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Abstract

Bilevel optimization has gained significant attention in recent years due to its broad applica-
tions in machine learning. This paper focuses on bilevel optimization in decentralized networks
and proposes a novel single-loop algorithm for solving decentralized bilevel optimization with a
strongly convex lower-level problem. Our approach is a fully single-loop method that approxi-
mates the hypergradient using only two matrix-vector multiplications per iteration. Importantly,
our algorithm does not require any gradient heterogeneity assumption, distinguishing it from
existing methods for decentralized bilevel optimization and federated bilevel optimization. Our
analysis demonstrates that the proposed algorithm achieves the best-known convergence rate for
bilevel optimization algorithms. We also present experimental results on hyperparameter opti-
mization problems using both synthetic and MNIST datasets, which demonstrate the efficiency
of our proposed algorithm.

1 Introduction
Bilevel optimization (BO) has received increasing attention in recent studies due to its wide
applications in machine learning, including but not limited to hyperparameter optimization [27, 10],
meta learning [10, 30, 16] and adversarial training [2, 33, 37]. A generic BO takes the form

min
x∈Rp

Φ(x) = F (x, y∗(x)), s.t. y∗(x) = arg min
y∈Rq

f(x, y). (1)

Throughout this paper, we assume that the lower-level (LL) objective function f is twice continuously
differentiable and strongly convex with respect to y for any fixed x. Problem (1) aims at minimizing
the upper-level (UL) function F with respect to x with y being the optimal solution of the LL
problem for fixed x. Algorithms for solving BO (1) have been studied extensively. When the LL
problem is strongly convex with respect to y so that it admits unique solution for fixed x, a natural
idea to solve (1) is to apply gradient descent for the UL problem. Under the assumption that F is
smooth, the gradient descent method for solving (1) updates the iterate as follows:

xk+1 := xk − τx,k∇Φ(xk),

where τx,k > 0 is a step size, and the hypergradient ∇Φ(x) is given by

∇Φ(x) := ∇1F (x, y∗(x))−∇2
12f(x, y∗(x))[∇2

22f(x, y∗(x))]−1∇2F (x, y∗(x)). (2)
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Two challenges arise from computing the hypergradient in (2): (i) how to efficiently (approximately)
compute y∗(xk), which requires solving the LL problem for given xk; and (ii) how to deal with the
matrix inversion, or equivalently, solve the linear system in (2). Different approaches addressing
these two issues lead to different algorithms for solving (1). Let K and T be given positive integers.
A basic algorithm along this line for solving (1) updates the iterates as follows:

for k = 0, 1, . . . ,K − 1
yk,0 = yk−1,T

for t = 0, 1, . . . , T − 1
yk,t+1 = yk,t − τy,k∇2f(xk, yk,t) (3)

end for
xk+1 = xk − τx,k∇̃Φ(xk)

end for

where ∇̃Φ(xk) is an approximation of the hypergradient ∇Φ(xk) and is defined as

∇̃Φ(xk) = ∇1F (xk, yk,T )−∇2
12f(xk, yk,T )[∇2

22f(xk, yk,T )]−1∇2F (xk, yk,T ). (4)

In practice, exactly calculating the Hessian inverse or solving the linear system of equations in (4)
is computationally inefficient, and hence two representative approaches to estimate (4) have been
proposed in the literature: iterative differentiation (ITD) and approximate implicit differentiation
(AID). Approaches related to ITD, such as those proposed in [10, 32, 16, 13, 18, 17], leverage
automatic differentiation to approximate the hypergradient using backpropagation. Approaches
related to AID, including those proposed in [27, 12, 13, 18, 17, 4, 14, 8], use various methods to
approximately evaluate [∇2

22f(xk, yk,T )]−1∇2F (xk, yk,T ) in (4). Some of these methods employ
gradient descent or conjugate gradient methods, while others use Neumann series to approximate the
Hessian inverse. Additionally, it should be noted that the update scheme (3) involves a double-loop
structure, where updating x constitutes the outer loop while updating y represents the inner loop.
However, this structure is not preferable in practical settings. Some works [4, 14] eliminate this
double-loop structure by taking T = 1 in (3), yet still require the use of the AID approach to
estimate (4). Furthermore, both AID and ITD approaches need another sub-loop to estimate (4),
which may involve Θ(logK) Hessian- and Jacobian-vector multiplications per iteration (see, e.g.,
[18, Theorem 2]).

Recently, Dagréou et al. [8] proposed a fully single-loop framework (named SOBA) for solving
(1) that only needs one matrix-vector multiplication to approximately solve the linear system of
equations in (4) in each iteration. The SOBA algorithm maintains three sequences and updates
them as

yk+1 = yk − βkDk
y , vk+1 = vk + ηkD

k
v , xk+1 = xk − αkDk

x, (5)

where αk, βk and ηk are stepsizes, Dk
y , D

k
v and Dk

x are respectively unbiased stochastic estimators of
dy(xk, yk), dv(xk, yk, vk) and dx(xk, yk, vk) defined as dy(x, y) = ∇2f(x, y),

dv(x, y, v) = ∇2F (x, y)−∇2
22f(x, y)v and dx(x, y, v) = ∇1F (x, y)−∇2

12f(x, y)v.

The SOBA framework [8] has been extended by [22] to handle the case where the LL problem is merely
convex. In this case, it is assumed that the sequence {vk} is bounded to ensure convergence. Other
notable BO algorithms include [19, 3] which first convert (1) to an equivalent constrained single-level
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problem, and then approximately solve this reformulated problem. While this approach circumvents
the need for computing the approximate hypergradient (4), it requires careful consideration when
handling the constraints. In [15], the authors suggest transforming BO into an unconstrained
constraint dissolving problem, enabling the direct application of efficient unconstrained optimization
methods to BO problems.

The main focus of this paper is to design a single-loop algorithm for decentralized bilevel
optimization (DBO). DBO considers BO in a decentralized network, where the data are naturally
distributed to n agents, each with access to their own local data and communication limited to their
immediate neighbors in the network. The n agents cooperatively solve the BO problem through local
updates and communications. Decentralized optimization has many benefits, such as enhancing
computational efficiency and sharing data while protecting data privacy [21]. The general form of
DBO is given below:

min
x∈Rp

Φ(x) = F (x, y∗(x)) := 1
n

n∑
i=1

Fi(x, y∗(x))

s.t. y∗(x) = arg min
y∈Rq

f(x, y) := 1
n

n∑
i=1

fi(x, y), (6)

where the i-th agent only has access to the data related to Fi and fi. To illustrate DBO, let us
consider the example of training a binary classification model using medical data from n different
hospitals. Suppose we want to train a logistic regression model that can predict whether a tumor is
benign or malignant based on medical data (such as MRI). The hospitals are local agents that cannot
share their data with other hospitals to preserve patients’ privacy. In this case, the hyperparameter
tuning problem can be formulated as follows, and we need to design a decentralized algorithm to
solve it in a distributed network:

min
λ

1
n

n∑
i=1

∑
(xe,ye)∈D′

i

ψ(yex>e ω∗(λ)), s.t. ω∗(λ) = arg min
ω

1
n

n∑
i=1

∑
(xe,ye)∈Di

ψ(yex>e ω) + λ‖ω‖22.

In this problem, ψ is a loss function used to train the logistic regression model. A commonly used
loss function is the logistic loss, given by ψ(t) = log(1 + e−t). The parameter vector ω comprises the
regression parameters, while λ represents the hyperparameter of the `2-norm-squared regularizer,
which is used to prevent overfitting. The training and testing datasets from hospital i are denoted
by Di and D′i, respectively.

The main challenge in designing a decentralized gradient method for solving the DBO (6) is
how to compute the hypergradient. Note that, the hypergradient ∇Φ(x) of (6) is given by

∇Φ(x) = 1
n

n∑
i=1
∇1Fi (x, y∗(x))

−
[

1
n

n∑
i=1
∇2

12fi (x, y∗(x))
] [

1
n

n∑
i=1
∇2

22fi (x, y∗(x))
]−1 1

n

n∑
i=1
∇2Fi (x, y∗(x)) . (7)

Calculation of the hypergradient (7) is not possible through a single agent, and instead requires
cooperative computation among all agents through communication. The first algorithm for solving
DBO (6) was due to [5], where the authors proposed the DSBO algorithm that incorporates a
decentralized algorithm to solve the linear system of equations in (7). The per-iteration complexity
of the DSBO algorithm was later improved by the same authors by employing the moving average
technique [6]. In [24], the authors proposed a stochastic linearized augmented Lagrangian method
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(SLAM) for solving DBO (6). Another type of distributed BO, Federated BO, has also been studied
in the literature. For example, Yang et al. [35] proposed the SimFBO algorithm for solving (6) but
in a federated network. All these algorithms for decentralized BO and federated BO require certain
gradient heterogeneity in order to guarantee the convergence or lower per-iteration complexity.
However, this kind of assumption is very strong and may not hold in certain scenarios (see, e.g.,
[28]). We list below the heterogeneity assumptions in these papers.

• (DSBO, [5, Assumption 2.4]) Assume the data associated with fi is independent and identically
distributed, i = 1, . . . , n.

• (MA-DSBO, [6, Assumption 2.3]) For all i, there exists a constant δ ≥ 0 such that∥∥∥∥∇2fi(x, y)− 1
n

∑n

j=1
∇2fj(x, y)

∥∥∥∥ ≤ δ, ∀x, y.

• (SLAM, [24, Theorem 1]) For all i, there exists a constant L ≥ 0 such that∥∥∥∥∇2
22fi(x, y)− 1

n

∑n

j=1
∇2

22fj(x, y′)
∥∥∥∥ ≤ L‖y − y′‖, ∀x, y, y′.

It should be noted that if y = y′, this assumption becomes ∇2
22fi(x, y) = 1

n

∑n
j=1∇2

22fj(x, y).

• (SimFBO, [35, Assumption 4]) There exist constants δ1 ≥ 1 and δ2 ≥ 0 such that

1
n

n∑
i=1
‖∇2fi(x, y)‖2 ≤ δ2

1

∥∥∥∥ 1
n

∑n

i=1
∇2fi(x, y)

∥∥∥∥2
+ δ2

2 , ∀x, y.

These assumptions indicate the level of similarity between the local and the global objective functions.
Our proposed algorithm, however, with the help of gradient tracking and projection technique, does
not need any heterogeneity assumptions like these. Here we emphasize that in this paper we focus
on deterministic DBO, because it is already very challenging. Extending the algorithms in this
paper to stochastic DBO is definitely another very important task, and we leave it to a future work.

Main contributions. Our contributions in this work lie in several folds. First, we propose a single-
loop algorithm for DBO, which has two main features: (i) it is of a single-loop structure; and (ii) it
only needs two matrix-vector multiplications in each iteration. Second, we provide a convergence
rate analysis for the proposed algorithm in the absence of any heterogeneity assumptions. This is in
sharp contrast to existing works on decentralized BO and federated BO. Third, we demonstrate the
great potential of our algorithm through numerical experiments on hyperparameter optimization.

Notation. We denote the optimal value of (6) as F ∗. The gradients of f with respect to x and y
are denoted as ∇1f(x, y) and ∇2f(x, y) respectively, while the Jacobian matrix of ∇1f and Hessian
matrix of f with respect to y are denoted as ∇2

12f(x, y) and ∇2
22f(x, y) respectively. If there is no

further specification, it is assumed that ‖ · ‖ denotes the `2 norm for vectors and the Frobenius
norm for matrices. The operator norm of a matrix Z is denoted by ‖Z‖op.

2 A Single-Loop Algorithm for Decentralized Bilevel Optimization
In this section, we propose our single-loop algorithm for DBO (SLDBO). Its convergence results are
given in Section 3. Before presenting the algorithm, we specify our assumptions.
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2.1 Assumptions

Throughout this paper, we adopt the following standard assumptions, which are commonly used in
existing literature on bilevel optimization and decentralized optimization. For instance, Assumption
2.1 has been employed in previous works such as [12, 18, 5, 6, 17], and Assumption 2.2 has been
utilized in [29, 25, 7, 5, 6, 24].

Assumption 2.1. The following assumptions hold for functions Fi and fi, i = 1, . . . , n, in (6).

(a) For any fixed x, fi(x, ·) is σ-strongly convex, with σ > 0 being a constant.

(b) The function Fi is Lipschitz continuous with a Lipschitz constant of LF,0, and its gradient ∇Fi
is also Lipschitz continuous with a Lipschitz constant of LF,1.

(c) The function fi is twice differentiable, with its gradient ∇fi being Lipschitz continuous and
having a Lipschitz constant of Lf,1. Moreover, the Hessian of fi, denoted by ∇2fi, is also
Lipschitz continuous with a Lipschitz constant of Lf,2.

Assumption 2.2 (Network topology). Suppose the communication network is represented by a
nonnegative weight matrix W = (wij) ∈ Rn×n, where wij = 0 if i 6= j and agents i and j are
not connected. Moreover, we assume that W is symmetric and doubly stochastic, i.e. W = WT

and W1n = 1n, where 1n is the all-one vector in Rn. Furthermore, the eigenvalues of W satisfy
1 = λ1 > λ2 ≥ · · · ≥ λn and ρ := max{|λ2|, |λn|} < 1.

2.2 The Proposed SLDBO Algorithm

Our goal is to extend the idea of SOBA [8] to handle the DBO (6), which presents a significant
challenge, especially without any heterogeneity assumptions. To tackle this, we propose to project
vk onto a Euclidean ball with a pre-defined radius. By combining this with the gradient tracking
technique, we successfully eliminate all heterogeneity assumptions.∗ Before introducing our SLDBO
algorithm, we define the following constants: rv := LF,0/σ, Lv := (LF,1 + Lf,2rv) (1 + Lf,1/σ) , L1 := LF,1 + Lf,2rv,

LΦ := LF,1 + 2LF,1Lf,1+Lf,2L
2
F,0

σ + 2Lf,1LF,0Lf,2+L2
f,1LF,1

σ2 + Lf,2L
2
f,1LF,0
σ3 ,

(8)

where constants such as σ, LF,0, LF,1, Lf,1, Lf,2 are defined in Assumptions 2.1. We also define
the projection operator Pr as Pr[z] := arg min‖z′‖≤r ‖z′ − z‖, which projects a given point onto the
Euclidean ball with radius r ≥ 0.

The details of our proposed algorithm, SLDBO, are presented in Algorithm 1, while the setup of
its initial points is shown in BOX 1.

∗Here we point out that shortly after we released the first version of our paper on arXiv, another work [36] was
uploaded to arxiv. The first version of [36] extended SOBA to solving the stochastic DBO, but it did not provide
any proof for the theoretical results. The second version of [36] appeared on arxiv a few months later where the
authors changed their algorithm in the first version to a different algorithm and a convergence analysis was provided
for this new algorithm. We note that this new algorithm incorporated a projection step similar to the one used in
our Algorithm 1, and this projection step was missing in the algorithm in the first version of [36]. This confirms the
crucial role of our projection technique for a provably convergent algorithm for DBO.
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• Initial points d−1
x,i = d−1

y,i = d−1
v,i = t−1

x,i = t−1
y,i = t−1

v,i = 0 (i = 1, 2, . . . , n).

• Initial points x−1
i = x−1

j , y−1
i = y−1

j , v−1
i = v−1

j , i, j ∈ {1, 2, . . . , n}, satisfying ‖v−1
i ‖ ≤ rv,

where rv is defined in (8). Note that the inequality can easily be satisfied by choosing v−1
i = 0,

for instance.

• Compute initial points x0
i = ∑n

j=1wij(x−1
j − αt

−1
x,j) = x−1

i ,

y0
i =

∑n

j=1
wij(y−1

j − βt
−1
y,j) = y−1

i and v0
i = Prv

[∑n

j=1
wij(v−1

j + ηt−1
v,j)
]

= v−1
i ,

for i = 1, 2, . . . , n, where α, β and η are constant stepsizes.

BOX 1: Initialization of Algorithm 1.

Algorithm 1 A Single-Loop Algorithm for DBO (SLDBO)
Input: Let K be the maximum iteration number and rv be defined in (8). Set initial points as
in BOX 1, as well as constant step sizes α, β, η > 0 satisfying the upper bounds in (62).
for k = 0, 1, . . . ,K − 1 do

for i = 1, . . . , n do

dky,i = ∇2fi(xki , yki ); (9)
dkv,i = ∇2Fi(xki , yki )−∇2

22fi(xki , yki )vki ; (10)
dkx,i = ∇1Fi(xki , yki )−∇2

12fi(xki , yki )vki ; (11)
tky,i =

∑n

j=1
wijt

k−1
y,j + dky,i − dk−1

y,i , yk+1
i =

∑n

j=1
wij(ykj − βtky,j); (12)

tkv,i =
∑n

j=1
wijt

k−1
v,j + dkv,i − dk−1

v,i , vk+1
i = Prv

[∑n

j=1
wij(vkj + ηtkv,j)

]
; (13)

tkx,i =
∑n

j=1
wijt

k−1
x,j + dkx,i − dk−1

x,i , xk+1
i =

∑n

j=1
wij(xkj − αtkx,j). (14)

end for
end for

Remark 2.1. Some remarks on the SLDBO (Algorithm 1) are in demand.

(i) The dky,i, dkv,i and dkx,i in (9)-(11) are the decentralized counterparts of Dk
y , Dk

v and Dk
x in

SOBA (5).

(ii) The updates for yk+1
i , vk+1

i , and xk+1
i outlined in (12)-(14) are based on similar ideas as in

SOBA (5). However, since we are now addressing the decentralized problem (6), we require
communication steps using the communication matrix W = (wij). As it is introduced in
Assumption 2.2, if wij > 0, agent j communicates with agent i, and the data communicated
is multiplied by the weight wij. If wij = 0, then there is no communication between the
two agents. In this regard, we employ the adapt-then-combine diffusion strategy, which has
been demonstrated to perform better in practical numerical experiments [31], rather than the
combine-then-adapt diffusion strategy.
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(iii) The updates for tky,i, tkv,i, and tkx,i described in (12)-(14) rely on the gradient tracking technique,
a commonly employed strategy in distributed optimization literature [23, 29, 25] and DBO liter-
ature [5, 6, 11]. Tracking sequences have been employed to eliminate heterogeneity assumptions
for single-level problems. However, for DBO problems, an additional projection step is required
in (13) to accomplish this task. Specifically, the projection step ensures that the sequence {vki }
remains bounded, which is crucial for bounding the terms dk+1

x,i −dkx,i and dk+1
v,i −dkv,i in gradient

tracking steps. We refer to Lemma A.5 in the Appendix for more discussions on this point.

3 Convergence Rate Results for SLDBO
In this section, we provide the convergence results for Algorithm 1. Firstly, we construct a Lyapunov
function, with the terms related to the consensus error. Then, by suitably selecting the parameters,
we establish a descent property of the Lyapunov function, which further results in the O(1/K)
convergence rate for some stationarity measure. Our primary convergence rate results for Algorithm
1 are summarized in Theorem 3.1.

Theorem 3.1. For any integer K ≥ 1, when 0 ≤ k ≤ K, define x̄k = 1
n

∑n
i=1 x

k
i , ȳk = 1

n

∑n
i=1 y

k
i

and v̄k = 1
n

∑n
i=1 v

k
i . The following convergence rate results hold for Algorithm 1.

(a) Stationarity. For any integer K ≥ 1, there holds min0≤k≤K−1 ‖∇Φ(x̄k)‖2 = O
(
1/K

)
.

(b) Consensus Error. For any integer K ≥ 1, we have min0≤k≤K−1
1
n

∑n
i=1 ‖xki−x̄k‖2 = O (1/K),

min0≤k≤K−1
1
n

∑n
i=1 ‖yki − ȳk‖2 = O (1/K) and min0≤k≤K−1

1
n

∑n
i=1 ‖vki − v̄k‖2 = O (1/K).

As per Part (a) of Theorem 3.1, the convergence rate for stationarity is sublinear, with a rate of
O(1/K). This result is in line with the findings presented in [17]. As far as we know, this is the
currently best-known convergence rate result for both BO and DBO algorithms. Furthermore, in each
iteration, our algorithm only requires Θ(1) communication rounds and computational complexity,
while other algorithms, such as those in [6, 24], involve computation of Θ(logK) matrix-vector
multiplications per iteration. This makes our algorithm computationally efficient and well-suited for
large-scale DBO problems.
Roadmap of the Proof. Here we briefly describe the roadmap of the proof of Theorem 3.1 and
the details are postponed to the Appendix. First, we define the Lyapunov function

Vk :=F (x̄k, y∗(x̄k))− F ∗ + a1‖ȳk − y∗(x̄k)‖2 + a2‖v̄k − v∗(x̄k)‖2

+ a3
n

n∑
i=1
‖xki − x̄k‖2 + a4

n

n∑
i=1
‖yki − ȳk‖2 + a5

n

n∑
i=1
‖vki − v̄k‖2

+ a6α
2

n

n∑
i=1
‖tkx,i − t̄kx‖2 + a7β

2

n

n∑
i=1
‖tky,i − t̄ky‖2 + a8η

2

n

n∑
i=1
‖tkv,i − t̄kv‖2, (15)

where we define v∗(x) :=
[
∇2

22f(x, y∗(x))
]−1∇2F (x, y∗(x)) and a1, a2, . . . , a8 are constants. We will

show that, for another set of positive constants A1, A2, . . . , A9, the following inequality holds:

Vk+1 − Vk ≤ −
α

2 ‖∇Φ(x̄k)‖2 − A1
α2 ‖x̄

k+1 − x̄k‖2 −A2‖ȳk − y∗(x̄k)‖2 −A3‖v̄k − v∗(x̄k)‖2

− A4
n

n∑
i=1
‖xki − x̄k‖2 −

A5
n

n∑
i=1
‖yki − ȳk‖2 −

A6
n

n∑
i=1
‖vki − v̄k‖2

− A7
n

n∑
i=1
‖tkx,i − t̄kx‖2 −

A8
n

n∑
i=1
‖tky,i − t̄ky‖2 −

A9
n

n∑
i=1
‖tkv,i − t̄kv‖2.
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By taking the telescoping sum of this inequality, we can complete the proof. The construction of
the Lyapunov function (15) and part of our proof were inspired by [22].

4 Numerical Experiments
In this section, we conduct experiments on hyperparameter optimization to evaluate the effectiveness
of our proposed SLDBO. To test the decentralized setting, we used a local device equipped with 8
cores, i.e., n = 8, and employed mpi4py [9] for parallel computing.

We adopted a ring topology to model the network for distributed computation, represented by a
weight matrix W = (wij) ∈ Rn×n given by: for i, j = 1, . . . , n, wij = w if i = j, wij = (1 − w)/2
if i = j ± 1 or (i, j) ∈ {(1, n), (n, 1)}, and wij = 0 otherwise, where w ∈ (0, 1) is a constant. We
take w = 0.4 in our experiments. In this ring topology, each agent has exactly two neighbours. Our
experiments involve both synthetic and real-world data.

4.1 Synthetic Data

We conduct logistic regression with `2 regularization. Let ψ(t) = log(1 + e−t) for t ∈ R and p be the
dimension of the data. Following [6], on agent i, i = 1, . . . , 8, we have

Fi(λ, ω) =
∑

(xe,ye)∈D′
i

ψ
(
yex
>
e ω
)
,

fi(λ, ω) =
∑

(xe,ye)∈Di

ψ
(
yex
>
e ω
)

+ 1
2

p∑
j=1

eλjω2
j ,

where Di and D′i denote the training and testing datasets on agent i, respectively. We aim to
identify the optimal hyperparameter λ such that ω∗(λ) represents the optimal model parameter
corresponding to λ. To achieve this, we utilize synthetic heterogeneous data, generated in the same
manner as in [6]. Specifically, the data distribution of xe on agent i follows a normal distribution
with mean 0 and variance i2 · r2, where r is the heterogeneity rate. For the response variable, we let
ye = x>e w + 0.1z, where z is sampled from the standard normal distribution.

Note that the parameter r controls the data heterogeneity rate. We first compare SLDBO with
MA-DSBO (Moving Average-DSBO) [6] under conditions of low data heterogeneity with r = 1 to
investigate the advantages of the single-loop structure of SLDBO. Full gradients are calculated in
both algorithms, and we use a training dataset and a testing dataset consisting of 20,000 samples.
In SLDBO, we set rv = 2, α = η = 0.025 and β = 0.06. The results under different data dimensions
are shown in Figures 1-2. MA-DSBO employs two key parameters, where T represents the number
of iterations performed in the inner loop, and N represents the number of Hessian-inverse-gradient
product iterations. Comparing SLDBO and MA-DSBO, it is evident that SLDBO is faster. In
particular, SLDBO is much faster than MA-DSBO with T = N = 2. Note that MA-DSBO requires
sufficient inner-loop iterations to accurately estimate the LL solution and the hypergradient. By
comparing the results in Figure 1 (p = 50) with those in Figure 2 (p = 200), we can observe that
SLDBO demonstrates a greater improvement in convergence rate as the dimension of the data
increases. SLDBO’s single-loop structure offers an advantage in terms of reducing the number
of required matrix-vector products, which proves to be particularly beneficial when dealing with
high-dimensional data.

Subsequently, we set different heterogeneity rates to highlight the exceptional performance of
SLDBO under conditions of high data heterogeneity, as well as the necessity of the projection
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Figure 1: Comparison between MA-DSBO and SLDBO on synthetic data (p = 50).
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Figure 2: Comparison between MA-DSBO and SLDBO on synthetic data (p = 200).

technique in SLDBO. The experimental results are illustrated in Figure 3. SLDBO (w/o proj.)
represents SLDBO without the projection step, this means replacing (13) with

tkv,i =
∑n

j=1
wijt

k−1
v,j + dkv,i − dk−1

v,i , vk+1
i =

∑n

j=1
wij(vkj + ηtkv,j).

As shown in the left plot of Figure 3, when data heterogeneity is low (r = 1), SLDBO with or without
projection performs similarly, indicating that the projection step is almost ineffective. However, it is
noteworthy that at a high level of data heterogeneity (r = 40, the right plot of Figure 3), SLDBO
without projection and MA-DSBO only achieve an accuracy of 0.5, while SLDBO (with projection)
achieves an accuracy of about 0.96. This demonstrates the critical role of the projection technique
in our proposed algorithm.

4.2 Real-World Data

Similar to the case of synthetic data, we define Di and D′i as the training and testing datasets,
respectively, for agent i. We next apply SLDBO to solve the following hyperparameter problem
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Figure 3: Comparison between MA-DSBO, SLDBO (w/o proj.) and SLDBO on synthetic data.
Dimension: p = 50. Heterogeneity rate: r = 1 (left), r = 40 (right).

using the MNIST database [20]:

Fi(λ, ω) = 1
|D′i|

∑
(xe,ye)∈D′

i

L(x>e ω, ye),

fi(λ, ω) = 1
|Di|

∑
(xe,ye)∈Di

L(x>e ω, ye) + 1
cp

c∑
i=1

p∑
j=1

eλjω2
ij ,

where ω ∈ Rc×p denotes the model parameter, L denotes the cross entropy loss, and |S| denotes the
cardinality of a set S. In our experiments, we set c and p to be 10 and 784, respectively. Here c
represents the number of classes and p represents the number of features. The training and testing
sets comprise 60,000 samples each, with balanced representation across all classes. To reduce the
computational overhead associated with estimating gradients from a large dataset in our SLDBO
algorithm, we adopt a technique inspired by stochastic gradient descent. Specifically, we extract a
representative subset of samples to estimate the gradients instead of using the entire dataset. For
both the SLDBO and MA-DSBO algorithms, we set the batch size on each computing agent to
1,000. In the case of SLDBO, the hyperparameters were set as follows: rv = 10, α = η = 0.024, and
β = 0.06. For MA-DSBO, we set T = N = 5. Figure 4 presents a comparison of the test loss, train
loss, and classification accuracy between the SLDBO and MA-DSBO algorithms. These results
demonstrate that our proposed algorithm SLDBO can efficiently solve this problem with improved
convergence rate and classification accuracy.

5 Concluding Remarks
This paper presents a novel single-loop algorithm, called SLDBO, for efficiently solving DBO problems
with a guaranteed sublinear convergence rate. Notably, SLDBO is the first single-loop algorithm
for DBO that operates without nested matrix-vector products (only two matrix-vector products
are required at each iteration) and does not make any assumptions related to data heterogeneity.
Our numerical experiments confirm the effectiveness of SLDBO. Nevertheless, we acknowledge
that computing the full gradient during practical applications can be time-consuming. Therefore,
it is worth investigating the extension of our algorithm to the stochastic setting. Additionally,
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Figure 4: Comparison of test loss, train loss, and classification accuracy between MA-DSBO and
SLDBO on real-world MNIST dataset.

techniques for saving communications, such as those used in E-AiPOD [34], could be integrated into
our algorithm for decentralized settings. These topics are left for further investigation.
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A Proof of the Convergence Results
In this appendix, we provide the proof of our convergence results, i.e., Theorem 3.1. Assumption 2.1
and 2.2 are used throughout the proof.

A.1 Notation, Constants and Basic Lemmas

For the ease of presentation, we define some notation below.
x̄k := 1

n

∑n
i=1 x

k
i , ȳk := 1

n

∑n
i=1 y

k
i , v̄k := 1

n

∑n
i=1 v

k
i ,

d̄kx := 1
n

∑n
i=1 d

k
x,i, d̄ky := 1

n

∑n
i=1 d

k
y,i, d̄kv := 1

n

∑n
i=1 d

k
v,i,

t̄kx := 1
n

∑n
i=1 t

k
x,i, t̄ky := 1

n

∑n
i=1 t

k
y,i, t̄kv := 1

n

∑n
i=1 t

k
v,i.

(16)

Recall that rv is defined in (8). To assist in our proof, we now define some additional constants as
follows:

C1 := 3 max{(LF,1 + rvLf,2)2, L2
f,1}, C2 := L2

f,1. (17)

Before the proof, we present some useful lemmas. Among others, Lemma A.1 is a common result
in decentralized optimization, see, e.g., [28, Lemma 1]. For completeness, we provide the proof.

Lemma A.1. Consider the mixing matrix W = (wij) ∈ Rn×n defined in Assumption 2.2, for any
x1, . . . , xn ∈ Rd, let x̄ = 1

n

∑n
i=1 xi, we have

(a)
∑n
i=1

∥∥∑n
j=1wijxj

∥∥2 ≤
∑n
j=1 ‖xj‖

2.

(b)
∑n
i=1

∥∥∑n
j=1wij (xj − x̄)

∥∥2 ≤ ρ2∑n
i=1 ‖xi − x̄‖

2.

Proof. (a).
∑n
i=1 ‖

∑n
j=1wijxj‖2 ≤

∑n
i=1

∑n
j=1wij‖xj‖2 = ∑n

j=1
∑n
i=1wij‖xj‖2 = ∑n

j=1 ‖xj‖2,
where the inequality follows from the convexity of ‖ · ‖2 and the last equality is due to ∑n

i=1wij = 1.
(b). Define X = [x>1 ;x>2 ; . . . ;x>n ] ∈ Rn×d. Then, we have∥∥∥∥WX − 1

n
1n1>nX

∥∥∥∥ ≤ ∥∥∥∥W − 1
n

1n1>n
∥∥∥∥

op

∥∥∥∥X − 1
n

1n1>nX
∥∥∥∥ , (18)

where the inequality holds because
(
W − 1

n1n1>n
)

1
n1n1>nX = 0 by Assumption 2.2. Since W and

1
n1n1>n are both symmetric and commute with each other, they are simultaneously diagonalizable,
i.e., there exists an orthonormal matrix P such that

W = Pdiag(λ1, λ2, . . . , λn)P−1 and 1
n

1n1>n = Pdiag(1, 0, · · · , 0)P−1,
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where the eigenvalues of W satisfy 1 = λ1 > λ2 ≥ . . . ≥ λn and ρ = max{|λ2|, |λn|} < 1, as stated
in Assumption 2.2. Hence, it is easy to verify that ‖W − 1

n1n1>n ‖op = ‖diag(0, λ2, . . . , λn)‖op = ρ.
Moreover, we have∥∥∥∥WX − 1

n
1n1>nX

∥∥∥∥2
=
∥∥∥WX − 1nx̄

>
∥∥∥2

=
∑n

i=1

∥∥∥∥∑n

j=1
wij (xj − x̄)

∥∥∥∥2
(19)

and ∥∥∥∥X − 1
n

1n1>nX
∥∥∥∥2

=
∥∥∥X − 1nx̄

>
∥∥∥2

=
n∑
i=1
‖xi − x̄‖2 . (20)

The desired result follows by combining (18)-(20) and ‖W − 1
n1n1>n ‖op = ρ.

Lemma A.2 is adopted from Lemma 3.2 in [7], and it describes the relationship between consensus
error before and after projection. Recall that Pr[z] := argmin{z′:‖z′‖∈[0,r]}‖z′ − z‖.

Lemma A.2. For any x1, . . . , xn ∈ Rd, we have
n∑
i=1

∥∥∥∥Pr [xi]−
1
n

∑n

j=1
Pr [xj ]

∥∥∥∥2
≤

n∑
i=1

∥∥∥∥xi − 1
n

∑n

j=1
xj

∥∥∥∥2
.

Consider the function G(x) = ∑n
i=1 ‖Pr [xi]− x‖2, which is minimized by x = 1

n

∑n
i=1 Pr [xi].

Therefore, we have
n∑
i=1

∥∥∥∥Pr [xi]−
1
n

∑n

j=1
Pr [xj ]

∥∥∥∥2
≤

n∑
i=1

∥∥∥∥Pr [xi]− Pr
[ 1
n

∑n

j=1
xj

]∥∥∥∥2
≤

n∑
i=1

∥∥∥∥xi − 1
n

∑n

j=1
xj

∥∥∥∥2
,

where the last inequality holds because the projection operator is non-expansive.

A.2 Consensus Error of Algorithm 1

Recall that x̄k, ȳk, v̄k, d̄kx, d̄ky , d̄kv , t̄kx, t̄ky and t̄kv are defined in (16). In this section, we bound the
terms related to the consensus error in (15). We first prove some useful lemmas.
Lemma A.3. The sequence {vki } generated by Algorithm 1 satisfies

n∑
i=1
‖vk+1
i − v̄k+1‖2 ≤ ρ

n∑
i=1
‖vki − v̄k‖2 + ρ2η2

1− ρ

n∑
i=1
‖tkv,i − t̄kv‖2. (21)

Proof. In fact, we have
n∑
i=1
‖vk+1
i − v̄k+1‖2 =

n∑
i=1

∥∥∥∥∥Prv

[∑n

j=1
wij(vkj + ηtkv,j)

]
− 1
n

n∑
s=1
Prv

[∑n

j=1
wsj(vkj + ηtkv,j)

]∥∥∥∥∥
2

≤
n∑
i=1

∥∥∥∥∥∥
n∑
j=1

wij(vkj + ηtkv,j)−
1
n

n∑
s=1

n∑
j=1

wsj(vkj + ηtkv,j)

∥∥∥∥∥∥
2

≤
(

1 + 1− ρ
ρ

) n∑
i=1

∥∥∥∥∑n

j=1
wijv

k
j − v̄k

∥∥∥∥2
+
(

1 + ρ

1− ρ

)
η2

n∑
i=1

∥∥∥∥∑n

j=1
wijt

k
v,j − t̄kv

∥∥∥∥2

≤ ρ
n∑
i=1
‖vki − v̄k‖2 + ρ2η2

1− ρ

n∑
i=1
‖tkv,i − t̄kv‖2,

where the first inequality follows from Lemma A.2, the second follows from Cauchy-Schwartz
inequality and the notation defined in (16), the third follows from Lemma A.1.
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Remark A.1. By following similar deductions as in Lemma A.3, we can derive (details are omitted
to avoid redundancy)

n∑
i=1
‖xk+1

i − x̄k+1‖2 ≤ ρ
n∑
i=1
‖xki − x̄k‖2 + ρ2α2

1− ρ

n∑
i=1
‖tkx,i − t̄kx‖2, (22)

n∑
i=1
‖yk+1
i − ȳk+1‖2 ≤ ρ

n∑
i=1
‖yki − ȳk‖2 + ρ2β2

1− ρ

n∑
i=1
‖tky,i − t̄ky‖2. (23)

Lemma A.4. The sequences {tkx,i} and {dkx,i} generated by Algorithm 1 satisfy

n∑
i=1
‖tk+1
x,i − t̄

k+1
x ‖2 ≤ ρ

n∑
i=1
‖tkx,i − t̄kx‖2 + 1

1− ρ

n∑
i=1
‖dk+1

x,i − d
k
x,i‖2. (24)

Proof. From the update of xki and tkx,i in (14), we have t̄kx = t̄k−1
x + d̄kx − d̄k−1

x , t̄−1
x = d̄−1

x = 0 and
x̄k+1 = x̄k − αt̄kx, which implies (by induction)

t̄kx = d̄kx and x̄k+1 = x̄k − αd̄kx. (25)

Therefore, we have
n∑
i=1
‖tk+1
x,i − t̄

k+1
x ‖2 =

n∑
i=1

∥∥∥∥(∑n

j=1
wijt

k
x,j + dk+1

x,i − d
k
x,i − t̄kx

)
+
(
t̄kx − t̄k+1

x

)∥∥∥∥2

=
n∑
i=1

∥∥∥∥∑n

j=1
wijt

k
x,j + dk+1

x,i − d
k
x,i − t̄kx

∥∥∥∥2
+ 2

n∑
i=1

〈
t̄k+1
x,i − t̄

k
x, t̄

k
x − t̄k+1

x

〉
+

n∑
i=1
‖t̄kx − t̄k+1

x ‖2

=
n∑
i=1

∥∥∥∥∑n

j=1
wijt

k
x,j + dk+1

x,i − d
k
x,i − t̄kx

∥∥∥∥2
− n‖d̄kx − d̄k+1

x ‖2

≤
(

1 + 1− ρ
ρ

) n∑
i=1

∥∥∥∥∑n

j=1
wijt

k
x,j − t̄kx

∥∥∥∥2
+
(

1 + ρ

1− ρ

) n∑
i=1
‖dk+1

x,i − d
k
x,i‖2 − n‖d̄kx − d̄k+1

x ‖2

≤ ρ
n∑
i=1
‖tkx,i − t̄kx‖2 + 1

1− ρ

n∑
i=1
‖dk+1

x,i − d
k
x,i‖2,

where the first inequality is due to Cauchy-Schwartz inequality, and the second inequality follows
from Lemma A.1.

Remark A.2. The following inequalities can be derived by following similar steps as in Lemma
A.4:

n∑
i=1
‖tk+1
v,i − t̄

k+1
v ‖2 ≤ ρ

n∑
i=1
‖tkv,i − t̄kv‖2 + 1

1− ρ

n∑
i=1
‖dk+1

v,i − d
k
v,i‖2, (26)

n∑
i=1
‖tk+1
y,i − t̄

k+1
y ‖2 ≤ ρ

n∑
i=1
‖tky,i − t̄ky‖2 + 1

1− ρ

n∑
i=1
‖dk+1

y,i − d
k
y,i‖2. (27)

The details are omitted.
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Lemma A.5. The sequences {dkx,i}, {dkv,i} and {dky,i} generated by Algorithm 1 satisfy
n∑
i=1
‖dkx,i − dk−1

x,i ‖
2 ≤ C1

n∑
i=1

(
‖xki − xk−1

i ‖2 + ‖yki − yk−1
i ‖2 + ‖vki − vk−1

i ‖2
)
, (28)

n∑
i=1
‖dkv,i − dk−1

v,i ‖
2 ≤ C1

n∑
i=1

(
‖xki − xk−1

i ‖2 + ‖yki − yk−1
i ‖2 + ‖vki − vk−1

i ‖2
)
, (29)

n∑
i=1
‖dky,i − dk−1

y,i ‖
2 ≤ C2

n∑
i=1

(
‖xki − xk−1

i ‖2 + ‖yki − yk−1
i ‖2

)
, (30)

where C1 and C2 are defined in (17).
Proof. By the definition of dkx,i in (11), it follows that
n∑
i=1
‖dkx,i − dk−1

x,i ‖
2 ≤ 3

n∑
i=1
‖∇1Fi(xki , yki )−∇1Fi(xk−1

i , yk−1
i )‖2

+ 3
n∑
i=1
‖(∇2

12fi(xki , yki )−∇2
12fi(xk−1

i , yk−1
i ))vki ‖2 + 3

n∑
i=1
‖∇2

12fi(xk−1
i , yk−1

i )(vki − vk−1
i )‖2

≤ 3(LF,1 + rvLf,2)2
n∑
i=1
‖xki − xk−1

i ‖2 + 3(LF,1 + rvLf,2)2
n∑
i=1
‖yki − yk−1

i ‖2 + 3L2
f,1

n∑
i=1
‖vki − vk−1

i ‖2

≤ C1

n∑
i=1

(
‖xki − xk−1

i ‖2 + ‖yki − yk−1
i ‖2 + ‖vki − vk−1

i ‖2
)
.

Similarly, by the definition of dkv,i in (10), we can also derive
n∑
i=1
‖dkv,i − dk−1

v,i ‖
2 ≤ C1

n∑
i=1

(
‖xki − xk−1

i ‖2 + ‖yki − yk−1
i ‖2 + ‖vki − vk−1

i ‖2
)
.

Then by the definition of dky,i in (9), we obtain
n∑
i=1
‖dky,i − dk−1

y,i ‖
2 ≤

n∑
i=1
‖∇2f(xki , yki )−∇2f(xk−1

i , yk−1
i )‖2

≤ L2
f,1

n∑
i=1
‖xki − xk−1

i ‖2 + L2
f,1

n∑
i=1
‖yki − yk−1

i ‖2 = C2

n∑
i=1

(
‖xki − xk−1

i ‖2 + ‖yki − yk−1
i ‖2

)
,

which completes the proof.

Lemma A.6. The sequence {vki } generated by Algorithm 1 satisfies
n∑
i=1
‖vk+1
i − vki ‖2 ≤ 8

n∑
i=1
‖vki − v̄k‖2 + 4η2

n∑
i=1
‖tkv,i − t̄kv‖2 + 4nη2‖d̄kv‖2. (31)

Proof. Follow the update of vki in (13), we have
n∑
i=1
‖vk+1
i − vki ‖2 =

n∑
i=1
‖Prv

[∑n

j=1
wij(vkj + ηtkv,j)

]
− vki ‖2 ≤

n∑
i=1
‖
∑n

j=1
wij(vkj + ηtkv,j)− vki ‖2

≤ 4
n∑
i=1
‖
∑n

j=1
wijv

k
j − v̄k‖2 + 4

n∑
i=1
‖v̄k − vki ‖2 + 4η2

n∑
i=1
‖
∑n

j=1
wijt

k
v,j − t̄kv‖2 + 4η2

n∑
i=1
‖d̄kv‖2

≤ 8
n∑
i=1
‖vki − v̄k‖2 + 4η2

n∑
i=1
‖tkv,i − t̄kv‖2 + 4η2

n∑
i=1
‖d̄kv‖2,
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where the first inequality holds because the projection operator is non-expansive, and the third
inequality is due to Lemma A.1.

Remark A.3. Similarily, we can deduce the following inequalities, details are omitted to avoid
repetition.

n∑
i=1
‖xk+1

i − xki ‖2 ≤ 8
n∑
i=1
‖xki − x̄k‖2 + 4α2

n∑
i=1
‖tkx,i − t̄kx‖2 + 4nα2‖d̄kx‖2, (32)

n∑
i=1
‖yk+1
i − yki ‖2 ≤ 8

n∑
i=1
‖yki − ȳk‖2 + 4β2

n∑
i=1
‖tky,i − t̄ky‖2 + 4nβ2‖d̄ky‖2. (33)

Lemma A.7. The sequences {dky,i}, {dkv,i} generated by Algorithm 1 satisfy

‖d̄ky‖2 ≤
2L2

f,1
n

n∑
i=1

(
‖xki − x̄k‖2 + ‖yki − ȳk‖2

)
+ 2L2

f,1‖ȳk − y∗(x̄k)‖2, (34)

‖d̄kv‖2 ≤
5(Lf,2rv + LF,1)2

n

n∑
i=1

(
‖xki − x̄k‖2 + ‖yki − ȳk‖2

)
+

5L2
f,1
n

n∑
i=1
‖vki − v̄k‖2

+ 5(LF,1 + rvLf,2)2‖ȳk − y∗(x̄k)‖2 + 5L2
f,1‖v̄k − v∗(x̄k)‖2. (35)

Proof. For ∇2f(x̄k, y∗(x̄k)) = 0, by the definition of dky,i in (9), we obtain

‖d̄ky‖2 ≤
2
n

n∑
i=1
‖∇2fi(xki , yki )−∇2fi(x̄k, ȳk)‖2 + 2‖∇2f(x̄k, ȳk)−∇2f(x̄k, y∗(x̄k))‖2

≤
2L2

f,1
n

n∑
i=1

(
‖xki − x̄k‖2 + ‖yki − ȳk‖2

)
+ 2L2

f,1‖ȳk − y∗(x̄k)‖2.

For convenience, we define
∆1 :=

∥∥∥∇2F (x̄k, y∗(x̄k))−∇2
22f(x̄k, y∗(x̄k))v∗(x̄k)−∇2F (x̄k, ȳk) +∇2

22f(x̄k, ȳk)v̄k
∥∥∥ ,

∆2 :=
∥∥∥∇2F (x̄k, ȳk)−∇2

22f(x̄k, ȳk)v̄k − 1
n

∑n
i=1

(
∇2Fi(xki , yki )−∇2

22fi(xki , yki )vki
)∥∥∥ .

From the triangle inequality, it follows that

∆1 ≤
∥∥∥∇2F (x̄k, y∗(x̄k))−∇2F (x̄k, ȳk)

∥∥∥+
∥∥∥(∇2

22f(x̄k, ȳk)−∇2
22f(x̄k, y∗(x̄k))

)
v̄k
∥∥∥

+
∥∥∥∇2

22f(x̄k, y∗(x̄k))
(
v̄k − v∗(x̄k)

)∥∥∥
≤ (LF,1 + Lf,2rv) ‖ȳk − y∗(x̄k)‖+ Lf,1‖v̄k − v∗(x̄k)‖. (36)

By using the triangle inequality again and considering F = 1
n

∑n
i=1 Fi and f = 1

n

∑n
i=1 fi, we derive

∆2 ≤
1
n

n∑
i=1

∥∥∥∇2Fi(x̄k, ȳk)−∇2
22fi(x̄k, ȳk)v̄k −∇2Fi(xki , yki ) +∇2

22fi(xki , yki )vki )
∥∥∥

≤ 1
n

n∑
i=1

∥∥∥∇2Fi(x̄k, ȳk)−∇2Fi(xki , yki )
∥∥∥+ 1

n

n∑
i=1

∥∥∥(∇2
22fi(x̄k, ȳk)−∇2

22fi(xki , yki )
)
vki

∥∥∥
+ 1
n

n∑
i=1

∥∥∥∇2
22fi(x̄k, ȳk)(v̄k − vki )

∥∥∥
≤ LF,1 + rvLf,2

n

n∑
i=1

(
‖xki − x̄k‖+ ‖yki − ȳk‖

)
+ Lf,1

n

n∑
i=1
‖vki − v̄k‖. (37)
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Then, for ∇2F (x̄k, y∗(x̄k)) = ∇2
22f(x̄k, y∗(x̄k))v∗(x̄k), combining (36) and (37), using the inequality

(∑s
l=1 al)

2 ≤ s
∑s
l=1 a

2
l , we can deduce that

‖d̄kv‖2 ≤ (∆1 + ∆2)2 ≤ 5(Lf,2rv + LF,1)2

n

n∑
i=1

(
‖xki − x̄k‖2 + ‖yki − ȳk‖2

)
+

5L2
f,1
n

n∑
i=1
‖vki − v̄k‖2 + 5(Lf,2rv + LF,1)2‖ȳk − y∗(x̄k)‖2 + 5L2

f,1‖v̄k − v∗(x̄k)‖2,

which completes the proof.

Now, combining (28)-(30), (31), (32)-(33), (34)-(35) with Lemma A.4 and Remark A.2, we can
establish the boundness of 1

n

∑n
i=1 ‖tk+1

v,i − t̄k+1
v ‖2, 1

n

∑n
i=1 ‖tk+1

y,i − t̄k+1
y ‖2 and 1

n

∑n
i=1 ‖tk+1

x,i − t̄k+1
x ‖2:

1
n

n∑
i=1
‖tk+1
y,i − t̄

k+1
y ‖2 ≤ (ρ+ 4Cβ2

1− ρ ) 1
n

n∑
i=1
‖tky,i − t̄ky‖2 + 4Cα2

(1− ρ)n

n∑
i=1
‖tkx,i − t̄kx‖2

+
C(8 + 8L2

f,1β
2)

(1− ρ)n

n∑
i=1

(‖xki − x̄k‖2 + ‖yki − ȳk‖2) + 4Cα2

1− ρ ‖d̄
k
x‖2 +

8CL2
f,1β

2

1− ρ ‖ȳk − y∗(x̄k)‖2, (38)

1
n

n∑
i=1
‖tk+1
x,i − t̄

k+1
x ‖2 ≤ (ρ+ 4Cα2

1− ρ ) 1
n

n∑
i=1
‖tkx,i − t̄kx‖2 + 4C

(1− ρ)n

n∑
i=1

(β2‖tky,i − t̄ky‖2 + η2‖tkv,i − t̄kv‖2)

+
C(8 + 8L2

f,1β
2 + 20L2

1η
2)

(1− ρ)n

n∑
i=1

(‖xki − x̄k‖2 + ‖yki − ȳk‖2) +
C(8 + 20L2

f,1η
2)

(1− ρ)n

n∑
i=1
‖vki − v̄k‖2

+ 4Cα2

1− ρ ‖d̄
k
x‖2 +

C(8L2
f,1β

2 + 20L2
1η

2)
1− ρ ‖ȳk − y∗(x̄k)‖2 +

20CL2
f,1η

2

1− ρ ‖v̄k − v∗(x̄k)‖2, (39)

1
n

n∑
i=1
‖tk+1
v,i − t̄

k+1
v ‖2 ≤ (ρ+ 4Cη2

1− ρ) 1
n

n∑
i=1
‖tkv,i − t̄kv‖2 + 4C

(1− ρ)n

n∑
i=1

(β2‖tky,i − t̄ky‖2 + α2‖tkx,i − t̄kx‖2)

+
C(8 + 8L2

f,1β
2 + 20L2

1η
2)

(1− ρ)n

n∑
i=1

(‖xki − x̄k‖2 + ‖yki − ȳk‖2) +
C(8 + 20L2

f,1η
2)

(1− ρ)n

n∑
i=1
‖vki − v̄k‖2

+ 4Cα2

1− ρ ‖d̄
k
x‖2 +

C(8L2
f,1β

2 + 20L2
1η

2)
1− ρ ‖ȳk − y∗(x̄k)‖2 +

20CL2
f,1η

2

1− ρ ‖v̄k − v∗(x̄k)‖2, (40)

where C = max{C1, C2} and L1 is defined in (8).

A.3 Convergence Rate of Algorithm 1

Before the final proof, we first establish several useful lemmas. Recall that Φ(x) = F (x, y∗(x))
denotes the overall objective function.
Lemma A.8. The sequence {(xki , yki , vki )} generated by Algorithm 1 satisfies

Φ(x̄k+1)− Φ(x̄k) ≤− α

2 ‖∇Φ(x̄k)‖2 − 1
2

( 1
α
− LΦ

)
‖x̄k+1 − x̄k‖2 +

5αL2
f,1

2 ‖v̄k − v∗(x̄k)‖2

+ 5α (LF,1 + Lf,2rv)2

2 ‖ȳk − y∗(x̄k)‖2 +
5αL2

f,1
2n

n∑
i=1
‖vki − v̄k‖2

+ 5α (LF,1 + rvLf,2)2

2n

n∑
i=1

(
‖xki − x̄k‖2 + ‖yki − ȳk‖2

)
, (41)

where LΦ is defined in (8).
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Proof. It follows from [12, Lemma 2.2] that ∇Φ(x) is LΦ-Lipschitz continuous. On the other hand,
from [1, Lemma 5.7] we derive

Φ(x̄k+1)− Φ(x̄k) ≤
〈
∇Φ(x̄k), x̄k+1 − x̄k

〉
+ LΦ

2 ‖x̄
k+1 − x̄k‖2

(25)= − α
〈
∇Φ(x̄k), d̄kx

〉
+ LΦ

2 ‖x̄
k+1 − x̄k‖2

= − α

2 ‖∇Φ(x̄k)‖2 − α

2 ‖d̄
k
x‖2 + α

2 ‖∇Φ(x̄k)− d̄kx‖2 + LΦ
2 ‖x̄

k+1 − x̄k‖2 (42)
(25)= − α

2 ‖∇Φ(x̄k)‖2 − 1
2α‖x̄

k+1 − x̄k‖2 + α

2 ‖∇Φ(x̄k)− d̄kx‖2 + LΦ
2 ‖x̄

k+1 − x̄k‖2.

By definition, we have ∇Φ(x̄k) = ∇1F (x̄k, y∗(x̄k))−∇2
12f(x̄k, y∗(x̄k))v∗(x̄k) and

d̄kx = 1
n

n∑
i=1

(
∇1Fi(xki , yki )−∇2

12fi(xki , yki )vki
)
.

For convenience, we define
∆3 :=

∥∥∥∇1F (x̄k, y∗(x̄k))−∇2
12f(x̄k, y∗(x̄k))v∗(x̄k)−∇1F (x̄k, ȳk) +∇2

12f(x̄k, ȳk)v̄k
∥∥∥ ,

∆4 :=
∥∥∥∇1F (x̄k, ȳk)−∇2

12f(x̄k, ȳk)v̄k − 1
n

∑n
i=1

(
∇1Fi(xki , yki )−∇2

12fi(xki , yki )vki
)∥∥∥ .

From the triangle inequality, following the similar steps in (36) and (37) respectively, we have

∆3 ≤ (LF,1 + Lf,2rv) ‖ȳk − y∗(x̄k)‖+ Lf,1‖v̄k − v∗(x̄k)‖, (43)

and

∆4 ≤
LF,1 + rvLf,2

n

n∑
i=1

(
‖xki − x̄k‖+ ‖yki − ȳk‖

)
+ Lf,1

n

n∑
i=1
‖vki − v̄k‖. (44)

It is easy to observe from the triangle inequality that ‖∇Φ(x̄k)− d̄kx‖ ≤ ∆3 + ∆4. Then, by using
(43)-(44), it is easy to derive∥∥∥∇Φ(x̄k)− d̄kx

∥∥∥2
≤ 5 (LF,1 + Lf,2rv)2 ‖ȳk − y∗(x̄k)‖2 + 5L2

f,1‖v̄k − v∗(x̄k)‖2

+ 5 (LF,1 + rvLf,2)2

n

n∑
i=1

(
‖xki − x̄k‖2 + ‖yki − ȳk‖2

)
+

5L2
f,1
n

n∑
i=1
‖vki − v̄k‖2,

which, together with (42), yields the desired result.

The next two lemmas bound ‖ȳk+1 − y∗(x̄k)‖ and ‖v̄k+1 − v∗(x̄k)‖, respectively.

Lemma A.9. The sequence {(xki , yki , vki )} generated by Algorithm 1 satisfies

‖ȳk+1 − y∗(x̄k)‖2 ≤
(
1− βσ

2
)
‖ȳk − y∗(x̄k)‖2 +

3βL2
f,1

nσ

n∑
i=1

(
‖x̄k − xki ‖2 + ‖ȳk − yki ‖2

)
. (45)

Proof. First, by Cauchy-Schwartz inequality, for any ξ > 0, we have

‖ȳk+1− y∗(x̄k)‖2 = ‖
[
ȳk − β∇2f(x̄k, ȳk)− y∗(x̄k)

]
+ β

[
∇2f(x̄k, ȳk)− d̄ky

]
‖2

≤ (1 + ξ)‖ȳk − β∇2f(x̄k, ȳk)− y∗(x̄k)‖2 + (1 + 1/ξ)β2‖∇2f(x̄k, ȳk)− d̄ky‖2. (46)
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Note that ∇2f(x̄k, y∗(x̄k)) = 0. It follows from the σ-strong convexity of f(x̄k, ·), Lf,1-smoothness
of f and [26, Theorem 2.1.12] that

〈ȳk − y∗(x̄k),∇2f(x̄k, ȳk)〉 = 〈ȳk − y∗(x̄k),∇2f(x̄k, ȳk)−∇2f(x̄k, y∗(x̄k))〉

≥ σLf,1
σ + Lf,1

‖ȳk − y∗(x̄k)‖2 + 1
σ + Lf,1

‖∇2f(x̄k, ȳk)‖2. (47)

By expanding ‖ȳk − β∇2f(x̄k, ȳk) − y∗(x̄k)‖2, plugging in (47), and noting that β ≤ 2
σ+Lf,1

in
Algorithm 1, we obtain

‖ȳk − β∇2f(x̄k, ȳk)− y∗(x̄k)‖2 ≤
(
1− 2βσLf,1

σ + Lf,1

)
‖ȳk − y∗(x̄k)‖2 ≤ (1− βσ)‖ȳk − y∗(x̄k)‖2. (48)

It is elementary to show from f = 1
n

∑n
i=1 fi, the definition of d̄ky in (16), the triangle inequality and

Assumption 2.1 (c) that

‖∇2f(x̄k, ȳk)− d̄ky‖2 ≤
L2
f,1
n

n∑
i=1

(
‖x̄k − xki ‖2 + ‖ȳk − yki ‖2

)
, (49)

which, together with (46), (48) and the relation d̄ky = t̄ky , yields

‖ȳk+1 − y∗(x̄k)‖2 ≤ (1 + ξ)(1− βσ)‖ȳk − y∗(x̄k)‖2 + (1 + 1/ξ)
β2L2

f,1
n

n∑
i=1

(
‖x̄k − xki ‖2 + ‖ȳk − yki ‖2

)
.

Finally, we arrive at the desired result (45) by taking ξ = βσ/2 and using βσ ≤ 1.

Lemma A.10. The sequence {(xki , yki , vki )} generated by Algorithm 1 satisfies

‖v̄k+1 − v∗(x̄k)‖2 ≤ (1− ησ/2)
∥∥∥v̄k − v∗(x̄k)∥∥∥2

+ 3η (LF,1 + Lf,2rv)2

σ

∥∥∥ȳk − y∗(x̄k)∥∥∥2

+ 9η (LF,1 + Lf,2rv)2

nσ

n∑
i=1

(
‖xki − x̄k‖2 + ‖yki − ȳk‖2

)
+ 2η2ρ2

n

n∑
i=1
‖tkv,i − t̄kv‖2

+
(
9ηL2

f,1/σ + 2ρ2
) 1
n

n∑
i=1
‖vki − v̄k‖2. (50)

Proof. For convenience, we define ∆5 := v̄k + η
[
∇2F (x̄k, ȳk)−∇2

22f(x̄k, ȳk)v̄k
]
− v∗(x̄k). Similar

to (46), for any δ > 0, we have

‖v̄k + ηd̄kv − v∗(x̄k)‖2 ≤ (1 + δ) ‖∆5‖2 + (1 + 1/δ)η2∆2
2. (51)

Recall that the term ∆2 is treated in (37). Next, we treat the term ‖∆5‖2 in (51). Since
∇2

22f(x̄k, y∗(x̄k))v∗(x̄k) = ∇2F (x̄k, y∗(x̄k)), we have the following reformulation: ∆5 = ∆5,1 −
η
(
∆5,2 + ∆5,3

)
, where

∆5,1 :=
[
I − η∇2

22f(x̄k, ȳk)
] (
v̄k − v∗(x̄k)

)
,

∆5,2 :=
[
∇2

22f(x̄k, ȳk)−∇2
22f(x̄k, y∗(x̄k))

]
v∗(x̄k),

∆5,3 := ∇2F (x̄k, y∗(x̄k))−∇2F (x̄k, ȳk).
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By Cauchy-Schwartz inequality, for any δ1 > 0, we have

‖∆5‖2 ≤ (1 + δ1) ‖∆5,1‖2 + (1 + 1/δ1) η2‖∆5,2 + ∆5,3‖2.

Since η ≤ η̄ ≤ 1/Lf,1 and f(x, ·) is σ-strongly convex, there holds

‖∆5,1‖ ≤
∥∥∥I − η∇2

22f(x̄k, ȳk)
∥∥∥

op

∥∥∥v̄k − v∗(x̄k)∥∥∥ ≤ (1− ησ)
∥∥∥v̄k − v∗(x̄k)∥∥∥ .

Furthermore, it is apparent from Assumption 2.1 that ‖∆5,2 + ∆5,3‖ ≤ (Lf,2rv + LF,1) ‖ȳk−y∗(x̄k)‖.
Taking δ1 = ησ and noting ησ ≤ ηLf,1 ≤ 1, we obtain

‖∆5‖2 ≤ (1 + ησ) (1− ησ)2
∥∥∥v̄k − v∗(x̄k)∥∥∥2

+ (1 + 1/ησ) η2 (Lf,2rv + LF,1)2
∥∥∥ȳk − y∗(x̄k)∥∥∥2

≤ (1− ησ)
∥∥∥v̄k − v∗(x̄k)∥∥∥2

+ 2η (Lf,2rv + LF,1)2

σ

∥∥∥ȳk − y∗(x̄k)∥∥∥2
. (52)

We next evaluate ∑n
i=1 ‖vk+1

i − v∗(x̄k)‖2 to bound ‖v̄k+1 − v∗(x̄k)‖2. By the update of vki in
Algorithm 1, we have

n∑
i=1
‖vk+1
i − v∗(x̄k)‖2 =

n∑
i=1

∥∥∥∥Prv

[∑n

j=1
wij
(
vkj + ηtkv,j

)]
− v∗(x̄k)

∥∥∥∥2

≤
n∑
i=1

∥∥∥∥∑n

j=1
wij
(
vkj + ηtkv,j

)
− v∗(x̄k)

∥∥∥∥2

=
n∑
i=1

∥∥∥∥∑n

j=1
wijv

k
j − v̄k + η

(∑n

j=1
wijt

k
v,j − t̄kv

)∥∥∥∥2
+

n∑
i=1
‖v̄k − v∗(x̄k) + ηt̄kv‖2

≤
n∑
i=1
‖v̄k − v∗(x̄k) + ηt̄kv‖2 + 2

n∑
i=1

∥∥∥∥∑n

j=1
wijv

k
j − v̄k

∥∥∥∥2
+ 2η2

n∑
i=1

∥∥∥∥∑n

j=1
wijt

k
v,j − t̄kv

∥∥∥∥2

≤
n∑
i=1
‖v̄k − v∗(x̄k) + ηt̄kv‖2 + 2ρ2

n∑
i=1
‖vki − v̄k‖2 + 2η2ρ2

n∑
i=1
‖tkv,i − t̄kv‖2,

where the second equality holds because ∑n
i=1

[∑n
j=1wijv

k
j − v̄k + η(∑n

j=1wijt
k
v,j − t̄kv)

]
= 0, and

the last inequality follows from Lemma A.1. Note that d̄kv = t̄kv . Then, by combining (51), (52) and
(37), it can be concluded that

‖v̄k+1− v∗(x̄k)‖2 ≤ 1
n

n∑
i=1
‖vk+1
i − v∗(x̄k)‖2

≤ ‖v̄k − v∗(x̄k) + ηt̄kv‖2 + 2ρ2

n

n∑
i=1
‖vki − v̄k‖2 + 2η2ρ2

n

n∑
i=1
‖tkv,i − t̄kv‖2

≤ (1 + δ) (1− ησ)
∥∥∥v̄k − v∗(x̄k)∥∥∥2

+ 2(1 + δ)η (LF,1 + Lf,2rv)2

σ

∥∥∥ȳk − y∗(x̄k)∥∥∥2

+ 3(1 + 1/δ)η2

n

[
(LF,1 + Lf,2rv)2

n∑
i=1

(
‖xki − x̄k‖2 + ‖yki − ȳk‖2

)
+ L2

f,1

n∑
i=1
‖vki − v̄k‖2

]
+ 2ρ2

n

n∑
i=1
‖vki − v̄k‖2 + 2η2ρ2

n

n∑
i=1
‖tkv,i − t̄kv‖2.

Finally, the desired result (50) follows by setting δ = ησ/2 and using ησ ≤ 1.
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Lemma A.11. Let Lv be defined in (8). There hold

‖y∗(x̄k+1)− y∗(x̄k)‖ ≤ Lf,1
σ
‖x̄k+1 − x̄k‖ and ‖v∗(x̄k+1)− v∗(x̄k)‖ ≤ Lv

σ
‖x̄k+1 − x̄k‖. (53)

Proof. Due to the optimality of y∗(x), we have ∇2f(x, y∗(x)) = 0 for any x. Now, let x and x′ be
arbitrarily fixed. Then, it follows from the σ-strong convexity of f(x, ·) and Lf,1-Lipschitz continuity
of ∇f that

σ‖y∗(x)− y∗(x′)‖ ≤ ‖∇2f(x, y∗(x))−∇2f(x, y∗(x′))‖
= ‖∇2f(x, y∗(x′))−∇2f(x′, y∗(x′))‖ ≤ Lf,1‖x− x′‖

Hence, we have

‖y∗(x)− y∗(x′)‖ ≤ (Lf,1/σ)‖x− x′‖. (54)

Then we can get first inequality immediately by taking x = x̄k+1 and x′ = x̄k. Next, to obtain the
second inequality, we define{

∆6 := ∇2F (x̄k, y∗(x̄k))−∇2F (x̄k+1, y∗(x̄k+1)),
∆7 :=

[
∇2

22f(x̄k+1, y∗(x̄k+1))−∇2
22f(x̄k, y∗(x̄k))

]
v∗(x̄k+1).

By using Assumption 2.1, we have{
‖∆6‖ ≤ LF,1

(
‖x̄k+1 − x̄k‖+ ‖y∗(x̄k+1)− y∗(x̄k)‖

)
,

‖∆7‖ ≤ Lf,2rv
(
‖x̄k+1 − x̄k‖+ ‖y∗(x̄k+1)− y∗(x̄k)‖

)
.

(55)

It follows from ∇2
22f(x̄k, y∗(x̄k))v∗(x̄k) = ∇2F (x̄k, y∗(x̄k)) that

∇2
22f(x̄k, y∗(x̄k))(v∗(x̄k)− v∗(x̄k+1)) = ∆6 + ∆7. (56)

The σ-strong convexity of f(x̄k, ·) implies that

σ‖v∗(x̄k)− v∗(x̄k+1)‖ ≤ ‖∇2
22f(x̄k, y∗(x̄k))(v∗(x̄k)− v∗(x̄k+1))‖

(56)= ‖∆6 + ∆7‖ ≤ ‖∆6‖+ ‖∆7‖
(55,54)
≤ (LF,1 + Lf,2rv) (1 + Lf,1/σ) ‖x̄k+1 − x̄k‖,

which implies the second inequality in (53) by noting the definition of Lv in (8).

Now, we are ready to prove Theorem 3.1.

Proof. By using Cauchy-Schwartz inequality again, we derive

‖ȳk+1 − y∗(x̄k+1)‖2 ≤
(

1 + βσ

4

)
‖ȳk+1 − y∗(x̄k)‖2 +

(
1 + 4

βσ

)
‖y∗(x̄k+1)− y∗(x̄k)‖2.

Taking into account (45), the first inequality in (53), and βσ ≤ 1, we obtain

‖ȳk+1 − y∗(x̄k+1)‖2 ≤
(
1− βσ

4
)
‖ȳk − y∗(x̄k)‖2

+
15βL2

f,1
4nσ

n∑
i=1

(
‖x̄k − xki ‖2 + ‖ȳk − yki ‖2

)
+

5L2
f,1

βσ3 ‖x̄
k+1 − x̄k‖2. (57)
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Using Cauchy-Schwartz inequality again, we derive

‖v̄k+1 − v∗(x̄k+1)‖2 ≤
(

1 + ησ

4

)
‖v̄k+1 − v∗(x̄k)‖2 +

(
1 + 4

ησ

)
‖v∗(x̄k+1)− v∗(x̄k)‖2.

Similarly, taking into account (50), the second inequality in (53), and ησ ≤ 1, we obtain

‖v̄k+1− v∗(x̄k+1)‖2 ≤
(

1− ησ

4

)∥∥∥v̄k − v∗(x̄k)∥∥∥2
+ 15η (LF,1 + Lf,2rv)2

4σ
∥∥∥ȳk − y∗(x̄k)∥∥∥2

+ 5L2
v

ησ3 ‖x̄
k+1 − x̄k‖2 + 45η (LF,1 + Lf,2rv)2

4nσ

n∑
i=1

(
‖xki − x̄k‖2 + ‖yki − ȳk‖2

)
+
(

45ηL2
f,1

4σ + 5ρ2

2

)
1
n

n∑
i=1
‖vki − v̄k‖2 + 5ρ2η2

2n

n∑
i=1
‖tkv,i − t̄kv‖2. (58)

Define the Lyapunov function as in (15). By combining (39)-(40), (22)-(21), (41), (57), (58), it is
straightforward to derive

Vk+1 − Vk ≤ −
α

2 ‖∇Φ(x̄k)‖2 −A1‖d̄kx‖2 −A2‖ȳk − y∗(x̄k)‖2 −A3‖v̄k − v∗(x̄k)‖2 (59)

− A4
n

n∑
i=1
‖xki − x̄k‖2 −

A5
n

n∑
i=1
‖yki − ȳk‖2 −

A6
n

n∑
i=1
‖vki − v̄k‖2 (60)

− A7
n

n∑
i=1
‖tkx,i − t̄kx‖2 −

A8
n

n∑
i=1
‖tky,i − t̄ky‖2 −

A9
n

n∑
i=1
‖tkv,i − t̄kv‖2, (61)

where the coefficients are given by

A1 = α

2 −
LΦα

2

2 −
5L2

f,1a1α
2

σ3β
− 5L2

va2α
2

σ3η
− 4C(a6α

2 + a7β
2 + a8η

2)α2

1− ρ ,

A2 = σa1β

4 − 5L2
1α

2 − 15L2
1a2η

4σ −
C(a6α

2 + a8η
2)(8L2

f,1β
2 + 20L2

1η
2)

1− ρ −
8CL2

f,1a7β
4

1− ρ ,

A3 = σa2η

4 −
5L2

f,1α

2 −
20CL2

f,1η
2(a6α

2 + a8η
2)

1− ρ ,

A4 = a3(1− ρ)− 5L2
1α

2 −
15L2

f,1a1β

4σ − 45L2
1a2η

4σ −
C(a6α

2 + a8η
2)(8 + 8L2

f,1β
2 + 20L2

1η
2)

1− ρ −
Ca7β

2(8 + 8L2
f,1β

2)
1− ρ ,

A5 = a4(1− ρ)− 5L2
1α

2 −
15L2

f,1a1β

4σ − 45L2
1a2η

4σ −
C(a6α

2 + a8η
2)(8 + 8L2

f,1β
2 + 20L2

1η
2)

1− ρ −
Ca7β

2(8 + 8L2
f,1β

2)
1− ρ ,

A6 = a5(1− ρ)−
5L2

f,1α

2 − 45L2
1a2η

4σ − 5ρ2a2

2 −
C(a6α

2 + a8η
2)(8 + 20L2

f,1η
2)

1− ρ ,

A7 = a6α
2(1− ρ)− ρ2a3α

2

1− ρ −
4C(a6α

2 + a8η
2 + a7β

2)α2

1− ρ ,

A8 = a7β
2(1− ρ)− ρ2a4β

2

1− ρ −
4C(a6α

2 + a8η
2 + a7β

2)β2

1− ρ ,

A9 = a8η
2(1− ρ)− ρ2a5η

2

1− ρ −
5ρ2a2η

2

2 − 4C(a6α
2 + a8η

2)η2

1− ρ .

Here, constants such as LΦ, Lv and L1 are defined in (8), take

a1 = a2 = a3 = a4 = 1, a5 = 10ρ2

1− ρ, a6 = a7 = 2ρ2

(1− ρ)2 , a8 = max
{

30ρ4

(1− ρ)3 ,
15ρ2

2(1− ρ)

}
,
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and choose stepsizes satisfying

β < min
{

4σ(1− ρ)
75L2

f,1
,

1
Lf,1

,
1− ρ√
96Ca7

,
σ(1− ρ)
128Ca7

,
1− ρ√

24C

}
,

η < min

4σ(1− ρ)
225L2

1
,

2σρ2

9L2
1
,
σβ

60L2
1
,

1
Lf,1

,
1
L1
,
ρ(1− ρ)√
360Ca8

,

√
σ(1− ρ)β
896Ca8

,
σ(1− ρ)
320Ca8

,
1− ρ√

24Ca8/a6
,

1− ρ√
24C

 , (62)

α < min

 1
4LΦ

,
σ3β

40L2
f,1
,
σ3η

40L2
v

,
σβ

40L2
1
,

ση

20L2
f,1
,

2(1− ρ)
25L2

1
,
ρ2

L2
f,1
, 1, ρ(1− ρ)√

360Ca6
,

√
σ(1− ρ)β
896Ca6

,

√
σ(1− ρ)η
320Ca6

,
(1− ρ)3/2
√

24C

 ,

it is elementary to show that A1, A2, . . . , A9 are all nonnegative. Then it follows that

Vk+1 − Vk ≤ −
α

2 ‖∇Φ(x̄k)‖2.

By telescoping,

min
0≤k≤K−1

‖∇Φ(x̄k)‖2 ≤ 1
K

K−1∑
k=0
‖∇Φ(x̄k)‖2 ≤ 2V0

αK
= O

( 1
K

)
.

The consensus error can also be established by

Vk+1 − Vk ≤ −
A4
n

n∑
i=1
‖xki − x̄k‖2,

which yields

min
0≤k≤K−1

1
n

n∑
i=1
‖xki − x̄k‖2 ≤

1
nK

K−1∑
k=0

n∑
i=1
‖xki − x̄k‖2 ≤

V0
A4K

= O

( 1
K

)
.

Similarly, we can derive

min
0≤k≤K−1

1
n

n∑
i=1
‖yki − ȳk‖2 = O

( 1
K

)
and min

0≤k≤K−1

1
n

n∑
i=1
‖vki − v̄k‖2 = O

( 1
K

)
,

which completes the proof of Theorem 3.1.
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