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In this paper, we propose ROBIST, a simple, yet effective, data-driven algorithm for optimization under

parametric uncertainty. The algorithm first generates solutions in an iterative manner by sampling and

optimizing over a relatively small set of scenarios. Then, using statistical testing, the robustness of the

solutions is evaluated, which can be done with a much larger set of scenarios. ROBIST offers a number

of practical advantages over existing methods as it is: (i) easy to implement, (ii) able to deal with a wide

range of problems and (iii) capable of providing sharp probability guarantees that are easily computable

and independent of the dimensions of the problem. Numerical experiments demonstrate the effectiveness of

ROBIST in comparison to alternative methods.
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1. Introduction

The field of optimization under parametric uncertainty has undergone rapid develop-

ment over the past few decades. However, despite this development, we observe that

the existing methods in this field are still underutilized in practice.1 In this paper, we

propose a new method that is able to circumvent some of the practical limitations of

existing methods.

We propose an algorithm for treating uncertain convex programs (UCP), which

appear in a wide variety of real-world problems such as supply chain planning, portfolio

optimization, inventory control, engineering design, and so on. Such problems can be

formulated as follows:

min
x∈X

g(x)

s.t. f(z,x)≤ 0,
(UCP)

1 This observation is made on the basis of anecdotal evidence obtained through extensive contact with industry.
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where x ∈ Rdx is a decision vector, restricted to a closed convex feasible set X , z ∈

Rdz is an uncertain parameter vector and g(x) and f(z,x) are scalar-valued functions

that are convex in x (for any z). Without loss of generality, we can assume here that

there is no uncertainty in the objective function g(x), as one can always move the

uncertainty to the constraints by using an epigraph formulation. Furthermore, note that

multiple constraints can be incorporated into a single constraint by defining f(z,x) :=

max
j=1,...,m

{fj(z,x)} ≤ 0, for m individual constraints fj(z,x)≤ 0.

The problem (UCP) as formulated above is not well-defined as it does not specify how

the uncertain constraint f(z,x)≤ 0 should be treated. In the context of this paper, we

assume that one is interested in obtaining a “robust” solution to (UCP), i.e., a solution x

that is “likely” to be feasible despite the uncertainty in regard to the parameter z.

1.1. Existing Approaches and Their Practical Limitations

In the following paragraphs we describe four well-known approaches for treating uncer-

tain constraints and highlight limitations to their application in practice.

1.1.1. Stochastic Programming. Stochastic programming (SP) assumes that the

uncertain parameters are of a stochastic nature, i.e., that z is a realization of the random

variable z̃ with some known probability distribution P. For a more elaborate descrip-

tion of SP, we refer to Birge and Louveaux (2011). In the context of this paper, where

we assume to be interested in obtaining a robust solution to (UCP), one may consider

the “chance-constrained” programming approach. This approach was first proposed

by Charnes and Cooper (1959), where the uncertain constraint f(z,x)≤ 0 is replaced

by a probabilistic constraint:

P(f(z̃,x)≤ 0)≥ 1− ϵ, (1)

for some acceptable probability of constraint violation ϵ≥ 0.

While SP has been successfully applied to small- and medium-sized problems (Birge

1997, Wallace and Ziemba 2005), there are limitations to its application in practice.

First, the probability distribution P is often unknown. Second, even if P is known,

exact tractable reformulations of (1) are only known for a limited number of situa-

tions (Shapiro and Nemirovski 2005). Third, the computational tractability of SP dete-

riorates as dz increases (Nemirovski et al. 2009). As such, this approach is considered

generally intractable and one is typically forced to resort to safe approximations of (1)

when dealing with large-scale problems (Nemirovski 2012).
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1.1.2. Robust Optimization. Robust optimization (RO) operates in a fully deter-

ministic paradigm. In RO, one constructs an “uncertainty set” U and enforces the con-

straint to hold for all realizations z within the set U . The uncertain constraint f(z,x)≤ 0

is thus formalized as:

f(z,x)≤ 0, ∀z∈ U . (2)

This approach has emerged as a tractable alternative to SP for high-dimensional prob-

lems, see, for example, Bandi and Bertsimas (2012). Furthermore, in certain cases, (2)

can be constructed to be equivalent to probabilistic constraints such as (1), see e.g., Boyd

and Vandenberghe (2004, pp. 157–158). For an overview of RO and its applications, we

refer to Ben-Tal et al. (2009) and Bertsimas and den Hertog (2022).

While RO has proven to be an effective approach in various applications, its effec-

tiveness is highly dependent on the choice of the uncertainty set U , which may pose a

hindrance to its implementation in practice. Aside from selecting an appropriate shape

for U , it can also be difficult to select an appropriate size. If the size of the uncertainty

set is too small, then the resulting solution may not be sufficiently robust. On the con-

trary, if the size is too large, the resulting solution may be overly conservative. A variety

of methods have been proposed to eliminate this hindrance by utilizing data to deter-

mine U in such a way that one can have a certain level of confidence that any solution x

satisfying (2) also satisfies (1). Two such methods are proposed by Yanıkoğlu and den

Hertog (2013) and Bertsimas et al. (2018), however, as we demonstrate via numerical

experiments in this paper, the former method scales poorly in dz and the latter method

may nevertheless result in overly conservative solutions.

The tendency for classic RO methods to result in overly conservative solutions is a

well known limitation of the “hard” robust constraint approach. However, we note that

many alternative approaches have been proposed to alleviate this issue, see e.g., Fischetti

and Monaci (2009), Ben-Tal et al. (2010, 2017) and Roos and den Hertog (2020).

In any case, RO relies on the ability to reformulate (2) to a tractable robust counter-

part, which is not always possible in practice. First, if f is concave in z, even though

the resulting robust counterpart from reformulating (2) may theoretically be solvable

in polynomial time, in practice it may involve complex nonlinear constraints and/or

an unacceptably large number of additional variables and constraints (Bertsimas et al.

2011). Second, if the function f is non-concave in z, exact reformulations of (2) are

known only for specific combinations of the function f and uncertainty set U (Bertsi-

mas and den Hertog 2022, Chapter 16). For the general case, safe approximations can
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be derived (Bertsimas et al. 2023). However, this requires many additional variables,

which, along with the complexity of the methodology, may pose significant hindrances

to the application in practice.

1.1.3. Distributionally robust optimization. Also referred to as “ambiguous

stochastic programming”, distributionally robust optimization (DRO), combines ele-

ments of SP and RO. Instead of assuming the probability distribution P of z̃ is known

(as in SP), the distribution is regarded as uncertain, yet restricted to an “ambiguity

set” P of possible distributions. The uncertain constraint can then be formulated as:

P(f(z̃,x)≤ 0)≥ 1− ϵ, ∀P∈P. (3)

For an overview of DRO we refer to Rahimian and Mehrotra (2019). For a survey on

methods for dealing with ambiguous stochastic constraints such as (3) we refer to Postek

et al. (2018).

Similarly to RO, the key issue in DRO lies in the choice of the ambiguity set P.
Data-driven DRO has emerged as a popular approach, where one uses data to determine

the ambiguity set P. This can be done by estimation of the statistical moments of

the distribution, see e.g., the method proposed by Delage and Ye (2010), or by using

distance measures, see e.g., Mohajerin Esfahani and Kuhn (2018). Data-driven DRO

offers advantages over RO in terms of conservativeness, however this may come at the

cost of increased computational effort (Wang et al. 2022).

The ability to reformulate (3) to a tractable robust counterpart is, as with RO,

dependent on the situation and not always possible in practice. There exist settings in

which exact reformulations of (3) are possible, see, for example, Calafiore and Ghaoui

(2006) and Jiang and Guan (2016). Various types of ambiguity sets with tractable

counterparts are presented in Hanasusanto et al. (2015) and Postek et al. (2016). Nev-

ertheless, DRO suffers from the same practical limitations as RO in terms of its general

applicability and ease of implementation.

1.1.4. Scenario Optimization. Scenario optimization (SO) is a technique within

RO, where the uncertainty set U is a finite set of “scenarios” S. Because the set S is

finite, there is no need to reformulate (2) and the uncertain constraint is simply repli-

cated for each scenario zj in the set S. This amounts to solving a finite scenario convex

program (SCP):

min
x∈X

g(x)

s.t. f(zj,x)≤ 0, ∀zj ∈ S.
(SCP)
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The SO approach is easy to implement and can be applied to a wide variety of prob-

lems (e.g., it does not require concavity of f in z). Furthermore, an elegant, theoretical

result established by Calafiore and Campi (2005) and later tightened by Campi and

Garatti (2008) connects the number of randomly sampled scenarios included in S with

the robustness of solutions obtained by solving (SCP). This result allows one to assert,

with a certain level of confidence, that any solution x to (SCP), where the scenarios in S

are randomly sampled from P, satisfies probability guarantee (1). We refer to Theorem 1

in Campi and Garatti (2008) for the details.

The practical limitations of this approach are the following. First, while the result

from Campi and Garatti (2008) was proven tight for the special class of “fully-

supported” (UCP), the method proposed by Calafiore and Campi (2005) can be overly

conservative for various problems encountered in practice, as we demonstrate via numer-

ical experiments in this paper. Second, the required number of randomly sampled scenar-

ios grows linearly with the number of decision variables dx (Oishi 2007). For large-scale

problems, a large number of sampled scenarios implies a large number of dense con-

straints in (SCP), which can make solving the problem numerically challenging (Bertsi-

mas et al. 2018). As such, the classic approach proposed by Calafiore and Campi (2005)

is considered generally impractical for medium- and large-scale optimization problems.

A variety of methods have been proposed to remedy these limitations. For an overview

on such methods, we refer to Alamo et al. (2015). In the numerical experiments presented

in Section 4.3 of this paper, we apply the methods proposed by Carè et al. (2014),

Calafiore (2016), Garatti et al. (2022) and demonstrate that these methods remain

limited in their ability to deal with large-scale problems.

1.2. Our Method and its Advantages

Our method utilizes scenario optimization to generate solutions to (UCP). However,

instead of utilizing an a priori probabilistic guarantee, as in the classic approach

of Calafiore and Campi (2005), we employ a posteriori probabilistic guarantees, which

are derived via statistical testing. We do this because a posteriori guarantees, which

are computed after the solution x is known, are often significantly tighter than a priori

guarantees, which are derived before x is known (Guzman et al. 2016, Shang and You

2020, Bertsimas et al. 2021). This key difference allows our method to utilize a smaller

set of scenarios when solving (SCP), which is computationally advantageous.

The use of a posteriori evaluations is not unique to our method. For example, this is

also used in the method of Yanıkoğlu and den Hertog (2013). However, our evaluation
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procedure for assessing the robustness of solutions differs from theirs in significant ways,

which is discussed in more detail in Section 2. A “wait-and-judge” approach is also

proposed in Campi and Garatti (2018) and applied in the method of Garatti et al.

(2022). However, this evaluation procedure assesses the robustness of a solution by

counting the number of “support constraints”, which also differs significantly from our

statistical testing approach.

The novelty in our approach is that the statistical tests are carried out on the univari-

ate random variable f(z̃,x), where x is fixed. As we are concerned with the feasibility

of x, there are only two “classes” (i.e., f(z̃,x)≤ 0 and f(z̃,x)> 0). This provides sharp

probability guarantees that are independent of the number of decision variables as well

as the number of uncertain parameters. This allows our evaluation procedure to scale

better, as the problem size and/or the amount of data increases, than the evaluation pro-

cedures proposed by Yanıkoğlu and den Hertog (2013) and Campi and Garatti (2018),

which is demonstrated in Sections 4.1.1 and 4.3.1.

Our method offers a number of practical advantages over existing methods in the

literature. In summary, the advantages of ROBIST are the following.

First, our method is highly versatile, as it is able to deal with a wide variety of problem

types. These include optimization problems with: joint chance-constraints, constraints

with non-concave uncertainty, expectation-based risk measures, regret-based risk mea-

sures and adaptive decision variables with non-fixed recourse.

Second, our method is more accessible than many existing methods within SP, RO

and DRO. It is data-driven and does not require any assumptions regarding the under-

lying probability distribution of z̃. Additionally, our method avoids the aforementioned

difficulties in regard to selecting an appropriate uncertainty or ambiguity set.

Third, our method is computationally more efficient than many existing methods. By

iteratively selecting which scenario(s) to sample and optimize for, we can reduce the

total number of scenarios with which (SCP) is solved. Our novel evaluation procedure

is independent of dx and dz and scales well with the amount of data available, which

allows the algorithm to efficiently deal with large-scale optimization problems.

Fourth, our method is able to explore the trade-off between optimality and robustness

and can offer insight into the “price of robustness” (Bertsimas and Sim 2004). The user

sets a desired level of robustness and, with the aid of sharp probability guarantees, our

method is able to identify and avoid overly conservative solutions.

In an effort to lower the hurdle for practical usage, we have implemented ROBIST in

Python, which is a popular programming language amongst practitioners. The code is

publicly available at https://github.com/JustinStarreveld/ROBIST.

https://github.com/JustinStarreveld/ROBIST
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1.3. Structure

The remainder of the paper is organized as follows. In Section 2, we describe the ROBIST

algorithm with the help of an illustrative example and provide theoretical analysis of its

convergence. In Section 3, we discuss various possible generalizations and extensions.

Then, in Section 4, we compare ROBIST to existing methods and demonstrate the

versatility and effectiveness of the algorithm via a variety of numerical experiments.

Finally, we provide concluding remarks in Section 5. Additional technical details and

proofs are relegated to the Appendices.

1.3.1. Notation. We denote a random variable by the tilde sign, i.e., x̃. Lowercase

bold letters such as x denote vectors, where e denotes a vector of all ones. Calligraphic

uppercase characters such as X denote sets.

2. Methodology

As discussed in Section 1, explicitly modeling and optimizing over a constraint such

as (1) is difficult. Moreover, the underlying probability distribution P of z̃ is rarely known

in practice. However, given a data set DN = {z1, . . . ,zN} of N independent realizations

of z̃ and a solution x, it is possible to use statistical testing to assert, with confidence

greater than or equal to 1−α, that x satisfies the following probabilistic guarantee:

P(f(z̃,x)≤ 0)≥ γ. (4)

Henceforth, we will refer to γ as a feasibility certificate. Note that if a solution x satis-

fies (4) with γ ≥ 1−ϵ, one can state, with a certain level of confidence, that x satisfies (1).

This insight serves as the foundation to our proposed algorithm for treating (UCP).

2.1. Algorithm

Our algorithm, ROBIST, consists of two main procedures: (i) a generation procedure in

which we use a training data set Dtrain
N1

=
{
ẑ1, . . . , ẑN1

}
to generate solutions, and (ii) an

evaluation procedure in which we use a testing data set Dtest
N2

=
{
ž1, . . . , žN2

}
to evaluate

the robustness of the generated solutions. By embedding these two procedures in an

iterative algorithm, we look to obtain solutions x that satisfy (4) with γ ≥ 1− ϵ, while

minimizing the objective function g(x). A complete description of ROBIST is provided

using pseudo-code in Algorithm 1.

2.1.1. Generation procedure. In each iteration i of the algorithm, we solve the

following variant of (SCP) to generate solution xi:

min
x∈X

g(x)

s.t. f(ẑj,x)≤ 0, ∀ẑj ∈ Si,
(SCP)
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where Si ⊆Dtrain
N1

is a finite set of scenarios. The generated solution xi is required to be

feasible for all scenarios ẑj in Si. Optimizing over a larger set Si is therefore likely to

result in a more robust solution xi. However, to avoid overly conservative solutions and

reduce the computational cost of solving (SCP), our algorithm is designed to keep the

size of Si to a minimum.

2.1.2. Evaluation procedure. Given a data set DN = {z1, . . . ,zN} and some solu-

tion xi, one can evaluate the robustness of xi using DN and derive a feasibility cer-

tificate γi via statistical testing. Our procedure is as follows. First, for each scenario

zj ∈DN , we compute f(zj,xi) and check whether f(zj,xi)≤ 0 is satisfied. This provides

an empirical estimate p of the probability that xi is feasible:

p :=
1

N

N∑
j=1

1[f(zj ,xi)≤0]. (5)

Second, we construct a statistical confidence interval around (5) using the modified

χ2-distance, which is a member of the family of ϕ-divergences (see Appendix A for

further details). This results in the following 1−α confidence region:

Qϕ(p,N,α) :=

{
q ∈R : q≥ 0,

(q− p)2

p
+

(q− p)2

1− p
≤

χ2
1,1−α

N

}
, (6)

where α is determined by the user and χ2
1,1−α is the 1− α quantile of the chi-squared

distribution with 1 degree of freedom. As shown by Pardo (2006), as N →∞, the set (6)

contains the true probability that xi is feasible with confidence of at least 1−α.

Third, we determine feasibility certificate γi, which implies a probabilistic guarantee

equivalent to (4) for solution xi, by computing:

γi := min
q∈Qϕ(p,N,α)

q. (7)

This can be easily computed, as shown by the following lemma (see Appendix B.1 for

the proof).

Lemma 1. The problem stated in (7) has the following closed-form solution:

min
q∈Qϕ(p,N,α)

q=max
{
p−

√
p(1− p)r,0

}
, with r=

χ2
1,1−α

N
. (8)

Furthermore, γi is an increasing function in p.

Note that certificates derived via (7) are only statistically valid if the scenarios zj ∈DN

are independent realizations of z̃. This is why ROBIST utilizes a separate testing data

set Dtest
N2

to derive a valid certificate γi for each generated solution xi.
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The use of ϕ-divergence for constructing uncertainty sets has appeared in existing

robust optimization literature, we refer to Ben-Tal et al. (2013) for an overview. However,

in these methods the confidence region is constructed around the empirical distribution

of z̃. The degrees of freedom in the resulting ϕ-divergence confidence set is then depen-

dent on dz, which may lead to overly conservative uncertainty sets when dealing with

problems with a large number of uncertain parameters. Our approach circumvents this

issue by constructing the set around (5), which is independent of dz

2.1.3. The scenario sets. The initial set S0 contains only a single scenario. If avail-

able, we utilize the nominal scenario, otherwise we pick a random scenario from Dtrain
N1

.

Then, at each iteration i, the set Si+1 is constructed by either adding a scenario to Si,

or removing a scenario from Si.

We inform this decision by constructing a proxy certificate γ̂i, derived using Dtrain
N1

instead of Dtest
N2

. The idea is that γ̂i, while statistically invalid, can act as an estimate

of γi and steer the algorithm’s generation procedure. If γ̂i < 1− ϵ, one suspects that

the solution xi is insufficiently robust, implying that we should add a scenario to Si. If

γ̂i ≥ 1− ϵ, the solution xi might be overly conservative, implying that we should remove

a scenario from Si. The decision of whether to add or remove a scenario, is mainly

driven by this proxy certificate γ̂i. However, with user-defined probability υ, the opposite

action is taken. This random component is added to ensure theoretical convergence of

our algorithm, which we discuss in Section 2.3.

In an effort to keep the algorithm as simple as possible, when adding a scenario,

we randomly pick a scenario from the set of currently violated scenarios {ẑj ∈ Dtrain
N1

:

f(ẑj,xi)> 0}. When removing a scenario, we randomly pick a scenario from Si.

We note that the efficiency of Algorithm 1 can, in certain cases, be improved. When-

ever a scenario ẑj is removed from Si and the dual variable corresponding to the con-

straint f(ẑj,x)≤ 0 is zero, one can skip Step 5 as xi+1 = xi. Furthermore, the evaluation

of xi+1 can be skipped in Steps 6 and 15, as γ̂i+1 = γ̂i and γi+1 = γi.

2.1.4. Stopping criteria and final solution. The algorithm terminates when a pre-

scribed time limit or a maximum number of iterations is reached. If the algorithm is

not able to find a solution with feasibility certificate γi ≥ 1− ϵ, it returns the solution

with the highest certificate. Otherwise, it returns the solution xi with minimal objective

value g(xi), while requiring that γi ≥ 1− ϵ.
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Algorithm 1 ROBIST

Input: Sets Dtrain
N1

=
{
ẑ1, . . . , ẑN1

}
and Dtest

N2
=

{
ž1, . . . , žN2

}
. Acceptable probability

of constraint violation ϵ, statistical significance level α, time limit Tmax, iteration

limit imax and probability of taking opposite action υ.

Output: Best found solution xi∗.

1: Let T represent the current running time of the algorithm

2: Initialize set S0 with nominal or random scenario from Dtrain
N1

3: Set iteration counter i← 0

4: while T < Tmax and i < imax do

5: Solve (SCP) to obtain xi

6: Derive proxy certificate γ̂i via (8) using the scenarios in Dtrain
N1

7: Draw random variable ι∼U(0,1)

8: if (γ̂i ≤ 1− ϵ and ι > υ) or (γ̂i > 1− ϵ and ι < υ) then

9: Randomly add a scenario from {ẑj ∈Dtrain
N1

: f(ẑj,xi)> 0} to Si+1

10: else

11: Randomly remove a scenario from Si to create Si+1

12: end if

13: i← i+1

14: end while

15: Derive feasibility certificates γj, j = 0, . . . , i− 1 via (8) using the scenarios in Dtest
N2

16: if ∃γj : γj ≥ 1− ϵ then

17: i∗ := argminj{g(xj) : γj ≥ 1− ϵ}

18: else

19: i∗ := argmaxj{γj}

20: end if

21: Return xi∗

2.2. Illustrative Example

Consider the following toy problem from Yanıkoğlu and den Hertog (2013):

max
x1,x2≤1

x1+x2 (9)

s.t. z1x1+ z2x2 ≤ 1, (10)

where z1 and z2 are uncertain parameters, both uniformly distributed with support

[−1,1]. Note that Problem (9)-(10) can be rewritten in the same form as (UCP) by

defining: X = {x : x1 ≤ 1, x2 ≤ 1}, g(x) =−(x1+x2) and f(z,x) = z1x1+ z2x2− 1.
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Imagine we have access to a data set of N = 200 realizations of (z̃1, z̃2) and would like

a solution to be feasible with probability of at least 90% (i.e., ϵ= 0.1). In the following

paragraphs we illustrate the application of our method to this problem.

First, we randomly split the data set into two equal-sized sets Dtrain
N1

=
{
ẑ1, . . . , ẑN1

}
and Dtest

N2
=

{
ž1, . . . , žN2

}
, each containing N1 = N2 = 100 scenarios. We use Dtrain

N1
to

generate and (informally) evaluate the robustness of solutions during the iterative phase

of the algorithm. Then, towards the end of the algorithm, we utilize Dtest
N2

to derive

statistically valid probability guarantees.

Suppose we initialize S0 = {z̄} with the expected/nominal case z̄ = (z1, z2) = (0,0).

Then, solving (SCP) with S0 provides an initial solution: x0 = (x1, x2) = (1,1) with

objective value g(x0) = 2. The next step is to use our evaluation procedure to assess the

robustness of x0. First we compute an empirical estimate of the probability of violating

Constraint (10) by determining whether f(ẑj,x0)≤ 0, ∀ẑj ∈ Dtrain
N1

. See Figure 1 for a

visual aid.

1.0 0.5 0.0 0.5 1.0
z1

1.0

0.5

0.0

0.5

1.0

z 2

feasible scenarios
violated scenarios
nominal scenario
1.0z1 + 1.0z2 1

Figure 1 Visualization of S0 and the evaluation of the constraint f(x0, ẑ
j)≤ 0 of the solution x0 = (1,1) on

the training data Dtrain
N1

. The data points for which the constraint is feasible/infeasible are indicated

in blue/red.

We find that solution x0 is feasible for 87
100

of the scenarios in the training data Dtrain
N1

.

Setting the probability of making a type I error less than or equal to 1% (i.e., α= 0.01),

we use Equation (8), with p= 0.87,N = 100 and α= 0.01, to derive a proxy certificate

of γ̂0 = 0.78.

Assume that we have set the probability of taking the opposite action υ = 0. Then,

as our proxy certificate γ̂0 does not yet meet the desired level of robustness (γ̂0 = 0.78<
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1− ϵ= 0.90) the algorithm will randomly pick one of the 13 currently violated scenarios

(indicated by red stars in Figure 1) and add this scenario to our set. Suppose scenario

ẑ11 = (0.96,0.60) is chosen, then S1 = {z̄, ẑ11} and we proceed to the next iteration.

Using an enlarged set of scenarios S1, we solve (SCP) and retrieve solution: x1 =

(0.4,1) with objective value g(x1) = 1.4. While adding a scenario/constraint to our opti-

mization problem has lowered the objective value, it is likely to ensure that the resulting

solution is more robust. Again, we evaluate the robustness of our newly generated solu-

tion x1 using the scenarios in Dtrain
N1

(see Figure 2). We find that our new solution x1 is

feasible for 97
100

of the scenarios, from which we derive a proxy certificate γ̂1 = 0.93.

1.0 0.5 0.0 0.5 1.0
z1

1.0

0.5

0.0

0.5

1.0

z 2

feasible scenarios
violated scenarios
sampled scenarios
0.4z1 + 1.0z2 1

Figure 2 Visualization of S1 and the evaluation of solution x1 = (0.4,1) on the training data.

As this exceeds our desired level of feasibility (γ̂1 ≥ 1− ϵ= 0.90), the algorithm will

remove a scenario from S1 in the following iteration. The algorithm continues adding or

removing scenarios and evaluating the resulting solutions on Dtrain
N1

in this manner until

either the time limit or iteration limit is reached.

In this example, we set a limit of 1,000 iterations and once this stopping criteria is

reached, we use the “out-of-sample” test data Dtest
N2

to properly evaluate each solution

xi and obtain valid feasibility certificates γi. These evaluations can then be used to

construct a trade-off curve and aid in choosing the “best” solution. The blue line in

Figure 3 depicts such a trade-off curve, where each blue circle represents a possible

solution. If one considers γi ≥ 0.90 to be a strict requirement, the best found solution

comes with a feasibility certificate of 0.910 and achieves an objective value of 1.32.

However, in this example we find a sharp drop off after 0.90 — a slightly less conservative

solution was found with a certificate of 0.894 and an objective value of 1.50.
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Figure 3 Trade-off curves constructed from the set of non-dominated solutions found by ROBIST. The blue

circles represent valid feasibility certificates derived using the test data, while the orange squares

represent the associated proxy certificates derived using the training data. The vertical dotted line

represents the user-defined desired level of robustness (1− ϵ).

2.3. Convergence

In this section, we investigate the optimality of the final solution generated by Algo-

rithm 1. Since the solutions are generated by solving (SCP) with respect to a subset Si of

the training data set, the natural question arises whether Algorithm 1 would eventually

yield an “optimal” solution with respect to the training data set.

We define a solution x to be optimal with respect to the training data Dtrain
N1

={
ẑ1, . . . , ẑN1

}
if the following conditions are satisfied:

• x is a solution obtained from solving Problem (SCPS∗) with respect to a specific

subset S∗ of Dtrain
N1

,

• x is a solution with a valid feasibility certificate γ ≥ 1− ϵ (with respect to the test

data Dtest
N2

),

• x has minimal objective g(x) compared to all other solutions (with γ ≥ 1 − ϵ)

obtained from solving (SCP) with respect to a subset Si of Dtrain
N1

.

The following lemma shows that Algorithm 1 yields a solution that is optimal with

respect to the training data, if the modeler sets no limitation on the running time and

the number of iterations of the algorithm (see Appendix B.2 for the proof).

Lemma 2. Assume that in Algorithm 1 the modeler has set Tmax = imax =∞ and

υ > 0. Suppose that for all possible subsets Si ⊆Dtrain
N1

, the solution to (SCP) is unique,

and that there exists a (SCP) such that its solution has a feasibility certificate (7) of

at least 1− ϵ, with respect to the test data Dtest
N2

. Then, the probability that the solution
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x∗ obtained from Algorithm 1 after finitely many iterations, is optimal with respect to

Dtrain
N1

, is 1.

Remark 1. The assumption used in the proof of Lemma 2 on the uniqueness of

solutions of all (SCP) is unnecessary if the solver that is used to solve (SCP) does not

output different solutions when a redundant constraint is removed or added. Here, we

consider a constraint redundant if its addition or removal does not change the optimal

objective value of the optimization problem.

3. Generalizations and Extensions

In this section we describe how ROBIST can be applied to a variety of problem types.

Depending on the type of problem, certain modifications are made to Algorithm 1.

3.1. Uncertainty in the Objective Function

Although Algorithm 1 as described in Section 2 is already able to deal with parametric

uncertainty in the objective function, minor modifications can be made to improve its

performance. Consider an uncertain convex problem of the form:

min
x∈X

f(z,x). (11)

Problem (11) can be reformulated to the same form as (UCP) by using an epigraph

formulation, which results in the following:

min
x,θ

θ (12)

s.t. f(z,x)≤ θ, (13)

x∈X . (14)

Note that the right-hand side of (13) is determined by the epigraph variable θ ∈ R,
which can always be adjusted such that (13) is satisfied. As such, whereas (11) can

be rewritten in the same form as (UCP), the uncertain “constraint” should be treated

differently.

We slightly alter Step 15 in Algorithm 1 in the following manner. For a given solu-

tion (xi, θi), instead of computing the value of γi for which we can claim with confidence

of at least 1−α that:

P(f(z̃,xi)≤ θi)≥ γi, (15)

we are now interested in determining the minimum value of θi, let this be denoted

by θmin
i , for which we can claim, with confidence of at least 1−α, that:

P(f(z̃,xi)≤ θmin
i )≥ 1− ϵ. (16)
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We determine θmin
i in the following manner. First, we determine (via golden-section

search) the threshold for the number of scenarios in Dtest
N2

for which the “constraint” (13)

must be satisfied in order to claim (16). Denote this threshold by Nmin
2 . Then, we sort

function evaluations {f(zj,xi),∀zj ∈ Dtest
N2
} and set θmin

i equal to the Nmin
2 -th largest

evaluation.

Finally, since there are no uncertain constraints in (11), there is no trade-off between

feasibility and optimality. In such situations, the problem becomes a one-dimensional

search for the minimal θmin
i for which we can claim (16). As such, Steps 16-20 in Algo-

rithm 1 are also adjusted, where we now define i∗ := argminj{θmin
j }.

3.2. Adaptive Optimization Problems

In this subsection, we show how ROBIST can be extended to deal with two-stage adap-

tive optimization problems. We note that the approach can also be applied to multi-stage

problems (with minor modifications). However, for ease of exposition, in this paper we

focus on a two-stage setting. Consider the following problem:

min
x∈X

g(x) (17)

s.t. V (z,x)≤ 0, (18)

where

V (z,x) := min
y∈Y (x)

f(z,x,y). (19)

Here the decision vector x represents first-stage “here-and-now” decisions and the deci-

sion vector y consists of second-stage “wait-and-see” decisions. The y variables are

adaptive, i.e., they are able to adapt to the realization of z̃. Moreover, the second-stage

decisions y are restricted to some closed convex feasible set Y (x), which may depend

on the first-stage decisions x.

We are still able to generate solutions to Problem (17)-(19) by solving, at each iter-

ation i, a scenario convex program with respect to some set of scenarios Si. However,
this now involves the inclusion of recourse decision vectors yj for each scenario ẑj ∈ Si.
This amounts to solving the following optimization problem:

min
x,y

g(x) (20)

s.t. f(ẑj,x,yj)≤ 0, ∀ ẑj ∈ Si, (21)

yj ∈Y (x), ∀ ẑj ∈ Si, (22)

x∈X . (23)
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By solving (20)-(23) we are able to generate a here-and-now solution xi at each iter-

ation i. The evaluation of the solution requires more computation than in the static

setting. Given a data set of N independent scenarios {z1, . . . ,zN}, instead of performing

simple function evaluations (e.g., evaluating f(zj,xi) for j = 1, . . . ,N), one now evalu-

ates V (zj,xi), j = 1, . . . ,N by solving N instances of Problem (19). This allows one to

determine whether there exists a recourse decision y such that uncertain constraint (18)

could be satisfied. With this information one can compute empirical estimate p, where:

p :=
1

N

N∑
j=1

1[V (zj ,xi)≤0].

This estimate p can then be used to derive feasibility certificate γi by computing (7).

3.3. Statistical Confidence Bounds on Expectation

Throughout this paper we primarily focus on obtaining a solution that is robust in the

sense of a probability guarantee as in (1). However, our method can be extended to

incorporate expectation-based risk measures. In this subsection, we discuss how one can

use a posteriori statistical testing to derive (asymptotic) upper and lower confidence

bounds on:

EP[f(z̃,x)], (24)

where EP denotes the expectation with respect to P, the distribution of z̃.

Given a solution xi, assume that we have bounded support [lxi
, uxi

] for f(z̃,xi) and

denote by Pxi
the distribution of f(z̃,xi) on [lxi

, uxi
]. One can construct a partition

{[ek, ek+1]}Kk=1, where lxi
= e1 ≤ e2 ≤ · · · ≤ eK+1 = uxi

. Then, the following inequality

must hold:

EP[f(z̃,xi)] =

K∑
k=1

∫ ek+1

ek

dPxi
≤

K∑
k=1

ek+1Pxi
([ek, ek+1]).

Let vector p∈RK be an empirical estimate of the probability (under Pxi
) that f(z̃,xi)

resides in each of the K intervals. One can compute this estimate using N independent

scenarios zj, where the k-th element of p, pk, is computed as follows:

pk :=
1

N

N∑
j=1

1[f(zj ,xi)∈[ek,ek+1]].

Then, one can construct the following ϕ-divergence based (1 − α)-confidence region

around p (see Appendix A for further details):

Qϕ(p,N,α) =

{
q∈RK : q≥ 0,e⊺q= 1, Iϕ(q,p)≤

ϕ′′(1)

2N
χ2
K−1,1−α

}
. (25)
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As N → ∞, the set (25) contains the true probability that f(z̃,xi) resides in each

of the K intervals. As such, one can get an asymptotic upper confidence bound ui

on EP[f(z̃,xi)], by computing:

ui := max
q∈Qϕ(p,N,α)

K∑
k=1

ek+1qk. (26)

Similarly, one can also construct a lower confidence bound li on EP[f(z̃,xi)] by comput-

ing:

li := min
q∈Qϕ(p,N,α)

K∑
k=1

ekqk. (27)

The optimization problems stated in (26) and (27) are both convex and easy to solve.

3.4. Regret-Based Guarantees

Within optimization under uncertainty it is also common to consider regret minimiza-

tion. In this subsection, we show how our methodology can be extended to provide

statistical guarantees in regard to the regret associated with any given solution xi.

Given a solution xi, we define the regret R(zj,xi) with respect to a realized scenario zj,

as:

R(zj,xi) :=

g(xi)− g∗(zj), if f(zj,xi)≤ 0,

+∞, otherwise,
(28)

where:

g∗(zj) := min
x∈X
{g(x) : f(zj,x)≤ 0}. (29)

The regret measures the ex-post difference between the achieved objective value and

the best objective value that could have been obtained if the realization of z̃ had been

known before making the decision.

Incorporating regret into our approach requires only a minor adjustment to the eval-

uation procedure. For each scenario zj ∈ DN , instead of evaluating f(zj,xi), we eval-

uate R(zj,xi), as defined in (28). These evaluations can then be used to claim, with

confidence of at least 1−α, that:

P(R(z̃,xi)≤ τ)≥ βi, (30)

where τ represents some threshold value and βi is an asymptotic lower bound on the

probability that the regret of solution xi is less than τ . Additionally, using the approach

described in Section 3.3, it is also possible to derive a (1 − α)-statistical confidence

interval [li, ui] for the expected regret EP[R(z̃,xi)] for any given solution xi.
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4. Numerical Experiments

In this section, we present numerical experiments to test the performance of ROBIST

on four different applications:

1. Toy problem: comparison with related methods of Calafiore and Campi (2005) and

Yanıkoğlu and den Hertog (2013), with additional analysis of ROBIST when the amount

of data and the dimension of the problem increases.

2. Portfolio management problem: comparison with the robust optimization approach

of Bertsimas et al. (2018).

3. Weighted distribution problem: comparison with the scenario optimization-based

methods of Calafiore and Campi (2005), Carè et al. (2014), Calafiore (2016) and Garatti

et al. (2022).

4. Two-stage adaptive lot-sizing problem: comparison with Vayanos et al. (2012).

For all experiments we utilize synthetic, randomly generated, data and split the data

equally and randomly into the training and testing data sets. Furthermore, in Step 2 of

Algorithm 1 we initialize S0 with a random scenario from Dtrain
N1

and set υ= 0.01.

All computations are conducted on a 64-bit Windows machine equipped with a 2.80

GHz Intel Core i7 processor with 32 GB of RAM. All mathematical programs are coded

in Python 3.10 using CVXPY 1.3 and solved with Gurobi 10.0.0. The code is publicly

available at https://github.com/JustinStarreveld/ROBIST.

4.1. Toy Problem

In this subsection, we consider the same toy problem as in Section 2.2, but now in k

dimensions. The problem is formulated as follows:

max
x

e⊺x (31)

s.t. z⊺x≤ 1, (32)

x≤ 1, (33)

where x,z∈Rk, and e⊺ = (1,1, . . . ,1)∈Rk. The random variables z̃1, . . . , z̃k are assumed

to be independently and uniformly distributed in [−1,1].

4.1.1. Comparison with Related Methods. In the following experiments, we com-

pare ROBIST with the methods proposed by Calafiore and Campi (2005), which is

abbreviated as C&C, and Yanıkoğlu and den Hertog (2013), abbreviated as Y&dH. For

the numerical experiments presented in this subsection, we set ϵ= 0.05 and α= 0.01.

For C&C we utilize Theorem 1 from Campi and Garatti (2008) to determine the

number of randomly sampled scenarios with which (SCP) is solved. For Y&dH we

https://github.com/JustinStarreveld/ROBIST
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use the modified χ2-distance as the ϕ-divergence function, along with an ellipsoidal

uncertainty set with an initial radius of 0.1 and a step size of 0.01. Furthermore, in our

implementation of Y&dH we construct the cells such that the support of z̃ given by

[−1,1]k is divided into 10k cells of equal geometry.

We first highlight a key difference between these three methods in the simple setting

with k = 2. For this setting, C&C requires solving (SCP) with 130 randomly sampled

scenarios. For ROBIST and Y&dH, we assume to have access to N = 1,000 randomly

generated realizations of z̃ and let both algorithms perform 105 iterations (the number

of iterations needed for Y&dH to obtain a solution with feasibility certificate ≥ 0.95).

The resulting trade-off curves obtained from the three methods are depicted in Figure 4.

While the one-shot approach of C&C offers only a single solution, the iterative

approaches of Y&dH and ROBIST offer 4 and 16 solutions of interest, respectively. The

trade-off curve provided by ROBIST is richer than that of Y&dH due to two reasons.

First, the method of Y&dH is restricted to the set of solutions attainable via solving the

robust counterparts of uncertainty sets of a particular shape (in this case ellipsoidal).

ROBIST generates solutions by optimizing over a finite set of scenarios, which allows

for more variation in the resulting solutions. Second, in Y&dH the feasibility certifi-

cates are derived via the use of “cells” that approximate the support of z̃. In contrast,

ROBIST derives feasibility certificates by directly utilizing the testing data (without

any intermediate approximation), which is more precise.
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Figure 4 Trade-off curves constructed from the set of non-dominated solutions found by applying Calafiore

and Campi (2005), Yanıkoğlu and den Hertog (2013) and ROBIST to Problem (31)-(33) with k= 2.

The vertical dashed line represents the desired probability of constraint satisfaction (1− ϵ).

Two major limitations mentioned in Yanıkoğlu and den Hertog (2013) are that, as

the number of uncertain parameters increases, (i) the required number of data points
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increases and (ii) the computational performance deteriorates. This is due to the evalu-

ation procedure with which their probability guarantees are derived, which is dependent

on the dimension of z̃. By contrast, the probability guarantees utilized in ROBIST are

independent of the dimension of z̃.

We illustrate this difference in the following numerical experiments, where we apply

the three methods to higher-dimensional problems. Here, k represents the number of

decision variables as well as the number of uncertain parameters. For C&C, the number

of decision variables determines the required number of randomly sampled scenarios with

which to solve (SCP). For Y&dH, it is the number of uncertain parameters that influ-

ences the number of “cells” and thus the amount of data required.2 For both methods,

these values are represented by N in Table 1. For ROBIST there is no strict minimum or

maximum regarding the amount of data and the algorithm is given access to N = 1,000

randomly generated realizations of z̃.

In Table 1 we report the total computation time for each method, as well as the best

objective value (belonging to a solution for which the associated feasibility certificate

is greater than or equal to 1− ϵ = 0.95). To control for the effect of randomness the

experiment is repeated 100 times and we report the average.

Table 1 Results from applying Calafiore and Campi (2005), Yanıkoğlu and den Hertog (2013) and ROBIST

to Problem (31)-(33) as the dimension of the problem (represented by k) increases. Here, N indicates the

amount of data utilized by the respective methods.

N Computation time (s) Objective value Feasibility certificate

k C&C Y&dH ROBIST C&C Y&dH ROBIST C&C Y&dH ROBIST C&C Y&dH ROBIST

2 130 1,000 1,000 0.2 4 5 1.16 1.19 1.33 0.950 0.972 0.954

3 165 10,000 1,000 0.2 7 5 1.34 1.42 1.63 0.950 0.958 0.951

4 198 100,000 1,000 0.3 27 7 1.53 1.67 1.83 0.950 0.952 0.951

5 229 1,000,000 1,000 0.4 200 7 1.71 1.85 2.06 0.950 0.951 0.952

Even for the relatively small problem instances considered in Table 1, we find that

the amount of data required by Y&dH quickly becomes unmanageable and the com-

putational performance of the method deteriorates. For C&C the required number of

randomly sampled scenarios is still manageable and the resulting (SCP) remains solv-

able within reasonable computation time (in Section 4.3, we consider larger problems

for which this is no longer the case).

2 We adhere to the rule of thumb stated in Yanıkoğlu and den Hertog (2013) that each cell should contain “at
least five observations”. It follows that, when applying Y&dH to this problem, a minimum of 5× 10k data points
is required. To be on the safe side, Y&dH is provided with twice this minimum amount (i.e., 10k+1 randomly
generated data points).
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We find that ROBIST is able to provide solutions with higher objective values than

the solutions generated by C&C and Y&dH, while possessing comparable feasibility

certificates. Even though the target probability of constraint satisfaction was set to

1− ϵ = 0.95, we find, by using additional out-of-sample testing (with N = 106), that

the average empirical probability of constraint satisfaction for solutions generated by

C&C and Y&dH is much higher at 0.981 and 0.984, respectively. While satisfying the

same minimal probability guarantee, the final solutions provided by ROBIST are less

conservative and closer to the target, with an average empirical probability of 0.966.

4.1.2. Analysis of the Optimality of the Solutions and the Accuracy of the Feasi-

bility Certificates. In this subsection, we analyze ROBIST on a slightly altered version

of our toy problem. We add an additional constraint (1 +
∑k−1

j=1 xj ≤ xk) to (31)-(33),

which allows us to analytically derive the true probability that (32) is satisfied:

p∗(x) := P (z̃⊺x≤ 1) =
1

2
+

1

2xk

. (34)

Furthermore, to expand the feasible region of the problem, we slightly alter con-

straint (33), which becomes x≤ k. Therefore, given knowledge of the true distribution

of z̃, one could solve the following optimization problem:

θ∗ :=max
x

{
e⊺x :

1

2
+

1

2xk

≥ 1− ϵ, x≤ k, 1+
k−1∑
j=1

xj ≤ xk

}
, (35)

to obtain an optimal, sufficiently robust, solution. In the following sets of experiments

we utilize (34) and (35) to assess the robustness and optimality of solutions obtained

via Algorithm 1.

In the first set of experiments, we analyze the impact of the number of data points (N).

We do this for a problem setting with k= 2 and ϵ= 0.05. Using α= 0.10 and a maximum

of 1,000 iterations (imax = 1,000), we apply ROBIST to the (altered) toy problem and for

each iteration i, we store each obtained solution xi along with its feasibility certificate γi.

We repeat this procedure 100 times and evaluate the following three metrics:

1. optimality gap of the best found sufficiently robust solution:

θ∗−maxi{g(xi) : γi ≥ 1− ϵ, p∗(xi)≥ 1− ϵ}
θ∗

;

2. mean absolute error (MAE) of the feasibility certificates:

1

imax

imax∑
i=1

|p∗(xi)− γi|;
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3. reliability of the feasibility certificates:

1

imax

imax∑
i=1

1[γi≤p∗(xi)].

The MAE gives an indication of the sharpness of our probability guarantees, while the

reliability is the empirically observed frequency that the guarantees are truthful. The

results for N ∈ {103,104,105,106} are presented in Figure 5.

Figure 5 Box plots displaying three metrics regarding the performance of ROBIST when applied to a slightly

altered version of Problem (31)-(33) with k= 2. We plot the results as a function of the amount of

available data (N).
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In Figures 5a and 5b we see a very similar trend as N increases. While the two

metrics might seem unrelated at first glance, the sharpness of the guarantees plays

an important role in reducing conservativeness and thus closing the optimality gap.

Figure 5c suggests that for N = 103, the reliability of the certificates can be quite

dependent on the random data generation and subsequent random split into training

and testing data sets. However, for N ≥ 104, the average reliability is consistently above

90%. We note that there is no significant increase in computation time as N increases

as one is able to very efficiently compute f(z,xi),∀z∈Dtrain
N1
∪Dtest

N2
at each iteration i.

In the second set of experiments, we analyze the computational efficiency of Algo-

rithm 1 as the problem size (k) increases. Here we evaluate the following metrics:

1. irobust : number of iterations required to find a sufficiently robust solution:

irobust =min{i : p∗(xi)≥ 1− ϵ};

2. iopt : number of iterations required to obtain an optimality gap of less than 1%:

iopt =min

{
i :

θ∗− g(xi)

θ∗
< 0.01, γi ≥ 1− ϵ, p∗(xi)≥ 1− ϵ

}
;
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3. |Si|max : maximum size of the scenario sets used to solve SCP:

|Si|max =max
i
{|Si|}.

We utilize the same setup as before (ϵ = 0.05, α = 0.10 and imax = 1000), but with a

fixed number of data points (N = 106). The results of these experiments are displayed

in Figure 6.

Figure 6 Box plots displaying three metrics regarding the performance of ROBIST when applied to a slightly

altered version of Problem (31)-(33) of varying size (k).
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The most striking finding is that irobust and |Si|max both increase at similar, modest

rates as the problem size (k) increases. Important to note is that this increase is not

proportional to the increase in k: while k increases 1000-fold, the maximum size of |Si|

becomes only 4.3 times as large (on average). In Figure 6b we observe that 100 iterations

is, in many cases, sufficient for ROBIST to obtain near optimal solutions. Somewhat

surprisingly, we also find that, on average, iopt decreases as k increases. We suspect

that this is due to the fact that the magnitude of the objective values increases as k

increases, as a result the number of near-optimal solutions also increases, which makes

it relatively easier for ROBIST to find such a solution.

4.2. Portfolio Management Problem

In this subsection we apply ROBIST to a portfolio management problem. As in Bertsi-

mas et al. (2018), we consider an uncertain single period allocation problem:

max
x≥0

z⊺x (36)

s.t. e⊺x= 1. (37)

For this problem one seeks a profit-maximizing allocation x ∈ Rk across k different

assets, for which the returns z∈Rk are uncertain.
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Note that in this problem the uncertainty only affects the objective. As such, when

applying ROBIST, Algorithm 1 is slightly altered (see Section 3.1 for the details).

Rewriting (36)-(37) using an epigraph reformulation, we obtain the following:

max
x,θ

θ (38)

s.t. z⊺x≥ θ, (39)

e⊺x= 1, (40)

x≥ 0. (41)

We note that solving (38)-(41) while providing a probability guarantee for Con-

straint (39) is equivalent to maximizing the value at risk (VaR), or quantile, of the

portfolio, as:

P(z̃⊺x≥ θ)≥ 1− ϵ ⇐⇒ VaRP
ϵ (z̃

⊺x)≤ θ. (42)

4.2.1. Numerical Results. We follow Bertsimas et al. (2018) by utilizing the model

from Natarajan et al. (2008) to synthetically generate returns for k assets. This is done

for a single time period in the following manner:

zi =


√

(1−γi)γi

γi
with probability γi

−
√

(1−γi)γi

1−γi
with probability 1− γi

, γi =
1

2

(
1+

i

k+1

)
, i= 1, . . . , k. (43)

In this model, all assets i = 1, . . . , k have mean return 0%, standard deviation 1%,

but have different skew and support. The higher indexed assets have a larger γi and are

more negatively skewed and thus more likely to generate large losses and small upside

gains. The returns for the assets are assumed to be independent.

We evaluate the performance of ROBIST with imax = 500 by comparing it to the

results reported in Table 3 in Bertsimas et al. (2018) (where k= 10 and α= ϵ= 0.1). In

Table 2 we report the average out-of-sample 10%-VaR over 100 repetitions.

Table 2 Average 10%-VaR on out-of-sample realized returns, computed using 106 additional randomly

generated scenarios. ROBIST is compared with the methods presented in Table 3 of Bertsimas et al. (2018).

N M LCX CS CM ROBIST

500 -1.095 -0.411 -0.397 -0.539 0.237

2000 -1.095 -0.411 -0.396 -0.451 0.243

We find that ROBIST significantly outperforms the other solution methods of Shawe-

Taylor and Cristianini (2003), Calafiore (2013) and Bertsimas et al. (2018) in regard to
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average out-of-sample performance. The large difference in performance is explained by

the difference in portfolio holdings, which is displayed in Figure 7. Here we find that

the solutions found by ROBIST put all wealth in either asset 9 or 10.

Figure 7 Graphical display of the average, along with 10% and 90% quantiles, of the portfolio holdings

by method across the 100 repetitions of the experiment with N = 500. On the left we show the

portfolio holdings reported in Figure 4 of Bertsimas et al. (2018), on the right we display the same

information for the portfolio holdings found by applying ROBIST.

Upon further inspection of the data generation procedure of Natarajan et al. (2008)

for k= 10, one finds that γ9 = 0.909 and γ10 = 0.955. This implies that:

r̃9 =

0.32 with probability 0.909

−3.16 with probability 1− 0.909
r̃10 =

0.22 with probability 0.955

−4.58 with probability 1− 0.955.

Thus, when x9 = 1 the 10%-VaR is = 0.32, and when x10 = 1, the 10%-VaR is 0.22.

While the allocations obtained via ROBIST are somewhat trivial and arguably risky,

they do outperform the allocations found by the other methods in terms of the objective

under consideration (10%-VaR). Our solutions exploit a flaw in optimizing the Value-

at-Risk when using the generation procedure of Natarajan et al. (2008) with k = 10

assets and ϵ= 10%. This flaw was not discovered by the other methods, which is due to

their more conservative approach.

This flaw highlights the well-known danger in optimizing Value-at-Risk, namely that

it does not account for the magnitude of losses that occur with probability less than ϵ.

Alternatively one may consider optimizing the conditional Value-at-Risk instead; see

Basak and Shapiro (2001) and Laeven and Stadje (2014). We note that this is also

possible with ROBIST (see Section 3.3).

4.3. Weighted Distribution Problem

In the next set of experiments, we consider the weighted distribution problem of Carè

et al. (2014). Suppose a company is able to produce and sell n different products with
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the usage of m different machines. The goal is to determine an optimal production plan,

which specifies the amount of time xjk that each machine j = 1, . . . ,m will be used for

producing product k= 1, . . . , n. An optimal plan is one that maximizes the total profit

of the company subject to availability constraints.

Each machine j may only be used for a limited amount of time aj and incurs operating

costs cjk per unit of product k that is produced. Each unit of product k can be sold at a

price of uk and the leftover units incur holding costs hk. For this problem, there are the

following uncertain parameters: the demand d̃k for each product k and the quantity p̃jk

of product k that is produced per allocated unit of time for machine j. The optimization

problem is formulated as follows:

max
x

n∑
k=1

ukmin

{
m∑
j=1

pjkxjk, dk

}
−

m∑
j=1

n∑
k=1

cjkxjk−
n∑

k=1

hkmax

{
m∑
j=1

pjkxjk− dk,0

}
(44)

s.t.
n∑

k=1

xjk ≤ aj, j = 1. . . . ,m, (45)

xjk ≥ 0, j = 1. . . . ,m, k= 1. . . . , n. (46)

We note that this is a difficult problem to deal with using conventional robust optimiza-

tion techniques, since (44) is not convex in the uncertain parameter vectors d̃ and p̃.

For this problem, one is interested in obtaining a feasible and profitable production

plan x. However, due to the uncertainty in the demand of the products and the produc-

tivity of the machines, the exact profit can not be computed ahead of time. As in the

portfolio management problem discussed in Section 4.2, the uncertainty occurs only in

the objective. Hence, ROBIST is slightly altered (see Section 3.1 for the details).

We are interested in robust solutions for which one can state with confidence of at

least 1−α that, if implemented, the realized profit will be larger than some threshold

value with probability of at least 1− ϵ. In other words, our objective is to maximize this

threshold value (i.e., the Value-at-Risk), which represents a probabilistic lower bound

on the realized profit.

4.3.1. Numerical Results. We emulate the numerical experiments reported by Carè

et al. (2014), where ϵ = 0.01 and α = 10−9. The demand d̃j is drawn from a Dirichlet

distribution and the efficiency parameters p̃jk are assumed to be uniformly distributed

around some nominal values p̄jk with a ±5% maximum deviation. We refer to Carè

et al. (2014) for the exact nominal values associated with the original problem with
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m = 5 machines and n = 10 products. For the larger problem instances (where m> 5

and n> 10), the nominal values are slightly perturbed. We let these nominal values be

uniformly distributed within ±10% of the original problem.

We compare the performance of ROBIST with four existing scenario optimization

methods from the literature. These are: C&C (Calafiore and Campi 2005), FAST (Carè

et al. 2014), RSD (Calafiore 2016) and ISO (Garatti et al. 2022).

We implement the methods with the following settings. For C&C we utilize Theorem 1

from Campi and Garatti (2008) to determine the number of randomly sampled scenar-

ios NC&C with which (SCP) is solved. For FAST we follow the suggested rule of thumb

to select the number of scenarios NFAST
1 with which (SCP) is solved (e.g., NFAST

1 =

20mn). For RSD, we set ϵ′ = 0.7ϵ, determine NRSD by requiring that the asymptotic

upper bound on the expected number of iterations is less than or equal to 10 and then

use Equation (18) in Calafiore (2016) to determine NRSD
o . For ISO we use Algorithm 2

of Garatti et al. (2022) to determine the set sizes N ISO
0 ,N ISO

1 , . . . ,N ISO
mn . Finally, for

ROBIST we allow access to N = 3,000 data points and use a maximum of 200 iterations

as stopping criteria.

The results are reported in Tables 3 and 4. To limit the effect of randomness, we

report the average over 10 experiments, except in the cases where the computation time

exceeds 1 hour (in these cases only a single experiment is performed). Furthermore, we

restrict all methods to a maximum time limit of 10 hours.

In Table 3 we find that, for the largest problem instance (m= 15, n= 30), the 10-hour

time limit was reached for C&C, RSD and ISO. This is due to having to solve (SCP)

with large sets of scenarios S. By design, ROBIST utilizes significantly fewer scenarios

when solving (SCP), which is clearly observed in the results corresponding to |S|max.

This key difference enables ROBIST to remain computationally tractable when applied

to the larger problem instances.

Table 3 Comparison between Calafiore and Campi (2005), Carè et al. (2014), Calafiore (2016), Garatti

et al. (2022) and ROBIST in terms of the amount of data used (N), the maximum number of scenarios with

which (SCP) is solved (|S|max) and the required computation time when applied to Problem (44)-(46) with

varying number of machines m and products n. A dash (-) signifies that the time limit was reached before the

relevant metric could be computed.

N |S|max Computation time (s)

m n C&C FAST RSD ISO ROBIST C&C FAST RSD ISO ROBIST C&C FAST RSD ISO ROBIST

5 10 10,580 3,062 28,662 5,678 3,000 10,580 1,000 6,017 5,678 61.2 708 11 245 17,367 46

10 20 34,918 6,073 41,733 - 3,000 34,918 4,000 26,160 - 92.9 27,541 314 12,438 > 36,000 114

15 30 74,468 11,073 - - 3,000 74,468 9,000 60,586 - 117.0 > 36,000 3,382 > 36,000 > 36,000 211
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Next, in Table 4 we inspect the quality of the resulting solutions. We find that the four

methods perform similarly in terms of the out-of-sample 1%-VaR. However, ROBIST,

while having access to relatively few data points, is able to outperform the existing

methods in terms of the objective value. Note that, in many real-world situations there

may be a limited amount of data available and one may not have access to additional

out-of-sample data. In such a situation one can only consult the objective value in order

to determine the quality of a solution.

Table 4 Comparison between Calafiore and Campi (2005), Carè et al. (2014), Calafiore (2016), Garatti

et al. (2022) and ROBIST in terms of the objective value and out-of-sample performance of the resulting

solutions when applied to Problem (44)-(46) with a varying number of machines m and products n. A dash (-)

signifies that the time limit was reached before a solution was found. The out-of-sample results are computed

using 106 additional randomly generated scenarios.

Objective value Out-of-sample 1%-VaR

m n C&C FAST RSD ISO ROBIST C&C FAST RSD ISO ROBIST

5 10 458.8 446.0 463.3 458.7 468.3 475.3 475.5 474.8 471.7 476.2

10 20 973.2 949.2 974.6 - 979.1 1000.0 988.6 997.5 - 988.8

15 30 - 1465.8 - - 1501.4 - 1505.9 - - 1514.9

4.4. Two-Stage Lot-Sizing Problem

In the final set of experiments, we evaluate the performance of ROBIST on a two-stage

adaptive lot-sizing problem. A similar variant of this problem is studied in Bertsimas

and de Ruiter (2016).

Consider a network of m nodes, where each node i∈ {1, . . . ,m} has uncertain demand

d̃i. The demand at each node in the network must be satisfied and this can be done

through the initial allocation of stock xi, or by moving yji units of stock from node j to

node i. The initial allocation of stock at node i costs ci per unit, while the unit trans-

portation costs are uncertain and denoted by t̃ij. Each node has a maximum allocation

capacity of ki units.
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We model this as a two-stage adaptive problem where the initial allocation decisions x

must be made before the uncertainty is realized. In the second stage, the transportation

decisions yij can adapt to the realized demand and transportation costs. For notational

ease, we denote uncertain parameters d̃i and t̃ij as a single vector z̃ ∈ Rm+m2
and for-

mulate the problem as:

min
x,θ

θ (47)

s.t.

m∑
i=1

cixi +V (z,x)≤ θ, (48)

0≤ xi ≤ ki, i= 1. . . . ,m, (49)

where:

V (z,x) :=min
y≥0

m∑
i=1

m∑
j=1

tijyij (50)

s.t. xi +
n∑

j=1

yji−
n∑

j=1

yij ≥ di, i= 1, . . . ,m. (51)

If Constraint (51) is not satisfied, V (z,x) =∞. For this problem, we are interested in

solutions for which we can provide statistical guarantees of the form (4), with γ ≥ 1− ϵ,

for Constraint (48).

Finally, note that most techniques from RO, such as the method presented in Bert-

simas and de Ruiter (2016), are unable to deal with adaptive problems with “random

recourse” (i.e., when the adaptive decisions are multiplied with uncertain parameters).

As tij is uncertain, the majority of existing RO methods can not be applied to this

problem.

4.4.1. Numerical Results. We replicate the parameter settings utilized by Bertsimas

and de Ruiter (2016). However, instead of using an uncertainty set, we sample d̃i and t̃ij

in the following manner:

1. Realizations of d̃i are uniformly sampled from the budgeted uncertainty set

described in Bertsimas and de Ruiter (2016) via the hit-and-run sampling method

of Smith (1984).

2. Let the Euclidean distance from i to j be vij. We generate realizations of t̃ij by

uniformly sampling in the range [0.9vij,1.1vij].

In this set of experiments, we compare ROBIST with the solution approach of Vayanos

et al. (2012) (hereafter abbreviated as VKR). The idea behind this approach is to

approximate the adaptive decisions using “decision rules” (finite linear combinations of
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the uncertain parameters). This allows one to reduce a multistage adaptive problem to

a single stage static problem. Then, one can apply the theory from Campi and Garatti

(2008) to determine the necessary number of randomly sampled constraints in order to

obtain solutions that satisfy the desired probability guarantee.

In our numerical experiments, we implement VKR using polynomial decision rules of

degree p, where p ∈ {1,2}. For such decision rules the adaptive decisions y are substi-

tuted by linear combinations of a basis vector b(z̃)∈Rsp , where sp =
(
m+m2+p

p

)
(we refer

to Vayanos et al. (2012) for further details). Thus, y=Ab(z̃), where A∈R(m×m)×sp con-

tains the coefficients of the linear combinations, which are treated as decision variables.

This reduces Problem (47)-(51) to the following single-stage form:

min
x,A,θ

θ (52)

s.t.
m∑
i=1

cixi +
m∑
i=1

m∑
j=1

tijyij ≤ θ, (53)

xi +
n∑

j=1

yji−
n∑

j=1

yij ≥ di, i= 1, . . . ,m, (54)

y=Ab(z), (55)

y≥ 0, (56)

0≤ xi ≤ ki, i= 1. . . . ,m. (57)

Problem (52)-(57) can then be solved with respect to some set of randomly sampled

scenarios (let this set be denoted as SV KR), where constraints (53)-(56) are duplicated

for each scenario z∈ SV KR. The number of randomly sampled scenarios |SV KR| is deter-

mined using Theorem 1 of Campi and Garatti (2008), which depends on ϵ, α and the

number of decision variables (1+m+m2sp).

The ROBIST algorithm is slightly modified when applied to adaptive optimization

problems (see Section 3.2 for the details). An important aspect to note is that, at each

iteration i, a new solution is generated by solving a problem in the form of (20)-(23),

which involves 1 + m + m2|Si| decision variables instead of the original 1 + m + m2

variables used in defining Problem (47)-(51). In these experiments we set N = 1000 and

imax = 50.

Setting ϵ = α = 0.05, we compare the two approaches to Problem (47)-(51) as the

number of nodes (m) increases. The numerical results (average over 10 replications) are

presented in Tables 5 and 6.
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In Table 5 we find that VKR is faster than ROBIST for the small problem instances

(m ≤ 3). However, the required amount of randomly sampled scenarios (|SV KR|) and

the resulting computation time rapidly increase as m increases. In comparison, we again

find that ROBIST is effectively able to sample fewer scenarios (see maxi |Si|), retaining

computational tractability as the problem size increases.

Table 5 Comparison between two implementations of Vayanos et al. (2012) (where p= 1 or p= 2) and

ROBIST in terms of the amount of data used (|SV KR| and N), the maximum number of scenarios with which

(SCP) is solved (|SV KR| and maxi |Si|) and the required computation time when applied to Problem (47)-(51)

with a varying number of nodes m.

|SV KR| ROBIST Computation time (s)

m p= 1 p= 2 N maxi |Si| VKRp=1 VKRp=2 ROBIST

2 809 2,655 1,000 10.2 5 60 366

3 2,783 26,103 1,000 13.5 56 > 3,600 407

4 10,853 117,162 1,000 13.9 2,214 > 3,600 425

5 24,774 392,584 1,000 15.5 > 3,600 > 3,600 439

In Table 6 we inspect the quality of the resulting solutions for the cases that a solution

was obtained within the one hour time limit. In all tests the initial allocation was

sufficient to satisfy the total realized demand, thus the average 5%-VaR of the out-

of-sample realized costs provides a fair metric of comparison between the methods.

Across all the conducted experiments we find that the solutions obtained via VKR are

outperformed by the solutions obtained via ROBIST.

Table 6 Comparison between two implementations of Vayanos et al. (2012) (where p= 1 or p= 2) and

ROBIST in terms of the objective value and out-of-sample performance when applied to Problem (47)-(51)

with a varying number of nodes m. A dash (-) signifies that the time limit was reached before a solution was

found. The out-of-sample results are computed using 104 additional randomly generated scenarios.

Objective value Out-of-sample 5%-VaR

m VKRp=1 VKRp=2 ROBIST VKRp=1 VKRp=2 ROBIST

2 795 792 729 788 778 728

3 1,192 - 1,032 1,178 - 1,013

4 1,588 - 1,222 1,555 - 1,198

5 - - 1,367 - - 1,322
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5. Conclusion

In this paper we propose ROBIST, a versatile, simple, data-driven and effective algo-

rithm for dealing with optimization problems with uncertain parameters. A key element

in ROBIST is the evaluation procedure, where probability guarantees are derived a pos-

teriori using statistical testing. This procedure provides sharp probability guarantees

that can be computed very efficiently, which allows the algorithm to identify and avoid

overly conservative solutions. ROBIST can be applied to a wide variety of problem types

and offers a number of practical advantages over existing methods. Furthermore, numer-

ical experiments across a variety of applications show that ROBIST outperforms many

alternative methods in terms of computational tractability as well as solution quality.

It is important to note that the probabilistic guarantees provided by the evaluation

procedure are based on asymptotics (as N →∞) and are therefore only approximately

valid. As such, ROBIST performs best when there is a large amount of data available.
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A. ϕ-divergence and confidence set

In order to formally evaluate the robustness of solutions, we use statistical testing that is based on

ϕ-divergences. Given two vectors p,q∈Rdp , a ϕ-divergence is defined as

Iϕ(q,p) =

dp∑
i=1

piϕ

(
qi
pi

)
,

where ϕ : [0,∞)→ R is a convex function satisfying ϕ(1) = 0, ϕ(a/0) := a limt→∞ ϕ(t)/t for a > 0 and

ϕ(0/0) = 0. Using the modified χ2-distance, as we do throughout this paper, corresponds to choosing

ϕ(t) = (t−1)2. An extensive study of the statistical properties of ϕ-divergences, as well as an overview of

common choices of ϕ(·) functions, are given in Pardo (2006) and Ben-Tal et al. (2013).

In this paper we utilize the following property. Suppose p∗ is a probability vector and N data points

are used to estimate p∗ with the empirical estimator p̂. Then, Pardo (2006) has shown that the following

statistic:

2N

ϕ′′(1)
Iϕ(p

∗, p̂),

converges (as N →∞) to a chi-squared distribution with dp− 1 degrees of freedom. Here, ϕ′′(1) denotes

the second derivative of ϕ evaluated at 1. Hence, one can construct the following (1−α)-confidence set

for the true probability vector p∗, as a ϕ-divergence ball around the empirical estimate p̂:{
q∈Rdp : q≥ 0, qT1= 1, Iϕ(q, p̂)≤

ϕ′′(1)

2N
χ2

dp−1,1−α

}
,

where χ2
dp−1,1−α is the (1−α)-quantile of the chi-squared distribution with degree dp− 1.

B. Proofs
B.1. Proof of Lemma 1

By definition, we have that

γi =min
q≥0

{
q : p

(
q

p
− 1

)2

+(1− p)

(
1− q

1− p
− 1

)2

≤ r

}
,

where r = 1
N
χ2
1,1−α and p is an empirical estimate based on N independent observations. Since the

objective function is linear and the constraints are convex, we can determine the optimal solution by

solving the following quadratic equation:

p

(
q

p
− 1

)2

+(1− p)

(
1− q

1− p
− 1

)2

= r.

Solving this for q yields the smallest solution q = p−
√
p(1− p)r. Since the constraint q ≥ 0 must also

hold, we have that γi =max{p−
√
p(1− p)r,0}. To show that γi is also increasing in p, we first note that

the function p 7→ p−
√

p(1− p)r is convex in p, and thus is increasing after its minimum. Furthermore,

we have

p−
√
p(1− p)r≥ 0⇔ p≥ r

1+ r
.

Hence, its minimum, which is smaller than zero, can only be attained for p < r
1+r

. Therefore, γi > 0 only

if p≥ r
1+r

and thus γi is increasing in p.
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B.2. Proof of Lemma 2

Let {S̆0, . . . , S̆M} be all the possible subsets of the training data set Dtrain
N1

= {ẑ1, . . . , ẑN1} with S̆0 = ∅

and M = 2N1 − 1. For each subset S̆j ∈ {S̆0, . . . , S̆M}, we denote x̆∗
j as the unique optimal solution of

the corresponding Problem (SCP), where Si = S̆j . Furthermore, we denote γ̂(x̆∗
j ) as the certificate of x̆∗

j ,

derived using Dtrain
N1

. Finally, we define the corresponding “infeasibility” set IFeas(x̆∗
j ) as:

IFeas(x̆∗
j ) := {ẑj ∈Dtrain

N1
: f(ẑj , x̆∗

j )> 0}.

Letting Si denote the subset used during the i-th iteration of Algorithm 1 and following the addition

and removal procedure described in Section 2, we have the following transition probabilities between the

possible subsets {S̆1, . . . , S̆M}:

P(Si+1 = S̆j | Si = S̆k) =



(1− v) · 1
|IFeas(x̆∗

k
)| if γ̂(x̆∗

k)≤ 1− ϵ and S̆j = S̆k ∪{ẑ}, ẑ /∈ S̆k,
v · 1

|IFeas(x̆∗
k
)| if γ̂(x̆∗

k)> 1− ϵ and S̆j = S̆k ∪{ẑ}, ẑ /∈ S̆k,
(1− v) · 1

|S̆k|
if γ̂(x̆∗

k)≥ 1− ϵ and S̆j = S̆k \ {ẑ}, ẑ∈ S̆k,
v · 1

|S̆k|
if γ̂(x̆∗

k)< 1− ϵ and S̆j = S̆k \ {ẑ}, ẑ∈ S̆k,
0 otherwise.

Since the transition probability depends only on the previous subset, we have that Si constitutes a time-

homogeneous Markov chain with finitely many states. This finiteness implies that there exists at least

one particular subset for which the corresponding solution x̆∗ is optimal with respect to the test data.

We will now show that for all possible subsets/states, there is a path with positive probability to one of

the subsets with the optimal solution. Indeed, for any subset S̆j , there is always a probability of removal

and hence a path to the empty set S̆0, which we denote as S̆j→S̆0.

Let Sopt be the collection of all optimal subsets and let S̆k∗ ∈ Sopt be a particular optimal subset. We

claim that there is a path from S̆0 to the class Sopt:

S̆0→ · · ·→ Sopt.

Indeed, let x̆∗
0 be the solution of the empty set S̆0. Since minx∈X{g(x)} ≤minx∈X{g(x) : f(ẑj ,x)≤ 0,∀ẑj ∈

S̆k∗}, we have that if x̆∗
0 is feasible for all scenarios in S̆k∗ , then x̆∗

0 must also be the unique optimal

solution (uniqueness by assumption or by Remark 1) of solving (SCP) with Si = S̆k∗ . In that case, we

have by definition that x̆∗
0 is an optimal solution with respect to the test data and thus implies S̆0 ∈ Sopt.

Therefore, without loss of generality, we may assume that x̆∗
0 is infeasible for at least one scenario, say

ẑq of S̆k∗ . Since there is a positive probability of adding this scenario, there is a positive probability path

S̆0→ S̆0 ∪ {ẑq} and we can now repeat the same argument above for the solution x̆∗ of S̆0 ∪ {ẑq}: if x̆∗

is feasible for all scenarios in S̆k∗ , then S̆0 ∪ {ẑq} ∈ Sopt. Otherwise, there is a positive probability of

adding another scenario of S̆k∗ . This argument continues until either the subset S̆k∗ is reached, or an

optimal subset is reached earlier in the path. Thus, there is a positive probability path to all subsets in

the Markov chain. Therefore, the Markov chain is time-homogeneous and irreducible, which implies that

the hitting probability of any state is 1 (Norris 1997, Theorem 5.8).
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