
Cross-Dock Trailer Scheduling with Workforce
Constraints: A Dynamic Discretization Discovery

Approach

Ritesh Ojha, Alan Erera
H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, Georgia

rojha8@gatech.edu, alan.erera@isye.gatech.edu

LTL freight carriers operate consolidation networks that utilize cross-docking terminals to facilitate the

transfer of freight between trailers and enhance trailer utilization. This research addresses the problem of

determining an optimal schedule for unloading inbound trailers at specific unloading doors using teams of

dock workers. The optimization objective is chosen to ensure that outbound trailers are loaded with minimal

delay with respect to their loading deadlines. Formulating this problem, which is known to be NP-hard, using

a typical time-expanded network often results in an excessively large mixed-integer programming (MIP)

model. To overcome this challenge, we propose an exact dynamic discretization discovery (DDD) algorithm

that iteratively solves MIPs formulated over partial networks. The algorithm employs a combination of

simple time discretization refinement strategy to progressively refine the partial network until a provably

optimal solution is obtained. We demonstrate the effectiveness of the algorithm in solving problem instances

representative of a large L-shaped cross-dock in Atlanta. The DDD algorithm outperforms solving the model

formulated over a complete time-expanded network with a commercial solver in terms of both computational

time and solution quality for practical instances with 180 trailers, 44 unloading doors, and 57 loading doors.

Additionally, we compare the DDD algorithm with a state-of-the-art interval scheduling approach using

instances from a previous study with a different objective function and additional constraints. The DDD

algorithm is computationally faster for most of the small and medium instances and achieves competitive

bounds for the larger instances.

Key words : freight transportation, cross-docking, trailer scheduling, dynamic discretization discovery,

integer-programming

History :

1. Introduction

The e-commerce industry remains in a rapid growth phase and is forecasted to reach a global market

size of US$200 billion in total sales by 2026 IIMA (2021). This growth has spurred demand for both

parcel and less-than-truckload (LTL) freight services, and carriers providing these services compete

by improving shipment delivery speed and reliability. LTL freight carriers operate consolidation

1

Ojha and Erera: Exact Algorithm for Cross-dock Trailer Scheduling
2

networks that use cross-docking terminals to enable freight transfer between trailers; cross-dock

consolidation allows carriers to move trailers with higher utilization and to take advantage of trailer

cost scale economies Bartholdi III and Gue (2000). A transportation plan or load plan specifies

the destinations of trailers to be loaded at each cross-dock during each sorting period (or sort),

and how shipments are to be routed into loaded trailers (loads) to move between their origins

and destinations. Figure 1 illustrates how shipments with different destinations are unloaded from

inbound trailers and routed into outbound trailers to some intermediate hubs.

Atlanta

Jacksonville

Charlotte

Nashville

St. Louis

Louisville

Raleigh

Richmond

Miami

Tampa

From Jacksonville

From Dallas

Figure 1 An illustration of operations at a cross-dock terminal in a middle-mile LTL service network

Each cross-dock terminal has a set of unloading doors (truck docks) and a set of loading doors,

and shipments in arriving trailers are moved according to the load plan from unloading doors to

outbound trailers at loading doors. During a sort, the trailers loaded at an individual loading door

will have the same terminal destination. While it is possible to change door destinations from day

to day, it is typical in practice to keep terminal-to-door assignments fixed over time and to adjust

only when shipment demand and/or the load plan change significantly. Consider now the unloading

and loading operation at a cross-dock during a single sort. Inbound trailers for unloading have

arrived at the trailer yard by the commencement of the sort or will arrive soon. Outbound (empty)

trailers have been staged for loading at each of the loading doors. To initiate the sort, some inbound

trailers are moved to specific unloading doors. An individual inbound trailer at an unloading door

is worked by logistics workers who unload its shipments and move them to the appropriate trailers

at loading doors. Once a trailer is emptied, it is returned to the yard, and the unloading door

can be assigned to another inbound trailer. Similarly, once an outbound trailer is filled, it can be

moved to the yard for dispatch and replaced at its loading door with an empty trailer. The loading

Ojha and Erera: Exact Algorithm for Cross-dock Trailer Scheduling
3

activities at each loading door are to be completed by a loading deadline which enables trailers for

this terminal destination to depart on time. For a more detailed review of cross-dock operations in

practice, we refer interested readers to Ladier and Alpan (2016).

A team of logistics workers handles all of the unloading and loading tasks during a sort; typically,

these dock workers use forklifts or pallet jacks to move shipments between trailers. Once a trailer

begins unloading, a dock worker dedicated to this work completes the unloading and transfer of

all shipments via a number of round-trips. To speed unloading of some trailers, a larger team of

workers can be assigned. Due to the size of the trailers, however, unloading a trailer with more than

two workers results in decreasing marginal performance improvements as mentioned in Tadumadze

et al. (2019).

Trailer scheduling is the problem of determining a schedule for unloading inbound trailers at

specific unloading doors using appropriately-sized teams of dock workers. In this research, we

develop an optimization model denoted the cross-dock trailer scheduling problem with workforce

constraints (XDTS-W). Given inbound trailers with known planned arrival times for a specific

sort at a cross-docking terminal, this decision model determines which trailers to unload at which

doors, in which sequence, and with how many dock workers. An objective is chosen to ensure that

outbound trailers are loaded with minimal delay with respect to their loading deadlines. As we will

show, XDTS-W is a type of nonpreemptive unrelated parallel machine scheduling problem with

release dates and an objective function that is the sum of loading task latenesses. Formulating this

NP -hard problem using a typical time-expanded network often leads to a very large mixed-integer

programming (MIP) model that cannot be solved directly using off-the-shelf solvers. Therefore,

to solve practical instances motivated by the cross-docking terminals operated by our industry

research partner, we propose an iterative exact algorithm that uses a new dynamic discretization

discovery approach.

The specific contributions in this paper are as follows.

1. We formulate a MIP model of XDTS-W over a complete time-expanded network. We formulate

another MIP model over a partial time-expanded network (XDTS-W-LB) which uses careful

modeling of the processing time of unloading trailers to ensure that its objective function

value is a lower bound on the optimal objective value of XDTS-W.

2. We develop an exact dynamic discretization discovery (DDD) algorithm for XDTS-W

instances and show that the algorithm converges in a finite number of iterations.

3. We demonstrate the effectiveness of the DDD algorithm on instances generated from real-

world data from our research partner’s cross-dock in Atlanta. The algorithm’s performance is

influenced by the time window during which all the trailers arrive at the cross-dock. For wider

time windows, the DDD algorithm is computationally fast and provides optimal solutions.

Ojha and Erera: Exact Algorithm for Cross-dock Trailer Scheduling
4

When time windows are narrower, the DDD algorithm often produces better feasible solutions

than directly using commercial solvers.

4. We show that the DDD algorithm also performs well on a slightly different crossdock trailer

scheduling problem studied in Tadumadze et al. (2019). For small and medium instances,

the DDD algorithm requires far less computational time than the exact interval scheduling

approach. For large instances that cannot be solved to optimality by either approach, the

DDD algorithm produces the same lower bounds and feasible solutions with similar objective

function values.

The rest of the paper is organized as follows. In Section 2, we review relevant literature on

cross-dock trailer scheduling, including worker constraints and its relation to parallel machine

scheduling. We also provide a brief review on the development of dynamic discretization discov-

ery algorithms. Section 3 presents the formalization and description of XDTS-W, along with its

underlying assumptions and a complete time-indexed formulation. The solution methodology for

XDTS-W is discussed in Section 4. Section 5 introduces a greedy heuristic for comparative evalu-

ation of the DDD algorithm. Computational studies on instances derived from real-life data and

those from Tadumadze et al. (2019) are presented in Section 6 and 7, respectively. Finally, section

8 summarizes the paper’s findings and proposes future research directions.

2. Literature Review

Cross-dock Trailer Scheduling. Cross-dock trailer scheduling is closely related to unrelated

parallel machine scheduling where trailers are jobs and unloading doors correspond to machines

(Tadumadze, Emde, and Diefenbach 2020). The machines (unloading doors) in the cross-docking

context are unrelated because each job (trailer) may have a different processing time on each

machine because of the relative distance between the unloading door and the loading door desti-

nations of the trailer shipments. We refer interested readers to Boysen and Fliedner (2010) for a

detailed classification of the trailer scheduling problems.

In real-world operations, inbound trailers may arrive at various times during the planning hori-

zon, necessitating the consideration of planned arrival times when scheduling trailer unloading at

cross-docks (Boysen, Briskorn, and Tschöke 2013). While loading doors are assigned fixed des-

tinations during tactical planning, inbound trailers from different locations can be scheduled at

any unloading door (Boysen, Briskorn, and Tschöke 2013, Liao, Egbelu, and Chang 2013). To

address the trailer scheduling problem, the authors in Boysen, Briskorn, and Tschöke (2013) develop

heuristics that leverage the natural separation between two key decisions: trailer-to-unloading-door

assignment and trailer sequence at each unloading door. The authors in Gaudioso, Monaco, and

Sammarra (2021) propose a Lagrangian decomposition scheme to minimize the total time required

Ojha and Erera: Exact Algorithm for Cross-dock Trailer Scheduling
5

for unloading and cross-docking shipments to loading doors. In the postal service industry, Boysen,

Fedtke, and Weidinger (2017) transform the trailer scheduling problem to an interval schedul-

ing problem and propose decomposition heuristics for the problem. Various other studies (Liao,

Egbelu, and Chang 2013, Miao, Lim, and Ma 2009) have focused on comparing the performance

of meta-heuristics in tackling the trailer scheduling problem.

Often, the processing time of trailers at unloading doors can be reduced by allocating more

workers or resources. Extensive research on this topic in machine scheduling problems is covered in

Shabtay and Steiner (2007) and Edis, Oguz, and Ozkarahan (2013). In the cross-docking context, it

is challenging and capital-intensive to increase the number of doors to process any arbitrary set of

inbound shipments while still meeting service deadlines. Therefore, workers represent the discrete

and limited resource used to expedite the unloading process. Several existing studies assume a

fixed number of workers for unloading trailers at each door. Shakeri et al. (2012) and Hermel et al.

(2016) assign one worker to unload trailers at each door. In real-life operations, terminal managers

have the flexibility to determine the number of workers assigned to unload each inbound trailer,

and workers can switch from one door to another during the planning period. Many survey papers

(Van Belle, Valckenaers, and Cattrysse 2012, Ladier and Alpan 2016, Buijs, Vis, and Carlo 2014)

emphasize the significance of workforce scheduling to unload trailers at a cross-dock. The authors in

Tadumadze et al. (2019) solve the integrated trailer and workforce scheduling problem with a fixed

number of workers available during the planning horizon. Corsten, Becker, and Salewski (2020)

propose an optimization model to integrate trailer and workforce scheduling with permanent and

temporary workers to facilitate the unloading and loading activities.

To the best of our knowledge, the current state-of-the-art methodology to solve the integrated

trailer and workforce scheduling problem is presented in Tadumadze et al. (2019). In their work,

the authors introduce an interval scheduling formulation with a predefined integer parameter µ≥ 1

to regulate the number of potential intervals for unloading inbound trailers. Solving the interval

scheduling formulation using a commercial solver yields an exact approach when µ= 1 since the

formulation includes all possible time intervals for processing inbound trailers. However, when

µ> 1, some intervals are dropped which reduces the solution space and yields a heuristic solution.

This study differs from Tadumadze et al. (2019) in terms of the problem and solution approach.

First, we do not have strict deadlines for unloading inbound trailers; we will demonstrate in Section

7 that our approach is effective even when there are hard deadlines. Second, our decision to unload

a trailer at a specific door is dependent on both the door location and the number of assigned

workers. Finally, we develop an iterative exact DDD algorithm that progressively adds new time

points to a time-expanded network model (to improve the lower-bound) until a provably optimal

solution is obtained. This approach may be more flexible than solving the model with all possible

start time points/processing intervals (µ= 1) as in Tadumadze et al. (2019).

Ojha and Erera: Exact Algorithm for Cross-dock Trailer Scheduling
6

Dynamic Discretization Discovery. Boland et al. (2017) showed that provable continuous-

time optimal solutions for service network design problems can be obtained by iteratively refining

MIP models formulated over a partial time-expanded network. Marshall et al. (2020) developed

an interval-based DDD algorithm which was shown to be more effective in solving larger instances

efficiently. Scherr et al. (2020) consider an extended service network design problem that includes

mixed autonomous fleets and proposed an improved DDD algorithm that uses valid inequalities

to strengthen the lower bounds. Hewitt (2019) proposed an enhanced DDD algorithm to solve

the continuous-time load plan design problem in LTL freight transportation. The authors propose

algorithmic enhancements to reduce the number of integer programs solved by the algorithm;

these enhancements include solving a relaxed model to generate the partial network, adding valid

inequalities in each iteration, and introducing symmetry-breaking procedures to determine how a

partial network is refined in each iteration. Recently, He et al. (2022a) developed an exact DDD

algorithm for the service network design problem with hub capacities and He et al. (2022b) for

the minimum duration time-dependent shortest path problem with piece-wise linear travel times.

DDD algorithms have also been successfully applied to applications such as the time-dependent

traveling salesman problem with time windows (Vu et al. 2020), the time-dependent minimum tour

duration problem (Vu, Hewitt, and Vu 2022), and the continuous-time inventory routing problem

(Lagos, Boland, and Savelsbergh 2020).

3. Cross-dock Trailer Scheduling with Workforce Constraints
3.1. Problem Description

Each cross-dock has a set of unloading doors U and a set of loading doors L. Each loading door ℓ

has a specific terminal destination, and the outbound trailers from the loading door have a known

departure deadline dℓ. A set of inbound trailers I arrive at the cross-dock where each trailer i∈ I

has a planned arrival time ri. The planned arrival time of a trailer is analogous to the release times

of jobs in machine scheduling. Upon arrival, these inbound trailers can be directed to an available

door for unloading. Unloaded shipments are cross-docked using forklifts (see Figure 1) directly to

their corresponding loading doors. Each forklift carries a single shipment at a time and is operated

by one worker. A trailer completes unloading when all of its shipments have been cross-docked to

their respective loading doors.

The total processing time of an inbound trailer in a cross-dock includes (i) docking at door

(ii) preparation for unloading (iii) unloading and (iv) undocking from door. The unloading time

of a trailer can be reduced by allocating multiple workers to unload the trailer. However, it is

important to note that allocating more workers to unload a trailer does not result in a proportionate

improvement in performance due to space limitations within the trailer (Tadumadze et al. 2019).

Ojha and Erera: Exact Algorithm for Cross-dock Trailer Scheduling
7

We denote the set of permissible worker allocations for unloading a trailer as M , and Q represents

the total number of workers available during the planning period. Once assigned to unload a

trailer, workers remain busy from the start until the completion of the unloading process. Instead

of directing workers to unload parts of multiple trailers, it is more practical and straightforward

to reassign them to another trailer once a trailer has been completely unloaded (Tadumadze et al.

2019). We assume that workers can transition from one unloading door (after finishing unloading

the current trailer) to another unloading door instantaneously. This assumption is reasonable since

the time required for walking or driving (in the case of a forklift) between doors is significantly

shorter than the unloading time.

Terminal managers have access to information such as the shipments in a trailer, shipment

destinations, and planned arrival times of trailers. Let Si be the set of shipments on trailer i ∈ I,

Di be the set of loading doors associated with shipments on trailer i∈ I. Let niℓ be the number of

shipments on trailer i that need to be cross-docked to loading door ℓ, and τuℓ be the total time for

a worker to transport a shipment from unloading door u to loading door ℓ and then return to the

unloading door.

We use a conservative modeling approach to estimate the total processing time of trailers. In

this approach, an inbound trailer is completely processed or unloaded when all of its shipments

have been transferred to their respective loading doors. When a single dock worker is unloading,

the processing time of a trailer at an unloading door is dependent on the total out-and-back travel

time, summed over all shipments, between the unloading door and loading doors. These travel

times may be affected by terminal congestion, but for simplicity we ignore such effects and assume

instead that travel times do not depend on terminal load or scheduling decisions. The processing

time of trailer i at door u using one worker is denoted by ρi1u and can be calculated as shown in

(1a). We define the processing time of a trailer with m workers as shown in (1b), where κ≥ 1 is a

constant and represents the acceleration effect of additional workers (Tadumadze et al. 2019) and

⌊.⌉ function rounds the value to the nearest integer. Increasing κ to an integer value larger than

one results in sub-additive improvement in the unloading time.

ρi1u =
∑
ℓ∈Di

niℓτuℓ +docking and undocking time ∀i∈ I,u∈U (1a)

ρimu =

⌊
ρi1u
m1/κ

⌉
∀i∈ I,u∈U,m∈M (1b)

If a trailer i starts unloading at time t, then it completes unloading at time t+ ρimu and the m

workers assigned to the trailer are busy during the interval [t, t+ ρimu).

Ojha and Erera: Exact Algorithm for Cross-dock Trailer Scheduling
8

Given these inputs, optimization problem XDTS-W seeks to schedule specific inbound trailers

for unloading at specific unloading doors over time with an assigned number of workers. The

objective is to minimize the total deadline violation of the outbound trailers at the loading doors.

The presence of shipments bound for multiple outbound trailers within each inbound trailer adds

significant complexity to the problem, since the decision to schedule an inbound trailer at some

unloading door at some start time with some workers then impacts the earliest departure time for

many loading trailers. The planning horizon for such a problem might vary from one sorting period

(for example, the sunrise sort from 3am-6am) to multiple sorts (for example, twilight and night

sorts from 5pm-3am).

3.2. A Mixed-Integer Programming Formulation

XDTS-W can be modeled using either compact or extended mixed-integer programming schedul-

ing formulations. Compact formulations require “big-M” constraints that lead to weak linear-

programming relaxations of the MIP, and thus such formulations cannot be used to solve large

instances in reasonable times (Lagos, Boland, and Savelsbergh 2022). Extended formulations, on

the other hand, have tighter linear-programming relaxations. This section presents an extended

formulation MIP model for XDTS-W using a time-expanded network denoted by Ĝ = (N̂ , Â)

where N̂ denotes the set of nodes and Â denotes the set of arcs. Each node (u, t) ∈ N̂ represents

an unloading door u ∈ U at time t. Nodes are defined at each unloading door u for all possible

time points during planning horizon T ; therefore each door has the same set of time points. To

define all possible time points, suppose that T is discretized at the ∆-minute-level, where ∆ =

GCD(GCDi∈Iri,GCDℓ∈Ldℓ,GCD(i,m,u)ρ
im
u) and GCD(.) is the greatest common divisor function;

let T̂ be the set of unique time points in the planning horizon. Furthermore, assume that all prob-

lem parameters that measure time (ri, dℓ, ρ
im
u) are measured in units of ∆. Given a complete set

of time-space nodes, suppose that Â includes an arc generated from (u, t) ∈ N̂ to (u, t+ ρimu) ∈ N̂
for all trailers i∈ I, for all possible values of m, and for all nodes (u, t)∈ N̂ , such that ri ≤ t. With

such a definition and the fact that the processing time is ρimu , an arc ((u, t), (u, t+ ρimu)) can be

used to represent the decision to begin unloading some trailer i with m workers at door u at time

t, thus occupying the door until time t+ ρimu when the trailer unloading is complete.

Let binary decision variable xim
ut take value 1 if trailer i starts unloading with m workers at

door u at time t, where ri ≤ t, and take value 0 otherwise. This decision can be interpreted as

an assignment aim
ut of trailer i with m workers to time-space occupation arc ((u, t), (u, t+ ρimu)).

Continuous decision variable zℓ measures the deadline violation at loading door ℓ. Consider then

the MIP formulation shown in Model 2:

Minimize
∑
ℓ∈L

zℓ (2a)

Ojha and Erera: Exact Algorithm for Cross-dock Trailer Scheduling
9

s.t.
∑
m∈M

∑
(u,t)∈N̂
t≥ri

xim
ut = 1, ∀ i∈ I (2b)

∑
m∈M

∑
(u,t)∈N̂
t≥ri

(
t+ ρimu

)
xim
ut − zℓ ≤ dℓ, ∀ i∈ I, ℓ∈Di (2c)

∑
aim
ut′∈Âut

xim
ut′ ≤ 1, ∀ (u, t)∈ N̂ (2d)

∑
u∈U

∑
aim
ut′∈Âut

mxim
ut′ ≤Q, ∀ t∈ T̂ (2e)

xim
ut ∈ {0,1}, ∀ i∈ I,m∈M, (u, t)∈ N̂ , t≥ ri (2f)

zℓ ≥ 0, ∀ ℓ∈L (2g)

We refer to this model as XDTS-W. In this model, let Âut represent all possible (arc) assignments

that occupy unloading door u at time t,

Âut ≡ {aim
ut′ : t− ρimu < t′ ≤ t , ((u, t′), (u, t′ + ρimu))∈ Â, i∈ I, m∈M} . (3)

The objective function in (2a) minimizes the total penalty due to deadline violation at loading

doors. Constraints (2b) ensure that a trailer starts processing after its planned arrival time and

at an unloading door at exactly one time point using a certain number of workers. Constraints

(2c) determine the loading door deadline violations by ensuring that the maximum of the actual

completion time or the deadline for loading door ℓ is not less than the completion time implied by

any unloading trailer i sending shipments to ℓ. Constraints (2d) ensure that at most one trailer

can be processed at an unloading door at a given time, similarly to those found in time-indexed

formulations for single machine scheduling problems in Sousa and Wolsey (1992). Constraints (2e)

ensure that the maximum worker availability is respected at all times. Constraints (2f) and (2g)

define the domain and range of variables. Note that if the loading door deadlines are all large

enough, then every feasible solution is optimal.

Theorem 1 XDTS-W is strongly NP-hard.

Proof See Appendix 9.1

4. Solution Methodology

Model 2 has a significant drawback for many large, realistic instances. Since such instances have

large numbers of time points for many unloading doors, the number of decision variables and

constraints can also grow very large, which may lead to intractable mixed-integer programs. Note

that the total number of decision variables in XDTS-W is O(|I||U ||M ||T̂ |) and the total number

Ojha and Erera: Exact Algorithm for Cross-dock Trailer Scheduling
10

of constraints is O(|I|+ |I||L|+ |U ||T̂ |+ |T̂ |). This paper proposes a solution methodology with a

scheme to alleviate this difficulty by using dynamic discretization discovery ideas. In this scheme, we

begin with a smaller formulation that uses a partial network that contains only a small subset of the

nodes in the complete time-expanded network. Importantly, we show that solving the formulation

using the partial network produces a lower bound on the objective function value to XDTS-W;

we will refer to this model therefore as XDTS-W-LB. Furthermore, we show that it is simple to

determine whether a feasible (or optimal) solution to XDTS-W-LB is also feasible for XDTS-W;

such solutions provide upper bounds and can be used to determine the current optimality gap. If

an optimal solution has not yet been identified, we show that we can create a new partial network

by adding new time points, network nodes, and assignment arcs using a systematic procedure that

ensures that the lower-bounding property is preserved while ensuring that the previous solution

to XDTS-W-LB is no longer feasible; these iterations can be repeated until an optimal solution is

found. We also develop two simple algorithms for converting any feasible solution to XDTS-W-LB

to a feasible solution of XDTS-W; these algorithms can be used, periodically, to improve the upper

bound, and/or after a time limit if no previous feasible solution has been identified.

Section 4.1 defines the partial network and XDTW-W-LB. Section 4.2 presents approaches to

construct feasible solutions to XDTS-W given feasible solutions to XDTS-W-LB. Finally, Section

4.3 summarizes the complete DDD algorithm.

4.1. Relaxation of XDTS-W

Consider a partial network G = (N,A) which consists of nodes (u, t) ∈ N ⊆ N̂ and arcs A. Let

T (u) denote the set of time points at unloading door u ∈ U in G. The network G is constructed

to satisfy certain properties. These properties ensure that any feasible solution of XDTS-W (with

integer arrival times, processing times, and deadlines) can be mapped to a feasible solution in G,

and this solution has a cost not greater than the cost of the feasible solution of XDTS-W.

Property 1 Node set N minimally contains all nodes of type (u, ri) ∀ u∈U, i∈ I where ri is the

planned arrival time of trailer i∈ I.

Property 2 Given node set N , the arc set A contains an arc ((u, t), (u, t+ ρ̂imut)) from each (u, t)∈

N for all unique values of ρ̂imut defined as max{ρ̂ : 0≤ ρ̂≤ ρimu , (u, t+ ρ̂)∈N} for each trailer i∈ I

where t≥ ri and number of workers m∈M .

Property 3 Each unloading door has the same set of time points, i.e., if (u, t)∈N then (u′, t)∈N

for all u′ ∈U .

Ojha and Erera: Exact Algorithm for Cross-dock Trailer Scheduling
11

Henceforth, we will use T to denote the same set of time points at each unloading door in the

partial network G as indicated by Property 3.

As in Section 3.2, suppose that we use the notation aim
ut to represent the decision to assign

trailer i for unloading with m workers to unloading door u at time t. In a partial network, this

assignment occupies arc ((u, t), (u, t+ ρ̂imut)). Similar to earlier, let Aut represent all possible (arc)

assignments that occupy unloading door u at time t but now in the partial network G, that is

Aut ≡ {aim
ut′ : t− ρ̂imut′ < t′ ≤ t , ((u, t′), (u, t′ + ρ̂imut′)) ∈A, i ∈ I, m ∈M} in the partial network. Note

that Aut is obtained for the partial network G by replacing ρ with ρ̂ and Â with A in (3). To obtain

a relaxation of XDTS-W, we now simply modify Model (2) by replacing N̂ with N , Â with A, T̂

with T and Â with A. Importantly, note that the objective function value as defined by (2a) and

(2c) continues to use the original parameter ρimu . We refer to the resulting model as XDTS-W-LB.

Given this definition of XDTS-W-LB from partial network G, Properties 1 and 2 ensure that a

possible assignment exists that begins unloading trailer i at door u at its arrival time with some

workers. Furthermore, Property 2 ensures that a trailer assignment to an arc in G creates a so-

called optimistic mapping of the associated unloading completion time of that trailer. Note that

the actual completion time for trailer i given assignment aim
ut is t+ ρimu , but Property 2 ensures

that i is modeled to occupy door u only until time t+ ρ̂imut . Recall that ρ̂
im
ut ≤ ρimu and the inequality

is strict when t+ ρimu /∈ T . Thus, trailer assignments using the arcs of G with the same number of

workers lead to trailer completion times that are not later than the actual completion times which

result from using the arcs of the full network Ĝ. It follows that the unloading door u following the

assignment aim
ut when using G is modeled to be available not later than it would be when using Ĝ,

and this property is the key to ensuring that XDTS-W-LB produces lower bounds to the optimal

solution of XDTS-W.

Figure (2) provides a graphical depiction of the optimistic mapping of the completion time of

trailer i to t+ ρ̂imut if the actual completion time t+ ρimu /∈ T . In this case, we say that trailer i

uses a “short” processing time arc when unloading at (u, t). Note that a trailer can be modeled in

XDTS-W-LB with ρ̂imut = 0 if there does not exist any time point t′ ∈ T such that t < t′ ≤ t+ ρimu ;

in this case the trailer starts and completes at the same time t.

Finally, Property 3 ensures that each unloading door has the same set of time points in the

partial network; when G does not satisfy this property, we show that XDTS-W-LB may not yield a

lower bound to XDTS-W. Consider the example shown in Figure 3, with 3 workers, two unloading

doors u1, u2 and four trailers i1, i2, i3, i4. Suppose there is a single loading door with deadline of 4

time units. Let the processing time of trailers i1, i2 at door u2 and the processing time of trailers

i3, i4 at door u1 be a very large number; therefore, trailers i1 and i2 are scheduled at door u1 and

trailers i3 and i4 are scheduled at door u2 in an optimal solution. Now suppose, trailers i1 and i2 are

Ojha and Erera: Exact Algorithm for Cross-dock Trailer Scheduling
12

𝑡 𝑡 + 𝜌!"#

actual processing time

(a) Actual processing time arc in Ĝ

𝑡 + 𝜌$!"#$

``short’’ processing time

𝑡 𝑡 + 𝜌!#$

(b) “Short” processing time arc in G

Figure 2 Processing time arcs in complete (Ĝ) and partially (G) time expanded network

unloaded using two and one worker, respectively, at door u1. The values in the brackets denote the

number of workers used to unload the trailer. Similarly, trailers i3 and i4 are unloaded using one

and two workers, respectively, at door u2. Figure 3a depicts an optimal solution in the complete

time-expanded network; the objective function value is 0 since all of the trailers complete unloading

by time 4. Figure 3b represents an optimal solution over a partial network where time point t= 2

is missing from door u2. By the definition of ρ̂, trailer i3 starts unloading at time t= 1 and door u2

becomes instantaneously available for another trailer unloading. However, trailer i4 cannot start

unloading at time t= 1 with 2 workers because only 1 is available until t= 2. Importantly, trailer

i4 cannot be unloaded at t= 2 because the time point does not exist at u2. Thus, trailer i4 starts

unloading at t= 3 resulting in a deadline violation and an optimal objective function value of 1.

1 2 3

1 2 3

𝑖!(2)

𝑖"(1)

𝑢!

𝑢#

4 5

4 5

𝑖#(1)

𝑖$(2)

(a) trailer schedule in complete network Ĝ

1 2 3

1 3

𝑖!(2)

𝑖"(1)

𝑢!

𝑢#

4 5

4 5

𝑖#(1)

𝑖$(2)

(b) trailer schedule in partial network G

Figure 3 Example illustrating why Property 3 is necessary for G to ensure that XDTS-W-LB yields a lower-bound

to XDTS-W

To show that the optimal solution of XDTS-W-LB yields a lower-bound to the optimal solution

of XDTS-W, it is sufficient to show that any feasible solution of XDTS-W can be mapped to

a feasible solution of XDTS-W-LB with an objective function value that is not larger than its

objective value for XDTS-W. Given a feasible solution (x̂, ẑ) to XDTS-W, we define a mapping to

Ojha and Erera: Exact Algorithm for Cross-dock Trailer Scheduling
13

construct x-variables in XDTS-W-LB as shown in (4). Note that for any given time point t ∈ T ,

t+ =min{t′ : t′ > t, t′ ∈ T } is the next time point in the discretization.

xim
ut =

∑
t′∈T̂

t′∈[t,t+)

x̂im
ut′ ∀ i∈ I,m∈M, (u, t)∈N (4)

Definition (4) sets a binary variable in XDTS-W-LB as the sum of binary variables corresponding to

arc assignments that start unloading trailer i∈ I with m∈M workers at door u∈U in the interval

[t, t+) in XDTS-W, thus mapping these start times from the full network to the time t∈ T in the

partial network. We will prove that the resulting solution x is always feasible for XDTS-W-LB

when G satisfies Properties 1-3.

Lemma 1 Given a feasible solution to XDTS-W with non-zero processing times of trailers, if the

start times of q > 1 trailers unloaded at any door u lie in the interval [t, t+) and the start times are

mapped to the common time t by (4), then at least q− 1 of the trailers also complete unloading at

time t in the partial network G.

Proof See Appendix 9.2

Lemma 1 implies that multiple trailers can start unloading at a door at a given time point in a

partial network but at most one of them can have non-zero processing time; see Appendix 9.3 for

an example.

Theorem 2 XDTS-W-LB defined using partial network G satisfying Properties 1-3 is a relaxation

of XDTS-W and yields a lower bound to the objective function value of XDTS-W.

Proof See Appendix 9.4 □

4.2. Constructing Feasible Solutions to XDTS-W from a Feasible Solution to
XDTS-W-LB

A solution to XDTS-W-LB can be used directly to identify a feasible solution to XDTS-W. Consider

a feasible set of assignments {aim
ut } after solving XDTS-W-LB. Each assignment {aim

ut } where xim
ut = 1

represents starting the unloading of trailer i with m workers at door u at time t and occupying

that door for ρ̂imut time (using the occupation arc ((u, t), (u, t+ ρ̂imut)) ∈ A). If ρ̂imut < ρimu , then we

say that trailer i has been assigned to a short processing time arc. If no trailer i is assigned to

a short processing time arc, then the feasible solution to XDTS-W-LB is feasible for XDTS-W.

Furthermore, if this feasible solution is also optimal for XDTS-W-LB, then it is also optimal for

XDTS-W.

In most iterations, however, solving XDTS-W-LB does not lead to such a direct feasible solution

to XDTS-W. Therefore, it may be useful to have alternative approaches to create feasible solutions

Ojha and Erera: Exact Algorithm for Cross-dock Trailer Scheduling
14

to potentially improve an upper bound on the optimal objective to XDTS-W. In this section, we

define two procedures to construct such solutions directly from feasible (or optimal) solutions to

XDTS-W-LB. Both approaches will fix the trailer-to-door assignments, number of workers per

trailer, and trailer sequence decisions for each unloading door from the XDTS-W-LB solution and

then create a feasible solution that respects the total workforce constraint.

The first approach uses a greedy idea. Consider a set of optimal assignment decisions {x∗im
ut }

after solving XDTS-W-LB. For each trailer i, there is a unique triplet (u,m, t) where x∗im
ut = 1;

trailer i starts unloading at door u with m workers at time t in the lower bound solution. A feasible

solution can be generated by fixing the u and m decisions for each trailer and then applying a

simple delaying scheme to select a feasible unloading start time t̂. To do so, consider the trailers

in non-decreasing order of start times t. Then, for each trailer in this ordering, set t̂≥ t to be the

earliest time that door u is available and m workers are available. When trailer i is started at t̂,

then door u is marked occupied until t̂+ρimu . Furthermore, the available worker pool is reduced by

m at time t̂ and then increased by m at t̂+ ρimu . It should be clear that such an approach ensures

that constraints (2d) and (2e) for XDTS-W are satisfied by the constructed solution.

The second approach recognizes that the greedy approach for delaying trailer start times can be

improved if the allocation of dock workers to unloading activities is jointly optimized; appendix 9.5

presents an example to illustrate this observation. Consider then a simple mixed-integer program-

ming model to do so that we refer to as the worker dispatch model (WDM). In this worker flow

model, we imagine that Q workers are initially available (at a source node) and can be dispatched

to unload trailers at specific start times. Similar to above, if m workers are assigned to trailer i at

unloading door u at start time t, then those m workers become available for reassignment at time

t+ ρimu .

To complete the formulation of WDM, consider an optimal solution to XDTS-W-LB where

(ui,mi, ti) is the triplet indicating that trailer i is unloaded at door ui with mi workers at the

proposed time ti. To preserve the unloading order at each door, let parameter γik = 1 if trailer i

is unloaded before trailer k at the same door (ti < tk and ui = uk) and 0 otherwise for all pairs of

trailers i, k ∈ I. Also, for ease of notation define a trailer processing time parameter pi = ρimi
ui

also

for each i ∈ I. Integer decision variables vik ∈ Z≥0 are used in the formulation to determine the

number of workers who next unload trailer k after currently unloading trailer i; note that trailer

i= 0 is used to indicate a dummy source such that v0k counts the number of workers whose first

assignment is to trailer k. Binary decision variables yik must be set to one if at least one worker

unloads trailer k after unloading trailer i. Continuous variables zℓ ∈ R≥0 determine the deadline

Ojha and Erera: Exact Algorithm for Cross-dock Trailer Scheduling
15

violation at loading door ℓ∈L, while continuous variables si ∈R≥0 denote the unloading start time

of trailer i∈ I. Consider now the following formulation:

Minimize
∑
ℓ∈L

zℓ (5a)

si ≥ ri ∀ i∈ I (5b)

si + pi− zℓ ≤ dℓ ∀ i∈ I, ℓ∈Di (5c)

si + pi−M (1− yik)≤ sk ∀ i∈ I, k ∈ {k′ ∈ I : γik′ ̸= 1}, (5d)

si + pi ≤ sk ∀ i∈ I, k ∈ {k′ ∈ I : γik′ = 1} (5e)∑
i∈I

v0i ≤Q (5f)

vki ≤Qyki ∀ i, k ∈ I (5g)∑
k∈I∪{0}

vki ≥
∑
k∈I

vik ∀ i∈ I (5h)∑
k∈I∪{0}

vki ≥mi ∀ i∈ I (5i)

vik ∈Z≥0 ∀ i, k ∈ I (5j)

v0i ∈Z≥0 ∀ i∈ I (5k)

yik ∈ {0,1} ∀ i, k ∈ I (5l)

si ≥ 0 ∀ i∈ I (5m)

zℓ ≥ 0 ∀ ℓ∈L (5n)

The objective function in (5a) minimizes the total deadline violation at the loading doors. Con-

straints (5b) ensure that the trailers start unloading after they have arrived at the cross-dock.

Constraints (5c) determine the loading door deadline violation. If at least one worker unloads trailer

k after unloading trailer i and ui ̸= uk, then constraints (5d) ensure that trailer k starts unloading

after trailer i has completed unloading. If trailer k is sequenced after trailer i at the same unloading

door, then constraints (5e) ensure that trailer k is unloaded after trailer i. Constraints (5f)-(5h)

conserve the flow of workers and ensure that at most Q workers are used. Note that constraints (5h)

have inequality instead of equality to allow workers to stay at the door where the current trailer

is being unloaded, if there are no more trailers to unload after the current trailer. Constraints (5i)

ensure that the trailers are unloaded using mi workers. Constraints (5j)-(5n) define the domain

and range of variables. Note that the formulation permits a flow of more than mi workers from

trailer k to trailer i. However, these additional workers do not impact the processing time pi. Note

also that the formulation also prevents workers moving backwards in time from a later trailer to

an earlier trailer at the same loading door.

Ojha and Erera: Exact Algorithm for Cross-dock Trailer Scheduling
16

Figure 4 Example illustrating dispatch of workers to unload trailers

Figure 4 presents an example to illustrate the dispatch of three workers from the source node to

unload trailers. Trailer 1 is unloaded by one worker and then trailer 2 is unloaded by two workers at

unloading door 1. Similarly, trailer 3 is unloaded by two workers and then trailer 4 is unloaded by

one worker at unloading door 2. A feasible solution to WDM represents the flow of three workers as

source→ trailer1→ trailer2, source→ trailer3→ trailer4, source→ trailer3→ trailer2. Note in

this case that the unloading time of Trailer 2 cannot be earlier than the completion time of Trailer

3 given this worker flow.

Importantly, the construction of WDM leads to a clear observation. Suppose that an optimal

solution to XDTS-W is such that the triplet (ui,mi, ti) is associated with each trailer i ∈ I. For

this triplet, ui is the optimal unloading door for trailer i and mi is its optimal number of workers.

However, suppose that the values ti only specify an optimal ordering of trailers at their unloading

doors (when trailers are unloaded in order of non-decreasing ti) but not the actual optimal unload-

ing start times. Then, WDM will determine the actual optimal unloading times si and its optimal

objective function value will equal z∗, the optimal objective function value for XDTS-W.

4.3. Dynamic Discretization Discovery (DDD) Algorithm

We now summarize a complete DDD algorithm for solving XDTS-W either to optimality or to a

provable optimality gap. Again, the core idea of this algorithm will be to repeatedly solve instances

of XDTS-W-LB over partial networks that satisfy Properties 1-3, where each new partial network

adds new timed nodes (and subsequently builds a new set of timed arcs). A specific systematic

procedure adds new timed nodes in each iteration such that at least one assignment of an unloading

trailer to an infeasible (short) processing time arc is eliminated from the solution. This procedure

ensures that solving XDTS-W-LB produces a sequence of non-decreasing objective function lower

bounds. The best lower bound can be compared to the objective function of any feasible solution to

Ojha and Erera: Exact Algorithm for Cross-dock Trailer Scheduling
17

determine a current optimality gap; the approach can be terminated when a target gap is achieved,

when a time limit or iteration count is exceeded, or when XDTS-W-LB returns a feasible solution

to XDTS-W which is provably optimal.

More specifically, we use Algorithm 1 to find solutions in the computational studies reported in

this paper. Appendix 9.6 illustrates the individual steps of the DDD algorithm on a small example

instance. Algorithm 1 as specified terminates when either an optimal solution is identified, an

iteration count is reached, or a target computational run time is reached; additional or alternative

stopping criteria such as reaching a target optimality gap could also be used. In the steps of

the algorithm below, note that an optimal solution is found either when XDTS-W-LB is solved

optimally during an iteration and none of the trailers i ∈ I are assigned to short processing time

arcs, or when the current best feasible solution identified has an objective function value equal to

the best lower bound found. If an optimal solution has not been found, we add additional time

points and the associated time-space nodes at all unloading doors to G and regenerate the arc set

for the next iteration. We note that this algorithm will terminate with an optimal solution if we

always solve XDTS-W-LB to optimality in each iteration. It is possible to implement this approach

slightly differently if we cannot solve XDTS-W-LB to optimality.

Theorem 3 DDD algorithm finds the optimal solution to XDTS-W in at most (T +1−Φ) itera-

tions where Φ denotes the number of unique time points in the set {ri : i∈ I}.

Proof See Appendix 9.7

5. Greedy Heuristic

In this section, we describe a two-phase greedy heuristic to find a feasible solution to XDTS-W. The

first phase schedules trailers at unloading doors, and the second phase assigns workers to unload

the trailers. The proposed greedy heuristic will be used as a baseline to compare the effectiveness

of solutions generated via optimization.

Trailer Scheduling: In the first stage, all inbound trailers i ∈ I are sorted in non-decreasing

order of their planned arrival times ri. In order, each trailer i is then assigned to the best loading

door u and specific (earliest) unloading time t, where best is defined to minimize the total deadline

violation at the loading doors for this trailer’s shipments assuming that the trailer is unloaded with

one worker. The unloading time t assigned to this trailer is the later of its arrival time ri and the

earliest time door u is available for its next trailer. For example, suppose trailer i has completion

time C̄(u) at unloading door u ∈ U and shipments are cross-docked to one or more loading doors

ℓ with deadline dℓ. The trailer is assigned to a door u∗ as defined in (6):

u∗ = argmin
u∈U

∑
ℓ∈Di

max{C̄(u)− dℓ,0} (6)

Ojha and Erera: Exact Algorithm for Cross-dock Trailer Scheduling
18

Algorithm 1 DDD Algorithm for XDTS-W Instances

1: maxIter← maximum allowed iterations

2: timeLimit← maximum allowed time for running the DDD algorithm

3: G= (N,A)← a partial network satisfying Properties 1-3

4: While (iteration≤maxIter and runtime≤ timeLimit)

5: Solve XDTS-W-LB using partial network G

6: S← optimal solution found solving XDTS-W-LB

7: LB← optimal objective value of S

8: If (all trailers assigned to correct processing times in S (xim
ut = 1 → ρ̂imut = ρimu)): S is an

optimal solution to XDTS-W

9: break

10: Solve WDM using solution S to XDTS-W-LB

11: SF ← best feasible solution found using WDM during this or any earlier iteration

12: UB← best objective value of SF

13: If (LB =UB) : SF is an optimal solution to XDTS-W

14: break

15: Else

16: ∀ i∈ I where solution S has xim
ut = 1 and ρ̂imut <ρimu , add time point t+ ρimu at every u∈U

and associated time-space nodes to N

17: Regenerate arc set A given updated node set N

18: iteration ← iteration+1

19: runtime ← runtime + time expended this iteration

20: End If

21: End While

Worker Assignment: In the second stage, trailers are re-sorted now in non-decreasing order of

their scheduled unloading start times determined in the first stage. Let idle be the number of

workers available when scheduling trailer i at planned time t. If idle > 0, then trailer i is assigned

the minimum of idle workers or the maximum number of workers that can be assigned to any

trailer. If idle= 0, then the unloading start time t is delayed until the first later time t′ > t where

idle > 0 before receiving an assignment of workers. This greedy approach ensures that workers are

never idle at a time when trailers are waiting to be assigned workers.

6. Computational Study

In this section, we compare the performance of the DDD algorithm on practical instances of XDTS-

W derived from data provided by a large US LTL carrier research partner. Section 6.1 describes

Ojha and Erera: Exact Algorithm for Cross-dock Trailer Scheduling
19

the instances and parameters. Section 6.2 discusses how the algorithm is tuned to decide when to

use WDM to create feasible solutions. Section 6.3 compares the performance of the DDD algorithm

to using a commercial solver to solve XDTS-W using the complete time-expanded network and to

the greedy heuristic. Section 6.4 examines how the choice of the initial partially-expanded network

impacts the performance of the DDD algorithm.

For this study, all algorithms and heuristics were implemented in Python 3.8 and the MIP models

were solved using Gurobi 9.0. Experiments were run on a local macOS machine with a 6-core 2.6

GHz processor and 16 GB of RAM.

6.1. Description of Instances and Parameters

In this study, we use data from an L-shaped cross-dock in Atlanta with 44 unloading doors and

57 loading doors. The actual travel distances between the doors and the average speed of forklifts

(driven by workers) are used to calculate the travel time between doors. The planning horizon

for the scheduling of trailers is determined by the length of the sorting period β: β = 6 hours

for a sunrise-day sort and β = 10 hours for a twilight-night sort. From data analysis, we observe

that an average of three to four trailers are unloaded at each unloading door during these sorts;

therefore, the number of inbound trailers is set to be approximately three to four times the number

of unloading doors. Using this information, we create four categories of instances: extra-small (XS),

small (S), medium (M), and large (L), as shown in Table 1. Note that the large (L) instance

is representative of an instance for a large trucking cross-dock. The XS, S, and M categories

were constructed by taking appropriate subsets of the cross-dock doors based on geographic zone

information.

Table 1 Instance Types and Parameters

Parameters XS S M L
Unloading Doors 16 22 33 44
Loading Doors 21 30 44 57

Trailers {50,64} {70,90} {100,130} {130,180}
Sort {D, N} {D, N} {D, N} {D, N}

The estimated arrival time ri (in minutes) of every inbound trailer is randomly drawn from the

uniform distribution [0,60α] where α∈ {0,2,4,6} hours for sunrise-day (D) sort and α∈ {0,3,6,10}

hours for twilight-night (N) sort. Varying the parameter α in this way allows us to analyze the

sensitivity of the solution approaches to the spread of the arrival time of trailers during the planning

horizon. The number of shipments on inbound trailers depends on the range of average daily

shipments anticipated by the terminal managers. The total number of shipments (pallets) on each

inbound trailer is drawn from the range [10,20] and each shipment is randomly assigned to an

Ojha and Erera: Exact Algorithm for Cross-dock Trailer Scheduling
20

outbound loading door. The docking and undocking time of a trailer at a door is set to 5 minutes

each.

Outbound trailers in general should be loaded by the end of the sorting period. However, some

trailers may have earlier deadlines so that they may be dispatched to meet on-time requirements at

downstream terminals. Thus, the outbound trailer deadlines (in minutes) are randomly drawn from

a uniform distribution [60α,60β] where α= 4 hours,β = 6 hours for a sunrise-day sort and α=

7 hours,β = 10 hours for a twilight-night sort. We set the total number of workers equal to twice

the number of unloading doors, and we restrict at most three workers to be used to unload each

trailer. We set the value of κ to be 1.25, as recommended in Tadumadze et al. (2019), to calculate

the processing time ρimu ; specifically, we first compute the processing time for a trailer using a single

worker and then scale for m workers as given by expressions 1a and 1b. All time parameters in this

study such as the trailer arrival times, processing times and loading door deadlines are rounded-up

to integer values.

Table 2 summarizes the source of data used to generate the instances for testing the DDD

algorithm.

Table 2 Sources of Instances and Parameter Values

Parameters Real Data Artificial Data Comments
Loading and unloading doors ✓

Distance between doors ✓
Average forklift speed ✓

Sort length/Planning horizon ✓
Number of inbound trailers ✓ Derived from historical data

Trailer arrival times ✓
Historical data shows trailer
arrivals are spread in 50-75%
of length of planning horizon

Shipment destinations ✓ Randomly generated

Loading deadlines ✓
Derived from sample deadline
estimates from research partner

Number of workers ✓

6.2. Deciding When and How to Generate Feasible Solutions using WDM

In early iterations of the DDD algorithm, it might be unnecessary to solve WDM to find a feasible

solution since it may be unlikely to find a solution with a reasonable optimality gap when the

time discretization of XDTS-W-LB is relatively coarse. Since the WDM MIP can also be difficult

to solve for large instances, we also solve these instances with a time limit and set the Gurobi

MIPFocus parameter to 1 to prioritize good feasible solutions.

After experimentation, we found that a reasonable approach is to first solve the linear relaxation

of WDM yielding objective value WLP . This value is then compared to the XDTS-W-LB optimal

Ojha and Erera: Exact Algorithm for Cross-dock Trailer Scheduling
21

objective function value, LB. If the gap WLP−LB

WLP
≤ 2%, the WDM MIP is then solved. We use a

MIP time limit of 2 minutes for the XS, S, and M instances and 4 minutes for the L instances.

In this way, we direct the algorithm to only spend time searching for good feasible solutions using

WDM when the likelihood of identifying a near-optimal solution is higher. Note that for WDM to

identify an optimal solution to XDTS-W during some iteration, of course WLP ≤LB (thus leading

to a computed negative gap).

6.3. Comparison of Exact and Heuristic Approaches

We solve 64 total instance types in this study, 16 for each instance size category (2 sets of trailers,

2 sorts, 4 values of α). Each instance is labeled “ABCE” where A denotes the instance category, B

denotes the number of trailers, C denotes the sort and E denotes the value of α. Recall that
[
0, 60α

∆

]
denotes the normalized time window during which trailers arrive at the cross-dock. We generate

and solve 10 instances for each instance type, and the run time for each instance is limited to 60

minutes.

We report statistics to compare the performance of exact and heuristic approaches for solving

XS (Table 3), S (Table 4), M (Table 5) and L (Table 6) instances of XDTS-W. In these tables,

“FullTI” contains statistics for the solution obtained by Gurobi for XDTS-W, “Greedy” contains

statistics for the feasible solution obtained by the greedy heuristic, and “DDD” contains statistics

for the best solution obtained by the DDD algorithm. Column “ΘFull%” denotes the average (over

10 instances) optimality gap obtained when solving XDTS-W directly by Gurobi, “T(s)” denotes

the average CPU time in seconds, “#” denotes the number of instances (out of 10 instances) solved

to optimality, LBavg (or UBavg) denotes the average of the best lower-bound (or upper-bound)

values found for the 10 instances in each category. “ΘG%” denotes the average percentage gap

of the greedy heuristic solution with the best lower-bound obtained by Gurobi. Column “Θ%”

denotes the average optimality gap obtained by the DDD algorithm, where the best lower bound

is identified via sequential solution of XDTS-W-LB. Finally, “Iter” reports the average number of

iterations to solve the instances by DDD. All optimality gaps are defined as usual as upper bound

less lower bound divded by upper bound.

In Tables 3-6, we observe that for the instances in which all trailers arrive at the cross-dock at the

start of the planning horizon, i.e., t= 0, the optimality gaps are high for both approaches. None of

these instances are solved optimally by FullTI, and the average lower bounds computed within the

time limit are very weak. It is not surprising that the DDD algorithm performs worse than FullTI

in terms of the optimality gap for these instances, given that the approach begins only with time

points at t= 0 for all doors. Adding time points here is time-consuming, so the DDD algorithm

produces weaker average lower bounds than FullTI. However, an interesting observation is that the

Ojha and Erera: Exact Algorithm for Cross-dock Trailer Scheduling
22

Table 3 Statistics for exact and heuristic approaches for instance type XS

Dataset
FullTI Greedy DDD

ΘFull% T(s) # LBavg UBavg ΘG% Θ% T(s) # Iter LBavg UBavg

XS50D0 73.77 3600 0 33.0 125.9 89.89 76.43 3600 0 5.5 31.3 132.9
XS50D2 0.00 292 10 78.0 78.0 25.36 0.00 133 10 2.9 78.0 78.0
XS50D4 0.00 35 10 310.0 310.0 6.93 0.00 3 10 2.3 310.0 310.0
XS50D6 0.00 26 10 568.6 568.6 3.70 0.00 2 10 1.0 568.6 568.6

XS50N0 73.54 3600 0 33.9 128.1 89.96 76.32 3600 0 5.3 31.5 133.5
XS50N3 0.00 65 10 193.6 193.6 12.40 0.00 14 10 1.2 193.6 193.6
XS50N6 0.00 49 10 517.4 517.4 5.38 0.00 3 10 2.0 517.4 517.4
XS50N10 0.00 58 10 1007.1 1007.1 5.79 0.00 2 10 2.0 1007.1 1007.1

XS64D0 75.10 3600 0 50.5 202.8 88.43 81.77 3600 0 5.3 34.7 200.8
XS64D2 5.98 2266 5 46.4 63.5 43.38 5.27 1988 6 3.3 46.0 62.8
XS64D4 0.00 42 10 257.1 257.1 11.97 0.00 22 10 1.2 257.1 257.1
XS64D6 0.00 35 10 550.5 550.5 6.10 0.00 3 10 1.0 550.5 550.5

XS64N0 75.20 3600 0 50.7 204.6 88.61 82.21 3600 0 5.2 33.8 202.1
XS64N3 0.00 519 10 142.0 142.0 36.88 0.00 144 10 2.2 142.0 142.0
XS64N6 0.00 65 10 510.6 510.6 9.73 0.00 9 10 1.1 510.6 510.6
XS64N10 0.00 55 10 989.9 989.9 8.53 0.00 4 10 1.0 989.9 989.9

upper bounds (and feasible solutions) produced by the DDD algorithm are often much stronger

than the ones obtained by FullTI, especially for the M and L instances as shown in Tables 5 and

6. Since it is time-consuming to solve the linear programming relaxation of the larger instances

in FullTI, the solver heuristics can only make small improvements in the quality of the feasible

solution. On the contrary, the first few iterations in the DDD algorithm are relatively easy to solve

due to the small number of decision variables and constraints, and WDM often creates a relatively

good primal feasible solution to XDTS-W from the XDTS-W-LB optimal solution.

Figure 5 shows the progression of the bounds generated by the DDD algorithm for an instance

of the dataset XS64N0; the initial bounds are very weak, the lower bound improves very slowly as

new time points are added in each iteration, and then the DDD algorithm reaches the time limit

before it can close the gap further. This instance also shows a particular difficulty; relatively loose

trailer loading deadlines lead to optimal solutions to the relaxed problems with zero or very small

total deadline delay. Objective functions that discriminate more between different solutions may

be more amenable to the DDD algorithm; we will consider problems with tighter deadlines that

have this feature in Section 7.

In practical operations, trailers may arrive over time during the planning period. Therefore, we

analyze the solution statistics for different values of α; a larger value of alpha allows trailer arrivals

to be spread over a larger early portion of the planning period. Tables 3-6 demonstrate that as

the value of α increases, instances become relatively easier to solve: the average optimality gap

and the time taken to solve the instances decreases for all exact and heuristic approaches as the

value of α increases. The DDD algorithm solves these easier instances to optimality and faster than

Ojha and Erera: Exact Algorithm for Cross-dock Trailer Scheduling
23

1 2 3 4 5 6
Iterations

0

200

400

600

800

1000

1200

Ob
je

ct
iv

e
Fu

nc
tio

n
Va

lu
e

FullTI_LB
FullTI_UB
DDD_LB
DDD_UB

Figure 5 XS64N0 instance 1: Variation of lower and upper bounds for the DDD algorithm

Table 4 Statistics for exact and heuristic approaches for instance type S

Dataset
FullTI Greedy DDD

ΘFull% T(s) # LBavg UBavg ΘG% Θ% T(s) # Iter LBavg UBavg

S70D0 71.03 3600 0 94.0 324.5 85.63 79.80 3600 0 5.4 64.0 318.8
S70D2 19.00 2843 3 82.5 104.0 39.19 21.95 2477 4 3.6 81.9 107.7
S70D4 0.00 76 10 399.3 399.3 10.11 0.00 45 10 1.4 399.3 399.3
S70D6 0.00 46 10 737.7 737.7 5.23 0.00 3 10 1.0 737.7 737.7

S70N0 71.13 3600 0 93.8 324.9 85.62 83.87 3600 0 5.1 52.2 324.6
S70N3 0.00 162 10 227.4 227.4 32.98 0.00 81 10 3.0 227.4 227.4
S70N6 0.00 112 10 743.4 743.4 7.42 0.00 10 10 2.0 743.4 743.4
S70N10 0.00 71 10 1448.1 1448.1 3.33 0.00 14 10 2.0 1448.1 1448.1

S90D0 74.36 3600 0 139.9 575.3 84.51 87.81 3600 0 5.1 55.3 453.6
S90D2 69.54 3600 0 78.7 259.2 87.91 74.13 3600 0 4.2 70.2 271.3
S90D4 0.00 116 10 413.8 413.8 14.95 0.00 61 10 2.7 413.8 413.8
S90D6 0.00 59 10 711.8 711.8 5.73 0.00 13 10 2.1 711.8 711.8

S90N0 75.40 3600 0 139.8 616.5 84.54 87.77 3600 0 5.2 55.8 456.4
S90N3 2.25 1325 3 200.3 205.1 42.19 1.98 954 4 3.5 199.6 203.8
S90N6 0.00 203 10 774.6 774.6 4.37 0.00 161 10 1.1 774.6 774.6
S90N10 0.00 93 10 1361.4 1361.4 4.04 0.00 27 10 1.0 1361.4 1361.4

FullTI. Furthermore, we note that the greedy heuristic remains unable to solve these instances to

optimality, although the provable optimality gaps drop to 3%− 10% range.

Table 6 shows that for most large instances, the average upper bounds obtained by DDD are

significantly better than the average upper bounds obtained by FullTI. As shown later in Figure

7d, the total number of nodes in the partial network is between 0% to 40% of the total number of

nodes in the complete time-expanded network. Therefore, in each iteration of the DDD algorithm,

it is relatively easier to solve XDTS-W-LB than XDTS-W directly by a solver.

Table 7 shows the number of instances with better lower and upper bounds from DDD compared

to FullTI. We observe that for most of the instances, DDD generates better primal feasible solutions

but weaker dual bounds due to the smaller number of time points in the partial network than the

Ojha and Erera: Exact Algorithm for Cross-dock Trailer Scheduling
24

Table 5 Statistics for exact and heuristic approaches for instance type M

Dataset
FullTI Greedy DDD

ΘFull% T(s) # LBavg UBavg ΘG% Θ% T(s) # Iter LBavg UBavg

M100D0 73.77 3600 0 89.8 342.6 88.17 96.93 3600 0 5.0 9.8 319.4
M100D2 75.76 3600 0 32.7 136.0 93.53 74.88 3600 0 4.1 27.7 114.6
M100D4 0.12 794 9 369.9 370.3 17.08 0.00 277 10 2.8 369.9 369.9
M100D6 0.00 122 10 682.1 682.1 6.69 0.00 38 10 2.0 682.1 682.1

M100N0 73.27 3600 0 90.3 338.2 87.81 96.88 3600 0 5.0 10.1 321.7
M100N3 1.04 1347 7 201.7 203.8 26.24 0.46 991 8 2.4 200.2 202.5
M100N6 0.00 339 10 665.4 665.4 7.01 0.00 131 10 1.0 665.4 665.4
M100N10 0.00 188 10 1400.8 1400.8 4.29 0.00 87 10 1.0 1400.8 1400.8

M130D0 76.60 3600 0 141.7 653.1 86.46 91.90 3600 0 5.3 38.1 471.7
M130D2 80.65 3600 0 57.6 297.6 52.75 95.40 3600 0 5.0 14.4 308.6
M130D4 0.40 983 9 330.0 330.3 37.03 0.00 788 10 2.7 330.0 330.3
M130D6 0.00 150 10 687.3 687.3 10.91 0.00 78 10 1.0 687.3 687.3

M130N0 89.29 3600 0 142.7 2525.3 86.30 91.70 3600 0 5.0 39.0 470.5
M130N3 30.90 3259 2 163.8 244.3 45.33 33.50 3178 4 4.0 159.9 242.8
M130N6 0.00 340 10 663.2 663.2 9.53 0.00 193 10 2.6 663.2 663.2
M130N10 0.00 82 10 1420.2 1420.2 5.00 0.00 12 10 2.2 1420.2 1420.2

Table 6 Statistics for exact and heuristic approaches for instance type L

Dataset
FullTI Greedy DDD

ΘFull% T(s) # LBavg UBavg ΘG% Θ% T(s) # Iter LBavg UBavg

L130D0 76.34 3600 0 228.3 1218.4 85.09 90.40 3600 0 6.9 72.7 757.6
L130D2 54.53 3600 0 155.7 343.7 64.31 69.00 3600 0 4.3 127.0 409.4
L130D4 0.00 1271 10 747.0 747.0 9.84 0.00 474 10 2.5 747.0 747.0
L130D6 0.00 1163 10 1407.5 1407.5 8.26 0.00 649 10 2.1 1407.5 1407.5

L130N0 78.81 3600 0 228.3 2102.3 84.97 91.40 3600 0 5.9 66.2 773.6
L130N3 0.00 754 10 432.1 432.1 44.02 0.00 398 10 2.5 432.1 432.1
L130N6 0.00 439 10 1383.7 1383.7 5.07 0.00 160 10 1.0 1383.7 1383.7
L130N10 0.00 385 10 2637.7 2637.7 3.38 0.00 140 10 1.0 2637.7 2637.7

L180D0 100.00 3600 0 0.0 3993.3 100.00 100.00 3600 0 6.0 0.0 1554.6
L180D2 82.72 3600 0 313.4 2116.8 66.71 87.80 3600 0 3.4 134.7 1104.5
L180D4 0.00 1005 10 796.7 796.7 39.94 0.00 788 10 3.1 796.7 796.7
L180D6 0.00 318 10 1476.4 1476.4 8.98 0.00 83 10 1.1 1476.4 1476.4

L180N0 100.00 3600 0 0.0 6600.9 100.00 100.00 3600 0 5.0 0.0 1531.4
L180N3 43.08 3600 0 488.5 1268.8 69.09 52.10 3600 0 4.5 425.3 885.7
L180N6 0.00 832 10 1381.0 1381.0 6.20 0.00 290 10 1.3 1381.0 1381.0
L180N10 0.00 499 10 2686.9 2686.9 5.39 0.00 130 10 1.0 2686.9 2686.9

complete time-expanded network. On the other hand, it is interesting to note that for almost half

of the instances in each category, the dual bounds produced by DDD are at least as good as the

ones obtained from FullTI.

For some instance groups like S70D6, S90N10, and M100N10, the DDD algorithm requires an

average number of iterations equal to one, and the average optimality gap is 0%; all of the corre-

sponding 10 instances are solved to optimality in the first iteration. The arrival time window of

trailers, in some instances, is wide enough to start unloading each trailer at their arrival times with

the available number of workers in the optimal solution. For these instances, DDD is much faster

Ojha and Erera: Exact Algorithm for Cross-dock Trailer Scheduling
25

Table 7 Number of instances (of 160) with better DDD bounds than FullTI bounds

Description XS S M L

#Instances (out of 160) where DDD UB is strictly better than FullTI UB 53 54 84 49
#Instances (out of 160) where DDD UB is at least as good as FullTI UB 130 128 144 130
#Instances (out of 160) where DDD LB is strictly better than FullTI LB 1 2 2 1
#Instances (out of 160) where DDD LB is at least as good as FullTI LB 84 84 65 109

than FullTI because the optimization model size is smaller for DDD due to the smaller number of

time points in the partial network.

0 50 100 150 200 250 300
Time(minutes)

0

20

40

60

80

Nu
m

be
r o

f W
or

ke
rs

 u
se

d

L180D0: Instance_no 10

Workers
Max Workers

(a) α= 0

0 50 100 150 200 250 300
Time(minutes)

0

20

40

60

80

Nu
m

be
r o

f W
or

ke
rs

 u
se

d

L180D24: Instance_no 10

Workers
Max Workers

(b) α= 2

0 50 100 150 200 250 300
Time(minutes)

0

20

40

60

80

Nu
m

be
r o

f W
or

ke
rs

 u
se

d

L180D48: Instance_no 10

Workers
Max Workers

(c) α= 4

0 100 200 300 400
Time(minutes)

0

20

40

60

80

Nu
m

be
r o

f W
or

ke
rs

 u
se

d

L180D72: Instance_no 10

Workers
Max Workers

(d) α= 6
Figure 6 Worker usage profiles from greedy heuristic for instance with 44 unloading doors and 88 workers

Increasing the value of α increases the length of the time window during which trailers arrive

at the cross-dock. Hence, fewer trailers are required to be unloaded simultaneously at the start of

the planning horizon. As a result, some workers remain idle, and the worker constraints are slack

for multiple time points in the planning horizon. Figure 6 shows the variation in the number of

Ojha and Erera: Exact Algorithm for Cross-dock Trailer Scheduling
26

workers busy at any time during the planning horizon for different values of α. The plots correspond

to a feasible solution from the greedy heuristic for a large instance with 44 unloading doors and

88 workers. These plots highlight a possible reason why it might be easier for the solver to solve

instances with larger values of α for given loading door deadlines. In Figure 6a, all trailers are

ready to be unloaded, and the solver needs to prioritize which trailers to unload first and with how

many workers; the instances are relatively difficult to solve due to the combinatorial decision space.

When α= 6 hours, as shown in Figure 6d, there are many idle workers at the start of the planning

horizon because there are fewer trailers to unload at the start. Therefore, fewer trailer unloading

and worker assignment decisions must be made, and most likely, the maximum number of workers

(i.e., 3) are assigned to unload each trailer. Note that for these instances with large values of α,

the DDD algorithm produces optimal solutions much faster than solving XDTS-W directly by a

commercial solver.

6.4. Percentage Time-Space Network Generated By DDD

In this section, we conduct experiments to test if different design choices for the initial sets of time

points at the unloading doors in the partial network affect the performance of the DDD algorithm.

Let DDD1 be the setting where the time points in the partial network are all of the trailer arrival

times ri. In contrast, let DDD2 be the setting where we add a set of uniformly-spaced time points

after the latest trailer arrival time:
{
(maxi∈I ri)+ θµ : 1≤ µ≤

⌊
T−maxi∈I ri

θ

⌋
, µ∈Z+

}
where θ is the

average of the values in the set {ρimu : i ∈ I,m∈M,u∈U} rounded to the nearest integer.

Regarding solution quality and computational time, DDD1 always performs better than DDD2.

Using too many time points in the partial network for early iterations makes it challenging to solve

the corresponding integer programs. As a result, the algorithm reaches the time limit and does not

produce better primal and dual bounds compared to FullTI. Figure 7 shows bar plots for DDD1

and DDD2 to compare the density of the time-space network in the final iteration of the DDD

algorithm. %Start is defined as the percentage of the total number of time points in the initial

partial network, and %Add is defined as the percentage of the total number of time points added

during DDD iterations, relative to the total number of time points across all unloading doors in

the complete time-expanded network.

The plots in Figure 7 show that the percentage of time points in the initial set increases, and the

percentage of time points added to the partial network decreases with the increase in value of α.

As the value of α increases, trailers arrive during a wider time window; therefore, a larger number

of time points are included in the initial set of time points in the partial network due to Property

1. As a result, many instances with α= 6 for D sort and α= 10 for N sort solve to optimality in

the first iteration, and no new time points are added. For some instances where the XDTS-W-LB

Ojha and Erera: Exact Algorithm for Cross-dock Trailer Scheduling
27

(DDD1, 0)

(DDD2, 0)

(DDD1, 3)

(DDD2, 3)

(DDD1, 6)

(DDD2, 6)

(DDD1, 10)

(DDD2, 10)

(DDD Algorithm, Alpha)

0

5

10

15

20

25

30

35

40
Pe

rc
en

ta
ge

 o
f T

ot
al

 T
im

e
Po

in
ts % Start

% Add

(a) XS instance with 64 trailers and night sort

(DDD1, 0)

(DDD2, 0)

(DDD1, 2)

(DDD2, 2)

(DDD1, 4)

(DDD2, 4)

(DDD1, 6)

(DDD2, 6)

(DDD Algorithm, Alpha)

0

10

20

30

40

50

60

Pe
rc

en
ta

ge
 o

f T
ot

al
 T

im
e

Po
in

ts % Start
% Add

(b) S instance with 70 trailers and day sort

(DDD1, 0)

(DDD2, 0)

(DDD1, 2)

(DDD2, 2)

(DDD1, 4)

(DDD2, 4)

(DDD1, 6)

(DDD2, 6)

(DDD Algorithm, Alpha)

0

10

20

30

40

50

60

Pe
rc

en
ta

ge
 o

f T
ot

al
 T

im
e

Po
in

ts % Start
% Add

(c) M instance with 130 trailers and day sort

(DDD1, 0)

(DDD2, 0)

(DDD1, 2)

(DDD2, 2)

(DDD1, 4)

(DDD2, 4)

(DDD1, 6)

(DDD2, 6)

(DDD Algorithm, Alpha)

0

20

40

60

80

Pe
rc

en
ta

ge
 o

f T
ot

al
 T

im
e

Po
in

ts % Start
% Add

(d) L instance with 180 trailers and day sort
Figure 7 Percentage network generated by DDD1 and DDD2

optimal solution in the first iteration has a small number of trailers with short processing time

arcs, adding up to 5% additional time points to the partial network is sufficient to achieve the

optimal solution.

7. Computational Study on Instances from Tadumadze et al. (2019)

In this section, we test the DDD algorithm on a related trailer scheduling problem for a different

cross-docking setting presented in Tadumadze et al. (2019); instances for this problem are published

at the following DOI: 10.5281/zenodo.1487845.. A primary difference in these instances is how the

loading door deadlines are computed; the deadline for a door ℓ is determined by assuming that all

inbound trailers begin unloading at their arrival times with a single worker and then averaging the

completion times of all inbound trailers with shipments for ℓ. Note that in these instances, trailer

processing times do not depend on the unloading door u. Since many inbound trailers cannot

be unloaded at their arrival times, these instances are more likely to have deadline violations at

https://zenodo.org/record/1487845#.YYoIbr3MJhE

Ojha and Erera: Exact Algorithm for Cross-dock Trailer Scheduling
28

many outbound doors when compared to the instances that we used in the computational study

in Section 6.

There are some additional differences between XDTS-W and the problem in Tadumadze et al.

(2019). First, each inbound trailer has an additional unloading completion time deadline. Second,

the objective function is to minimize the total weight of late shipments while XDTS-W penalizes

longer lateness by summing total trailer deadline violation. Note that these instances are designed

such that a feasible solution always exists; thus, it is possible to compute an upper bound on

the optimal objective value without a feasible solution by assuming that each inbound trailer is

scheduled with one worker and completed at its unloading deadline. To account for the differences

in the two problems we adapt the XDTS-W-LB and WDM MIP models as described in Appendix

9.8.

The solution approach proposed in Tadumadze et al. (2019) is to use an interval scheduling

approach, as described in Section 2. In the comparative results that follow in this section, we

replicate interval scheduling results when µ= 1 which can be shown to be equivalent to solving our

adapted XDTS-W formulation with all possible time points. We again refer to this approach with

all time points as FullTI.

Table 8 Statistics for exact approaches for instances in Tadumadze et al. (2019)

Dataset
FullTI DDD

ΘFull% T(s) # LBavg UBavg Θ% T(s) # Iter LBavg UBavg

XS 20 5 1 0.00 0.78 10 441.1 441.1 0.00 0.29 10 4.10 441.1 441.1
XS 20 5 2 0.00 3.97 10 450.5 450.5 0.00 0.72 10 5.00 450.5 450.5
XS 20 5 3 0.00 3.57 10 435.8 435.8 0.00 1.45 10 4.50 435.8 435.8
XS 20 5 4 0.00 5.24 10 430.9 430.9 0.00 0.97 10 4.50 430.9 430.9

S 50 15 1 0.00 33.92 10 870.7 870.7 0.00 28.51 10 4.10 870.7 870.7
S 50 15 2 0.00 51.99 10 871.0 871.0 0.00 42.36 10 4.50 871.0 871.0
S 50 15 3 0.00 59.87 10 836.3 836.3 0.00 49.07 10 4.60 836.3 836.3
S 50 15 4 0.00 96.11 10 849.3 849.3 0.00 122.26 10 6.30 849.3 849.3

M 100 25 1 0.03 442.91 9 1681.9 1682.3 0.00 386.02 10 4.40 1681.9 1681.9
M 100 25 2 0.24 1008.13 7 1622.1 1623.8 0.26 789.36 7 4.70 1620.6 1625.7
M 100 25 3 0.20 1117.97 6 1601.1 1604.2 0.18 1023.68 7 5.10 1600.2 1603.9

L 200 50 1 0.52 1800.00 0 2794.3 2807.0 0.45 1800.00 0 2.78 2794.3 2809.3
L 200 50 2 0.48 1800.00 0 2763.3 2776.6 0.67 1800.00 0 3.00 2763.3 2782.1
L 200 50 3 0.70 1800.00 0 2755.0 2772.5 0.79 1800.00 0 2.60 2755.0 2777.5

Table 8 summarizes the statistics for the performance of our DDD algorithm against solving the

instances with the FullTI approach. Each instance is denoted by A B C D where A denotes the

instance category, B denotes the number of trailers, C denotes the number of unloading doors and

D denotes the value of Ωmax. Smaller values of Ωmax indicate tight time windows for unloading

trailers while larger values provide more flexibility. For the plots in Figure 8, we again define %Start

and %Add relative to the total number of time points in the complete time-expanded network.

Ojha and Erera: Exact Algorithm for Cross-dock Trailer Scheduling
29

Both approaches solve all XS and S instances to optimality. The DDD algorithm is faster than

FullTI for nearly all XS and S instances. The DDD algorithm starts with 10−30% of the complete

set of time points on average. It adds approximately 30% new time points to determine a provably

optimal solution in 4− 5 iterations on average (see Figures 8a and 8b). However, FullTI is faster

than the DDD algorithm for the instances of S 50 15 4; the DDD algorithm executes an average of

6 iterations for the instance. Here, the DDD algorithm must use more iterations to find a solution

that can be successfully converted into a provably-optimal solution. One new challenge is that

the upper-bounding model (14) is often not able to find a feasible solution due to the unloading

deadlines that are not present in XDTS-W. Figure 9b shows the progression of lower and upper

bounds for two XS instances, where a feasible solution in the second instance is not identified until

iteration 4.

(DDD, 1) (DDD, 2) (DDD, 3) (DDD, 4)
(DDD Algorithm, Omega)

0

10

20

30

40

Pe
rc

en
ta

ge
 o

f
To

ta
l T

im
e

Po
in

ts % Start
% Add

(a) XS instances

(DDD, 1) (DDD, 2) (DDD, 3) (DDD, 4)
(DDD Algorithm, Omega)

0

10

20

30

40

50

60

70

Pe
rc

en
ta

ge
 o

f
To

ta
l T

im
e

Po
in

ts % Start
% Add

(b) S instances

(DDD, 1) (DDD, 2) (DDD, 3)
(DDD Algorithm, Omega)

0

10

20

30

40

50

60

70

80

Pe
rc

en
ta

ge
 o

f
To

ta
l T

im
e

Po
in

ts % Start
% Add

(c) M instances

(DDD, 1) (DDD, 2) (DDD, 3)
(DDD Algorithm, Omega)

0

10

20

30

40

50

60

70

Pe
rc

en
ta

ge
 o

f
To

ta
l T

im
e

Po
in

ts % Start
% Add

(d) L instances
Figure 8 Percentage network generated by DDD for instances in Tadumadze et al. (2019)

Ojha and Erera: Exact Algorithm for Cross-dock Trailer Scheduling
30

1 2 3 4
Iterations

400

500

600

700

800
O

bj
ec

tiv
e

Fu
nc

tio
n

Va
lu

e

Upper Bound
Lower Bound

(a) Instance 1

1 2 3 4
Iterations

400

500

600

700

800

O
bj

ec
tiv

e
Fu

nc
tio

n
Va

lu
e

Upper Bound
Lower Bound

(b) Instance 2
Figure 9 Lower and Upper bound profiles for two XS instances in Tadumadze et al. (2019)

The DDD algorithm performs similarly to the FullTI approach for the M and L instances, in

terms of solution quality, optimality gap, and computation time. Thus, the DDD approach appears

to be a robust methodology for many trailer scheduling optimization problems at logistics facilities.

8. Conclusion and Future Directions

In this paper we formulate the cross-dock trailer scheduling problem with constraints on the avail-

ability of workers on a complete time-space network. The optimization model prescribes a schedule

of trailer unloading activities, including which trailers to unload at which doors in which sequence

and with how many workers, to ensure outbound loads can be dispatched with minimal dead-

line violation. We formulate a MIP model over a partially-expanded network that satisfies certain

properties; this MIP model uses careful modeling of the processing time of trailers such that the

model is guaranteed to provide a lower bound to the objective value of the model formulated

over the complete time-expanded network. We propose an exact algorithm that solves the lower

bound MIP model and refines the partial network in each iteration, until a stopping criteria is met.

We evaluate our approach on instances derived from actual data representative of an L-shaped

cross-dock in Atlanta. For the instances in which trailers arrive during a larger time window, the

DDD algorithm is a better alternative to directly solving the instances by a commercial solver

in terms of computational time; the DDD algorithm outperforms the greedy heuristic in terms of

solution quality. For the instances in which trailers arrive during a small time window, the DDD

algorithm often provides better feasible solutions. To establish the effectiveness of our algorithm on

instances with different objective functions and additional constraints, we tested the algorithm on

instances published by Tadumadze et al. (2019). The DDD algorithm solves most of the small and

medium instances faster. For medium and large instances, the DDD algorithm generates solutions

and bounds performing similarly to solving with the complete time-expanded network.

Ojha and Erera: Exact Algorithm for Cross-dock Trailer Scheduling
31

The DDD algorithm solves a new lower-bound MIP model in every iteration, even when the

lower-bound objective value is already optimal or near-optimal. We are currently exploring re-

optimization techniques to use information from the solutions of the lower-bound model in the

earlier iterations to warm-start the solver with a feasible solution to the lower-bound model in the

current iteration. Any progress in solving the lower-bound models faster can enable the algorithm

to solve larger and more complex trailer scheduling instances. Other promising future research

directions are the choice of the initial set of time points and the iterative time refinement procedure.

The current algorithm adds time points for all trailers with short processing time in an iteration.

One could test the effectiveness of adding time points for one trailer or a subset of trailers (carefully

chosen) in an iteration. It may also be possible to leverage historical trailer scheduling data and

use offline learning to build an appropriate partial time-expanded network. Moreover, machine

learning-based algorithms or meta-heuristics may be useful to guide the choice of time points to

refine the partially time-expanded network.

References

Bartholdi III JJ, Gue KR, 2000 Reducing labor costs in an ltl crossdocking terminal. Operations research

48(6):823–832. 2

Boland N, Hewitt M, Marshall L, Savelsbergh M, 2017 The continuous-time service network design problem.

Operations research 65(5):1303–1321. 6

Boysen N, Briskorn D, Tschöke M, 2013 Truck scheduling in cross-docking terminals with fixed outbound

departures. OR spectrum 35(2):479–504. 4

Boysen N, Fedtke S, Weidinger F, 2017 Truck scheduling in the postal service industry. Transportation Science

51(2):723–736. 5

Boysen N, Fliedner M, 2010 Cross dock scheduling: Classification, literature review and research agenda.

Omega 38(6):413–422. 4

Buijs P, Vis IF, Carlo HJ, 2014 Synchronization in cross-docking networks: A research classification and

framework. European Journal of Operational Research 239(3):593–608. 5

Corsten H, Becker F, Salewski H, 2020 Integrating truck and workforce scheduling in a cross-dock: analysis

of different workforce coordination policies. Journal of Business Economics 90(2):207–237. 5

Edis EB, Oguz C, Ozkarahan I, 2013 Parallel machine scheduling with additional resources: Notation, clas-

sification, models and solution methods. European Journal of Operational Research 230(3):449–463.

5

Gaudioso M, Monaco MF, Sammarra M, 2021 A lagrangian heuristics for the truck scheduling problem in

multi-door, multi-product cross-docking with constant processing time. Omega 101:102255. 4

Ojha and Erera: Exact Algorithm for Cross-dock Trailer Scheduling
32

He E, Boland N, Nemhauser G, Savelsbergh M, 2022a An exact algorithm for the service network design

problem with hub capacity constraints. Networks 80(4):572–596. 6

He EY, Boland N, Nemhauser G, Savelsbergh M, 2022b Dynamic discretization discovery algorithms for

time-dependent shortest path problems. INFORMS Journal on Computing 34(2):1086–1114. 6

Hermel D, Hasheminia H, Adler N, Fry MJ, 2016 A solution framework for the multi-mode resource-

constrained cross-dock scheduling problem. Omega 59:157–170. 5

Hewitt M, 2019 Enhanced dynamic discretization discovery for the continuous time load plan design problem.

Transportation Science 53(6):1731–1750. 6

IIMA, 2021 9th informs transportation science and logistics society workshop. https://conference.iima.

ac.in/tsl2021/. 1

Ladier AL, Alpan G, 2016 Cross-docking operations: Current research versus industry practice. Omega

62:145–162. 3, 5

Lagos F, Boland N, Savelsbergh M, 2020 The continuous-time inventory-routing problem. Transportation

Science 54(2):375–399. 6

Lagos F, Boland N, Savelsbergh M, 2022 Dynamic discretization discovery for solving the continuous time

inventory routing problem with out-and-back routes. Computers & Operations Research 141:105686. 8

Liao T, Egbelu P, Chang P, 2013 Simultaneous dock assignment and sequencing of inbound trucks under a

fixed outbound truck schedule in multi-door cross docking operations. International Journal of Produc-

tion Economics 141(1):212–229. 4, 5

Marshall L, Boland N, Savelsbergh M, Hewitt M, 2020 Interval-based dynamic discretization discovery for

solving the continuous-time service network design problem. Transportation Science . 6

Miao Z, Lim A, Ma H, 2009 Truck dock assignment problem with operational time constraint within cross-

docks. European journal of operational research 192(1):105–115. 5

Scherr YO, Hewitt M, Saavedra BAN, Mattfeld DC, 2020 Dynamic discretization discovery for the service

network design problem with mixed autonomous fleets. Transportation Research Part B: Methodological

141:164–195. 6

Shabtay D, Steiner G, 2007 A survey of scheduling with controllable processing times. Discrete Applied

Mathematics 155(13):1643–1666. 5

Shakeri M, Low MYH, Turner SJ, Lee EW, 2012 A robust two-phase heuristic algorithm for the truck

scheduling problem in a resource-constrained crossdock. Computers & Operations Research 39(11):2564–

2577. 5

Sousa JP, Wolsey LA, 1992 A time indexed formulation of non-preemptive single machine scheduling prob-

lems. Mathematical programming 54(1):353–367. 9

https://conference.iima.ac.in/tsl2021/
https://conference.iima.ac.in/tsl2021/

Ojha and Erera: Exact Algorithm for Cross-dock Trailer Scheduling
33

Tadumadze G, Boysen N, Emde S, Weidinger F, 2019 Integrated truck and workforce scheduling to accelerate

the unloading of trucks. European Journal of Operational Research 278(1):343–362. 3, 4, 5, 6, 7, 20, 27,

28, 29, 30, 39, 40

Tadumadze G, Emde S, Diefenbach H, 2020 Exact and heuristic algorithms for scheduling jobs with time

windows on unrelated parallel machines. OR Spectrum 42(2):461–497. 4

Van Belle J, Valckenaers P, Cattrysse D, 2012 Cross-docking: State of the art. Omega 40(6):827–846. 5

Vu DM, Hewitt M, Boland N, Savelsbergh M, 2020 Dynamic discretization discovery for solving the time-

dependent traveling salesman problem with time windows. Transportation science 54(3):703–720. 6

Vu DM, Hewitt M, Vu DD, 2022 Solving the time dependent minimum tour duration and delivery man

problems with dynamic discretization discovery. European Journal of Operational Research 302(3):831–

846. 6

Ojha and Erera: Exact Algorithm for Cross-dock Trailer Scheduling
34

9. Appendix
9.1. Proof of Theorem 1

Proof Consider the special case with one loading door with deadline 0, m unloading doors, a

set of trailers I, and m workers. Suppose each trailer i ∈ I has arrival time ri = 0 and that only

one worker can be assigned to unload each trailer. In this case, minimizing the deadline violation

at the loading door is equivalent to minimizing the makespan of the trailer unloading process at

the unloading doors. Therefore, this problem restriction can be used to solve any unrelated parallel

machine scheduling problem minimizing makespan, Rm||Cmax, which is known to be strongly NP-

Hard; the machines are unrelated because jobs (trailers) can have different processing times on

different machines (unloading doors). □

9.2. Proof of Lemma 1

Proof In a feasible solution to XDTS-W, let q trailers start unloading at door u in the sequence

{1,2, · · · , q}, with start times {ŝ1, ŝ2, · · · , ŝq} and completion times {ĉ1, ĉ2, · · · , ĉq} where t≤ ŝi <

t+ ∀ i ∈ {1,2, · · · , q}. In a complete time-expanded network, (7) is true because trailers have non-

zero processing times and constraints (2d) are satisfied in XDTS-W, which implies that at most

one trailer is being unloaded at an unloading door at any time.

t≤ ŝ1 < ĉ1 ≤ ŝ2 < ĉ2 ≤ · · ·< ĉq−1 ≤ ŝq < t+ (7)

Note that (7) implies that the actual completion time of the trailers i∈ {1,2, · · · , q−1} do not exist

in T in the partial network. From Property 2, the processing time of the trailers i∈ {1,2, · · · , q−1}

is 0, and hence, the completion time of the trailers is mapped to time point t in the partial network

which gives us t = s1 = c1 = s2 = c2 = · · · = cq−1 = sq. Therefore at least q − 1 trailers start and

complete unloading at time t in the partial network. □

9.3. Example for Lemma 1

Consider an example with one unloading door (u), one worker and two trailers that have arrival

times r1 = r2 = 0 and processing times ρ11u = 1, ρ21u = 2. Given a complete time-expanded network

with time points T̂ = {0,1,2,3}, an optimal solution of XDTS-W can have trailer 1 starting at time

t= 0 and trailer 2 starting at time t= 1 after trailer 1 completes unloading. In a partial network

with time points T = {0,2}, one possible solution could have trailer 1 starting at time point t= 0

with ρ̂11u0 = 0 because the completion time 1 doees not exist in T ; trailer 2 starts at time point t= 0

with ρ̂21u0 = 2. Hence, both trailers start unloading at the same time point t= 0, but one of them

completes unloading at time t= 0.

Ojha and Erera: Exact Algorithm for Cross-dock Trailer Scheduling
35

9.4. Proof of Theorem 2

Proof Consider a feasible solution (x̂, ẑ) to XDTS-W defined over a complete time-expanded

network Ĝ= (N̂ , Â). Now we will construct a feasible solution (x, z) to XDTS-W-LB defined over

a partial network G = (N,A) such that the objective function value of solution (x, z) is at most

the objective function value of the solution (x̂, ẑ). Let T̂ and T be the set of time points at any

unloading door in Ĝ and G, respectively. Recall that the set of time points is same at each unloading

door in Ĝ, by definition, and in G due to Property 1.

From Property 2, for every assignment âim
ut to arc ((u, t), (u, t+ ρimu)) in Ĝ such that x̂im

ut = 1 for

a trailer i∈ I, there exists an assignment aim
ut′ to arc ((u, t′), (u, t′+ ρ̂imut′)) in G, where ri ≤ t′ ≤ t and

ρ̂imut′ ≤ ρimu , such that xim
ut′ = 1. Therefore, we have∑

u∈U

∑
(u,t)∈N
t≥ri

xim
ut = 1, ∀ i∈ I

xim
ut ∈ {0,1}, ∀ i∈ I,m∈M, (u, t)∈N, t≥ ri

From Property 2 we know that the completion time of trailers in G is at most the completion

time in Ĝ and is shown in (8).∑
u∈U

∑
(u,t)∈N
t≥ri

(
t+ ρimu

)
xim
ut ≤

∑
u∈U

∑
(u,t)∈N̂
t≥ri

(
t+ ρimu

)
x̂im
ut (8)

Given deadline violation ẑℓ ∀ ℓ ∈ L in the feasible solution to XDTS-W, set zℓ = ẑℓ ∀ ℓ ∈ L.

Therefore, we have∑
u∈U

∑
(u,t)∈N
t≥ri

(
t+ ρimu

)
xim
ut − zℓ ≤

∑
u∈U

∑
(u,t)∈N̂
t≥ri

(
t+ ρimu

)
x̂im
ut − ẑℓ ≤ dℓ (9)

where the second inequality holds from the fact that (x̂, ẑ) is a feasible solution to XDTS-W.

Now we will show that the solution x satisfies constraints (10) in XDTW-W-LB; these constraints

imply that at most one trailer can be processed at an unloading door at a give time point in

G. Recall that constraints (10) are formulated by replacing N̂ with N and Âut with Aut for all

(u, t)∈N in constraints (2d). ∑
aim
ut′∈Aut

xim
ut′ ≤ 1, ∀ (u, t)∈N (10)

Recall that Aut at node (u, t) ∈ N contains only those assignments aim
ut′ for trailer i ∈ I and

m ∈M for which ρ̂imut′ > 0 which implies that trailer i occupies unloading door u at time t. Now

to prove that solution x satisfies (10) we need to prove that for a given x̂ there is at most one

assignment aim
ut′ ∈Aut such that xim

ut′ = 1 and ρ̂imut′ > 0 for all (u, t)∈N .

Ojha and Erera: Exact Algorithm for Cross-dock Trailer Scheduling
36

Consider the sequence of trailers unloaded at a door u in solution x̂; let (u,mi, ti) be the triplet

indicating that trailer i is unloaded at door u with mi workers at the proposed time ti. For a given

time point t ∈ T at door u in the partial network G, define t+ =min{t′ : t′ > t, t′ ∈ T } to be the

time point immediately next to time t in G. Now given solution x̂ in Ĝ, we will determine the

number of assignments aim
ut ∈Aut at node (u, t)∈N in G such that xim

ut = 1 and ρ̂imut > 0.

First note that the assignment to processing arcs for the following trailers unloaded at door u

in Ĝ do not appear in Aut in constraint (10) for node (u, t)∈N .

• trailer i such that ti+ρimi
u < t+. Due to Property 2 the completion time ti+ρimi

u of trailer i is

mapped to a time t′ ≤ t in partial network G such that t′ ∈ T . Therefore, trailer i completes

unloading at or before time t.

• trailer i such that ti ≥ t+. Trailer i can start unloading as early as time t+ in G but not before

due to definition (4).

Hence, we only need to consider trailers i with ti < t+ ≤ ti+ ρimi
u unloaded at door u in solution

x̂. Note that there can be at most one such trailer assigned to a processing arc active at time t+ in

Ĝ because x̂ is feasible to XDTS-W. Therefore, we have at most one assignment in Aut for which

the x-variable can take value 1 and constraint (10) is satisfied for all (u, t) ∈N . For the sake of

completion we mention the two cases below

• If ti < t, then the trailer is assigned to a processing arc ((u, t′i), (u, t
′
i + ρ̂im

ut′i
)) in G where ri ≤

t′i ≤ ti. The assignment aim
ut′i

appears in Aut in constraints (10) for (u, t)∈N only if t′i+ ρ̂im
ut′i
≥ t+

which implies that ρ̂im
ut′i

> 0; in this case, all successive trailers start at or after t′i + ρ̂im
ut′i

.

• If t ≤ ti < t+, then trailer i is assigned to the processing arc ((u, t), (u, t+ ρ̂imut)) in G. The

assignment aim
ut appears in Aut in constraints (10) for (u, t) ∈ N only if t+ ρ̂imut ≥ t+ which

implies that ρ̂imut > 0; again all successive trailers start at or after t+ ρ̂imut .

Next we will present a proof by contradiction to show that solution x satisfies the worker con-

straints (11) in XDTS-W-LB. ∑
u∈U

∑
aim
ut′∈Aut

mxim
ut′ ≤Q, ∀ t∈ T (11)

The idea is to show that if there exists a time point in T in the partial network G where constraint

(11) is violated, then there must exist a time point t′ ∈ T̂ in the complete time-expanded network

Ĝ where constraint (2e) is violated. Let t ∈ T be a time point such that W (t)>Q where W (t) is

the total number of workers busy unloading trailers at time t. The solid circles in Figure 10 denote

the time points in G, and Ĝ contains both the solid and hollow circles.

Let ŝi, p̂i and ĉi ∀ i∈ I be the start time, processing time and completion time of the unloading

process of a trailer i as defined by x̂ in Ĝ, and let si, pi and ci be the start time, processing time

and completion time of trailer i as defined by x in G.

Ojha and Erera: Exact Algorithm for Cross-dock Trailer Scheduling
37

First, note that t+ =min{t′ : t′ > t, t′ ∈ T } exists in T̂ because T ⊂ T̂ . Let S1 be the set of trailers

that satisfy si ≤ ŝi < t and t+ ≤ ci for all i ∈ S1 (see Figure 10); these trailers start before time

t and complete at or after time t+ in both G and Ĝ. As t ∈ T̂ , the set of trailers S1 are being

unloaded at time point t in Ĝ as well. Let S1
2 be the set of trailers such that ŝi = si = t and t+ ≤ ci

for all i∈ S1
2 ; these trailers start at time t and complete at or after time t+ in both G and Ĝ. Let

S2
2 be the set of trailers such that si = t and t+ ≤ ci but t < ŝi < t+ for all i∈ S2

2 . Note that ŝi gets

mapped to an earlier start time si in the partial network G due to the definition in (4). We can

ignore trailers with ŝi ≥ t+ as they are not being processed at time t in either G or Ĝ. We can also

ignore trailers with start and completion times equal to t (i.e., ρ̂= 0) because the corresponding

terms do not appear in constraint (11).

𝑡

𝑢!

𝑢"

𝑡

𝑡#

𝑡#𝑠! �̂�!

𝑠"
= �̂�"

𝑢!

𝑢"

𝑡 = 𝑠!
= �̂�!

𝑡#

𝑡#

𝑡 = 𝑠"
= �̂�"

𝑢!

𝑢"

𝑡 = 𝑠! 𝑡#

𝑡 = 𝑠" 𝑡#

�̂�!

�̂�"

𝑆! 𝑆"! 𝑆""

Figure 10 Illustrations for start and completion time of trailers in sets S1, S
1
2 , S

2
2 for Theorem 2

S1∪S1
2 ∪S2

2 represents the set of trailers that are being unloaded by W (t) workers in the partial

network G at time t. Define t̂=min{t′ : t′ ≥ ŝi ∀ i∈ S1∪S1
2 ∪S2

2}. By definition of S1, S
1
2 , S

2
2 , t̂ < t+

and all the trailers i ∈ S1 ∪ S1
2 ∪ S2

2 are busy unloading at time t̂ in Ĝ and complete unloading

at or after time t+. Therefore, all the workers busy at time t in G are also busy at time t̂ in Ĝ.

Hence, W (t̂) =W (t)>Q and constraint (2e) is violated at time t̂, thereby contradicting our initial

assumption that x̂ is a feasible solution to XDTS-W. □

9.5. Comparing upper bounds from greedy idea and WDM described in Section 4.2

Consider an example with two unloading doors u1, u2, three workers and four trailers i1, i2, i3, i4.

Trailers i1 and i2 have a processing time of 2 units at door u1 and a very large processing time

at door u2. Similarly, trailers i3 and i4 have processing times 2 units and 3 units, respectively, at

door u2 and a very large processing time at door u1. Trailers i1, i2, i3 have shipments destined for

one loading door and trailer i4 has shipments destined for three loading doors. All loading doors

have deadline equal to 7 units as indicated by the blue dashed lines in Figure 11.

Ojha and Erera: Exact Algorithm for Cross-dock Trailer Scheduling
38

1 2 3

1 2 3

𝑖!(2)

𝑢"

𝑢!

4 5

4 5

𝑖#(3)

6

6

7

7

𝑖"(2)

𝑖$(1)

8

8

(a) XDTS-W-LB optimal solution

1 3

1 3

𝑖!(2)

𝑢"

𝑢!

5

5 7

7

𝑖"(2)

𝑖#(1)

8

8

𝑖$(3)

(b) Greedy solution

1 3

1 3

𝑖!(2)

𝑢"

𝑢!
6

6

7

7

𝑖"(2)

𝑖#(1)

8

8

𝑖$(3)

(c) WDM solution
Figure 11 Example to compare upper bounds constructed from XDTS-W-LB optimal solution

Figure 11a illustrates an optimal solution to the XDTS-W-LB with an objective function value of

0 for the given example. The black dashed arcs denote the assignment arcs with actual processing

time for trailers i1 and i2. The values in the brackets denote the number of workers used to unload

the trailer. Figure 11b illustrates a solution based on the greedy idea of delaying the unloading

start time of the trailers to construct a feasible solution to XDTS-W from the optimal solution of

XDTS-W-LB; the objective value of the solution is 3× 1 = 3 because there is a deadline violation

of 1 unit at each of the three loading doors due to trailer i4. Recall that the greedy approach

considers trailers in non-decreasing order of unloading start times determined by the XDTS-W-

LB optimal solution, hence, it starts unloading trailer i2 before trailer i4. Figure 11c denotes the

solution produced by WDM with an objective function value of 1×1 = 1 because there is a deadline

violation of 1 unit at only one loading door due to trailer i2. This example shows that WDM can

produce better upper bounds than the greedy approach.

9.6. Example to show working of the DDD algorithm

Consider the example in Figure 12 with one unloading door, one worker, three inbound trailers that

have arrival time r1 = r2 = r3 = 0 and actual processing time p1 = 2, p2 = 4, p3 = 5 units and initial

set of time points T = {0,3,6,10} (indicated by solid dots). Suppose the three trailers contain

shipments that need to be cross-docked to two loading doors each with deadline 7 units. In iteration

1, one of the optimal sequence of unloading trailers is {1,3,2}. The hollow dots represent actual

completion times of trailers given the start time points. Since these time points are not in T ,

Ojha and Erera: Exact Algorithm for Cross-dock Trailer Scheduling
39

the completion times c1 = 0, c3 = 3, c2 = 6. The XDTS-W-LB optimal solution is 2 ∗ (7 − 7) = 0

and the upper bound is 2 ∗ (11− 7) = 8. Since, the bounds are unequal, the algorithm adds time

points {2,5,7} to T which is updated to {0,2,3,5,6,7,10}. In iteration 2, the XDTS-W-LB optimal

solution is equal to the upper bound, i.e 8. Hence, the DDD algorithm terminates. Note that in

the final iteration, the partial network has 7
12
×100≈ 58% of the total number of start time points

in the complete time-expanded network.

0 2 3 5 6 7 11

0 2 7 11

LB

UB

Trailer 1 Trailer 3 Trailer 2

Trailer 1 Trailer 3 Trailer 2

(a) Trailer schedule in iteration 1: LB vs UB

0 2 3 5 6 7 11
LB

UB
0 2 6 11

Trailer 1 Trailer 2 Trailer 3

Trailer 1 Trailer 2 Trailer 3

(b) Trailer schedule in iteration 2: LB vs UB
Figure 12 Solving a toy instance using DDD algorithm

9.7. Proof of Theorem 3

Proof The total number of unique time points in a complete time-expanded network is T +1

(0,1, · · · , T). The DDD algorithm starts with a partial network with at least Φ unique time points

at every unloading door due to Property 1. In an iteration, if all the trailers are unloaded with their

respective actual processing times in XDTS-W-LB optimal solution, then the solution is optimal

to XDTS-W because from Theorem 2 XDTS-W-LB optimal objective is a lower bound and all the

relaxations (processing time arcs of trailers) are corrected. Hence, no new time points need to be

added. If the optimal solution of XDTS-W-LB has trailers with short processing time arcs, then the

DDD algorithm adds the actual completion time of the trailers at every door in the partial network.

Given that nodes are never deleted from the partial network, the DDD algorithm can add at most

(T +1−Φ) time points at each unloading door to generate the complete time-expanded network,

i.e., N = N̂ ,A= Â. In the worst case, the algorithm would add exactly |U | new time points, one

at each unloading door, to the partial network in each iteration. Therefore, the algorithm takes

at most T +1−Φ iterations to generate an optimal solution to XDTS-W; in the worst case, the

algorithm generates the complete time-expanded network. □

9.8. Modified Lower-bound and Worker Dispatch Models for Tadumadze et al.
(2019)

We construct a partial network G= (N,A) based on Property 1-3. We define ρimt as the processing

time of a trailer i∈ I that starts unloading with m∈M workers at time t∈ T at any unloading door

u ∈ U in the partial network as shown in (12a); ρim denotes the actual processing time of trailer

Ojha and Erera: Exact Algorithm for Cross-dock Trailer Scheduling
40

i with m workers and is given in the input data. Let Aut represent all possible (arc) assignments

that occupy unloading door u at time t, that is Aut ≡ {aim
ut′ : t− ρ̂imt′ < t′ ≤ t , ((u, t′), (u, t′+ ρ̂imt′))∈

A, i ∈ I, m ∈M} in G. Equation (12b) defines the weight or cost to start unloading a trailer i at

any door u at time point t with m workers where Cim = t+ ρim denotes the completion time of

a trailer i unloaded by m workers. ϕiℓ denotes the weight of a shipment delivered by trailer i for

outbound trailer at door ℓ ∈ L where L is the set of loading doors. φuℓ denotes the time taken

to transfer shipment from unloading door u to outbound trailer at loading door ℓ. Let d̄i be the

deadline for unloading each trailer i and dℓ be the departure time for outbound trailer from loading

door ℓ.

ρimt =max{t′ : t≤ t′ ≤ t+ ρim, t′ ∈ T }− t, ∀ i∈ I,m∈M,t∈ T (12a)

wim
ut =

∑
ℓ∈L

ϕiℓ.

{
1 if Cim +φuℓ >dℓ
0 otherwise

∀ i∈ I,m∈M, (u, t)∈N (12b)

Based on the above definitions, we adapt the XDTS-W-LB formulation for this problem setup as

shown in Model 13.

Minimize
∑
i∈I

∑
m∈M

∑
(u,t)∈N

ri≤t≤d̄i−ρim

wim
ut x

im
ut (13a)

s.t.
∑
m∈M

∑
(u,t)∈N

ri≤t≤d̄i−ρim

xim
ut = 1, ∀ i∈ I (13b)

∑
aim
ut′∈Aut

xim
ut′ ≤ 1, ∀ (u, t)∈N (13c)

∑
u∈U

∑
aim
ut′∈Aut

mxim
ut′ ≤Q, ∀ t∈ T (13d)

xim
ut ∈ {0,1} ∀ i∈ I,m∈M, (u, t)∈N,ri ≤ t≤ d̄i− ρim (13e)

The objective function in (13a) minimizes the total weight of shipments that are late. Constraints

(13b) ensure that each trailer is unloaded after it has arrived at the cross-dock and completes

unloading before the deadline. Constraints (13c) ensure that at most one trailer is being unloaded

at each unloading door at any time point. Constraints (13d) ensure that the worker availability

constraints are satisfied at each time point. Constraints (13e) define the domain and range of the

variables. Note that we can use the same arguments as shown in the proof of Theorem 3 to show

that the DDD algorithm is exact for the problem instances described in Tadumadze et al. (2019).

To formulate the worker dispatch model, consider an optimal solution to Model 13 where

(ui,mi, ti) is the triplet indicating that trailer i is unloaded at door ui with mi workers at the

proposed time ti. To preserve the unloading order at each door, let parameter γik = 1 if trailer i

Ojha and Erera: Exact Algorithm for Cross-dock Trailer Scheduling
41

is unloaded before trailer k at the same door (ti < tk and ui = uk) and 0 otherwise for all pairs of

trailers i, k ∈ I. Also, for ease of notation define a trailer processing time parameter pi = ρimi for

each i∈ I. Integer decision variables vik ∈Z≥0 are used in the formulation to determine the number

of workers who next unload trailer k after currently unloading trailer i; note that trailer i= 0 is

used to indicate a dummy source such that v0k counts the number of workers whose first assignment

is to trailer k. Binary decision variables yik must be set to one if at least one worker unloads trailer

k after unloading trailer i. Continuous variables si ∈R≥0 denote the unloading start time of trailer

i∈ I. We introduce additional binary variables hiℓ which are set to one if shipments from trailer i

are late at loading door ℓ and 0 otherwise for all pairs of i ∈ I, ℓ ∈Di. The corresponding worker

dispatch model is shown in Model 14 and the objective function of the model minimizes the total

weight of shipments that are late.

Minimize
∑
i∈I

∑
ℓ∈L

ϕilhiℓ (14a)

si ≥ ri ∀ i∈ I (14b)

si + pi ≤ d̄i ∀ i∈ I (14c)

si + pi + τuiℓ−M
1hiℓ ≤ dℓ ∀ i∈ I, ℓ∈Di (14d)

si + pi−M2
ik (1− yik)≤ sk ∀ i∈ I, k ∈ {k′ : γik′ ̸= 1} (14e)

si + pi ≤ sk ∀ i∈ I, k ∈ {k′ : γik′ = 1} (14f)∑
i∈I

v0i ≤Q (14g)

vki ≤Qyki ∀ i, k ∈ I (14h)∑
k∈I∪{0}

vki ≥
∑
k∈I

vik ∀ i∈ I (14i)∑
k∈I∪{0}

vki ≥mi ∀ i∈ I (14j)

vik ∈Z≥0 ∀ i, k ∈ I (14k)

v0i ∈Z≥0 ∀ i∈ I (14l)

yik ∈ {0,1} ∀ i, k ∈ I (14m)

hiℓ ∈ {0,1}, ∀ i∈ I, ℓ∈Di (14n)

si ≥ 0, ∀ i∈ I (14o)

Note that Model 14 has the same set of constraints as shown in WDM (5) except the additional

unloading deadline constraints for trailers as shown in (14c), and constraints (14d) which determine

if shipments from a trailer are late at a loading door. In constraints (14d) we can set M1 =

maxi∈I d̄i +maxu∈U,ℓ∈L{τuℓ}. This is true for any i ∈ I, ℓ ∈ Di because we have si + pi ≤ d̄i, i.e.,

Ojha and Erera: Exact Algorithm for Cross-dock Trailer Scheduling
42

each trailer must be processed by its deadline, and τuiℓ ≤maxu∈U,ℓ∈L{τuℓ}. Furthermore, we can

setM2
ik = {d̄i− rk} as si + pi ≤ d̄i and sk ≥ rk ∀i∈ I, k ∈ I, k ̸= i.

	Introduction
	Literature Review
	Cross-dock Trailer Scheduling with Workforce Constraints
	Problem Description
	A Mixed-Integer Programming Formulation

	Solution Methodology
	Relaxation of XDTS-W
	Constructing Feasible Solutions to XDTS-W from a Feasible Solution to XDTS-W-LB
	Dynamic Discretization Discovery (DDD) Algorithm

	Greedy Heuristic
	Computational Study
	Description of Instances and Parameters
	Deciding When and How to Generate Feasible Solutions using WDM
	Comparison of Exact and Heuristic Approaches
	Percentage Time-Space Network Generated By DDD

	Computational Study on Instances from tadumadze2019integrated
	Conclusion and Future Directions
	Appendix
	Proof of Theorem 1
	Proof of Lemma 1
	Example for Lemma 1
	Proof of Theorem 2
	Comparing upper bounds from greedy idea and WDM described in Section 4.2
	Example to show working of the DDD algorithm
	Proof of Theorem 3
	Modified Lower-bound and Worker Dispatch Models for tadumadze2019integrated

