) A branch-and-cut decomposition algorithm for solving chance-constrained mathematical

programs with finite support. Mathematical Programming 146(1-2):219–244.

Luedtke J, Ahmed S (2008) A sample approximation approach for optimization with probabilistic con-

straints. SIAM Journal on Optimization 19(2):674–699.

Starreveld et al.: Robust Optimization by Iterative Scenario Sampling and Statistical Testing 31

Luedtke J, Ahmed S, Nemhauser GL (2010) An integer programming approach for linear programs with

probabilistic constraints. Mathematical Programming 122(2):247—-272.

Mohajerin Esfahani P, Kuhn D (2018) Data-driven distributionally robust optimization using the wasser-

stein metric: Performance guarantees and tractable reformulations. Mathematical Programming

171(1):115–166.

Natarajan K, Pachamanova D, Sim M (2008) Incorporating asymmetric distributional information in

robust value-at-risk optimization. Management Science 54(3):573–585.

Nemirovski A, Shapiro A (2006) Scenario approximations of chance constraints. Probabilistic and Ran-

domized Methods for Design under Uncertainty 3–47.

Nemirovski A, Shapiro A (2007) Convex approximations of chance constrained programs. SIAM Journal

of Optimization 17(4):969—-996.

Norris J (1997) Markov Chains (Cambridge University Press).

Oishi Y (2007) Polynomial-time algorithms for probabilistic solutions of parameter-dependent linear

matrix inequalities. Automatica 43(3):538–545.

Pagnoncelli BK, Ahmed S, Shapiro A (2009) Sample average approximation method for chance con-

strained programming: theory and applications. Journal of Optimization Theory and Applications

142(2):399–416.

Pardo L (2006) Statistical Inference Based on Divergence Measures (Chapman & Hall/ CRC Boca Raton).

Postek K, Ben-Tal A, Den Hertog D, Melenberg B (2018) Robust optimization with ambiguous stochastic

constraints under mean and dispersion information. Operations Research 66(3):814–833.

Postek K, den Hertog D, Melenberg B (2016) Computationally tractable counterparts of distributionally

robust constraints on risk measures. SIAM Review 58(4):603–650.

Rahimian H, Mehrotra S (2019) Frameworks and results in distributionally robust optimization. Open

Journal of Mathematical Optimization 3(4):1–85.

Roos E, den Hertog D (2020) Reducing conservatism in robust optimization. INFORMS Journal on

Computing 32(4):1109–1127.

Shang C, You F (2020) A posteriori probabilistic bounds of convex scenario programs with validation

tests. IEEE Transactions on Automatic Control 66(9):4015–4028.

Shapiro A, Dentcheva D, Ruszczynski A (2009) Lectures On Stochastic Programming (SIAM).

Shapiro A, Nemirovski A (2005) On complexity of stochastic programming problems. Continuous Opti-

mization: Current Trends and Modern Applications 111–146.

Shawe-Taylor J, Cristianini N (2003) Estimating the moments of a random vector with applications.

Proceedings of GRETSI 2003 Conference 47–52.

Smith RL (1984) Efficient monte carlo procedures for generating points uniformly distributed over

bounded regions. Operations Research 32(6):1296–1308.

Vayanos P, Kuhn D, Rustem B (2012) A constraint sampling approach for multi-stage robust optimization.

Automatica 48(3):459–471.

32 Starreveld et al.: Robust Optimization by Iterative Scenario Sampling and Statistical Testing

Wallace SW, Ziemba WT (2005) Applications of Stochastic Programming (SIAM).

Wang I, Becker C, Van Parys B, Stellato B (2022) Mean robust optimization. arXiv preprint

arXiv:2207.10820 .

Yanıkoğlu İ, den Hertog D (2013) Safe approximations of ambiguous chance constraints using historical

data. INFORMS Journal on Computing 25(4):666–681.

Starreveld et al.: Robust Optimization by Iterative Scenario Sampling and Statistical Testing 1

A. ϕ-divergence and confidence set

In order to formally evaluate the robustness of solutions, we use statistical testing that is based on

ϕ-divergences. Given two vectors p,q∈Rdp , a ϕ-divergence is defined as

Iϕ(q,p) =

dp∑
i=1

piϕ

(
qi
pi

)
,

where ϕ : [0,∞)→ R is a convex function satisfying ϕ(1) = 0, ϕ(a/0) := a limt→∞ ϕ(t)/t for a > 0 and

ϕ(0/0) = 0. Using the modified χ2-distance, as we do throughout this paper, corresponds to choosing

ϕ(t) = (t−1)2. An extensive study of the statistical properties of ϕ-divergences, as well as an overview of

common choices of ϕ(·) functions, are given in Pardo (2006) and Ben-Tal et al. (2013).

In this paper we utilize the following property. Suppose p∗ is a probability vector and N data points

are used to estimate p∗ with the empirical estimator p̂. Then, Pardo (2006) has shown that the following

statistic:

2N

ϕ′′(1)
Iϕ(p

∗, p̂),

converges (as N →∞) to a chi-squared distribution with dp− 1 degrees of freedom. Here, ϕ′′(1) denotes

the second derivative of ϕ evaluated at 1. Hence, one can construct the following (1−α)-confidence set

for the true probability vector p∗, as a ϕ-divergence ball around the empirical estimate p̂:{
q∈Rdp : q≥ 0, qT1= 1, Iϕ(q, p̂)≤

ϕ′′(1)

2N
χ2

dp−1,1−α

}
,

where χ2
dp−1,1−α is the (1−α)-quantile of the chi-squared distribution with degree dp− 1.

B. Proofs
B.1. Proof of Lemma 1

By definition, we have that

γi =min
q≥0

{
q : p

(
q

p
− 1

)2

+(1− p)

(
1− q

1− p
− 1

)2

≤ r

}
,

where r = 1
N
χ2
1,1−α and p is an empirical estimate based on N independent observations. Since the

objective function is linear and the constraints are convex, we can determine the optimal solution by

solving the following quadratic equation:

p

(
q

p
− 1

)2

+(1− p)

(
1− q

1− p
− 1

)2

= r.

Solving this for q yields the smallest solution q = p−
√
p(1− p)r. Since the constraint q ≥ 0 must also

hold, we have that γi =max{p−
√
p(1− p)r,0}. To show that γi is also increasing in p, we first note that

the function p 7→ p−
√

p(1− p)r is convex in p, and thus is increasing after its minimum. Furthermore,

we have

p−
√
p(1− p)r≥ 0⇔ p≥ r

1+ r
.

Hence, its minimum, which is smaller than zero, can only be attained for p < r
1+r

. Therefore, γi > 0 only

if p≥ r
1+r

and thus γi is increasing in p.

2 Starreveld et al.: Robust Optimization by Iterative Scenario Sampling and Statistical Testing

B.2. Proof of Lemma 2

Let {S̆0, . . . , S̆M} be all the possible subsets of the training data set Dtrain
N1

= {ẑ1, . . . , ẑN1} with S̆0 = ∅

and M = 2N1 − 1. For each subset S̆j ∈ {S̆0, . . . , S̆M}, we denote x̆∗
j as the unique optimal solution of the

corresponding Problem (SCPi), where Si = S̆j . Furthermore, we denote γ̂(x̆∗
j) as the certificate of x̆∗

j ,

derived using Dtrain
N1

. Finally, we define the corresponding “infeasibility” set IFeas(x̆∗
j) as:

IFeas(x̆∗
j) := {ẑj ∈Dtrain

N1
: f(x̆∗

j , ẑ
j)> 0}.

Letting Si denote the subset used during the i-th iteration of Algorithm 1 and following the addition

and removal procedure described in Section 2, we have the following transition probabilities between the

possible subsets {S̆1, . . . , S̆M}:

P(Si+1 = S̆j | Si = S̆k) =

(1− v) · 1
|IFeas(x̆∗

k
)| if γ̂(x̆∗

k)≤ 1− ϵ and S̆j = S̆k ∪{ẑ}, ẑ /∈ S̆k,
v · 1

|IFeas(x̆∗
k
)| if γ̂(x̆∗

k)> 1− ϵ and S̆j = S̆k ∪{ẑ}, ẑ /∈ S̆k,
(1− v) · 1

|S̆k|
if γ̂(x̆∗

k)≥ 1− ϵ and S̆j = S̆k \ {ẑ}, ẑ∈ S̆k,
v · 1

|S̆k|
if γ̂(x̆∗

k)< 1− ϵ and S̆j = S̆k \ {ẑ}, ẑ∈ S̆k,
0 otherwise.

Since the transition probability depends only on the previous subset, we have that Si constitutes a time-

homogeneous Markov chain with finitely many states. This finiteness implies that there exists at least

one particular subset for which the corresponding solution x̆∗ is optimal with respect to the test data.

We will now show that for all possible subsets/states, there is a path with positive probability to one of

the subsets with the optimal solution. Indeed, for any subset S̆j , there is always a probability of removal

and hence a path to the empty set S̆0, which we denote as S̆j→S̆0.

Let Sopt be the collection of all optimal subsets and let S̆k∗ ∈ Sopt be a particular optimal subset. We

claim that there is a path from S̆0 to the class Sopt:

S̆0→ · · ·→ Sopt.

Indeed, let x̆∗
0 be the solution of the empty set S̆0. Since minx∈X{g(x)} ≤minx∈X{g(x) : f(x, ẑj)≤ 0,∀ẑj ∈

S̆k∗}, we have that if x̆∗
0 is feasible for all scenarios in S̆k∗ , then x̆∗

0 must also be the unique optimal

solution (uniqueness by assumption or by Remark 2) of solving (SCPi) with Si = S̆k∗ . In that case, we

have by definition that x̆∗
0 is an optimal solution with respect to the test data and thus implies S̆0 ∈ Sopt.

Therefore, without loss of generality, we may assume that x̆∗
0 is infeasible for at least one scenario, say

ẑq of S̆k∗ . Since there is a positive probability of adding this scenario, there is a positive probability path

S̆0→ S̆0 ∪ {ẑq} and we can now repeat the same argument above for the solution x̆∗ of S̆0 ∪ {ẑq}: if x̆∗

is feasible for all scenarios in S̆k∗ , then S̆0 ∪ {ẑq} ∈ Sopt. Otherwise, there is a positive probability of

adding another scenario of S̆k∗ . This argument continues until either the subset S̆k∗ is reached, or an

optimal subset is reached earlier in the path. Thus, there is a positive probability path to all subsets in

the Markov chain. Therefore, the Markov chain is time-homogeneous and irreducible, which implies that

the hitting probability of any state is 1 (Norris 1997, Theorem 5.8).

Starreveld et al.: Robust Optimization by Iterative Scenario Sampling and Statistical Testing 3

C. Extra numerical experiments

C.1. Altered Toy Problem

Our altered toy problem is formulated as follows:

max
x

e⊺x (41)

s.t. z̃⊺x≤ 1, (42)

1+

k−1∑
j=1

xj ≤ xk, (43)

x≤ k, (44)

where x,z∈Rk, and e⊺ = (1,1, . . . ,1)∈Rk. We assume that the uncertain parameter vector z is stochastic,

where the random variables z̃1, . . . , z̃k are assumed to be independently and uniformly distributed in

[−1,1]. We are interested in obtaining a robust solution to Problem (41)-(44), i.e., a solution that satisfies

Constraint (42) with probability greater than or equal to 1− ϵ.

In the following paragraphs we use Problem (41)-(44) as a benchmark for evaluating certain components

of ROBIST, as presented in Algorithm 1. Recall that for this problem we are able to analytically derive

the true probability that (42) is satisfied:

p∗(x) := P (z̃⊺x≤ 1) =
1

2
+

1

2xk

. (45)

This enables an analysis of the following three metrics:

1. irobust : number of iterations required to find a sufficiently robust solution:

irobust =min{i : p∗(xi)≥ 1− ϵ};

2. |Si|max : maximum size of the scenario sets used to solve SCPi:

|Si|max =max
i
{|Si|};

3. optimality gap of the best found sufficiently robust solution:

θ∗−maxi{g(xi) : γ̌i ≥ 1− ϵ, p∗(xi)≥ 1− ϵ}
θ∗

.

C.1.1. Effect of υ. First, we examine the input parameter υ. Recall that this parameter controls

the probability of reversing the addition or removal action suggested by evaluation on the training data.

As stated earlier, this random component is added to ensure theoretical convergence of Algorithm 1 and

for the other numerical experiments presented in this pape it is set to 0.01. Here we consider alternative

choices for υ, where we vary υ ∈ {0.01,0.25,0.5} and analyze the performance of ROBIST under such a

parameter setting. Note that setting υ= 0.5 is equivalent to a strategy where, at each iteration, a scenario

is added or removed with equal probability.

Our setup is as follows: ϵ = 0.05, α = 0.01, imax = 200, where we vary k ∈ {20,200,2000} and N ∈

{3000,30000}. To control for the effects of randomness, we repeat the experiment 10 times and report

the average. The results are presented in Table 5.

4 Starreveld et al.: Robust Optimization by Iterative Scenario Sampling and Statistical Testing

Table 5 Analysis of impact of parameter υ on performance of ROBIST when applied to Problem (41)-(44).

Settings: ϵ=0.05, α=0.01 and imax=200. The results are averaged over 10 repetitions.

irobust |Si|max Opt. Gap (%)

υ 0.01 0.25 0.50 0.01 0.25 0.50 0.01 0.25 0.50

k N

20 3000 9.4 6.3 11.7 14.1 13.9 10.3 6.01 6.52 6.97

30000 9.6 12.6 20.8 13.5 13.9 15.9 2.14 2.40 3.74

200 3000 17.2 18.6 56.2 20.7 18.4 16.9 6.26 6.32 16.29

30000 18.5 22.9 50.8 21.4 18.8 17.4 1.77 2.02 3.56

2000 3000 24.0 30.4 118.6 27.2 25.6 16.5 5.43 6.06 25.44

30000 22.9 32.8 117.0 27.9 26.1 20.0 2.11 2.15 12.86

We find that a higher degree of randomization, i.e., υ ∈ {0.25,0.50} instead of υ = 0.01, generally

performs worse in terms of irobust and the optimality gap. While the performance of ROBIST with

υ = 0.25 is comparable to our default (0.01), the performance is significantly affected when υ is set to

0.50. Here we find a large difference in terms of the number of iterations required to find a sufficiently

robust solution. Interestingly, a higher degree of randomization does lead to relatively smaller scenario

sets, which could be beneficial in terms of computational effort. However, this benefit is likely offset by

the increased number of iterations required.

Overall, we conclude from these numerical experiments that setting υ ∈ [0,0.25] is unlikely to have a

significant impact on the performance of Algorithm 1.

C.1.2. Addition strategy. Given the decision to add or remove a scenario from our sampled

set S, one could think of various ways to select a scenario to add/remove. In this section we examine the

addition strategy of ROBIST.

Our default strategy, the strategy that is used throughout this paper, is to pick a random scenario from

amongst the scenarios for which our current solution violates the constraint, i.e., at iteration i, we pick

randomly from the set: {ẑj ∈Dtrain
N1

: f(xi, ẑ
j)> 0}. We abbreviate this strategy as “RV” (short for random

violation). An alternative strategy is to simply select a random scenario from amongst the scenarios

that are not already in our set, i.e., at iteration i, we pick randomly from the set: {ẑj ∈ Dtrain
N1

Si}. We

abbreviate this strategy as “RA” (short for random any). Another alternative strategy is to simply select

a random scenario from amongst the scenarios for which our current solution is maximally violated, i.e., at

iteration i, we pick a random scenario from the set: {ẑj ∈Dtrain
N1

: ẑj ∈ argmaxl f(xi, ẑ
l), f(xi, ẑ

j)> 0}. We

abbreviate this strategy as “MV” (short for maximal violation).

We compare these two alternative addition strategies with our default strategy by applying them to

Problem (41)-(44). Our setup is as follows: ϵ= 0.05, α= 0.01, imax = 200, where we vary k ∈ {20,200,2000}
and N ∈ {3000,30000}. To control for the effects of randomness, we repeat the experiment 10 times and

report the average. The results are presented in Table 6.

We find that MV does best in terms of irobust and |Si|max. Intuitively speaking, MV is quicker to

identify critical scenarios and add these to the scenario set. However, this strategy may lead to overly

Starreveld et al.: Robust Optimization by Iterative Scenario Sampling and Statistical Testing 5

Table 6 Analysis of impact of the addition strategy on performance of ROBIST when applied to

Problem (41)-(44). Settings: ϵ=0.05, α=0.01, imax=200. The results are averaged over 10 repetitions.

irobust |Si|max Opt. Gap (%)

Strat. RV RA MV RV RA MV RV RA MV

k N

20 3000 9.4 49.3 2.1 14.1 101.5 3.4 6.01 36.15 10.40

30000 9.6 85.9 1.8 13.5 129.3 3.0 2.14 5.55 8.99

200 3000 17.2 108.6 3.9 20.7 145.9 5.8 6.26 35.08 6.70

30000 18.5 102.7 2.2 21.4 128.9 3.7 1.77 5.35 3.51

2000 3000 24.0 120.6 5.6 27.2 157.2 7.3 5.43 53.52 5.44

30000 22.9 138.8 3.6 27.9 158.6 5.2 2.11 32.34 2.40

conservative solutions, which is reflected in the results for the optimality gap, for which our default

strategy (RV) outperforms the two alternatives.

Overall, we conclude from these numerical experiments that RV performs significantly better than RA

and that MV is likely to be an effective strategy for large scale instances with small ϵ.

C.2. Portfolio Management Problem

In this subsection we apply ROBIST to a portfolio management problem. As in Bertsimas et al. (2018),

we consider an uncertain single period allocation problem:

max
x≥0

z⊺x (46)

s.t. e⊺x= 1. (47)

For this problem one seeks a profit-maximizing allocation x ∈Rk across k different assets, for which the

returns z∈Rk are uncertain.

Note that in this problem the uncertainty only affects the objective. As such, when applying ROBIST,

Algorithm 1 is slightly altered (see Section 3.1 for the details). Rewriting (46)-(47) using an epigraph

reformulation, we obtain the following:

max
x,θ

θ (48)

s.t. z⊺x≥ θ, (49)

e⊺x= 1, (50)

x≥ 0. (51)

We note that solving (48)-(51) while providing a probability guarantee for Constraint (49) is equivalent

to maximizing the value at risk (VaR), or (100× ϵ)%-quantile, of the portfolio’s profit, as:

P(z̃⊺x≥ θ)≥ 1− ϵ ⇐⇒ VaRP
ϵ (z̃

⊺x)≤ θ. (52)

6 Starreveld et al.: Robust Optimization by Iterative Scenario Sampling and Statistical Testing

C.2.1. Numerical Results. We follow Bertsimas et al. (2018) by utilizing the model

from Natarajan et al. (2008) to synthetically generate returns for k assets. This is done for a single time

period in the following manner:

zi =

√

(1−γi)γi

γi
with probability γi

−
√

(1−γi)γi

1−γi
with probability 1− γi

, γi =
1

2

(
1+

i

k+1

)
, i= 1, . . . , k. (53)

In this model, all assets i= 1, . . . , k have mean return 0%, standard deviation 1%, but have different

skew and support. The higher indexed assets have a larger γi and are more negatively skewed and thus

more likely to generate large losses and small upside gains. The returns for the assets are assumed to be

independent.

We evaluate the performance of ROBIST with imax = 200 by comparing it to the results reported in

Table 3 in Bertsimas et al. (2018) (where k = 10 and α = ϵ = 0.1). In Table 7 we report the average

out-of-sample 10%-VaR over 100 repetitions.

Table 7 Average 10%-VaR on out-of-sample realized returns, computed using 106 additional randomly

generated scenarios. ROBIST is compared with the methods presented in Table 3 of Bertsimas et al. (2018).

N M LCX CS CM ROBIST

500 -1.095 -0.411 -0.397 -0.539 0.194

2000 -1.095 -0.411 -0.396 -0.451 0.316

We find that ROBIST significantly outperforms the other solution methods of Shawe-Taylor and

Cristianini (2003), Calafiore (2013) and Bertsimas et al. (2018) in regard to average out-of-sample per-

formance. The large difference in performance is explained by the difference in portfolio holdings, which

is displayed in Figure 6. Here we find that the solutions found by ROBIST put all wealth in either asset

9 or 10.

Figure 6 Graphical display of the average, along with 10% and 90% quantiles, of the portfolio holdings

by method across the 100 repetitions of the experiment with N = 500. On the left we show the

portfolio holdings reported in Figure 4 of Bertsimas et al. (2018), on the right we display the same

information for the portfolio holdings found by applying ROBIST.

Upon further inspection of the data generation procedure of Natarajan et al. (2008) for k = 10, one

finds that γ9 = 0.909 and γ10 = 0.955. This implies that:

r̃9 =

{
0.32 with probability 0.909

−3.16 with probability 1− 0.909
r̃10 =

{
0.22 with probability 0.955

−4.58 with probability 1− 0.955.

Starreveld et al.: Robust Optimization by Iterative Scenario Sampling and Statistical Testing 7

Thus, when x9 = 1 the 10%-VaR is = 0.32, and when x10 = 1, the 10%-VaR is 0.22.

While the allocations obtained via ROBIST are somewhat trivial and arguably risky, they do outper-

form the allocations found by the other methods in terms of the objective under consideration (10%-VaR).

Our solutions exploit a flaw in optimizing for VaR when using the generation procedure of Natarajan

et al. (2008) with k = 10 assets and ϵ= 10%. This flaw was not discovered by the other methods, which

is due to their more conservative approach.

This flaw highlights a well-known danger in optimizing for VaR, namely that it does not account for

the magnitude of losses that occur with probability less than ϵ. Alternatively one may consider optimizing

the conditional VaR instead; see Basak and Shapiro (2001) and Laeven and Stadje (2014). We note that

this is also possible with ROBIST (see Section 3.3).

C.3. Two-Stage Lot-Sizing Problem

In the final set of experiments, we evaluate the performance of ROBIST on a two-stage adaptive lot-sizing

problem. A similar variant of this problem is studied in Bertsimas and de Ruiter (2016).

Consider a network of m nodes, where each node i∈ {1, . . . ,m} has uncertain demand d̃i. The demand

at each node in the network must be satisfied and this can be done through the initial allocation of stock

xi, or by moving yji units of stock from node j to node i. The initial allocation of stock at node i costs ci

per unit, while the unit transportation costs are uncertain and denoted by t̃ij . Each node has a maximum

allocation capacity of ki units.

We model this as a two-stage adaptive problem where the initial allocation decisions x must be made

before the uncertainty is realized. In the second stage, the transportation decisions yij can adapt to the

realized demand and transportation costs. For notational ease, we denote uncertain parameters d̃i and

t̃ij as a single vector z̃∈Rm+m2
and formulate the problem as:

min
x,θ

θ (54)

s.t.

m∑
i=1

cixi +V (z,x)≤ θ, (55)

0≤ xi ≤ ki, i= 1. . . . ,m, (56)

where:

V (z,x) :=min
y≥0

m∑
i=1

m∑
j=1

tijyij (57)

s.t. xi +

n∑
j=1

yji−
n∑

j=1

yij ≥ di, i= 1, . . . ,m. (58)

If Constraint (58) is not satisfied, V (z,x) =∞. For this problem, we are interested in solutions for which

we can provide statistical guarantees of the form (5), with γ ≥ 1− ϵ, for Constraint (55).

Finally, note that most techniques from RO, such as the method presented in Bertsimas and de Ruiter

(2016), are unable to deal with adaptive problems with “random recourse” (i.e., when the adaptive

decisions are multiplied with uncertain parameters). As tij is uncertain, the majority of existing RO

methods can not be applied to this problem.

8 Starreveld et al.: Robust Optimization by Iterative Scenario Sampling and Statistical Testing

C.3.1. Numerical Results. We replicate the parameter settings utilized by Bertsimas and

de Ruiter (2016). However, instead of using an uncertainty set, we sample d̃i and t̃ij in the following

manner:

1. Realizations of d̃i are uniformly sampled from the budgeted uncertainty set described in Bertsimas

and de Ruiter (2016) via the hit-and-run sampling method of Smith (1984).

2. Let the Euclidean distance from i to j be vij . We generate realizations of t̃ij by uniformly sampling

in the range [0.9vij ,1.1vij].

In this set of experiments, we compare ROBIST with the solution approach of Vayanos et al. (2012)

(hereafter abbreviated as VKR). The idea behind this approach is to approximate the adaptive decisions

using “decision rules” (finite linear combinations of the uncertain parameters). This allows one to reduce a

multistage adaptive problem to a single stage static problem. Then, one can apply the theory from Campi

and Garatti (2008) to determine the necessary number of randomly sampled constraints in order to obtain

solutions that satisfy the desired probability guarantee.

In our numerical experiments, we implement VKR using polynomial decision rules of degree p, where

p ∈ {1,2}. For such decision rules the adaptive decisions y are substituted by linear combinations of a

basis vector b(z̃)∈Rsp , where sp =
(
m+m2+p

p

)
(we refer to Vayanos et al. (2012) for further details). Thus,

y=Ab(z̃), where A ∈R(m×m)×sp contains the coefficients of the linear combinations, which are treated

as decision variables. This reduces Problem (54)-(58) to the following single-stage form:

min
x,A,θ

θ (59)

s.t.

m∑
i=1

cixi +

m∑
i=1

m∑
j=1

tijyij ≤ θ, (60)

xi +

n∑
j=1

yji−
n∑

j=1

yij ≥ di, i= 1, . . . ,m, (61)

y=Ab(z), (62)

y≥ 0, (63)

0≤ xi ≤ ki, i= 1. . . . ,m. (64)

Problem (59)-(64) can then be solved with respect to some set of randomly sampled scenarios (let this

set be denoted as SV KR), where constraints (60)-(63) are duplicated for each scenario z ∈ SV KR. The

number of randomly sampled scenarios |SV KR| is determined using Theorem 1 of Campi and Garatti

(2008), which depends on ϵ, α and the number of decision variables (1+m+m2sp).

The ROBIST algorithm is slightly modified when applied to adaptive optimization problems (see

Section 3.2 for the details). An important aspect to note is that, at each iteration i, a new solution is

generated by solving a problem in the form of (21)-(24), which involves 1+m+m2|Si| decision variables

instead of the original 1+m+m2 variables used in defining Problem (54)-(58). In these experiments we

set N = 809 (the minimum number of scenarios utilized by VKR) and imax = 50.

Setting ϵ = α = 0.05, we compare the two approaches to Problem (54)-(58) as the number of nodes

(m) increases. The numerical results (average over 10 replications) are presented in Tables 8 and 9.

In Table 8 we find that VKR is faster than ROBIST for the small problem instances (m≤ 3). However,

the required amount of randomly sampled scenarios (|SV KR|) and the resulting computation time rapidly

Starreveld et al.: Robust Optimization by Iterative Scenario Sampling and Statistical Testing 9

Table 8 Comparison between two implementations of Vayanos et al. (2012) (where p= 1 or p= 2) and

ROBIST in terms of the amount of data used (|SV KR| and N), the maximum number of scenarios with which

(SCP) is solved (|SV KR| and maxi |Si|) and the required computation time when applied to Problem (54)-(58)

with a varying number of nodes m.

|SV KR| ROBIST Computation time (s)

m p= 1 p= 2 N maxi |Si| VKRp=1 VKRp=2 ROBIST

2 809 2655 809 9.0 5 60 196

3 2783 26103 809 10.7 56 > 3600 204

4 10853 117162 809 15.1 2214 > 3600 214

5 24774 392584 809 14.3 > 3600 > 3600 237

increase as m increases. In comparison, we again find that ROBIST is effectively able to sample fewer

scenarios (see maxi |Si|), retaining computational tractability as the problem size increases.

In Table 9, we inspect the quality of the resulting solutions for the cases that a solution was obtained

within the one hour time limit. In all tests the initial allocation was sufficient to satisfy the total realized

demand, thus the average 5%-VaR of the out-of-sample realized costs provides a fair metric of comparison

between the methods. Across all the conducted experiments we find that the solutions obtained via VKR

are outperformed by the solutions obtained via ROBIST.

Table 9 Comparison between two implementations of Vayanos et al. (2012) (where p= 1 or p= 2) and

ROBIST in terms of the objective value and out-of-sample performance when applied to Problem (54)-(58)

with a varying number of nodes m. A dash (-) signifies that the time limit was reached before a solution was

found. The out-of-sample results are computed using 104 additional randomly generated scenarios.

Objective value Out-of-sample 5%-VaR

m VKRp=1 VKRp=2 ROBIST VKRp=1 VKRp=2 ROBIST

2 795 792 736 788 778 731

3 1192 - 1041 1178 - 1021

4 1588 - 1229 1555 - 1206

5 - - 1386 - - 1348

	Introduction
	Existing Approaches and Their Practical Limitations
	Sample Average Approximation.
	Robust Optimization.
	Distributionally robust optimization
	Scenario Optimization.

	Our Method and its Advantages
	Structure
	Notation.

	Methodology
	Algorithm
	Generation procedure.
	Evaluation procedure.
	The scenario selection strategy.
	Stopping criteria and final solution.

	Illustrative Example
	Convergence

	Generalizations and Extensions
	Uncertainty in the Objective Function
	Adaptive Optimization Problems
	Statistical Confidence Bounds on Expectation
	Regret-Based Guarantees

	Numerical Experiments
	Toy Problem
	Comparison with yanikouglu2013safe.
	Analysis of ROBIST.

	Linear Problem from Jiang2022
	Numerical Results.

	Weighted Distribution Problem
	Numerical Results.

	Conclusion
	phi-divergence and confidence set
	Proofs
	Proof of Lemma 1
	Proof of Lemma 2

	Extra numerical experiments
	Altered Toy Problem
	Effect of upsilon.
	Addition strategy.

	Portfolio Management Problem
	Numerical Results.

	Two-Stage Lot-Sizing Problem
	Numerical Results.

