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Abstract

We propose a new formulation of robust regression by integrating all realizations of
the uncertainty set and taking an averaged approach to obtain the optimal solution for
the ordinary least squares regression problem. We show that this formulation recovers
ridge regression exactly and establishes the missing link between robust optimization
and the mean squared error approaches for existing regression problems. We further
demonstrate that the condition of this equivalence relies on the geometric properties of
the defined uncertainty set. We provide exact, closed-form, in some cases, analytical
solutions to the equivalent regularization strength under uncertainty sets induced by
ℓp norm, Schatten p-norm, and general polytopes. We then show in synthetic datasets
with different levels of uncertainties, a consistent improvement of the averaged for-
mulation over the existing worst-case formulation in out-of-sample performance. In
real-world regression problems obtained from UCI datasets, similar improvements are
seen in the out-of-sample datasets.
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1 Introduction

Protecting against data uncertainty is at the center of modern machine learning modeling in
both the predictive and generative paradigms (Bertsimas and Sim 2004; Bertsimas, Dunn,
et al. 2019; Hastie et al. 2009a; Hariri et al. 2019). Uncertainties in both the input and out-
come data could be attributed to implementation, recording, and manual errors. Examples
such as incorrect vital readings during hospital patient stay, as well as manual mistakes on
temperature recordings for climate change, are ubiquitous and inherent problems in most
real-world applications that can impact the solution quality of the original problem if solved
directly. Furthermore, issues such as over-fitting may lead to worse performances in out-of-
sample validations if original formulations do not account for uncertainty (Bühlmann et al.
2011; Goodfellow et al. 2016).

The most prominent approach to address this problem is the use of regularization by in-
corporating an additional regularizer that either penalizes or encourages certain structures
of the solution (Wang et al. 2006; Kratsios et al. 2020). Classical approaches such as lasso
and ridge regression have been studied extensively with demonstrated good results in prac-
tice. Another approach to account for adversarial noise in the data is by formulating the
original least squares problem as a robust optimization problem (Bertsimas, Gupta, et al.
2018; Bertsimas, Brown, et al. 2011; Ghaoui et al. 1997; Lewis 2002; Lewis and Pang 2010;
Xu et al. 2008a; Ben-Tal, Ghaoui, et al. 2009). That is, given an uncertainty set that char-
acterizes some belief of the uncertainty in data, we aim to find the optimal solution under
the worst-case scenarios. The existing robust optimization formulation offers several advan-
tages. By explicitly defining the adversarial perturbations the model is protecting against,
this framework provides additional insights into the behaviors of solutions and beliefs of the
original data. It also leads to a more straightforward analysis of the estimators (Xu et al.
2008a) as well as algorithms for finding the estimators (Ben-Tal, Hazan, et al. 2015).

There exists a wealth of work that has demonstrated a deeper connection between the robust
optimization framework and the regularization approaches, where a main result from (Bert-
simas and Copenhaver 2014) characterizes the conditions that estbalished the equivalence of
robust optimization formulation and lasso. Yet a key observation of this existing approach
is that instead of the root-mean-square regression established in these works, in practice,
a traditional least squares problem is what is implemented and solved. The least squares
formulation offers advantages in computational simplicity since it is closed-form solvable.
This curiosity thus begs the natural question of whether there exists a missing link between
the traditional robust optimization framework and the current regularization methods. In
addition, no computation of exact analytical solutions are available for the regularization
strengths even when these least squares cases could be established under other related set-
tings, such as distributionally robust optimization, which could provide insights into the
problem settings.

In this work, we reformulate the traditional worst-case robust optimization formulation into
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an averaged approach by accounting for all realizations of the uncertainty set uniformly.
By studying the robust linear regression problem under symmetric and non-symmetric un-
certainty sets, we provide exact, closed-form, in some cases analytical solutions of the reg-
ularization strength. We show that this equivalence relies on geometric properties of the
uncertainty set, and demonstrate that when the equivalence holds, these derived solutions
achieve better computational performance in both synthetic and real-world data set.

1.1 Related Literature

1.1.1 Statistical Properties of Ridge Regression

Ridge regularization has several interpretations that provide insightful statistical properties.
One classical interpretation arises from principal components analysis (PCA), where ridge
regularization performs shrinkage with more emphasis on the directions corresponding with
low variance (Hastie et al. 2009b). This angle implies that ridge regression has the effect of
stabilizing solutions by minimizing components with little informational content. Another
interpretation is under the setting of a Bayesian framework with normal-normal models.
In this context, ridge estimator is shown to be the Bayes estimator when both the prior
and the likelihood functions are normal distributions (Hsiang 2018). More recent works
on high-dimensional statistics also demonstrated ridge’s noise protection capacity: we can
effectively recover the linear ridge regularization solution if we append a large number of
noisy features with zero-mean, unit-variance entries in the original input feature matrix and
apply min-norm least squares on this augmented matrix (Kobak et al. 2020).

1.1.2 Equivalence of Robustness and Ridge Regression

Several recent studies have established the connection between ridge regularization, or even
more general regularization techniques, with robustness. Specifically, these works can be clas-
sified into three domains of formulation: robust optimization, stochastic optimization and
distributionally robust optimization (DRO). Under the lens of robust optimization, where
solutions are protected against worst-case scenarios in a deterministic uncertainty set, several
works have shown that protection against global noise (or entry-wise) perturbations is equiv-
alent to ridge regression, or more generally, ℓp norm regression problems. This approach was
first established in (Ghaoui et al. 1997; Xu et al. 2008b), and then generalized in (Bertsimas
and Copenhaver 2014) to characterize the exact conditions. In contrast to robust optimiza-
tion’s deterministic nature, stochastic optimization looks for a solution that protects against
all realizations of an assumed probability distribution that characterizes the true distribu-
tion and thus accounts for distribution information in its formulation. Specifically, previous
works have shown that under both additive (Bishop 1995) and multiplicative (Srivastava
et al. 2014) stochastic noises, we can recover ridge regularization in neural network settings.
Bridging between the two domains and incorporating the advantages of both paradigms,
DRO has been proposed as a unifying approach to view the robustification-regularization
connection (Blanchet et al. 2019; Shafieezadeh-Abadeh, Kuhn, et al. 2017; Li et al. 2022).
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Specifically, DRO identifies solutions that minimize the expected worst-case loss across an
ambiguity set, which is formed using empirical distributions and characteristics presumed
to represent the true underlying distribution. Several works established the equivalence
of lasso linear regression (Chen et al. 2018), regularized logistic regression for continuous
(Shafieezadeh-Abadeh, Esfahani, et al. 2015) and mixed features (Selvi et al. 2022). Impor-
tantly, these works reveal insightful connections between the size of the Wasserstein balls
and the magnitude of regularization strengths.

1.1.3 Interpretations of Regularization Strength

Existing works on establishing the equivalence between robustified regression models and
regularized regression often arrive at insightful conclusions with respect to the relationship
between the defined uncertainty set or ambiguity set and the regularization strength. In (Li
et al. 2022), the regularization for a linear regression case is characterized by the product of
the Wasserstein ball’s radius, and the Hessian of the loss function (in this case least squares).
Similarly in (Shafieezadeh-Abadeh, Esfahani, et al. 2015), the regularization strength for a
logistic regression case coincides with the radius of the defined Wasserstein ball.

Additional studies on the behaviors of the optimal regularization strength also revealed in-
teresting connections to several factors of the original problem and data setting. (Dobriban
et al. 2015) showed that under appropriate assumptions, the asymptotic optimal regulariza-
tion strength is a function of both the aspect ratio (ratio of feature size and sample size)
and the signal-to-noise (SNR) ratio of the true linear fit. Another interesting angle is pro-
vided by the recent observations of the double descent behavior in overparametrized models,
predominantly neural networks. Specifically, (Kobak et al. 2020) showed that the optimal
regularization strength can be zero or negative under ill-posed, real-world high-dimensional
cases, thus implying that over-parametrization of the model implicitly leads to regulariza-
tion. These works provide a novel lens into the interpretation and understanding of ridge
regression regularization strength.

1.2 Contributions

In this paper, we reformulate robust optimization under the worst-case to robust optimiza-
tion under an averaged uncertainty set, by optimizing the solution over all realizations of
the uncertainty set uniformly. We study this formulation for linear regression using both
symmetric and non-symmetric uncertainty sets. Our contributions are as follows:

• We provide exact, closed-form, in some cases analytical solutions to the regularization
strengths under different conditions of uncertainty sets for linear regression.

• We provide a principled, natural, and theoretical justification for why we should solve
the least squares problem under a robust optimization lens in addition to its known
computational advantages.
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• We demonstrate that the exact equivalence of ridge regression and robust linear re-
gression relies on the geometric properties of the uncertainty set, and show that this
equivalence is no longer true under non-symmetric settings.

• We justify the squared formulation as an appropriate model to solve by providing evi-
dence of some of its empirical advantages using both synthetic and real-world datasets.

1.3 Structure of the Paper

The structure of the paper is as follows: in section 2, we provide an overview of robust
optimization and define the uncertainty sets we consider. In section 3, we outline the general
characterizations of the robust regression under averaged uncertainty set formulation and its
connection to traditional formulations. In section 4, we establish necessary general results
over considered uncertainty sets, separated in the symmetric and non-symmetric cases. In
section 5, we prove and outline the main theorems demonstrating the new formulation’s
equivalence with linear ridge regression. In section 6, we demonstrate the experimental
results on synthetic and real-world datasets that show the advantage of this formulation
over traditional robust optimization. In section 7, we address some concluding remarks.

2 Brief Overview of Robust Optimization

2.1 Norms

We first introduce the necessary notions of norms: given a vector space V ⊆ Rn, we say that
|| · || : V → R is a norm if for all v,w ∈ V and α ∈ R we have the following:

1. If ||v|| = 0, then v = 0,

2. ||αv|| = |α|||v|| (absolute homogeneity), and

3. ||v +w|| ≤ ||v||+ ||w|| (triangle inequality)

Two widely used choices for matrix norms are Frobenius and Schatten norms, which are
defined as below.

1. The p-Frobenius norm, denoted || · ||Fp , is the entrywise ℓp norm on the entries of
∆ ∈ Rn×k:

∥∆∥Fp =

(
n∑

i=1

k∑
j=1

|∆ij|p
)1/p

.

2. The Schatten (p-spectal) norm, denoted as || · ||Sp is the ℓp norm on the singular values
of the matrix ∆:

∥∆∥Sp =


(∑min{n,k}

j=1 µj(∆)p
)1/p

, p < ∞,

max{µ1(∆), . . . , µn(∆)}, p = ∞,
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where µi(∆) denotes the i-th entry of the vector containing the singular values of ∆.

2.2 Dual Norms

The concept of a dual norm plays a significant role in the context of robust optimization and
is derived from a specific optimization problem that seeks to maximize the linear function
a⊤x subject to a norm constraint on x. Formally, for a given vector a ∈ Rn, the dual norm
∥a∥q∗ is defined as the solution to the following problem:

max
∥x∥q≤1

a⊤x.

Here, the norm ∥a∥q∗ corresponds to the dual of the ℓq norm, where q∗ is the conjugate
exponent of q, satisfying 1

q
+ 1

q∗
= 1. For instance, when q = 2, the dual norm is simply

the Euclidean norm, while for q = 1, the dual norm is the ℓ∞ norm, which represents the
maximum absolute value among the components of the vector.

This duality is further extended to the setting where the vector x is scaled by a factor ρ,
leading to the modified problem:

max
∥x∥q≤ρ

a⊤x = ρ∥a∥q∗ ,

indicating that the solution scales linearly with ρ. The concept of dual norms is also general-
izable to matrices, where the dual norm is defined via the trace inner product and is crucial
for understanding the behavior of matrix norms in higher dimensions.

2.3 Robust Optimization

Robust optimization is a powerful methodology for addressing optimization problems under
uncertainty, particularly when the uncertainty is not easily modeled probabilistically. In-
stead of relying on probability distributions, robust optimization constructs a deterministic
uncertainty set, denoted by U , which encapsulates all possible realizations of the uncertain
parameters. The goal is to find a solution that remains feasible and optimal across all real-
izations within U . Formally, consider an optimization problem where the decision variables
x ∈ X must satisfy a set of constraints defined by a vector-valued function g(u,x) ≤ 0 for
all u ∈ U . Here, X ⊆ Rn represents the feasible region for x, and u ∈ Rm denotes the vector
of uncertain parameters. The robust counterpart of the original optimization problem can
be formulated as follows:

max
x∈X

min
u∈U

c(u,x),

subject to g(u,x) ≤ 0, ∀u ∈ U ,

where c(u,x) is the objective function that depends on both the decision variables and the
uncertain parameters. The inner minimization problem identifies the worst-case realization
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of the objective function within the uncertainty set U , while the outer maximization problem
seeks the best possible decision x that optimizes the objective under this worst-case scenario.

Although the robust formulation introduces an infinite number of constraints—corresponding
to the infinite possible values of u within U—it is often possible to reformulate the problem
as a finite-dimensional, deterministic optimization problem. This reformulation depends on
the specific structure of U and the functional forms of c(u,x) and g(u,x). The resulting
deterministic problem, often referred to as the robust counterpart, can be solved using conven-
tional optimization techniques. The advantages of robust optimization are well-documented
in the literature, particularly in scenarios where small perturbations in the data can lead
to significant violations of feasibility or optimality in the nominal solution. By explicitly
considering the worst-case scenario, robust solutions provide a higher degree of reliability,
thereby ensuring performance that is both stable and resilient to uncertainty.

2.4 Global-Robustness

To capture our belief of the structure of the noise we aim to protect against, we construct
uncertainty sets that obey certain boundedness conditions. Specifically, in this case, we
consider boundedness conditions of the entire noise matrix of the form, or global robustness,
where ρ is a parameter controlling the magnitude of the considered perturbations and, hence,
the degree to which the features in the training set are able to deviate from their nominal
values:

U =
{
∆ ∈ Rn×k | ∥∆∥ ≤ ρ

}
.

Some commonly considered global-robustness uncertainty sets are defined as follows using
the Frobenius norm:

• Ellipsoidal uncertainty set refers to

U1 = {∆ : ∥∆∥F2 ≤ ρ} (1)

• Box uncertainty set refers to

U2 = {∆ : ∥∆∥F∞ ≤ ρ} (2)

• Diamond uncertainty set refers to

U3 = {∆ : ∥∆∥F1 ≤ ρ} (3)

• Budget uncertainty set refers to

U4 = {∆ : ∥∆∥F1 ≤ Γ, ∥∆∥F∞ ≤ ρ} (4)
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In addition, we also consider uncertainty sets that are defined by Schatten norm ball and a
general polytope, which are defined as follows:

• Schatten uncertainty set refers to

USp = {∆ : ∥∆∥Sp ≤ ρ} (5)

• Polytopal uncertainty set refers to

UP = {∆ : b− A⊤∆ ≥ 0}, (6)

where P is a polytope that can be triangularted into t distinct simplices Λ1, · · · ,Λt.

Lastly, for completeness, we also provide definition of the uncertainty sets that protect
against feature and label noise. Given data matrix X = (x1, · · · ,xn) ∈ Rn×k, with the i-th
data sample and outcmome xi ∈ Rk and yi, let ∆X = (∆x1,∆x2, · · · ,∆xn).

• The feature-wise uncertainty set is defined as:

Ux =
{
∆X ∈ Rn×k | ∥∆xi∥ ≤ ρ, i = 1, . . . , n

}
.

• The label-wise uncertainty set is defined as:

– For binary classification purpose:

Uy =

{
∆y ∈ {−1, 1}n

∣∣∣∣∣
n∑

i=1

∆yi ≤ ρ

}
.

– For regression purpose:

Uy = {∆y ∈ Rn | ∥∆yi∥ ≤ ρ, i = 1, . . . , n} .

3 Robust Optimization under Averaged Uncertainty

A disadvantage of the existing robust optimization formulation is that the solutions it recov-
ers protect against the worst-case uncertainty of the defined uncertainty set. This approach
assumes that the data is under the most severe perturbations and thus arrives at solutions
that could be too conservative (Roos et al. 2020). An intuitive remedy is to instead seek
a solution that is robust over the averaged realization of uncertainties, thus avoiding over-
protecting extreme perturbations.
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3.1 Characterization of Averaged Uncertainty

We provide the characterization of the new averaged formulation and discuss its connection
to stochastic optimization, as well as distributionally robust optimization.

Definition 1 (RO Average). Given a data matrix X ∈ Rn×k, where n is the number of
samples and k is the number of features and an outcome data vector y ∈ Rn, the optimal
robust optimizer under averaged uncertainty set solution β is the optimal solution to the
following problem.

min
β

(∫
U
g(X,∆,y) dU

)
(7)

Note that this is equivalent to a stochastic optimization problem with uniform distribution
over the defined uncertainty set. The computation of the expectation of uniform distribution
over a convex polytope has been studied extensively in literature. We choose to adopt this
particular robust-optimization-inspired formulation to study the analytical forms of well-
known uncertainty sets, and to exploit its deterministic nature leveraging results in numerical
analysis. Similarly, in Distributionally Robust Optimization (DRO), we could also consider
this formulation as an approximation of an ambiguity set that is as close to the uniform
distribution as possible. For example, by considering a sequence of n-th order moment
constraints that characterize the uniform distribution.

3.2 Connections to Other Robustness Methods

We outline some well-known results establishing the equivalence between robustness and
regularization, and elaborate on the connection of our formulation with these existing ap-
proaches.

It is well-known in the literature the equivalence between general norm-induced robust op-
timization formulation with ℓp regression problems of the following.

Theorem 1 (Bertsimas and Copenhaver 2014; Bertsimas, Brown, et al. 2011). If r, q ∈
[1,∞], and U(q,r) = {∆ : ∥∆∥(q,r) ≤ λ} with ∥∆∥(q,r) = maxβ∈R

∥∆β∥r
∥β∥q then

min
β

max
∆∈U(q,r)

∥y − (X +∆)β∥r = min
β

∥y −Xβ∥r + λ∥β∥q.

However, as previously pointed out, one key observation is that this formulation does not
solve the true least squares problem, and instead resorts to a root-mean-square problem
which is not practically used. We will show in the main result that we bridge this gap by
establishing the exact equivalence with the least squares case with RO Average introduced
in 7.

Another related stream of distributionally robust optimization literature has also established
similar equivalence.

9



Let Sd
++ to denote the set of d-by-d positive definite matrices, ∥X∥M ≜

√
X⊤MX for any

X ∈ Rd,M ∈ Sd
++, δX denote the Dirac measure at X and let P̂ ≜ 1

N

∑N
i=1 δXi

be the
empirical measure constructed from sample {X1, . . . , XN}. We also define c(·, ·) : Rd×Rd →
[0,∞) as a lower semi-continuous cost function such that c(X,X) = 0 for every X ∈ Rd. We
further denote P(X × X ) as the set of joint probability distribution π of (X̄,X) supported
on X ×X , while P1π and P2π respectively refer to the marginals of X̄ and X under the joint
distribution π. Given Lβ(P̂, ρ) as the worst-case expected loss under all possible distributions

around the empirical measure P̂ at most ρ with respect to the optimal transport distance,
and ρ ≥ 0 as the radius of the uncertainty set centered at P̂, then the exact martingale DRO
problem is formulated as below,

min
β

Lβ(P̂, ρ), where Lβ(P̂, ρ) ≜



sup
π

Eπ[ℓ(fβ(X̄))]

s.t. π ∈ P(X × X )

Eπ[c(X̄,X)] ≤ ρ, P2π = P̂

Eπ[X̄|X] = X, P̂-a.s.,

(8)

which gives the following equivalence result.

Theorem 2. Suppose that (i) the loss function ℓ(·) is a convex quadratic function, i.e.,
∇2ℓ(·) = γ > 0, and (ii) the feature mapping fβ(X) = β⊤X is linear. Let X⊤ ≜ (Y, Z⊤) ∈
Rd and β⊤ ≜ (1,−b⊤) ∈ Rd, we have β⊤X = Y − b⊤Z. For any Q ∈ Sd−1

++ , we take
M = diag(+∞, Q), then the problem (8) with γ = 2 becomes

min
b

{
EP̂
[
(Y − b⊤Z)2

]
+ ρ∥b∥2Q−1

}
.

This DRO formulation, under certain conditions, yields an exact equivalence with the tradi-
tional least squares approach. In comparison, our approach takes an alternative deterministic
perspective. Notably, we demonstrate the conditions where this equivalence holds, and show
that when the uncertainty set lacks symmetry, the conditions for this equivalence will be
violated. Furthermore, we provide closed-form, and in some cases analytical, solutions for
the regularization strength term across various conventional uncertainty sets.

4 General Results over Uncertainty Sets

In this section, we provide and prove useful conclusions of some of the most commonly used
uncertainty sets in robust optimization. We note that these conclusions are special cases of
the broader topic of the study of convex bodies. However, leveraging the specific boundedness
conditions and unique geometric properties of these chosen uncertainty sets, we are able to
derive exact, closed-form, in some cases analytical solutions, that can provide insights into the
equivalence between robust optimization and ridge regularization. For all of the following, we
consider the setting where ∆ ∈ Rn×k, and U =

{
∆ ∈ Rn×k | some boundedness condition

}
.
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The rest of the discussion is separated into two distinct classes of convex bodies based on
their geometric structure: symmetric or non-symmetric, which we will later see drive some
key observations in our formulation.

4.1 Symmetric Uncertainty Sets

We outline below results on the zeroth-, first-, and second-order functions under these sym-
metric settings, respectively corresponding to the volume, specialized odd function, and
quadratic functions.

4.1.1 Zeroth-Order Functions: Volume

The zeroth-order function, primarily concerned with the volume of symmetric uncertainty
sets, serves as a basic measure of their size or capacity. Understanding volume is crucial be-
cause it directly affects the feasibility region of optimization problems—larger volumes imply
greater uncertainty but also potentially higher robustness against data variability. Results
concerning volumes of common symmetric sets, such as cubes and hyperspheres, establish
metrics that can guide the selection and application of these sets in practical scenarios.

Lemma 1. For the most commonly used ℓp-norm based uncertainty sets, their volumes in
high dimensions (Rn below) are as follows:

1. Hypercube (or box uncertainty set): a hypercube with side length a has volume V = an,

2. Hypersphere (or spherical uncertainty set): a hypersphere with radius a has volume

V = πn/2

Γ(n/2+1)
an,

3. Simplex: a simplex with vertices at the origin and unit vectors along the axes has
volume V = 1

n!
,

4. Ellipsoid (or ellipsoidal uncertainty set): an ellipsoid defined by
x2
1

a21
+

x2
2

a22
+ · · ·+ x2

n

a2n
≤ 1

has volume V = πn/2

Γ(n/2+1)
(a1a2 · · · an).

Lemma 2 (Coxeter 1973). Let VU3 denote the hypervolume of the diamond uncertainty set
defined in (3), or sometimes also referred to as the hyper cross-polytope, then

VU3 =
(2ρ)nk

(nk)!
.

Lemma 3. Let VU4 denote the hypervolume of the budget uncertainty set defined by (4),
then,

VU4 =
(2ρ)nk − nk(2(ρ− Γ))nk

(nk)!
.
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Proof. VU4 is the volume of a polytope defined by the region A = {∆ ∈ Rn×k : ∥∆∥F1 ≤ ρ}
truncated out by 2nk corners of the regions {∆ ∈ Rn×k : ∥∆∥F1 ≤ ρ, ∥∆∥F∞ > Γ}. From

Lemma 2, the volume of A is (2ρ)nk

(nk)!
and two of these 2nk corners from opposing sides can be

combined into a polytope of volume 2(ρ−Γ)nk

(nk)!
, and thus we have VU4 =

(2ρ)nk

(nk)!
− nk(2(ρ−Γ))nk

(nk)!
.

Another class of uncertainty sets that should be considered is those defined by the Schatten
norm, which is one of the most important classes of unitary operators and has a long sequence
of literature investigating its behavior using asymptotic geometric analysis.

Theorem 3 (Kabluchko et al. 2020). We provide below the asymptotic volume of Schatten
norm ball. Given A as a n×n matrix with entries from R, Sp denoting the Schatten p-norm.
If we denote by Bn

p (R) = {A : ∥A∥Sp ≤ 1} the corresponding Schatten unit ball, and VolN
the Lebesgue measure of dimension N ∈ N, we have that as as n → ∞,(

Voln2Bn
p (R)

)1/n2

∼ n− 1
2
− 1

p

√
2πe3/2σ(p/2),

where,

σ(p) =
1

4

(
2
√
πΓ(p+ 1)√
eΓ(p+ 1

2
)

)1/p

.

Remark. We note that the result on the Schatten norm differs from previous ℓp-norm balls
since only asymptotic results can be established. In addition, we note that existing results
can only be applied to square matrices instead of a more general n× k matrix.

4.1.2 First Order Functions

Due to the symmetric nature of the norm-induced uncertainty sets we consider, we introduce
some useful general results first on odd functions.

Definition 2. We define the set U ⊂ Rn as a symmetric set about the origin if for every
matrix ∆ ∈ U , the matrix −∆ also belongs to U . In other words, ∆ ∈ U implies −∆ ∈ U .

Lemma 4 (Symmetry of Norm-Based Uncertainty Sets). It is immediately obvious that the
uncertainty sets defined by global robustness using both ℓp-norm and Schatten p-norm are
symmetric sets.

Lemma 5 (Univariate Symmetry). If U ⊂ R is a symmetric interval around the origin and
f(x) is an odd function, then ∫

U
f(x) dx = 0.

Proof. Since U is symmetric, for every x ∈ U ,−x ∈ U as well. Since f is odd, f(−x) =
−f(x). By changing variables in the integral, we have:

∫
U f(x) dx =

∫
U f(−y) dy =

−
∫
U f(y) dy. We thus conclude that

∫
U f(x) dx = 0.
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Corollary 1 (Multivariate Symmetry). Let U ⊂ Rn be a symmetric set around the origin
and f(x) : Rn → R be an odd function with respect to each of its variables, then∫

U
f(x) dx = 0.

Proof. Since U is symmetric about the origin, for every x ∈ U ,−x ∈ U as well. Since
f is odd, f(x1, x2, · · · ,−xi, · · · , xn) = −f(x1, x2, · · · , xi, · · · , xn) for all i = 1, · · · , n. By
applying univariate symmetry with respect to each dimension of x, we arrive at the conclu-
sion.

Corollary 2 (Matrix Symmetry). If U ⊂ Rn×k is symmetric around the origin and f(v) is
a function independent of ∆, and g(∆) : Rn×k → Rn×k is an odd function, then∫

U
f(v)g(∆) d∆ = 0,

where 0 is a matrix of the same dimension of ∆ with all entries of 0.

Proof. Applying Corollary 1 to each entry of the matrix integral yields the result.

Corollary 3. It is immediately obvious that when U is the global-robustness uncertainty
sets previously defined using ℓp norm and Schatten p-norm and an odd function g(∆) we
have: ∫

U
g(∆) d∆ = 0.

4.1.3 Quadratic Functions

Ridge regression is defined as a quadratic function, and we establish some related results for
general symmetric sets.

Lemma 6. If ∆ ∈ Rn×k and V (nk, ρ) is the volume of U1 defined in (1), then:

∫
U1

∆⊤∆ d∆ =


V (nk,ρ)

k
0 · · · 0

0 V (nk,ρ)
k

· · · 0
· · · · · · · · · · · ·
0 0 · · · V (nk,ρ)

k

 .

Proof. Please see Appendix section A.

Lemma 7. If ∆ ∈ Rn×k, and U2 is defined in (2), then:

∫
U2

∆⊤∆ d∆ =


(2ρ)nkρ2n

3
0 · · · 0

0 (2ρ)nkρ2n
3

· · · 0
· · · · · · · · · · · ·
0 0 · · · (2ρ)nkρ2n

3

 .
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Proof. Please see Appendix section B.

Lemma 8. If ∆ ∈ Rn×k, and U3 is defined in (3), then

∫
U3

∆⊤∆ d∆ =


(2ρ)nk+1ρn
(nk+2)!

0 · · · 0

0 (2ρ)nk+1ρn
(nk+2)!

· · · 0

· · · · · · · · · · · ·
0 0 · · · (2ρ)nk+1ρn

(nk+2)!

 .

Proof. Please see Appendix section C.

Lemma 9. If ∆ ∈ Rn×k, and U4 is defined in (4), then

∫
U4

∆⊤∆ d∆ =


f(n, k, ρ,Γ) 0 · · · 0

0 f(n, k, ρ,Γ) · · · 0
· · · · · · · · · · · ·
0 0 · · · f(n, k, ρ,Γ)

 ,

where f(n, k, ρ,Γ) = 2ρ2

(n+1)(n+2)
(2ρ)n−n(2(ρ−Γ))n

n!
− (2(ρ−Γ))n

n!
(n2+3n−2)Γ2+(4−2n)ρΓ

(n+1)(n+2)
.

Proof. Please see Appendix section D.

Similarly to the study of volume, we resort to the literature on asymptotic geometric analysis
for the Schatten norm ball.

Definition 3. A compact, convex subset K with a non-empty interior is called a convex
body. Furthermore, it is called isotropic if (i) its Lebesgue volume vol(K) = 1, (ii) it is
centered, that is, has a barycentre at the origin, and (iii) its covariance matrix is a multiple
of the identity, namely ∫

K

xixj dx = L2
K1ij for all 1 ≤ i, j ≤ m,

LK here is called the isotropic constant of K, 1ij is the indicator function indicating 1 if
i = j, and 0 otherwise.

Definition 4. We define N as a unitarily invariant norm on the space Mn(R) with n× n
matrices with real entries if it satisfies N (USV ) = N (S) for any S ∈ Mn(R) and any real
isometries U, V on Rn with the Euclidean norm.

Lemma 10 (König et al. 1998). The Schatten p-norm is a unitarily invariant norm.

Lemma 11 (König et al. 1998). The unit balls BR(N ) of a unitarily invariant normed space
of matrices (with norm N ) are isotropic.

The above two conclusions lead immediately to the following.
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Corollary 4. The Schatten unit balls BR(Sn
p ) = {A ∈ Mn(R); sp(A) ≤ 1} is isotropic.

Theorem 4 (König et al. 1998). The isotropic constant of Schatten class is bounded. Let us
denote by LR(n, p) = L2

BR(Sn
p )

where LBR(Sn
p ) is the isotropic constant of the Schatten p-norm

ball. We have

LR(n, p) ≃ n− 2
p
Mp(x

2
1)

Mp(1)
,

where Mp is the measure with density

fn,p(x1, . . . , xn) = 1{x1≥0,...,xn≥0}fn(x)e
−

∑n
i=1 x

p
i ,

with respect to the Lebesgue measure on Rn.

4.2 Non-Symmetric Uncertainty Sets

We consider the case of an n-dimensional polytope P defined by a union of simplices Λi,
and observe that there are exact, closed-formed solutions for expressing integrals of arbitrary
polynomials under certain conditions.

Theorem 5 (Baldoni et al. 2011). LetΛ be the simplex that is the convex hull of s0, s2, . . . , sd
in Rn, and let ℓ be an arbitrary linear form on Rn. Then∫

Λ

ℓM dm = d! vol(Λ)
M !

(M + d)!

∑
k∈Nd+1,|k|=M

⟨ℓ, s0⟩k1 . . . ⟨ℓ, sd⟩kd+1 ,

where |k| =
∑d+1

j=1 kj.

Corollary 5. Setting M = 1, we immediately have the following result. Let Λ be the
simplex that is the convex hull of s0, s2, . . . , sd in Rn, x ∈ Rn a point in the simplex, and xi

the i-th index of the point. We denote {sj}i as the value of the i-th entry of the vector sj,
and dm is the integral Lebesgue measure, then:∫

Λ

xi dm =
vol(Λ)

d+ 1

d∑
j=0

{sj}i.

Corollary 6. Let P be a polytope that can be triangulated into t simplices Λ1,Λ2, · · · ,Λt,
where each simplex Λκ is defined by its vertices s0κ, s2κ, . . . , sdκ, then:∫

P

xi dm =
t∑

κ=1

volΛκ

d+ 1

d∑
j=0

{sjκ}i.

Proof. This immediately follows that P =
⋃t

κ=1Λκ, which leads to
∫
P
xi dm =

∑t
κ=1

(∫
Λκ

xi dm
)
,

and the conclusion follows from Lemma 5.
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Corollary 7. Let Λ be the simplex that is the convex hull of s0, s2, . . . , sd in Rn, x ∈ Rn a
point in the simplex, and xi the i-th index of the point, then:∫

Λ

x2
i dm =

2× vol(Λ)

(d+ 2)(d+ 1)

(
d∑

j=0

{sj}2i +
∑
j ̸=r

2{sj}i{sr}i

)
.

Proof. Let ℓ be an arbitrary linear form on Rn. After setting M = 2 in Theorem 5, cancelling
the factorials, we observe that to satisfy |k| =

∑d
j=0 kj = 2 for k ∈ Nd+1, entries of kj can

only be either 1 or 2, then:∫
Λ

ℓ2 dm =
2× vol(Λ)

(d+ 2)(d+ 1)

(
d∑

j=0

⟨ℓ, sj⟩2 +
∑
r ̸=j

2⟨ℓ, si⟩⟨ℓ, sj⟩

)
.

The result follows once we apply the appropriate linear form ℓi for each i (1 for the i-th
entry and 0 otherwise).

Corollary 8. It is immediately obvious that given P be a polytope that can be trian-
gulated into t simplices Λ1,Λ2, · · · ,Λt, where each simplex Λκ is defined by its vertices
s0κ, s1κ, · · · , sdκ. Then we have that:∫

P

x2
i dm =

t∑
κ=1

2× vol(Λκ)

(d+ 2)(d+ 1)

(
d∑

j=0

{sj}2i +
∑
r ̸=j

2{sj}i{sr}i

)
.

5 Linear Regression

5.1 Problem Setting

Linear regression models the relationship between multiple continuous independent variables
and a continuous dependent variable. Given n as the number of samples, k as the number
of features, we define the input data X ∈ Rn×k, outcome data y ∈ Rn, and β ∈ Rk as the
desired solution. The linear regression assumes the relationship y = X⊤β. The Ordinary
Least Squares (OLS) minimize the sum of squared residuals

min
β

∥y −Xβ∥22.

Incorporating regularization gives the following formulation, where λ is the regularization
strength usually found through cross-validation.

min
β

∥y −Xβ∥22 + λg(β).

When g(a) = ∥a∥22 and h(a) = ∥a∥22, we recover regularized least squares (RLS), or ridge
regression (Hoerl et al. 1970). Ridge regression is particularly useful to mitigate the problem
of multicollinearity, or highly correlated independent variables, in problems with a large
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number of parameters. It has also been shown that ridge regression provides a smaller
variance and mean square estimator (Kennedy 2003). Another frequently used regularization
approach is g(a) = ∥a∥22 and h(a) = ∥a∥1, where we recover the least absolute shrinkage and
selection operator, or lasso (R. Tibshirani 1996). It is widely believed that the use of lasso
can encourage sparsity in the coefficients, (i.e., only a small subset of features coefficients
are nonzero) (Natarajan 1995; Robert Tibshirani et al. 2005). Lasso is also computationally
efficient since there exist many efficient algorithms to solve it (Bento et al. 2018).

5.2 Taylor Expansion Representation

We use n-th order Taylor expansion of the loss function as a generalized method for eval-
uating the integration over different uncertainty sets. Specifically, we give the following
characterizations of the mean squared loss for linear regression.

Lemma 12. Let f(∆) = ∥y − (X +∆)β∥22, where X ∈ Rn×k the data matrix, y ∈ Rn the
response vector, β ∈ Rkthe coefficients, and ∆ ∈ Rn×k a perturbation of the data matrix.
The function f(∆) can be expressed exactly by its second-order Taylor expansion around
the zero matrices ∆ = 0 as follows:

f(∆) = ∥y −Xβ∥22 − 2(y −Xβ)⊤β⊤∆+ β⊤∆⊤∆β.

Proof. This conclusion follows naturally from Taylor expansion with respective first and
second derivatives. We also note that starting from the third derivative, the derivative
terms equal to 0 and vanish. However, Taylor expansion does not apply to general functions
of matrices trivially, so we derive below the exact formulation. To approximate a general
function F to the first order around some matrix ∆0, Taylor’s formula gives:

f(∆) = f(∆0) + df(∆0)(∆−∆0) +
1

2
d2f(∆0)(∆−∆0,∆−∆0)

We have the first term of: f(∆0) = ∥y −Xβ∥22.

To compute the second term df(∆0), where f(∆) = ⟨y − Xβ − ∆β,y − Xβ − ∆β⟩ we
use the generalized Leibniz rule and obtain:

df(∆0) = ⟨d(y −Xβ −∆β) (∆0),y−Xβ−∆0β⟩+⟨y−Xβ−∆0β, d(y −Xβ −∆β) (∆0)⟩.

Since the differential of a linear map is the linear map itself,

d(y −Xβ −∆β) (∆0) = −β,

and putting together,

df(∆0) = ⟨−β,y −Xβ −∆0β⟩+ ⟨y −Xβ −∆0β,−β⟩ = −2(y −Xβ −∆0β)⊤β⊤.

For the third term, similarly apply the Leibniz rule again, we have that

d2f(∆0) = −2⟨β,−β⟩.

With everything together and setting ∆0 = 0, we have the conclusion.
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Remark. Note that the conclusion could be easily obtained from standard linear algebra
expansions, we adopt the Taylor form to ensure its generalizability for other losses that do
not have inherent similarly convenient properties.

5.3 Equivalence with Linear Ridge Regression

Below we outline the main results that established the equivalence between robust linear re-
gression under averaged uncertainty sets with ridge regression under different uncertainty set
settings. We note that the different geometric structures of these uncertainty sets eventually
correspond to different strengths and structures of ridge regularization.

Theorem 6 (ℓp-norm induced ridge regression). Given a data matrix X ∈ Rn×k, where
n is the number of samples and k is the number of features and an outcome data vector
y ∈ Rn, data perturbation matrix ∆ ∈ Rn×k and β ∈ Rk, robust regression under averaged
uncertainty is equivalent with ridge regression,

minβ

(∫
U ∥y–(X +∆)β∥22 dU

)
= minβ ∥y–Xβ∥22 + λ∥β∥22.

a) For U = U1, the ellipsoidal uncertainty set defined in (1), λ = 1
k
,

b) For U = U2, the box uncertainty set defined in (2), λ = nρ2

3
,

c) For U = U3, the diamond uncertainty set defined in (3), λ = 2nρ2

(nk+2)(nk+1)
,

d) For U = U4, the budget uncertainty set defined in (4), λ = 2nρ2

(n+1)(n+2)
−n(ρ−Γ)n((n2+3n−2)Γ2+(4−2n)ρΓ)

(n+1)(n+2)((ρn−(ρ−Γ)n)
.

Proof. We first note that the following general setup follow for all norm-induced global
robustness uncertainty sets.

min
β

∫
U
∥y − (X +∆)β∥22 d∆

= min
β

(∫
U
∥y −Xβ∥22 d∆− 2(y −Xβ)⊤β

(∫
U
∆ d∆

)
+ β⊤

(∫
U
∆⊤∆ d∆

)
β

)
= min

β

(
vol(U)∥y −Xβ∥22 + β⊤

(∫
U
∆⊤∆ d∆

)
β

)
= min

β

(
∥y −Xβ∥22 +

(∫
U ∆⊤∆ d∆

)
vol(U)

β⊤β

)
= min

β

(
∥y −Xβ∥22 + λ∥β∥22

)
.

where the second step follows Corollary 2 since the ℓp norm-induced global robustness un-
certainty sets are symmetric around the origin.

For ellipsoidal uncertainty sets U1, given the volume as V (nk, ρ) and λ = V (nk,ρ)
k

.
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For box uncertainty sets U2, we have the volume of (2ρ)nk since the volume of a hypercube

with a dimension of nk and a side length of 2ρ is (2ρ)nk. It follows that λ = (2ρ)nkρ2n
3

k.

For diamond uncertainty set U3, given the volume vol(U3) =
(2ρ)nk
nk!

and λ = (2ρ)nk+1ρn
(nk+2)!

.

For the budget uncertainty set,

λ = f(n, k,Γ, ρ) =
2nρ2

(n+ 1)(n+ 2)
− n(ρ− Γ)n((n2 + 3n− 2)Γ2 + (4− 2n)ρΓ)

(n+ 1)(n+ 2)(ρn − (ρ− Γ)n)
.

Note that when constructing the budget uncertainty set, our calculation would only be
meaningful if

√
2/2ρ ≤ Γ ≤ ρ, since if Γ <

√
2/2ρ, we reduce this to the ∥x∥1 ≤ ρ case, and

if Γ > ρ, we reduce to the ∥x∥∞ ≤ Γ case. Thus, given Γ = kρ where k is the scaling factor,
the second term above can be simplified to the following:

nρ2(1− k)n((n2 + 3n− 2)k2 + (4− 2n)k)

(n+ 2)(n+ 1)(1− (1− k)n)
.

Observe that this term is dominated by the term of (1−k)n

1−(1−k)n
, given reasonable values of k

and sufficient sample size (larger than 100), this term will converge to 0 and not dominate
the overall constant.

We further extend this result to Schatten-norm-induced uncertainty sets and establish similar
equivalence.

Theorem 7 (Schatten-norm induced ridge regression). Given a data matrix X ∈ Rn×n,
where n is the number of samples and k the number of features and an outcome data vector
y ∈ Rn, data perturbation matrix ∆ ∈ Rn×n, β ∈ Rn, and USp as the uncertainty set defined
by the Schatten p-norm ball in (5). As the dimension of norm ball n → ∞,

min
β

(∫
USp

∥y–(X +∆)β∥22 d∆

)
= min

β
∥y–Xβ∥22 +

√
2πe3/2σ(p/2)Mp(x

2
1)

n
1
2
+ 2

pMp(1)
∥β∥22,

where,

σ(p) =
1

4

(
2
√
πΓ(p+ 1)√
eΓ(p+ 1

2
)

)1/p

,

and Mp is the measure with density

fn,p(x1, . . . , xn) = 1{x1≥0,...,xn≥0}fn(x)e
−

∑n
i=1 x

p
i ,

with respect to the Lebesgue measure on Rn.
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Proof. This is a direct application of the volume of the respectively defined Schatten norm
ball as well as the result on isotropic constant.

Lastly, we show that the equivalence between ridge regression and robust optimization under
averaged uncertainty no longer holds under non-symmetric, general polytopal uncertainty
sets.

Theorem 8 (Non-symmetric polytopal protection). Given a data matrix X ∈ Rn×n, where
n is the number of samples and k the number of features and an outcome data vector y ∈ Rn,
data perturbation matrix ∆ ∈ Rn×k, β ∈ Rk and UP as the uncertainty set defined by the
polytope P which can be triangulated into κ simplices Λ1, · · · ,Λκ defined in (6).

min
β

∫
UP

∥y–(X +∆)β∥22 d∆

=min
β

vol(UP )∥y −Xβ∥22 + 2(y −Xβ)⊤β

(
m∑

κ=1

volΛκ

d+ 1

d∑
j=0

{sj}i

)

+

(
t∑

κ=1

2× volΛκ

(d+ 2)(d+ 1)

(
d∑

j=1

{sj}2i +
∑
j ̸=r

2{sj}i{sr}i

))
∥β∥22.

Proof.

min
β

∫
UP

∥y − (X +∆)β∥22 d∆

= min
β

(∫
UP

∥y −Xβ∥22 d∆− 2(y −Xβ)⊤β

(∫
UP

∆ d∆

)
+ β⊤

(∫
UP

∆⊤∆ d∆

)
β

)
.

We then apply Corollary 6 and 8 on the last equation and arrive at the conclusion.

These results establish the important connection between existing robust optimization and
least squares ridge regression, where it is the first attempt to bridge a theoretical justification
from this perspective for ridge regression. Note that across all symmetric uncertainty sets we
consider, the final characterizations all arrive at ridge regression, but with different leading
regularization strengths. This implies that ridge regression is a general regularization method
that protects against global perturbations of different noise structures defined under sym-
metric settings. In addition, we also note that in the more general, non-symmetric, polytopal
uncertainty set setting, we no longer recover ridge regression, but with close approximation
that accounts for the additional perturbations along the feature-wise axes.

20



6 Computational Results

In this section, we study the performance of averaged uncertainty robust regression (AUR)
against worst-case uncertainty robust regression (WUR) using both synthetic and real-world
data and found that AUR outperforms WUR across all datasets. All experiments are run
using Gurobi 0.11.5, Julia 1.9.3, and Python 3.10.6 using a Mac Intel i7 core. The Homoge-
nous Barrier algorithm was used for the optimization formulation to avoid numerical issues.
Our codebase is publicly available for those interested in reproducing results presented in
this paper (Bertsimas and Ma 2023).

6.1 Computational Experiment Set-up

The main goal of the experiment is to compare AUR against WUR, defined as follows:

• Worst-case uncertainty robust regression (WUR): min
β

∥y −Xβ∥2 + λ∥β∥2,

• Averaged uncertainty robust regression (AUR): min
β

∥y −Xβ∥22 + λ∥β∥22.

An important remark lies in the two approaches’ different objective function formulations.
This could cause inconsistencies if we abide by their original forms during the selection of
regularization strength λ. To avoid this issue, we instead apply mean squared error (MSE)
for both formulations. To select the regularization strength, we adopt analytical formulas
previously derived, or the optimal value selected by cross-validation (CV), which retrieves
the best performance on the validation loss. The CV grids are defined by choice of λ that
ranges from 0 to 1 with 0.05 increments for all experiments to ensure a fine-grain grid for
comparison.

6.2 Real-World Data

We selected ten publicly available UCI regression datasets (Dua et al. 2017) to analyze the
performance of AUR. When missing data is present in the original data, we drop the entire
sample. If a feature contains more than 20% missing values, we drop this feature. We also
pre-process the datasets by removing features that do not contain useful information. The
final dataset is then standardized using min-max scaling. The information on the datasets
is summarized in Table 1. To simulate different real-world noises, we added perturbations
generated using the hit-and-run (Zabinsky 2008) method from the ellipsoidal, box, diamond,
and budget uncertainty sets with values of ρ ∈ [0.001, 0.01, 0.05, 0.1, 0.2, 0.3]. For each
dataset and each perturbation strength ρ, 10 perturbations are generated using different
random seeds to ensure our results account for a diverse perturbation of noise under the
same condition. We then split each dataset into 80/20 training and testing sets and applied
AUR and WUR respectively to study their out-of-sample MSE performances. Overall, we
conducted 2400 experiments that vary across 4 of the ℓp norm induced uncertainty sets, 10
datasets, 6 perturbation strengths, and 10 perturbation randomness.
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Dataset Name Number of Samples Number of Features
Abalone 4177 9

Auto-MPG 398 8
Automobile 193 25

Breast Cancer Wisconsin 194 34
Computer Hardware 209 9

Concrete 1030 9
Wine Quality (red) 1599 12
Wine Quality (white) 4898 12
Energy Efficiency 768 9

Synchronous Machine 557 5

Table 1: UCI datasets used in real-world experiments, where sample sizes and feature sizes
range different scales.

6.3 Performance on Real World Data

Below we report the MSE of AUR over WUR on the real-world datasets over different
uncertainty sets in Figure 1. We observe that across all different perturbation levels, AUR
outperforms WUR by 0.4% - 0.9% on average, with improvements increasing as perturbation
increases. This result confirms our belief that AUR is able to protect against noise more
holistically than traditional WUR, and can be especially useful for real-world datasets when
there is strong noise perturbation. We note an exception of the box uncertainty set, which
decreases as perturbation increases. We argue that this is because box uncertainty set by
nature protects against worst-case global perturbation of every data entry, and is inherently
an over-protection. We obtain high λ values as the size of the sample size grows, which
over-regularizes the training and attributes to this behavior.

Another important observation is the advantage of using regularization strengths obtained
by Theorem 6 in comparison to those obtained by CV. As seen in Figure 1, we achieve a
0.6-0.8% MSE improvement. Their improvements are relatively equivalent across different
perturbation levels across budget, diamond, and ellipsoidal uncertainty sets, confirming a
consistent advantage.

Besides the performance improvement offered by using the regularization strengths computed
according to Theorem 6, we also observe that CV is susceptible to the randomness of the
training procedure when choosing the optimal regularization strength. Given the same UCI
dataset as well as the same uncertainty set, we expect to see the same regularization strengths
selected as they protect against the same set of noises. However, we show in Table 2 that
the number of different regularization strengths selected for the same dataset can be as large
as 6 using CV, whereas we only need to consider one regularization strength using Theorem
6. This implies that CV is not the most reliable methodology for computing regularization
strengths, as it provides unstable selections as we are exposed to randomness. We note that
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Figure 1: Percentage of AUR over WUR across 10 UCI datasets, where the orange line is
the trend line for AUC improvements from Theorem 6 computed regularization strength.

# of Different λ Box Budget Diamond Ellipsoidal
1 23.3% 100% 100% 80.0%
2 23.3% 0% 0% 15.0%
3 23.3% 0% 0% 3.33%
4 15.0% 0% 0% 1.67%
5 10.0% 0% 0% 0%
6 5.0% 0% 0% 0%

Table 2: Frequency of experiments that have different regularization strengths (λ) obtained
with 10 different perturbation noise of the same UCI dataset with the same perturbation
strength. It demonstrates the instability of CV regularization strength selection

budget and diamond uncertainty sets give consistent CV-selected regularization strengths,
and this is because in practice, when the dimension of the problem becomes large, in order
for the perturbation to be contained within the diamond and budget uncertainty sets, the
scale of noise becomes smaller than those contained in ellipsoidal or box uncertainty sets,
and randomness has a diminished effect on the regularization strength selection.
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6.4 Synthetic Data

We study more closely the behavior of AUR in comparison to WUR as the number of
informative features and the number of samples vary using synthetic datasets. We generated
synthetic regression datasets where the regression target is a random linear combination of
random features that are well-defined, centered, and unbiased. We vary the number of data
samples (300, 400, 500, 600, 700, 900), and a number of informative features (3, 4, 5, 6,
7, 8, 10) to study the effects of these factors on the performance. Additive perturbations
are then generated using the hit-and-run method to simulate noise from the ellipsoidal, box,
diamond, and budget uncertainty sets.

Specifically, we test the noise level of the uncertainty set of ρ ∈ [0.001, 0.01, 0.05, 0.1, 0.2, 0.3],
where for the budget uncertainty set, we choose Γ = 0.8ρ. For our samples to truly reflect the
monotonically increasing perturbation level, we enforce that samples generated from a higher
perturbation level must not reside in the space from the previously smaller perturbation level
(i.e., generated perturbation matrix from ρ = 0.3 cannot reside in the uncertainty set defined
by ρ = 0.2). To achieve stability of our results, we repeated each experiment 20 times with
a different random seed.

6.5 Performance on Synthetic Data

We observe that AUR improves over WUR across all uncertainty sets, sample sizes, as well
as number of informative features. This is in accordance with what we have seen in the
real-world datasets. Importantly, the improvements across all uncertainty sets decrease as
the number of samples increases, and as the number of informative features increases as
shown in Figure 2. This observation implies that AUR’s advantage diminishes as the scale
and complexity of the regression problem increases.
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Figure 2: Percentage of improvement of AUR from WUR across different synthetic datasets
with different sample sizes and different informative feature sizes. The orange line indicates
the trend of improvement, where it monotonically decreases as the sample size increases, and
as the number of informative features increases.

7 Conclusions

In this work, we have re-considered the nominal robust regression formulation with the
worst-case uncertainty set and instead studied the characterizations of the robust regression
formulation with averaged uncertainty set. We found that this new formulation establishes
the missing connection between the mean squared regression with existing robust regression
formulations. More concretely, we found that over all symmetric uncertainty sets we have
studied, including the ellipsoidal, box, diamond, budget, and Schatten norm uncertainty sets,
the averaged uncertainty formulation is equivalent to the mean squared regression with ridge
regularization. We thus established a natural, theoretical connection to the ridge regression
under a robust optimization lens. We also show that in the more general, non-symmetric
settings of a polytope uncertainty set, this exact equivalence with ridge regression no longer
holds.

We also justify this formulation as the proper model to solve by evaluating our method-
ology on both synthetic and real-world datasets and found that empirically, the averaged
uncertainty set approach outperforms the worst-case uncertainty case out-of-sample in all ex-
periments. An important observation also lies in the behaviors of the regularization strength
selection process, where we observe that the averaged uncertainty approach requires a larger
value. However, with adjusted step sizes, the two methods have similar run times in practice.

Finally, it should be noted that this new formulation is simple and follows naturally from
existing robust optimization formulations and thus can be applied easily to other frameworks.
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We expect a similar formulation can also be applied to more general settings beyond linear
regression, such as matrix regression, robust optimization with solution constraints, as well
as discrete robust optimization.

26



References

Baldoni, Velleda et al. (2011). “How to integrate a polynomial over a simplex”. In: Mathe-
matics of Computation 80.273, pp. 297–325.

Ben-Tal, Aharon, Laurent El Ghaoui, and Arkadi Nemirovski (2009). Robust Optimization.
Vol. 28. Princeton Series in Applied Mathematics. Princeton University Press, pp. 1–542.
isbn: 978-1-4008-3105-0.

Ben-Tal, Aharon, Elad Hazan, et al. (June 2015). “Oracle-Based Robust Optimization via
Online Learning”. In: Operations Research 63.3, pp. 628–638.

Bento, Jose, Ralph Furmaniak, and Surjyendu Ray (Oct. 2018). “On the Complexity of the
Weighted Fused Lasso”. In: IEEE Signal Processing Letters 25.10, pp. 1595–1599.

Bertsimas, Dimitris, David B. Brown, and Constantine Caramanis (Jan. 2011). “Theory and
Applications of Robust Optimization”. In: SIAM Review 53.3, pp. 464–501.

Bertsimas, Dimitris and Martin S. Copenhaver (2014). Characterization of the equivalence
of robustification and regularization in linear and matrix regression.

Bertsimas, Dimitris, Jack Dunn, et al. (2019). “Robust classification”. In: INFORMS Journal
on Optimization 1.1, pp. 2–34.

Bertsimas, Dimitris, Vishal Gupta, and Nathan Kallus (2018). “Data-driven robust opti-
mization”. In: Mathematical Programming 167, pp. 235–292.

Bertsimas, Dimitris and Yu Ma (Nov. 2023). Averaged Robust Regression. url: https :
//github.com/yuma-sudo/RO-average.

Bertsimas, Dimitris and Melvyn Sim (2004). “The price of robustness”. In: Operations re-
search 52.1, pp. 35–53.

Bishop, Chris M. (Jan. 1995). “Training with Noise is Equivalent to Tikhonov Regulariza-
tion”. In: Neural Computation 7.1, pp. 108–116. issn: 1530-888X.

Blanchet, Jose, Yang Kang, and Karthyek Murthy (2019). “Robust Wasserstein profile in-
ference and applications to machine learning”. In: Journal of Applied Probability 56.3,
pp. 830–857.
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Appendix

A Proof for Lemma 6

∫
U1

∆T∆ dU1 =

∫
U1


aT
1a1 aT

1a2 · · · aT
1ak

aT
2a1 aT

2a2 · · · aT
2ak

· · · · · · · · · · · ·
aT
ka1 aT

ka2 · · · aT
kak

 dU1.

All entries of this matrix except those on the diagonal are polynomials of elements of ∆ with
exponent 1. Thus, using Lemma ??, this expression can be simplified to be the following:

∫
U1

∆T∆ dU1 =

∫
U1


aT
1a1 0 · · · 0
0 aT

2a2 · · · 0
· · · · · · · · · · · ·
0 0 · · · aT

kak

 dU1.

By symmetry, we also have that
∫
U1
aT
1a1 dU1 =

∫
U1
aT
2a2 dU1 = · · · =

∫
U1
aT
kak dU1 =

V (nk,ρ)
k

, and thus

∫
U1

∆T∆ dU1 =


V (nk,ρ)

k
0 · · · 0

0 V (nk,ρ)
k

· · · 0
· · · · · · · · · · · ·
0 0 · · · V (nk,ρ)

k

 .

B Proof for Lemma 7

We will first show that given x ∈ Rn, and xi being a component of the vector x, we have
the following: ∫

U2

x2
i dU2 =

(2ρ)nρ

3

Without loss of generality, we consider xi = xn.∫
U2

x2
n dU2∫

∥x∥F∞≤ρ

x2
n dU2

=

∫ ρ

−ρ

· · ·
∫ ρ

−ρ︸ ︷︷ ︸
n−1

∫ ρ

−ρ

x2
n dxn dx1 · · · dxn−1︸ ︷︷ ︸

n−1
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=

∫ ρ

−ρ

· · ·
∫ ρ

−ρ︸ ︷︷ ︸
n−1

2ρ3

3
dx1 · · · dxn−1︸ ︷︷ ︸

n−1

= (2ρ)n−12ρ
3

3

=
(2ρ)nρ2

3
.

Applied in the original lemma setting, we have:

∫
U2

∆T∆ dU2 =

∫
U2


aT
1a1 aT

1a2 · · · aT
1ak

aT
2a1 aT

2a2 · · · aT
2ak

· · · · · · · · · · · ·
aT
ka1 aT

ka2 · · · aT
kak

 dU2

where first for the off-diagnoal entries,∫
U2

aT
i aj dU2

=

∫
U2

n∑
ℓ=1

aiℓajℓ dU2

=
n∑

ℓ=1

∫
U2

aiℓajℓ dU2 = 0

for the diagonal entries, ∫
U2

aT
i ai dU2

=

∫
U2

n∑
ℓ=1

a2iℓ dU2

=
n∑

ℓ=1

∫
U2

a2iℓ dU2

=
n∑

ℓ=1

(2ρ)nkρ2

3

=
(2ρ)nkρ2n

3

C Proof for Lemma 8

Let Vn−1 be the volume of the diamond uncertainty set U3 in the (n− 1)-th dimension. Let
yi =

xi

ρ−xn
, and zi = ρyi, without loss of generality, consider xi = xn.∫

U3

x2
n dU3
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∫
∥x∥F1

≤ρ

x2
n dU3

= 2n
∫
x1+···+xn≤ρ,xi≥0 ∀i

x2
n dU3

= 2n
∫ ρ

0

(∫
x1+···+xn−1≤ρ−xn,xi≥0

1 dx1 · · · dxn−1

)
x2
n dxn)

= 2n
∫ ρ

0

(∫
y1+···+yn−1≤1,yi≥0

(ρ− xn)
n−1 dy1 · · · dyn−1

)
x2
n dxn)

= 2n
∫ ρ

0

(∫
z1+···+zn−1≤ρ,zi≥0

(ρ− xn)
n−1

ρn−1
dz1 · · · dzn−1

)
x2
n dxn)

= 2n
∫ ρ

0

(∫
z1+···+zn−1≤ρ,zi≥0

(1− xn

ρ
)n−1 dz1 · · · dzn−1

)
x2
n dxn)

= 2n
∫ ρ

0

(1− xn

ρ
)n−1Vn−1

2n−1
x2
n dxn

= 2Vn−1

∫ ρ

0

(1− xn

ρ
)n−1x2

n dxn

= 2
(2ρ)n−1

(n− 1)!

2ρ3

n(n+ 1)(n+ 2)

=
(2ρ)n+1ρ

(n+ 2)!
.

Using the conclusion above, we have the following:

∫
U3

∆T∆ dU3 =

∫
U3


aT
1a1 aT

1a2 · · · aT
1ak

aT
2a1 aT

2a2 · · · aT
2ak

· · · · · · · · · · · ·
aT
ka1 aT

ka2 · · · aT
kak

 dU3

We observe that the elements off-diagonal can all be expressed as∫
U3

aT
i aj dU3

=

∫
U3

n∑
ℓ=1

aiℓajℓ dU3

=
n∑

ℓ=1

∫
U3

aiℓajℓ dU3

= 0

for the terms in the diagonal, we have:∫
U3

aT
i ai dU3
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=

∫
U3

n∑
ℓ=1

a2iℓ dU3

=
n∑

ℓ=1

∫
U3

a2iℓ dU3

=
(2ρ)nk+1ρn

(nk + 2)!

D Proof for Lemma 9

Without loss of generality, we compute the case of xi = xn. If we assume that all xi ≥ 0,
then depending on the value of xn, there can be two cases where

x1 + · · ·+ xn ≤ ρ, xi ≤ Γ ∀i ∈ [1 : n]

{
0 ≤ xn ≤ ρ− Γ, Case 1, denote as region An

ρ− Γ ≤ xn ≤ Γ, Case 2, denote as region Bn

In Case 1, where yi =
xi

ρ−xn
, zi = ρyi, and Vn−1 is the volume defined by Lemma ??,∫

U4

x2
n dAn∫

∥x∥1≤ρ,∥x∥∞≤Γ,0≤xn≤ρ−Γ

x2
n dAn

= 2n
∫ ρ−Γ

0

∫
x1+···+xn≤ρ,0≤xi≤Γ ∀i∈[1:n−1]

x2
n dAn−1

= 2n
∫ ρ−Γ

0

∫
x1+···+xn−1≤ρ−xn,0≤xi≤Γ ∀i∈[1:n−1]

x2
n dx1 · · · dxn−1

= 2n
∫ ρ−Γ

0

∫
y1+···+yn−1≤1,0≤yi≤ Γ

ρ−xn
∀i∈[1:n−1]

(ρ− xn)
n−1x2

ndy1 · · · dyn−1

= 2n
∫ ρ−Γ

0

∫
z1+···+zn−1≤1,0≤zi≤ ρΓ

ρ−xn
∀i∈[1:n−1]

(ρ− xn)
n−1x2

n

ρn−1
dz1 · · · dzn−1

= 2n
∫ ρ−Γ

0

(ρ− xn)
n−1x2

n

ρn−1

Vn−1

2n−1
dxn

= 2

∫ ρ−Γ

0

(ρ− xn)
n−1x2

n

ρn−1

(2ρ)n − (n− 1)(2(ρ− ρΓ
ρ−xn

))n−1

(n− 1)!
dxn

=
2n

(n− 1)!

∫ ρ−Γ

0

(ρ− xn)
n−1x2

n

ρn−1
ρn−1

(
1− (n− 1)(

ρ− Γ− xn

ρ− xn

)n−1

)
dxn

=
2n

(n− 1)!

∫ ρ−Γ

0

(ρ− xn)
n−1x2

n

(ρ− xn)
n−1 − (n− 1)(ρ− Γ− xn)

n−1

(ρ− xn)n−1
dxn
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=
2n

(n− 1)!

∫ ρ−Γ

0

(ρ− xn)
n−1x2

n − (n− 1)(ρ− Γ− xn)
n−1x2

n dxn

=
2n

(n+ 2)!
(Γn((4n2 + 2n)ρΓ− (n2 + n)Γ2 − (n2 + 3n+ 2)ρ2)

+ 2ρn+2 + (ρ− Γ)n((2− 2n)Γ2 + (4n− 4)ρΓ + (2− 2n)ρ2))

In Case 2, since we have ρ − Γ ≤ xn ≤ Γ, we can rewrite x1 + · · · + xn−1 ≤ ρ − xn as
x1+ · · ·+xn−1 ≤ Γ. This implies that in case 2, xi ≤ Γ ∀i ∈ [1 : n−1] will be automatically
satisfied. We thus instead are dealing with the problem of x1+· · ·+xn−1 ≤ ρ−xn, xi ≥ 0. We
recognize that this is exactly the diamond uncertainty set case. Thus we have the following:∫

U4

x2
n dBn∫

∥x∥1≤ρ,∥x∥∞≤Γ,ρ−Γ≤xn≤Γ

x2
n dBn

= 2n
∫ Γ

ρ−Γ

∫
x1+···+xn≤ρ,xi≥0, ∀i∈[1:n−1]

x2
n dBn−1

= 2n
∫ Γ

ρ−Γ

(
1− xn

ρ

)n−1
Vn−1

2n−1
x2
n dxn

= 2

∫ Γ

ρ−Γ

(
1− xn

ρ

)n−1
(2ρ)n−1

(n− 1)!
x2
n dxn

=
2n

(n− 1)!

∫ Γ

ρ−Γ

(ρ− xn)
n−1x2

n dxn

=
2n

(n+ 2)!
(Γn((−2n2 − 4n)ρΓ + (n2 + n)Γ2 + (n2 + 3n+ 2)ρ2)+

(ρ− Γ)n((−n2 − n)Γ2 − 2nρΓ− 2ρ2)).

Putting everything together, we have that,∫
∥x∥1≤ρ,∥x∥∞≤Γ

x2
n dU4

=

∫
∥x∥1≤ρ,∥x∥∞≤Γ,0≤xn≤ρ−Γ

x2
n dAn +

∫
∥x∥1≤ρ,∥x∥∞≤Γ,ρ−Γ≤xn≤Γ

x2
n dBn

=
2n

(n+ 2)!
(2ρn+2 − (ρ− Γ)n((n2 + 3n− 2)Γ2 + (4− 2n)ρΓ + 2nρ2)

=
2ρ2

(n+ 1)(n+ 2)

(2ρ)n − n(2(ρ− Γ))n

n!
− (2(ρ− Γ))n

n!

(n2 + 3n− 2)Γ2 + (4− 2n)ρΓ

(n+ 1)(n+ 2)
.
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