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Risk-Aware Security-Constrained Unit
Commitment: Taming the Curse of Real-Time

Volatility and Consumer Exposure
Daniel Bienstock, Yury Dvorkin, Cheng Guo, Robert Mieth, Jiayi Wang

Abstract—We propose an enhancement to wholesale electricity
markets to contain the exposure of consumers to increasingly
large and volatile consumer payments arising as a byproduct
of volatile real-time net loads – i.e., loads minus renewable
outputs – and prices, both compared to day-ahead cleared values.
We incorporate a trade-off, motivated by portfolio optimization
methods, between standard day-ahead payments and a robust
estimate of such excess payments into the day-ahead computation
and specifically seek to account for volatility in real-time net
loads and renewable generation. Our model features a data-
driven uncertainty set based on principal component analysis,
which accommodates both load and wind production volatility
and captures locational correlation of uncertain data. To solve
the model more efficiently, we develop a decomposition algorithm
that can handle nonconvex subproblems. Our extensive experi-
ments on a realistic NYISO data set show that the risk-aware
model protects the consumers from potential high costs caused
by adverse circumstances.

Index Terms—Security-constrained unit commitment, wind
uncertainty, data-driven uncertainty set.

I. INTRODUCTION

Wholesale electricity markets are typically organized in two
stages. First, day-ahead (DA) markets employ Security Con-
strained Unit Commitment (SCUC) computations [1] to se-
cure generator commitments as well as generation and load
amounts for the forthcoming day, which are paid for using
locational marginal prices (LMPs). Second, given the DA
outcomes and updated forecast of loads and renewables and
availability of generation and transmission resources, the real-
time (RT) markets identify additional generation amounts to
match actual RT loads, which are additionally paid for using
RT LMPs1.

Any RT load not cleared in the DA stage is paid for using
RT LMPs; we term such obligations RT consumer exposure.
Figure 1 details possible discrepancies between DA and RT
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loads, which are a source of financial risk especially when
combined with high RT LMPs. These discrepancies are also
exacerbated by volatility (i.e., variation around the mean) in
loads and environmental conditions, an increasingly important
factor in high-renewable markets. We further note that the
DA market carries a financial obligation for both loads and
generators; namely, loads pay at the DA LMP – in other words
the current DA computation is not set up to handle the risk of
high RT consumer exposure.

This paper addresses the tradeoff between the risk rep-
resented by high RT consumer exposure and the traditional
cost-minimization (or welfare maximization) provided by DA
SCUC. We remark that the DA SCUC (and RUC) computation
is deterministic and currently uses single-point estimates of
load averages for each specific hourly or half-hourly period.
RT dispatch, on the other hand, relies on estimates of av-
erage loads in the ensuing time window, typically spanning
5 minutes. Significant load or generation deviations within
the RT window are handled via reserves, which are set
up as exogenous reserve requirements. This combination of
prediction-driven scheduling and RT correction has proved
successful in low-renewable markets and is a strong engineer-
ing accomplishment [3].

Ongoing large-scale deployment of renewable generation,
as well as battery resources and controllable loads, challenges
this paradigm. In particular, renewables may, under adverse
circumstances, introduce large and correlated RT deviations
from expected generation levels, thus increasing volatility. It is
worth noting that even high-quality forecasts cannot overcome
volatility, which is a reflection of RT stochasticity; in other
words uncertainty at the 5-minute level may be present even
generally accurate estimates of average renewable output or

Fig. 1: RT consumer exposure risk profile
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load are available at the DA phase. The RT settlement mecha-
nism implies that the consumers (and public, by extension) are
ultimately responsible for volatility-derived costs, in the form
of high RT consumer exposure – partially or fully offsetting the
economic advantage of zero-marginal renewable generation.
High excess consumer payments, if frequently observed, could
become of interest to regulatory and government entities, and
may potentially reduce public appetite for adopting renewable
generation [4].

This paper presents a volatility-aware algorithmic enhance-
ment to the DA SCUC and RUC computations, with the
goal of yielding DA decisions that effectively trade-off DA
costs against RT consumer exposure arising from volatility. A
second goal in our work is to develop a DA SCUC alternative
that minimally changes the mechanics of current wholesale
electricity markets and the overall operation of power systems,
including reserves and balancing. Moreover, we do not alter
the RT markets.

We are specifically interested in financial and physical risks
raised by critical time periods characterized by sharp load
and/or renewable volatility. A pertinent example is provided by
peak hours on high-load, high-variability or otherwise stressed
days, which, as a result may experience very high discrepancy
between RT and DA prices. See, for example, Figure 17
of [5] and Figure 3-7 of [6]. Empirical evidence in [7, 8]
also suggests that, additionally, virtual traders can forecast,
and thus take advantage of, these periods quite accurately.
This point serves to underscore the magnitude of the financial
discrepancies between DA and RT markets.

We stress that current DA SCUC routines used in practice
are not immune to the RT consumer exposure under RT LMP
spikes that as we discussed are due to excess RT load and
shortfall in wind production. This is a major concern as the still
largely inflexible consumers end up paying more, especially
under increasing penetration of renewable energy and under
extreme events [9, 10]. Our approach explicitly internalizes
RT price formation under adversarial conditions in the DA UC
process and, using a realistic New York Independent System
Operator (NYISO) test system and demonstrates its benefits
to reducing the overall RT consumer exposure.
A. Literature Review
The wide-spread deployment of uncertain renewable genera-
tion has previously motivated numerous proposals to improve
upon currently static reserve requirements and determinis-
tic point forecasts through alternative probabilistic models
[11, 12]. From a research perspective, the SCUC computation
is commonly recast as a two-stage stochastic program (SP)
so as to tackle demand uncertainty [13, 14] and variable
renewable generation [15–19]. These approaches optimize
the sum of UC cost (the first stage) plus expected dispatch
(second stage), and model uncertainty through scenarios or
an estimated probability distribution. A popular alternative to
SP-based approaches, avoiding their often prohibitive compu-
tational complexity and scenario requirements [16], is adaptive
robust optimization (ARO) [20, 21]. This approach is a variant
of robust optimization [22]. ARO models minimize DA UC
and RT dispatch cost for a worst-case, RT realization drawn

from a pre-defined uncertainty set. For a given uncertainty
set, this approach is computationally efficient and does not
require an estimation or assumption of a specific underlying
probability distribution. The uncertainty set itself can be
estimated from data, but requires careful tuning to achieve
good quality solutions that are not overly conservative [23].
Polyhedral sets as in [20, 21] are easy to implement but do
not capture correlation information. Data-driven methods have
recently been used to create uncertainty sets. For instance, a
Dirichlet process mixture model is used in [24] to construct
data-driven uncertainty sets for wind forecast errors, while
convex combination of historical renewable generation profiles
are used for the data-driven uncertainty sets in [25]. These
uncertainty sets are shown to capture more complex dynamics
of the uncertain data and avoid overestimation of variations.

Data-driven ARO (DDARO) models for UC incorporate
data-driven uncertainty sets in ARO models. This approach
has several benefits such as better interpretability [25] and cost
reduction [24]. There are different types of objective functions
used in DDARO UC models. For example, [25] minimizes the
DA operation cost and worst-case total RT redispatch cost,
while [24, 26] minimize total commitment and worst-case
dispatch costs. To the best of our knowledge, no DDARO
model (or ARO model in general) in the literature addresses
the RT consumer exposure in the RT market. In addition, some
models in the literature depicts a different market clearing
process than the current practice [24, 26], suggesting a need
for a more significant reform of the existing two-stage market.
Our proposed model aims to protect the consumers from RT
price spikes, while keeping our setup very close to the actual
DA market practice so as to ease implementation.

We would like to note the difference between our work and
the literature on consumer payment minimization. The SCUC
computation in [27] is modified to minimize a cost objective
equal to the total consumer payment (rather than commitment
plus generation costs) using deterministic DA estimates for
loads. A restructuring of the RT pricing mechanism that differs
from the LMP setup is considered in [28] with the goal of
obtaining competitive equilibria and thus lowering consumer
prices. In contrast, the RT consumer exposure in our model is
based on high RT load and RT price spikes, both as a result of
RT volatility. Our goal is to produce a DA unit commitment
that trades-off DA cost versus RT consumer exposure due to
volatility – while producing a market structure closely aligned
with the current practice.
B. Our contributions
This paper proposes a two-stage risk-aware optimization
model for the DA SCUC problem that explicitly models both
DA and RT operations with a focus on RT consumer exposure.
We solve this model using a customized cutting plane-based
algorithm. Inspired by factor stressing used in the financial
services industry [29], we construct a data-driven uncertainty
set based on principal component analysis (PCA) [30] to
capture locational correlations, which model the stochasticity
in both load and wind generation more realistically. While the
constructed uncertainty set is similar to [31] (as used for UC in
[26]), it is different in structure and adapted for our proposed
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Fig. 2: Our method obtains a risk-aware day-ahead dispatch schedule, by iteratively updating the SCUC model with information
on worst-case real-time consumer exposure under different UC decisions.

DA SCUC model. To demonstrate our model on a real-world,
large-scale NYISO case study, we also develop heuristics to
reformulate the uncertainty set. Figure 2 provides an overview
of our modifications to a DA SCUC model.

We summarize our contributions as follows:

• Inspired by the risk perspective provided by the mean-
variance portfolio optimization problem [32], we add a
volatility-dependent penalty term to the DA SCUC ob-
jective that reflects the RT uncertainty and RT consumer
exposure during a period of the day that is expected to
be particularly volatile (e.g., peak hours on a high-load
day). Thus, the DA SCUC is completed with an observed
real-world phenomenon, namely RT price spikes.

• We account for volatility by constructing data-driven
adversarial scenarios based on stressing covariance fac-
tors. More specifically, we build a data-driven uncertainty
set via PCA (principal-component analysis), relying on
NYISO historical data. The uncertainty set captures lo-
cational correlations of uncertainty data, which includes
both load and wind generation. The leading modes of
the covariance matrix are used to adversarially magnify
volatility. See Section II-C.

• We develop an algorithm to solve the proposed non-
convex, risk-aware DA SCUC model. The algorithm
is similar to Benders’ decomposition scheme [33]; it
iteratively refines a relaxed DA problem by adding cuts
generated from an adversarial RT problem. Due to the
nonconvex subproblem, our algorithm cannot directly
adopt Benders cuts as has been done in [20] and [21].
Instead, we use no-good cuts [34], integer L-shaped
cuts [35], and novel problem-specific logic-based Benders
decomposition (LBBD) cuts [36]. We also speed up the
algorithm by developing a grid search heuristic for the
nonconvex RT problem, and adding cuts via a branch-
and-cut scheme. With the proposed solution approach,
we are able to solve a large-scale NYISO case study
efficiently.

II. RISK-AWARE SCUC
Our modified SCUC computation builds on current industry
practice [37] by extending common model formulations [1, 38]
to incorporate expected volatility in RT operations. Under such

conditions, a financial penalty may ensue and, possibly, actual
physical risk may occur. Empirical evidence from virtual trader
activity suggests that on selected periods of the year (e.g., high
temperature days) high-volatility time spans are predicted in
advance [39]. We remind the reader that excess RT load (i.e.,
RT load in excess over its DA counterpart) is paid for at the
RT LMP. Formally, at each bus2:

RT consumer exposure at bus i =

(RT LMP at i) ×max{ (RT load at i - DA load at i), 0 },
(1)

where we are considering a particular time period of the day.
At the same time, DA markets imply a different financial

obligation, namely
DA payment at bus i =

(DA LMP at i) × (DA load at i). (2)
When RT LMPs are (much) higher than DA LMPs, and
likewise with loads, the RT consumer exposure is very high –
an undesirable outcome.

To handle both financial and physical risk, while main-
taining its overall structure, we modify the objective of the
SCUC mixed-integer program (MIP) by adding a term that
approximates RT consumer exposure due to volatility – in
renewable output and loads – during the time period of interest,
plus appropriate constraints.

The algorithmic implementation of this updated SCUC can
be viewed as a two-stage model. In the first stage a unit com-
mitment, DA dispatch and prices are obtained. In the second
stage, the first-stage solution to an appropriately instrumented
adversary. The goal of the adversary is to compute a realistic
scenario for the critical time period that stresses the given
SCUC solution. This stress computation relies on data-driven
models of volatility in loads and wind power. The information
gleaned from this process is incorporated, in appropriate form,
into our revised SCUC computation.

This cycle is repeated until a desirable convergence is
attained. Figure 3 illustrates the relationship between the
two stages of the model. The model in Figure 3 has two
critical features. First, it does not depart from the standard
SCUC paradigm in that it produces precisely the same output
as SCUC does, namely, a UC decision and DA dispatch.

2We consider payments settled on a nodal/bus basis. This could be extended
to zonal/area payments, which are practiced in some power markets.
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The UC decision can thus be used to obtain DA locational
marginal prices [40] via dual variables, as done in practice
via the so-called “pricing run”. Second, our algorithm does
not simply amount to a robust optimization approach in the
sense that the objective function is a blend of DA costs and RT
robustified costs, with the importance assigned to the second
term controlled by a multiplier that reflects risk tolerance.

Day-Ahead
SCUC Problem

Real-Time Adversarial
DCOPF Problem

Unit commitment decisions

Adversarial scenario
Fig. 3: Two-stage risk-aware optimization model

A. Model for Risk-Aware SCUC Problem
The proposed SCUC assumes the viewpoint of the system
operator. In our model for the DA market, we minimize the
total cost of electricity production and generator start-up and
shutdown, plus an estimate of the RT consumer exposure
attained in the RT market, which are due to incorrect wind
and/or net-load forecasts during a time period of interest. We
further stress that we specifically focus on errors in forecast
that are due to volatility (We note that forecast errors from
behind-the-meter solar generation are contained in the net-
load forecast errors. Through a straightforward extension, our
model can also explicitly consider large-scale solar generation
but we omit this option for ease of exposition). The RT
consumer exposure is the payment incurred by the consumers
in the RT market when load is underestimated in the DA
market. Note that the RT consumer exposure is, at the point
of time when SCUC is run, an uncertain quantity.

In the formulation below, an appropriately robust estimate
of the RT consumer exposure is indicated by the quantity V̂ ,
which appears in the objective function (3) and in constraint
(11e). Note that in the objective function V̂ is scaled by a
certain weight ρ > 0 and the model becomes more risk-aware
as ρ increases. Hence, we model the total cost as follows:∑

t∈T DA

(∑
g∈G

(
hgt + CStart

g vgt + CDown
g wgt

)
+
∑
i∈N

CVOLLpUnmet
it

)
+ ρV̂ , (3)

where the first four terms denote the production cost hgt,
startup cost CStart

g , shutdown cost CDown
g , and DA value of

lost load (VOLL) CVOLL. In addition, T DA is the set of time
periods (hours) in the DA market, G is the set of generators, N
is the set of buses. Binary variables vgt and wgt denote startup
and shutdown decisions, and pUnmet

it is the unsatisfied load.
Note that hgt is a piecewise linear function of power output
pgt, and can be modelled with constraints in (4). Each linear
piece (o ∈ O) in the piecewise linear function is represented
by one constraint (∀t ∈ T DA):

hgt ≥ C1
ogpgt + C0

ogygt ∀o ∈ O, g ∈ GTher, (4)
where binary variable ygt denotes the commitment decision,
C1

og and C0
og are respectively the slope and intercept for the

cost segment o in the piecewise linear function, and GTher is
the set of thermal generators.

In addition, we have the following constraints in the DA
problem:

(1) Load Constraints (∀t ∈ T DA): For each hour the DA
expected load D̄it at each node is either satisfied by production
at the node and power transmitted to the node, or by shedding
load penalized by the VOLL. The set Gi includes both thermal
and renewable (wind) generators at bus i, L is the set of
transmission lines, and fijt is the power flow.∑

g∈Gi

pgt + pUnmet
it +

∑
(j,i)∈L

fjit −
∑

(i,j)∈L

fijt = D̄it

∀i ∈ N (5a)

pUnmet
it ≥ 0 ∀i ∈ N . (5b)

(2) Linearized (DC) Power Flow Constraints (∀t ∈ T DA):
Constraint (6a) defines the linearized (DC) power flow in terms
of the voltage angle difference θit−θji at time t between buses
i and j and line susceptance Bij . Constraints (6b) and (6c)
bound flows.

fijt = Bij (θit − θjt) ∀(i, j) ∈ L (6a)

fijt ≤ PTrans
ij ∀(i, j) ∈ L (6b)

fijt ≥ −PTrans
ij ∀(i, j) ∈ L. (6c)

(3) Startup/Shutdown Decisions: The following constraints
link on/off statuses with startup and shutdown decisions.
vgt − wgt = ygt − yg,t−1 ∀g ∈ GTher, t ∈ T DA \ {1} (7a)

vgt, wgt, ygt ∈ {0, 1} ∀g ∈ GTher, t ∈ T DA. (7b)
(4) Production Constraints (∀t ∈ T DA): Constraints (8a)

and (8b) set bounds for power outputs of thermal generator
g. Constraints (8c) set the outputs of wind generator g at no
more than P̄max

gt , where pCurtail
gt is the curtailed output, and

GWind is the set of wind generators.
pgt ≤ Pmax

g ygt ∀g ∈ GTher (8a)

pgt ≥ Pmin
g ygt ∀g ∈ GTher (8b)

pgt + pCurtail
gt = P̄max

gt ∀g ∈ GWind (8c)

pgt ≥ 0 ∀g ∈ G (8d)

pCurtail
gt ≥ 0 ∀g ∈ GWind. (8e)

(5) Ramping Constraints (∀t ∈ T DA \ {1}): The following
constraints enforce generator multi-period ramping limit Mg .
pgt − pg,t−1 ≤ Mgyg,t−1 + Pmin

g vgt ∀g ∈ GTher (9a)

pg,t−1 − pgt ≤ Mgygt + Pmin
g wgt ∀g ∈ GTher (9b)

(6) Risk-Aware RT Consumer Exposure Model: Lastly, we
address the RT consumer exposure in RT. As described above
we focus, in particular, on a critical and impactful set of
time periods T RT which is expected to have high load and
wind generation volatility. We assume that such time periods
can be forecasted with significant certainty at the time of
the SCUC computation – as stated above, empirical evidence
suggests that this capability already exists. Our model provides
a robust estimate for the RT consumer exposure during these
critical time periods, taking into account the volatility of load
and wind generation. By focusing on these time periods, the
model protects the consumers from extremely high excess RT
payments while maintaining tractability.

More specifically, if the load at some bus i and time t
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is higher in RT than anticipated in the first-stage, then the
consumer needs to procure the difference at its RT LMP.
However, there is no RT penalty for overestimating load in
the first stage. More precisely, suppose that ωωω indicates a
realization of all quantities that are uncertain at the DA phase,
and known in RT, including in particular the vector dRTit of
RT loads. Let λit(y,ωωω) be the corresponding RT LMP, where
the notation stresses the dependence on the unit-commitment
vector y and the uncertain quantities ωωω. Then the total RT
consumer exposure at all buses, averaged over the number of
time periods per hour in the critical time period T RT, given
realization ωωω, is given by the following expression:

V = V (y,ωωω) =
1

N tp

∑
t∈T RT

∑
i∈N

λit(y,ωωω)(d
RT
it − D̄it)

+.

(10)
Note that unlike T DA, the time intervals in T RT could have a
finer granularity than 1 hour, as in practice RT models may be
solved every 5 or 15 minutes. Let T RT|Hour be the set of hours
in T RT. Then N tp = |T RT|

|T RT|Hour| is the number of time periods
per hour. For example, if the RT time interval is 5 minutes,
then there are 12 time intervals per hour. We point out that (10)
is nonconvex because of the bilinear term λit(y,ωωω)d

RT
it and

the expression (dRTit −D̄it)
+. We also note that (10) considers

the total RT consumer exposure. Additional regularization
terms or fairness considerations [41] are possible but beyond
the scope of this paper.

Several quantities in this expression are unknown at the
time of the DA computation, i.e., for a given y; therefore,
V is a random variable. Thus, a major component of our
algorithm is the estimation of V̂ , the risk term in (3), as a
robust estimate for V , through appropriate constraints to be
added, incrementally, to the formulation of our risk-averse
SCUC problem. Section II-B describes the robust modeling
of V and algorithmic details are deferred to Section III.

(7) Full Formulation: We now present the risk-aware SCUC
optimization problem in full.

min
∑

t∈T DA

(∑
g∈G

(
hgt + CStart

g vgt + CDown
g wgt

)
+
∑
i∈N

CVOLLpUnmet
it

)
+ ρV̂ (y) (11a)

s.t. (4), (5), (6), (8) ∀t ∈ T DA (11b)
(7) (11c)

(9) ∀t ∈ T DA \ {1} (11d)

V̂ (y) = max
ωωω∈Ω

1

N tp

∑
t∈T RT

∑
i∈N

λit(y,ωωω)(d
RT
it − D̄it)

+

(11e)
where Ω is an uncertainty set that includes reasonable, but
stress-revealing RT parameters – in Section II-C we will
indicate how this set Ω is constructed in a data-driven manner.
Constraints (11b) - (11d) include all constraints in a standard
SCUC problem. Constraint (11e) provides a robust estimate for
the RT consumer exposure. Note that this constraint models
the maximum of the RT consumer exposure expression (10)
over the uncertainty set, reflecting the worst-case cost of
volatility. To handle this nonconvex constraint, we describe a

decomposition algorithm that replaces (11e) with linear cutting
planes in Section III-A.
B. Adversarial Real-time Operations
We now describe our methodology for attaining a measure of
robustness in our estimate V̂ = V̂ (y), which is the (uncertain)
RT consumer exposure V given a UC decision y. To that end,
we next describe our formulation for the uncertain RT DC op-
timal power flow (DCOPF) problem. We consider uncertainty
in both RT load dRTit and RT wind generation pmax,RT

gt , and let
dRT and pmax,RT be their corresponding vectors. We assume
that the pair (dRT,pmax,RT) belongs to the uncertainty set Ω,
and thus ωωω = (dRT,pmax,RT). Given a set of commitment
decisions, we are interested in the pair (dRT,pmax,RT) ∈ Ω
that attains the peak RT consumer exposure. To construct
such a pair, we denote the vector of the DCOPF problem
decision variables as xRT, the vector of all fixed commitment
decisions (selected DA) as y∗, the DCOPF feasible region as
XRT(y∗,ωωω), which is parameterized by commitment decisions
and uncertain quantities, and the DCOPF problem itself as
DCOPF(y∗,ωωω), which is defined as follows:

min
xRT∈XRT(y∗,ωωω)

∑
t∈T RT

∑
g∈G

hgt +
∑
i∈N

CVOLL|RTpUnmet
it

 .

(12)
Note that we set the RT VOLL CVOLL|RT > CVOLL to
penalize unsatisfied RT load.

Next, the right-hand side (RHS) of the load constraint (5a)
is replaced with RT load dRTit :∑

g∈Gi

pgt + pUnmet
it +

∑
(j,i)∈L

fjit −
∑

(i,j)∈L

fijt = dRTit

∀i ∈ N . (13)
The dual of this constraint is the RT LMP λit.

In addition, we fix the commitment decisions in constraints
(4), (8a) and (8b), and replace the RHS of (8c) with RT wind
generation:

hgt ≥ C1
ogpgt + C0

ogy
∗
gt ∀o ∈ O, g ∈ GTher (14a)

pgt ≤ Pmax
g y∗gt ∀g ∈ GTher (14b)

pgt ≥ Pmin
g y∗gt ∀g ∈ GTher (14c)

pgt + pCurtail
gt = pmax,RT

gt ∀g ∈ GWind. (14d)
To reformulate (9), note that in real time the ramping rate

Mg is prorated to MRT
g based on the time intervals in T RT.

Denoting the RT limit on ramping as M̂g . Then M̂g = MRT
g

if y∗g,t−1 = y∗g,t = 1, i.e., when the generator is on for both the
previous and current time intervals; Otherwise, M̂g = Pmin

g .
Constraints (9) are reformulated as:

pgt − pg,t−1 ≤ M̂g ∀g ∈ GTher (15a)

pg,t−1 − pgt ≤ M̂g ∀g ∈ GTher (15b)
Hence, the feasible region of the DCOPF problem, given

the UC decision y∗ and realization ωωω, is defined as follows:

XRT(y∗,ωωω) :=

{
xRT

∣∣∣∣∣ (5b), (6), (8d), (8e)
(13), (14), (15)

,∀t ∈ T RT

}
.

Above, to simplify notation, we re-use notation for DA
decision variables (e.g. hgt and pgt) in the RT problem, in
which case they represent RT decisions. In what follows, the
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dual of the DCOPF problem given y∗ and ωωω will be denoted
by DCOPF-D(y∗,ωωω).

We now describe how to implement constraint (11e). First,
the RT LMP λit (again given y∗ and ωωω) is an optimal solution
to DCOPF-D(y∗,ωωω). Thus, (11e) amounts to finding uncertain
quantities and resulting RT LMPs that maximize the RT
consumer exposure in the critical time period T RT, as given
in (10). We define the adversarial DCOPF problem as:
DCOPF-A(y∗) :=

max
ωωω∈Ω

1

N tp

∑
t∈T RT

∑
i∈N

λit(y
∗,ωωω)(dRTit − D̄it)

+ (16a)

s.t. λit(y
∗,ωωω) is an optimal solution of DCOPF-D(y∗,ωωω).

(16b)
One way to write constraint (16b) explicitly, is to write a

primal-dual formulation for DCOPF(y∗,ωωω) and utilize strong
duality, as in [42]. However, since (16a) and the resulting
strong duality constraint are nonlinear, DCOPF-A(y∗) may be
difficult to solve. As an alternative, in Section III-C we present
a grid search method to approximately solve DCOPF-A(y∗)
and find adversarial stressors.
C. Data-Driven Uncertainty Set
Our choice of the uncertainty set Ω is driven by the the
goal to adapt the SCUC computation to better deal with
volatility. Toward this end, our uncertainty set Ω is constructed
through an approximate, PCA (principal component analysis)-
driven representation of the covariance of loads and renewable
outputs. Both load and renewable exhibit locational correlation
and we find that a few leading modes of the covariance matrix
are sufficient to explain total variability [43]. The particular
methodology we follow is motivated by the “factor stressing”
technique employed in the financial services industry [29].

More specifically, for each time t ∈ T RT we obtain data
for recent past (e.g., hourly observations of one month of
data leading up to the modeled day), and use such data to
construct a covariance matrix. The number of rows of the
load covariance matrix equals |N | and the number of rows
of the wind covariance matrix equals the number of wind
farms. We conduct a spectral decomposition on a covariance
matrix to obtain its eigenvalues and standardized eigenvectors.
The eigenvectors corresponding to the K largest eigenvalues
(sorted from large to small), i.e., the K leading modes, are
used to construct our set Ω.

Let us consider loads (a similar process is used for wind).
Let k ∈ {1, . . . ,K} be the index for the covariance matrix
modes (in leading order, i.e., the first mode corresponds to the
largest eigenvalue), and Qd

kt := (Qd
k1t, Q

d
k2t, . . . , Q

d
k|N |t)

⊤ be
the kth eigenvector for the covariance matrix at time t. For
each k ≤ K we will adversarially compute a quantity αd

kt ≥ 0,
which is the “stressor” that magnifies the load variability along
the kth leading mode at time t. Similarly, Qw

kt and αw
kt are

the eigenvector and stressor of wind power.
Using this notation we can describe the formal set Ω from

which we select our load dRTit and wind power pmax,RT
gt

scenarios. It is given by the pairs (dRTit , pmax,RT
gt ) satisfying:

dRTit = D̄it +

K∑
k=1

Qd
kitα

d
kt ∀i ∈ N , t ∈ T RT (17a)

pmax,RT
gt = P̄max

gt +

K∑
k=1

Qw
kgtα

w
kt

∀g ∈ GWind, t ∈ T RT (17b)

|
K∑

k=1

αind
kt |≤ Σind ∀t ∈ T RT, ind ∈ {d,w} (17c)

|αind
kt |≤ Rind ∀k = 1, . . . ,K; t ∈ T RT, ind ∈ {d,w} (17d)

dRTit ≥ 0 ∀i ∈ N , t ∈ T RT (17e)

pmax,RT
gt ≥ 0 ∀g ∈ GWind, t ∈ T RT. (17f)

Constraints (17a) represent the RT load scenarios as the sum
of the forecast and stressed leading modes. Similar expressions
are derived for wind power in constraints (17b). Constraints
(17c) and (17d) bound the stressors and control the level of
conservatism, where Rind is the bound for stressors. Note that
Σind denotes the bound for the absolute value of summation of
stressors at each time period. In practice, it can be determined
by historical observations. Constraints (17e) and (17f) ensure
load and wind power are non-negative.

In sum, to construct a vector of load scenarios dRT
t at

t ∈ T , we first compute a covariance matrix based on
historical load data. We obtain K eigenvectors (Qd

kt, k =
1,...,K) corresponding to the K largest eigenvalues of this
covariance matrix as the leading modes. The vector dRT

t is
the sum of load forecast and stressed leading modes, i.e.,
dRT
t = D̄t+

∑K
k=1 αd

kt Q
d
kt, where the stressors are variables

controlled by (17c) and (17d). The wind production scenarios
are similarly constructed. The uncertainty set is thus given by
Ω = {(dRT,pmax,RT)|(17)}. We note that our method can be
modified to use a single covariance matrix to generate sce-
narios for the entire vector of uncertain parameters (i.e., load
and wind). We opt to model load and wind independently, i.e.,
using two separate covariance matrices, to reflect the typically
insignificant correlation between load and wind forecast errors
and to better study their individual impact on the solution.

Our uncertainty set captures the locational correlation with-
out substantially increasing the number of variables. In com-
parison, the polyhedral uncertainty set in [21] independently
generates scenarios in each location, thus ignoring locational
correlation. The data-driven uncertainty set proposed in [25]
captures both spatial and temporal dependence of the renew-
able production by expressing it as a convex combination
of historical observations. To effectively represent extremely
adverse scenarios, this approach potentially needs to include a
large number of past observations, each requiring a new vari-
able. The ellipsoidal uncertainty set also captures covariance
information. It consists of second-order cone constraints and
can be defined via the lower triangular matrix of the Cholesky
decomposition for the inverse-covariance matrix [44], while
our uncertainty set has a simpler and more intuitive structure.
In [26], scenarios are generated from a data-driven uncertainty
set based on PCA, where stressors are modeled with kernel
density estimation (KDE). In contrast, we impose constant
bounds on the stressors, reducing the number of variables
and allowing a faster computation and the use of a grid
search heuristic to speed up the algorithm, as described in
Section III-C.
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III. SOLUTION APPROACH

Solving the risk-aware optimization model (11) directly (e.g.,
using off-the-shelf solvers) is difficult because the first-stage
problem contains both integer variables and bilinear terms
(in constraint (11e)). In Section III-A, we show how to
solve this two-stage problem (11) by relying on an iterative
decomposition algorithm that approximates constraint (11e)
with increasing accuracy. The procedure is guaranteed to
finitely terminate with an optimal solution to (11). Section
III-B introduces the cutting planes used in the procedure.
Section III-C describes an adversarial procedure that is used
to improve the accuracy of the approximate formulation. We
include additional implementation details in Section III-D.
A. Decomposition Algorithm
To solve (11), we rely on an iterative method which is similar
to the Benders’ decomposition scheme [33]. We will next
provide a simplified version of this method, and later we will
amend this outline in order to handle integer variables.

Under this simplified procedure, at any intermediate point
of the algorithm we will have a relaxation for (11) that we
term the “master problem” which is initially obtained from
(11) by removing (11e) and replacing it with V̂ ≥ 0. As the
procedure iterates, cuts are added to the master problem to
approximate (11e) with increasing accuracy.

Suppose that at some iteration the solution to the master
problem is given by vector y∗. This vector may not solve
problem (11) since it may not satisfy (11e). To check whether
this is the case, y∗ is input to a procedure given in Section
III-C. If this procedure verifies that y∗ is feasible for (11e),
then y∗ is optimal for (11). Otherwise, a cutting plane is
generated for strengthening the master problem relaxation.
Figure 4 provides an illustration of the procedure, which
is a decomposition algorithm. In this figure, PMaster is the
master problem and DCOPF-A(y∗) is the adversarial problem
given y∗. Additional algorithmic details such as grid search,
partially fixing y, and branch-and-cut will be introduced in
later sections.

More specifically, the initial master problem PMaster is:
PMaster := min (3)

s.t. (4), (5), (6), (8) ∀t ∈ T DA

(7), V̂ ≥ 0

(9) ∀t ∈ T DA \ {1}.
This master problem includes the integer unit-commitment
variables, which necessitates an appropriate adjustment to the
proposed methodology, as explained in Section III-D.

PMaster

(y partially fixed for
non-critical hours)

DCOPF-A(y∗)
(solved via
grid search)

y∗

Cutting planes
(added via branch-and-cut)

Fig. 4: The decomposition algorithm

B. Cutting Planes
The cutting planes we use include no-good [45], integer L-
shaped [35], and LBBD cuts [36]. Together these cuts yield a
lower bound for the worst-case RT consumer exposure V given
UC decision y. These cuts have the generic form V̂ (y) ≥
f(y), where f(y) is a linear function of the commitment
decisions y, and satisfies the following conditions:

• For all feasible UC decisions of y, f(y)
must be an underestimator for the worst-
case RT consumer exposure given y, i.e.,
maxωωω∈Ω

1
Ntp

∑
t∈T RT

∑
i∈N λit(y,ωωω)(d

RT
it − D̄it)

+.
Moreover, the inequality V̂ (y) ≥ f(y) should cut off
the current master problem solution.

• Let y∗ be the commitment decisions in the current master
problem solution. In a neighborhood of y∗, f(y) should,
in addition, be a close lower bound to the worst-case RT
consumer exposure given y. The strength of the cut rests
on how close this approximation is.

We first present a no-good cut which only provides a good
lower bound at the current solution y∗, then we develop integer
L-shaped cuts and LBBD cuts that aim to improve this lower
bound for solutions in a neighborhood of y∗. Throughout,
we assume that the worst-case RT consumer exposure V̂ ∗

given y∗ is attained by profile ω∗ (including loads dRT∗
it

as per DCOPF-A(y∗) in (16b)), i.e., that V̂ ∗ = V̂ ∗(y∗) :=
1

Ntp

∑
i∈N

∑
t∈T RT λit(y

∗,ωωω∗)(dRT∗
it − D̄it)

+.
1) No-good Cuts
Let y∗ be the commitment decisions in the current master
problem solution. Define I1t =

{
g
∣∣ y∗gt = 1,∀g ∈ GTher

}
and I0t =

{
g
∣∣ y∗gt = 0,∀g ∈ GTher

}
respectively as the set

of thermal generators that are on/off at time t. Let dRT∗
it

and λ∗
it be the optimal primal and dual solution values, in

DCOPF-A(y∗), for dRTit and λit, respectively. The no-good
cut is as follows:
V̂ (y) ≥

V̂ ∗(y∗)

1−
∑

t∈T RT|Hour

∑
g∈I1t

(1− ygt) +
∑
g∈I0t

ygt

 .

(18)
When ygt = y∗gt,∀g ∈ GTher, t ∈ T RT|Hour, the cut can be
simplified to V̂ (y) ≥ V̂ ∗(y∗), which provides the correct
value for V̂ (y). Otherwise, when at least one generator in
I1t is turned off or at least one generator in I0t is turned on
during T RT, the RHS of the cut becomes non-positive.

The no-good cut is not very strong as it only provides a
good underestimator at the current master solution. In fact, as
there are 2|G

Ther||T RT|Hour| possible values for the vector y, the
algorithm could run through O(2|G

Ther||T RT|Hour|) iterations to
find the optimal solution if only no-good cuts are used.
2) Integer L-Shaped Cuts
The integer L-shaped cut strengthens the no-good cut by im-
proving a lower bound at some feasible commitment solutions
in a neighborhood of y∗:
V̂ (y) ≥
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V̂ ∗(y∗) + a
∑

t∈T RT|Hour

∑
g∈I1t

ygt −
∑
g∈I0t

ygt − |I1t|

 ,

(19)
where a = max(V̂ ∗ − V̂1, (V̂

∗ − V̂0)/2), V̂1 equals the
minimum value of the RT consumer exposure when exactly
one generator changes its commitment decision (i.e., when∑

g∈I1t
ygt −

∑
g∈I0t

ygt = |I1t|−1, which we call the 1-
neighbors of y∗), and V̂0 is a lower bound on the RT consumer
exposure under a feasible commitment decision (e.g., trivially
V̂0 = 0 can be used).

To see that the cut is valid, notice that for the 1-neighbors
of y∗, the integer L-shaped cut provides a lower bound for
V̂ (y), namely V̂ (y) ≥ min(V̂1,

V̂ ∗+V̂0

2 ). This lower bound
is valid because min(V̂1,

V̂ ∗+V̂0

2 ) ≤ V̂1. And if there is more
than one generator that changes its commitment decision, then
the RHS of (19) is no more than V̂0, and thus is valid.

Note that to obtain V̂1, we could solve DCOPF-A(y∗) for
each y among the 1-neighbors of y∗, which requires solving
|T RT|Hour|(|GTher|−1) subproblems. In our experiments, we
observe that the integer L-shaped cuts indeed lead to faster
convergence than the no-good cuts. We point out that since
min(V̂1,

V̂ ∗+V̂0

2 ) ≥ 0, it is generally a better lower bound
than that provided by a no-good cut. However, the computa-
tional efforts to generate an L-shaped cut increases as more
subproblems are solved to get V̂1.
3) LBBD Cuts
Another way to strengthen the no-good cut is to use the
following LBBD cut:

V̂ (y) ≥
∑

t∈T RT|Hour

V̂ ∗
t (y

∗)

1−
∑
g∈I0t

ygt

 , (20)

where V̂ ∗
t (y

∗) := 1
Ntp

∑
τ∈T RT(t)

∑
i∈N λiτ (y

∗,ωωω∗)(dRT∗
iτ −

D̄iτ )
+, with T RT(t) being the set of RT time periods in

hour t. Note that V̂ ∗(y∗) =
∑

t∈T RT|Hour V̂ ∗
t (y

∗). When any
generator in I0t is turned on, the term corresponding to hour
t in the RHS becomes non-positive. On the other hand, if
all generators in I0t stay off, then this cut enforces that the
RT consumer exposure is at least V̂ ∗

t (y
∗). Intuitively, if all

generators in I0t and some generators in I1t are turned off,
the RT consumer exposure is not likely to drop. In Proposition
III.1, we prove that this lower bound is valid when the network
is not congested and the ramping constraints are not binding
in the RT market. As we will also explain, the cut is still good
for our purpose even when those restrictions are relaxed.

Proposition III.1. When there is no congestion in the network
and the ramping constraints are not binding in the RT market,
the LBBD cut (20) provides a correct lower bound for V̂ (y).
Also, it provides the exact value of V̂ (y) at the current solution
y∗.

Proof. Since there is no congestion, the LMPs at all nodes are
equal, which we denote as λt.

Consider the fixed wind and load profile ωωω∗ that defines
the worst-case for y∗ and fixed hour t ∈ T RT|Hour. Let
y′ be a feasible dispatch solution from the master problem,
and I ′

1t and I ′
0t respectively be the corresponding set of

generators that are on and off at t. We will show that the
RT consumer exposure term arising from hour t, namely
V̂ ∗
t (y

∗)
(
1−

∑
g∈I0t

ygt

)
, is a lower bound for the RT con-

sumer exposure at t, if we switch from y∗ to y′. We consider
the following two cases:

Case 1: If I ′
0t ⊂ I0t for some t ∈ T RT|Hour, then∑

g∈I0t
y′gt ≥ 1, which indicates that the RHS of (20)

corresponding to t is no more than 0.
Case 2: If all generators that were off during t under y∗

remain off under y′, then I0t ⊆ I ′
0t and the RHS of (20)

corresponding to t remains unchanged. Thus, we need to show
that this RHS value is a valid lower bound.

This is the same as showing that the LMP at every time
τ ∈ T RT(t) does not decrease when we switch from y∗ to
y′. To see this, note that any generator g that is on at time τ
under y∗ must be of one of three types:
(a) It defines the LMP, i.e., hg,τ = λτ , or
(b) It satisfies hg,τ < λτ , in which case the generator is

operating at its maximum output, or
(c) The generator satisfies hg,τ > λτ , in which case the

generator is operating at its minimum output level.
Moreover, the total load is equal to the maximum output of
the generators in type (b), plus the minimum output from
generators of type (c), plus the output of the generators of type
(a). A similar characterization can be obtained for y′. From
this characterization it is clear that if we turn off a generator
the LMP cannot decrease, since turning a generator off reduces
total available capacity, and thus the new LMP will be defined
either by a generator of type (a) under y∗ (in which case the
LMP does not change) or by a generator of type (c) under y∗,
in which case the LMP strictly increases. The new LMP could
also equal CVOLL, which is the highest value it can reach.

Finally, if y′ = y∗, then the RHS of (20) provides the exact
value for the worst-case RT consumer exposure.

Note that when there is congestion in the network, the result
in Case 2 of the proof may not hold because prices could drop
at certain locations even if only a strict subset of generators
are turned on. Consequently, the LBBD cut may overestimate
the RT consumer exposure. Also, if some of the ramping
constraints are binding, then the production variables at t− 1
and t are coupled, which complicates the proof of Case 2, as
the selection of marginal generator could be affected by the
production levels of previous time periods (an example for this
is provided in Appendix A).

Although we are not able to provide a formal proof for
the quality of the cut in the general case, in our experiments
we observe that using LBBD cuts with the decomposition
algorithm returns correct solutions for the majority of in-
stances. Note that the NYISO system in our case study does
not have a lot of congestion. Also, T RT in Section IV-B
of the case study contains a single time period and thus
the RT problem does not have ramping constraints. Even if
the cut leads to an overestimation (which is usually very
small) of the RT consumer exposure, it may only lead to less
adversarial stressors, which may still provide robust enough
SCUC solutions.
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The LBBD cut implies the no-good cut (18), and thus is
strictly stronger than the no-good cut. Also, the LBBD cuts
lead to much faster convergence compared with no-good cuts
and do not require extra computational efforts to generate like
for the integer L-shaped cuts.
C. Solving DCOPF-A(y∗)
Instead of directly solving the nonconvex problem
DCOPF-A(y∗), we employ grid search to solve it
approximately. In grid search, we iterate through a set
of fixed stressors (i.e, “grids”) (α̃d

kt, α̃
w
kt) that satisfy

constraints (17), and find the stressors that lead to the highest
RT consumer exposure.

More specifically, for each fixed pair of stressors (α̃d
kt, α̃

w
kt),

we obtain the corresponding scenario ω̃ωω using (17a) and (17b),
and solve DCOPF(y∗, ω̃ωω). We then calculate the corresponding
RT consumer exposure. Among all RT consumer exposure
calculated in this way, we select the highest one as an estimate
to the optimal value of DCOPF-A(y∗), and the corresponding
DCOPF(y∗, ω̃ωω) problem provides the optimal solutions for
adverse load and wind generation scenarios, and the LMPs.

The grid search method provides an approximation to the
true objective of DCOPF-A(y∗). It is difficult to directly solve
the highly nonlinear and nonconvex DCOPF-A(y∗) problem,
even with state-of-the-art nonlinear optimization solvers such
as Gurobi and Knitro. We also observe that the commonly-
used McCormick relaxation is not very tight for nonlinear
terms in DCOPF-A(y∗). On the other hand, with a carefully-
selected set of grids in the grid search, we can find adverse
scenarios that lead to cost-saving UC decisions. We explain
how to select the set of grids in Section IV-A. Note that
thanks to the structure of the PCA-based uncertainty set, where
uncertain values are correlated, we only need to generate grids
for the stressors, and not for the original uncertain values. This
greatly reduces the potential dimension of grids.
D. Implementation Details
The decomposition algorithm in Section III-A requires solving
a MIP master problem in each iteration, which is time con-
suming. Therefore, we instead add the cuts via branch-and-cut
[34], where we solve the master problem once and the violated
cuts are added in the integral nodes of the branch-and-bound
tree. More specifically, when using an MIP solver to solve
the master problem via branch-and-bound, one could check
whether a node in the branch-and-bound tree has a feasible
(thus integral) solution for the master problem. If so, then
we can solve DCOPF-A(y∗) with y∗ fixed at this integral
solution, and compare its optimal objective value with the
estimated RT consumer exposure from the master problem
solution at the current node. If the estimated value is not
correct, then we add cuts to this node via the lazy callback
function of the MIP solver. We repeat this process, until the
stopping criteria for branch-and-bound are met. We observe
that branch-and-cut greatly improves the performance of our
algorithm.

Among the three types of cuts derived in Section III-B,
we can use any one of them or a combination of them in our
algorithm. Note that integer L-shaped cuts and LBBD cuts are
both stronger than no-good cuts, so there is no need to use

no-good cuts if either of the two other cuts is used. Between
integer L-shaped cuts and LBBD cuts, one does not dominate
the other in terms of strength, so it could be helpful to include
both cuts in the algorithm. Since it is time consuming to
generate integer L-shaped cuts for large-scale problems, we
use only LBBD cuts in our case study.

Compared with commitment decisions from the determinis-
tic SCUC problem, the risk-aware solution usually keeps more
capacities committed around critical hours that are represented
by the RT market problem. Therefore, we can speed up the
algorithm by only allowing commitment decisions around crit-
ical hours to deviate from its deterministic counterpart, which
greatly reduces the search space of binary on/off decisions.
This is a heuristic and may lead to sub-optimal solutions.
Nonetheless, we observe that our method performs well with
this heuristic. Also, it is flexible and in practice we can allow
more hours to deviate from deterministic solutions if needed.

IV. NYISO CASE STUDY

A. Data Resource and Simulation Environment
For the numerical experiments we use an NYISO data set
including 1819 buses, 2207 lines, 362 generators and 38
wind farms [43]. Note that the 38 wind farms include 33
onshore wind farms that are already built, and 5 offshore farms
under construction. The wind power data are calculated from
the forecast and RT wind speed, obtained from the NREL
WIND Toolkit [46, 47] which provides comprehensive data
and forecast information with sufficient spatial coverage and
resolution. The load data are from the NYISO data platform
[48]. Due to data availability, we use the load data from
August 2018. We use RT wind power and load data of the
whole month to estimate the covariance matrix as the sample
covariance matrix, calculate leading modes, and pick a windy
day in the month to solve the SCUC problem. We choose
the number of leading modes K = 3 because from empirical
experience the first three modes are enough to explain most
variability (more precisely, the three leading eigenvalues of
the covariance matrix account for almost all of its Frobenius
norm). The DA and RT VOLL are respectively set at 10,000
$/MWh and 20,000 $/MWh, to account for the fact that not
meeting demand in the DA stage will not necessarily lead to
load-shedding in real time. The set T RT includes the hour
6-7 pm, which is a time period with peak load, and we
allow commitment decisions to deviate from its deterministic
counterpart between 5 pm and 8 pm.

We generate the grids in grid search as follows. First, we
fix Σind = 3Rind and relax constraint (17c). We then allow
the stressors αind

kt to be either Rind or −Rind so for each time
period t, there are a total of 8 (i.e., 23) possible grids. For wind
generation pmax,RT

gt , we include all 8 grids, while for load dRTit ,
we include 2 grids, [Rd,−Rd, Rd] and [Rd, Rd,−Rd], which
are usually the most adverse stressors. Note that when Rind

is large, it is possible that dRTit or pmax,RT
gt becomes negative

at one of the grids. If this happens, we adjust the value of
the third stressor αind

3t to the largest (if αind
3t = Rind) or the

smallest (if αind
3t = −Rind) value that ensures nonnegativity

of dRTit /pmax,RT
gt . Our grid generation strategy is based on the

optimal solution of small instances, and it generalizes well to
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larger instances.
We run all experiments on a Linux workstation with Intel

Xeon processor and 250 GB memory. The programming
language is Python v3.8. Optimization problems are solved
with Gurobi 10.0.1 [49]. For the master problem, we set the
MIP gap to 10−3, and the time limit to 24 hours. All instances
are solved to within 0.5% optimality gap upon termination.
B. Performance of Risk-Aware Model
We first study the performance of the risk-aware SCUC assum-
ing that the RT realization is equal to the worst-case outcome.
Table I shows the comparison between results from risk-aware
and deterministic SCUC problems with different bounds for
stressors. Rd takes the values 0.1 and 0.2, and Rw varies from
0.2 to 1.0 with stepsize 0.2. The weight for RT consumer
exposure ρ = 1. Column “Save” shows the savings of the
risk-aware SCUC compared with the deterministic SCUC in
total costs of DA cost and RT consumer exposure; “Deter.
cost” reports the total costs of the deterministic SCUC; “Cost
red.” equals “Save” divided by “Deter. cost”; “DA cost diff”
is the extra DA cost for carrying out the risk-aware dispatch
decisions; “Consr. exp. diff.” equals the RT consumer exposure
in the risk-aware SCUC minus its deterministic counterpart.
In addition, Table II lists the change in total load and wind
generation under the selected adverse scenarios. The change
in load is calculated as (Total load under adverse scenario
- Total expected load)/(Total expected load). The change in
wind generation is compared with total expected load, and is
calculated as (Total wind generation under adverse scenario
- Total expected wind generation)/(Total expected load). Note
that for some instances (distinguished by ∗ in the tables) we
add 3 cuts at the root node of the branch-and-cut algorithm to
bring the optimality gap below 0.5%. In Table II we also report
the optimality gap at the 24-hour time limit 3and the number of
cuts generated. Instances with greater load variations tend to
have larger optimality gaps, while the variation in the number
of cuts is relatively small.

TABLE I: COMPARISON OF RISK-AWARE AND DETERMINISTIC
SCUC PROBLEMS FOR ρ = 1

Rd Rw Save Deter. Cost DA cost Consr. exp.
(k$) cost (M$) red. (%) diff. ($) diff. (k$)

0.1 0.2 0.00 5.37 0.00 0.00 0.00
0.1 0.4 0.12 5.37 0.00 116.16 -0.23
0.1 0.6 0.00 5.37 0.00 0.00 0.00
0.1 0.8 42.29 5.41 0.78 116.16 -42.41
0.1 1.0 42.28 5.41 0.78 123.50 -42.41
0.2 0.2 114.71 5.50 2.09 116.16 -114.83

*0.2 0.4 114.14 5.50 2.08 688.03 -114.83
0.2 0.6 115.74 5.50 2.11 1446.22 -117.18
0.2 0.8 108.58 5.50 1.98 8130.20 -116.71

*0.2 1.0 115.64 5.50 2.10 1072.06 -116.71
* Instance solved with 3 root cuts.

The risk-aware SCUC reduces total costs for instances
with higher variations. When the variation in load and wind
generation increases, there tend to be more savings. The
change in Rd has a larger impact on cost saving and the RT
consumer exposure compared with the change in Rw. This

3We also experimented with a 6-hour time limit, where the optimality gaps
for most instances are also below 0.5%. The optimality gaps become larger
(around 1%) for the last 3 instances, when both Rd and Rw are large.

TABLE II: CHANGE IN LOAD AND WIND GENERATION (COM-
PARED WITH TOTAL EXPECTED LOAD) UNDER ADVERSE SCE-
NARIO, OPTIMALITY GAP, AND NUMBER OF CUTS WITH RISK-
AWARE SCUC PROBLEM FOR ρ = 1

Rd Rw Load Wind Opt. # Cuts
diff (%) diff (%) gap (%)

0.1 0.2 1.18 -0.37 0.15 41417
0.1 0.4 1.18 -0.74 0.15 41875
0.1 0.6 1.18 -1.11 0.16 41509
0.1 0.8 1.18 -1.44 0.16 41884
0.1 1.0 1.18 -1.97 0.16 41315
0.2 0.2 2.36 -0.37 0.32 41348

*0.2 0.4 2.36 -0.74 0.33 38988
0.2 0.6 2.36 -1.41 0.33 41162
0.2 0.8 2.36 -1.75 0.47 41238

*0.2 1.0 2.36 -1.97 0.34 38876
* Instance solved with 3 root cuts.

is probably because compared with the impact of Rw, an
increase in Rd leads to a higher change in load, as shown in
Table II. Also, note that the cost saving does not necessarily
increase monotonically with Rw, as the total costs of both
SCUC models increase with more volatility.

The risk-aware SCUC has a slightly higher DA cost due
to the dispatch of additional generation capacity. This is a
relatively small addition compared with the cost saving by
implementing the risk-aware commitment decisions.

Additionally, we compare the risk-aware SCUC with a
two-stage stochastic programming SCUC model (“stochastic
SCUC” for short), as shown in Table III. Details of the
stochastic SCUC implementation are included in Section B of
the Appendix. The column “Opt. gap” shows the optimality
gap of the stochastic SCUC upon termination; “Save”, “Cost
red.”, and “Consr. exp. diff.” are similarly defined as in Table
I, except that the deterministic SCUC is replaced by the
stochastic SCUC; “DA cost diff” equals the DA cost of the
risk-aware SCUC minus the DA cost of the stochastic SCUC.

To solve the stochastic SCUC faster and with smaller
optimality gaps, we first run it for 24 hours, and then use the
obtained solution as a warm start. Despite this approach, many
instances still exhibit large optimality gaps. In comparison, all
instances of our model are solved without requiring a warm-
start solution.

As compared to our approach, the stochastic SCUC results
in higher values for both the DA cost and consumer exposure.
The increased DA cost is because the stochastic SCUC al-
locating more generation capacity, to mitigate expected costs
due to uncertainty. However, since the stochastic SCUC does
not aim to reduce the consumer exposure, and is designed to
hedge against average rather than adverse scenarios, consumer
exposure remains high.

We now discuss the implication of our method on pricing
and market design. Our model aims to obtain a DA schedule
that is risk-aware, and we leave the majority of the DA market
structure untouched. After getting the schedule, the LMPs
can be calculated in the pricing run of the DA market. The
generators are paid the LMPs and an uplift payment if needed,
and they would have to operate following the outcome of the
SCUC, just as in the current practice.

Figure 5 shows the marginal prices in DA and RT markets
during the critical hour with Rd = 0.2, Rw = 1.0. Each dot



SUBMITTED TO IEEE TRANSACTIONS ON ENERGY MARKETS, POLICY AND REGULATION 11

TABLE III: COMPARISON OF RISK-AWARE AND STOCHASTIC
SCUC PROBLEMS FOR ρ = 1

Rd Rw Opt. Save Cost DA cost Consr. exp.
gap (%) (k$) red. (%) diff. (k$) diff. (k$)

0.1 0.2 3.69 243.93 4.34 -185.95 -57.97
0.1 0.4 2.22 158.57 2.87 -114.88 -43.69
0.1 0.6 3.30 234.16 4.18 -176.80 -57.35
0.1 0.8 2.55 190.63 3.43 -133.17 -57.47
0.1 1.0 2.32 178.97 3.22 -120.88 -58.09
0.2 0.2 0.55 136.20 2.47 -20.62 -115.57

*0.2 0.4 1.00 151.53 2.74 -36.65 -115.57
0.2 0.6 3.29 289.53 5.11 -173.80 -115.73
0.2 0.8 0.40 121.72 2.21 -5.53 -116.19

*0.2 1.0 0.72 146.50 2.65 -31.19 -116.38
* Instance solved with 3 root cuts.

in the plot represents the price at a bus. Note that in our
experiment the DA marginal prices are the same for the risk-
aware and deterministic problems, as in DA the risk-aware
problem produces electricity with a similar set of generators as
its deterministic counterpart. The DA prices of the stochastic
SCUC are also similar to those of the other problems. For
RT, risk-aware problem produces prices that are close to DA,
while the prices with the deterministic and stochastic models
are both significantly higher and more volatile.

DA dt. DA st. DA ra. RT dt. RT st. RT ra.
0

30
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210
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Fig. 5: DA and RT prices with the deterministic, stochastic
and the risk-aware problems (with Rd = 0.2, Rw = 1.0). The
red line represents the median. In the labels of the horizontal
axis, “dt.”, “st.” and “ra.” are respectively for deterministic,
stochastic and risk-aware.

We also observe much higher RT consumer exposure and
RT supplier surplus under the deterministic and stochastic
models. For the deterministic model, the values are respec-
tively $134.50K and $117.77K. For the stochastic model,
the values are $134.16K and $241.03K. In comparison, the
values for the risk-aware problem are respectively $17.78K
and $1.36K.

To demonstrate how ρ affects conservatism, Table IV shows
the comparison of the two SCUC problems when ρ = 0.1.
The risk-aware SCUC provides very similar dispatch decisions
as the deterministic SCUC when the variations are low. This
is because at those volatility levels it is more expensive to
mitigate the risk by altering the commitment decisions, and it
is not economic to do so given the low weight assigned to RT
consumer exposure. This effect of ρ is similar to the effect of
the penalty term weight in portfolio optimization.

Finally, note that the risk-aware model becomes more dif-
ficult to solve with an increase in the values of Rd, Rw, and
ρ. Therefore, to achieve a model that balances computational
efficiency and effectiveness, a practitioner needs to make
thoughtful parameter selections.

TABLE IV: COMPARISON OF RISK-AWARE AND DETERMINISTIC
SCUC PROBLEMS FOR ρ = 0.1

Rd Rw Save Deter. Cost DA cost Consr. exp.
(k$) cost (M$) red. (%) diff. ($) diff. (k$)

0.1 0.2 0.00 5.37 0.00 0.00 0.00
0.1 0.4 0.00 5.37 0.00 0.00 0.00
0.1 0.6 0.00 5.37 0.00 0.00 0.00
0.1 0.8 0.00 5.41 0.00 0.00 0.00
0.1 1 0.00 5.41 0.00 0.00 0.00
0.2 0.2 114.66 5.50 2.09 161.75 -114.83
0.2 0.4 114.22 5.50 2.08 608.60 -114.83
0.2 0.6 110.11 5.50 2.00 6050.39 -116.16

C. Out-of-Sample Tests
In the previous section, we have shown that the risk-aware
model leads to savings under an adverse realization picked
by DCOPF-A(y∗). In this section, we test the robustness
of the results under different realizations. In other words,
we carry out “out-of-sample” tests to evaluate the dispatch
decisions, by first obtaining dispatch decisions from risk-
aware and deterministic SCUC models, and then formulating
corresponding RT DCOPF problems with simulated random
realizations. This process allows us to assess the cost-saving
and volatility reduction benefits of the risk-aware model.

More specifically, we randomly sample 100 realizations
with two different methods, and evaluate the risk-aware model
with both types of random samples. Note that for experiments
in this section, the RT DCOPF problem considers 5-minute
time intervals in T RT, providing a more realistic setup that
mirrors real-life operations. As we will demonstrate shortly,
even though the risk-aware dispatch solution is obtained based
on 1-hour time interval, it still yields benefits when the RT
problem is solved more frequently with smaller time intervals.

Our first experiment checks whether it is beneficial to use
the risk-aware dispatch decisions under different adverse real-
izations. In particular, we perturb the selected adverse stressors
(∀t ∈ T RT, ind ∈ {d,w}) αααind∗ = (αind∗

1t , αind∗
2t , αind∗

3t )
by randomly sample vectors with a fixed norm, where those
vectors are uniformly distributed in a spherical cone centered
at αααind∗ with the cone angle equals π/3. This perturbation
fixes the magnitude of the adverse realization, while allowing
the weight distribution to vary among the 3 leading modes to
a certain degree. Using those random samples, we evaluate the
risk-aware solutions under two different levels of conservatism
with Rd = 0.2, Rw = 0.2 and Rd = 0.2, Rw = 1.0. The
results are presented respectively in Table V and Table VI.

For both tables, we show the comparison between risk-
aware and deterministic results when there are different bounds
on stressors. Rd takes the values 0.1 and 0.2, and Rw takes
values between 0.2 and 1.4 with stepsize 0.4. Columns “Save”,
“Cost red.”, and “Consr. exp.” have similar definitions as in
Section IV-B, except that they are averaged over 100 random
samples for out-of-sample evaluation. “Deter. std” and “RA.
std” are respectively the average standard deviations of total
cost under deterministic and risk-aware dispatch solutions.

In both Table V and Table VI, the risk-aware decisions
save costs in almost all instances, despite the perturbation on
realizations. Generally, the cost saving is larger under higher
variations. Yet when there are extremely high variations the
cost saving starts to decrease, as the extra capacity dispatched
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TABLE V: COMPARISON OF RISK-AWARE AND DETERMINISTIC
SCUC SOLUTIONS OBTAINED FOR Rd = 0.2, Rw = 0.2, EVALU-
ATED WITH PERTURBED ADVERSE REALIZATIONS

Rd Rw Save Cost Consr. Deter. RA.
(k$) red. (%) exp. (k$) std (k$) std (k$)

0.1 0.2 -0.04 0.00 7.55 0.46 0.43
0.1 0.6 2.31 0.04 8.33 3.49 1.91
0.1 1.0 4.07 0.08 11.16 4.13 3.25
0.1 1.4 2.97 0.06 16.06 4.30 4.11
0.2 0.2 17.57 0.32 49.71 20.34 16.29
0.2 0.6 15.40 0.28 49.51 15.71 13.34
0.2 1.0 11.86 0.22 54.63 13.62 13.68
0.2 1.4 7.86 0.14 57.28 13.60 13.53

TABLE VI: COMPARISON OF RISK-AWARE AND DETERMINISTIC
SCUC SOLUTIONS OBTAINED FOR Rd = 0.2, Rw = 1.0, EVALU-
ATED WITH PERTURBED ADVERSE REALIZATIONS

Rd Rw Save Cost Consr. Deter. RA.
(k$) red. (%) exp. (k$) std (k$) std (k$)

0.1 0.2 -0.88 -0.02 7.43 0.45 0.43
0.1 0.6 0.70 0.01 7.44 2.59 0.44
0.1 1.0 4.47 0.08 7.42 3.63 0.43
0.1 1.4 9.76 0.18 8.26 4.48 1.72
0.2 0.2 51.33 0.94 15.27 19.48 0.99
0.2 0.6 43.48 0.80 17.87 15.46 4.72
0.2 1.0 37.17 0.68 24.81 13.51 8.43
0.2 1.4 31.31 0.58 31.73 13.85 10.43

under the risk-aware solutions is not enough to keep LMPs
below CVOLL at many buses. We also note that the risk-
aware dispatch decisions lead to lower volatility in total cost,
as shown by the comparison of the standard deviations.

Compared with Table V, Table VI shows risk-aware solu-
tions lead to higher savings and lower standard deviation in
costs at high variation levels. Thus, to achieve more savings,
it is important to adjust the values of Rd and Rw accordingly
when formulating the risk-aware SCUC problem. For example,
if for a certain day the RT wind generation is expected to
be very volatile, the practitioner should solve the risk-aware
SCUC problem with a higher Rw value.

Table VII presents a comparison between risk-aware and
stochastic models, which shows that the risk-aware model
saves costs in all instances. In general, the stochastic model
leads to higher cost volatility compared with the risk-aware
model, but lower cost volatility than the deterministic model.

Figure 6a shows the marginal prices in DA and RT markets,
where each dot represents the price at a bus averaged over all
samples and time periods. Similar to our observations with
Figure 5, the risk-aware problem leads to lower and more
stable RT prices compared with the other models. Prices of
the stochastic model have a lower median compared with
those of the deterministic model; however, prices at some
buses are much higher than the median for the stochastic

TABLE VII: COMPARISON OF RISK-AWARE AND STOCHASTIC
SCUC SOLUTIONS OBTAINED FOR Rd = 0.2, Rw = 1.0, EVALU-
ATED WITH PERTURBED ADVERSE REALIZATIONS

Rd Rw Save (k$) Cost red. (%) Sto. std (k$)
0.1 0.2 31.91 0.59 0.64
0.1 0.6 32.16 0.60 0.97
0.1 1.0 34.93 0.65 3.19
0.1 1.4 38.56 0.71 3.74
0.2 0.2 66.90 1.23 14.71
0.2 0.6 62.90 1.15 12.61
0.2 1.0 58.45 1.07 12.19
0.2 1.4 55.80 1.02 12.55

model. This is probably because some stochastic scenarios can
be overly optimistic at certain buses, leading to commitment
decisions that incur high RT costs. Also, since the stochastic
SCUC only includes 10 scenarios (as discussed in Section B
of the Appendix), overly optimistic scenarios could be over-
represented, exacerbating the issue.

Figures 6b and 6c respectively show the RT consumer
exposure (as defined in (1)) and producer surplus, with each
dot representing the average value of a sample. Again, those
values are much lower with the risk-aware problem. Compared
with the deterministic SCUC, the stochastic SCUC leads to a
slightly lower median for the RT consumer exposure, possibly
because the stochastic SCUC commits more DA capacities.
On the other hand, likely due to high prices at certain buses,
the RT producer surplus median for the stochastic model is
the highest among all models.
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Fig. 6: Evaluated with perturbed adverse realizations for
Rd = 0.2, Rw = 1.0: (a) DA and RT prices. (b) RT consumer
exposure. (c) RT producer surplus. For all figures: The red line
represents the median. The height of the boxes in (b) and (c)
represents the interquartile range.

Our second experiment evaluates the benefit of risk-aware
dispatch decisions under less adverse realizations. We generate
samples of αind

kt (∀k = 1, 2, 3; t ∈ T RT, ind ∈ {d,w}) that
follow a uniform distribution in [−Rind, Rind], and calculate
corresponding realizations. Note that we truncate the realiza-
tions with a 0 lower bound to avoid negative load and wind
generation. Again, we evaluate the dispatch solutions obtained
with Rd = 0.2, Rw = 0.2 and Rd = 0.2, R2 = 1.0. The
results for the comparison between deterministic and risk-
aware models are presented respectively in Table VIII and
Table IX.

Even with less adverse realizations, the risk-aware dispatch
solutions still save costs at higher variation levels. The stan-
dard deviation of total costs is also smaller under risk-aware
solutions, indicating a more reliable dispatch schedule. Due
to the dispatch of additional capacity, the risk-aware solution
is more costly at very low variation levels, yet such cost is
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TABLE VIII: COMPARISON OF RISK-AWARE AND DETERMIN-
ISTIC SCUC SOLUTIONS OBTAINED FOR Rd = 0.2, Rw = 0.2,
EVALUATED WITH UNIFORMLY-DISTRIBUTED STRESSORS

Rd Rw Save Cost Consr. Deter. RA.
(k$) red. (%) exp. (k$) std (k$) std (k$)

0.1 0.2 -0.09 0.00 2.69 0.62 0.62
0.1 0.6 -0.09 0.00 2.61 0.52 0.52
0.1 1.0 0.06 0.00 2.60 0.90 0.59
0.1 1.4 0.33 0.01 2.70 1.38 0.78
0.2 0.2 0.61 0.01 5.59 2.55 1.22
0.2 0.6 1.65 0.03 6.19 4.23 2.23
0.2 1.0 2.68 0.05 7.58 6.28 3.95
0.2 1.4 2.30 0.04 8.23 6.50 4.95
0.3 0.2 6.11 0.11 19.62 15.17 12.89
0.3 0.6 6.50 0.12 20.53 12.85 11.71
0.3 1.0 6.13 0.11 21.87 14.51 11.34
0.3 1.4 5.45 0.10 22.45 12.09 10.68

TABLE IX: COMPARISON OF RISK-AWARE AND DETERMINISTIC
SCUC SOLUTIONS OBTAINED FOR Rd = 0.2, Rw = 1.0, EVALU-
ATED WITH UNIFORMLY-DISTRIBUTED STRESSORS

Rd Rw Save Cost Consr. Deter. RA.
(k$) red. (%) exp. (k$) std (k$) std (k$)

0.1 0.2 -0.88 -0.02 2.52 0.62 0.59
0.1 0.6 -0.88 -0.02 2.44 0.52 0.50
0.1 1.0 -0.74 -0.01 2.45 0.90 0.57
0.1 1.4 -0.36 -0.01 2.44 1.38 0.58
0.2 0.2 0.08 0.00 5.15 2.55 1.19
0.2 0.6 1.65 0.03 5.23 4.23 1.19
0.2 1.0 4.03 0.07 5.28 6.28 1.51
0.2 1.4 4.34 0.08 5.23 6.50 1.60
0.3 0.2 16.66 0.31 8.11 15.17 2.05
0.3 0.6 17.60 0.33 8.48 12.85 2.21
0.3 1.0 16.69 0.31 10.35 14.51 4.76
0.3 1.4 15.79 0.29 11.16 12.09 6.14

relatively small compared with potential savings when there
are higher variations.

Table X presents the comparison between risk-aware and
stochastic models under less adverse realization. The stochas-
tic model again leads to higher total costs and higher standard
deviations.

For less adverse realizations, the results for marginal prices,
RT consumer exposure, and RT producer surplus are similar
to Figure 6, and thus we omit them here.

Note that in practice the RT market is cleared in a rolling
horizon manner, where at each RT time period generation
output is decided based on the current net load condition.
Our out-of-sample test serves as a bound case for this rolling
horizon market clearing procedure.

TABLE X: COMPARISON OF RISK-AWARE AND STOCHASTIC
SCUC SOLUTIONS OBTAINED FOR Rd = 0.2, Rw = 1.0, EVAL-
UATED WITH UNIFORMLY-DISTRIBUTED STRESSORS

Rd Rw Save (k$) Cost red. (%) Sto. std (k$)
0.1 0.2 30.73 0.57 0.78
0.1 0.6 30.67 0.57 0.62
0.1 1.0 30.70 0.57 0.67
0.1 1.4 30.85 0.57 1.08
0.2 0.2 31.58 0.58 1.61
0.2 0.6 32.44 0.60 3.21
0.2 1.0 33.75 0.62 3.80
0.2 1.4 34.23 0.63 5.09
0.3 0.2 43.20 0.80 11.62
0.3 0.6 43.79 0.81 11.67
0.3 1.0 43.51 0.80 11.32
0.3 1.4 43.13 0.80 13.21

V. CONCLUSION

In this work, we enhance the SCUC computation to better
handle load and wind generation volatility, which reduces the
RT consumer exposure due to RT price spike. Our method fea-
tures a data-driven PCA-based uncertainty set, which models
the locational correlation in uncertain data. We develop cutting
planes and heuristics to solve the non-convex optimization
model efficiently. Validated through the extensive case study
on an NYISO data set, our approach effectively reduces total
costs and cost volatility under adverse scenarios. Notably,
these benefits are observed across various levels of variation,
and are achieved without substantial expenses for dispatch.

APPENDIX

A. Example: Binding Ramping Constraint and LMP
We provide an example to demonstrate that when y changes
to y′ and when a ramping constraint is binding, it is possible
that the LMP at hour t̂ decreases even if I0t̂ ⊆ I ′

0t̂
, i.e., all

generators were off under y remain off when switching to y′.
Consider a system with uncongested network, three thermal

generators g ∈ {1, 2, 3} and two hours t ∈ {1, 2}. Let the RT
load be 59 for both hours and Pmin

g equals 0 for all generators.
Also, let the generator capacity Pmax = [50, 10, 50] and RT
ramping limit MRT = [∞,∞, 1]. Assume that all generators
have no startup or shutdown cost and that they have constant
cost for each MWh of power output, which equals 1, 2, and 3
respectively for the three generators. Initially, let all generators
be committed in both hours, i.e., I0t = ∅,∀t ∈ {1, 2}.
Then the vector of optimal production decisions (pgt) is
p = [50, 9, 0; 50, 9, 0] and the LMP λλλ = [2, 2].

Now we switch from y to y′ by turning off g = 1 at
hour t = 1. Then the updated production decisions p′ =
[0, 10, 49; 11, 0, 48]. Note that p′32 = 48 because the ramping
limit of generator 3 is 1. Since generator 1 has no ramping
limit and p′12 ∈ (0, 50), it is the marginal generator and sets
the LMP in hour 2 and thus λ′

2 = 1. Therefore, the LMP at
t = 2 decreases even if I02 ⊆ I ′

02 = ∅.
B. Two-Stage Stochastic Programming SCUC Model
The two-stage stochastic programming SCUC model [50, 51]
used for benchmarking in numerical experiments of Section IV
minimizes the sum of the expected total cost and the weighted
term for CVaR of the total cost:

min
1

|S|
∑
s∈S

cs + ρ

(
z +

1

1− β

1

|S|
∑
s∈S

ηs

)
(21a)

s.t. ηs ≥ cs − z, ∀s ∈ S (21b)

cs =
∑

t∈T DA

( ∑
g∈GTher

(
hsgt + CStart

g vgt + CDown
g wgt

)
+
∑
i∈N

CVOLL|RTpUnmet
sit

)
, ∀s ∈ S (21c)

hsgt ≥ C1
ogpsgt + C0

ogygt, ∀s ∈ S, o ∈ O, g ∈ GTher

(21d)∑
g∈Gi

psgt + pUnmet
sit +

∑
(j,i)∈L

fsjit (21e)

−
∑

(i,j)∈L

fsijt = Dsit, ∀s ∈ S, i ∈ N , t ∈ T (21f)
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fsijt = Bij (θsit − θsjt) , ∀s ∈ S, (i, j) ∈ L, t ∈ T
(21g)

fsijt ≤ PTrans
ij , ∀s ∈ S, (i, j) ∈ L, t ∈ T (21h)

fsijt ≥ −PTrans
ij , ∀s ∈ S, (i, j) ∈ L, t ∈ T (21i)

psgt ≤ Pmax
g ygt, ∀s ∈ S, g ∈ G, t ∈ T (21j)

psgt ≥ Pmin
g ygt, ∀s ∈ S, g ∈ G, t ∈ T (21k)

psgt − psg,t−1 ≤ Mgyg,t−1 + Pmin
g vgt,

∀s ∈ S, g ∈ GTher, t ∈ T \ {1} (21l)

psg,t−1 − psgt ≤ Mgygt + Pmin
g wgt,

∀s ∈ S, g ∈ GTher, t ∈ T \ {1} (21m)

psgt + pCurtail
sgt = Pmax

sgt , ∀s ∈ S, g ∈ GWind, t ∈ T
(21n)

ugt − wgt = ygt − yg,t−1, ∀g ∈ G, t ∈ T \ {1}
(21o)

ugt, wgt, ygt ∈ {0, 1}, ∀g ∈ G, t ∈ T (21p)

pUnmet
sit , ηs ≥ 0, ∀s ∈ S, i ∈ N , t ∈ T (21q)

pCurtail
sgt ≥ 0, ∀s ∈ S, g ∈ GWind, t ∈ T . (21r)

The first term of the objective function (21a) is the expected
total cost, where S is the set of scenarios (we assume each
scenario is equally likely) and cs is the total cost of scenario
s ∈ S. The second term of (21a) is the CVaR of total cost
multiplied by a weight ρ. Inside the CVaR term, β is the
confidence level and ηs is an auxiliary variable which equals
to (cs − z)+, with z ∈ R being a free variable. (21b) and
ηs ≥ 0 enforce ηs = (cs − z)+. (21d) - (21o) are SCUC
constraints.

In our experiment, we set ρ = 0 and β = 0.9. The RT
demand Dsit and wind production Pmax

sgt are randomly sam-
pled from the uncertainty sets Ω, with the weights αind

kt (∀k =
1, 2, 3; t ∈ T RT, ind ∈ {d,w}) following a uniform distribu-
tion in [−Rind, Rind]. We use 10 samples in the experiment.

As shown in Table III, the stochastic SCUC is difficult to
solve even with only 10 sampled scenarios. In addition to the
warm-start solution method as described in Section IV, we
also experimented with the L-shaped method [52], which is
a classical algorithm for two-stage stochastic programs, via a
branch-and-cut scheme. The L-shaped method struggles to find
good feasible solutions, and its performance is occasionally
worse than direct solving for all instances.
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