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Abstract

In [R. J. Baraldi and D. P. Kouri, Mathematical Programming, (2022),
pp. 1–40], we introduced an inexact trust-region algorithm for minimiz-
ing the sum of a smooth nonconvex function and a nonsmooth convex
function in Hilbert space—a class of problems that is ubiquitous in data
science, learning, optimal control, and inverse problems. This algorithm
has demonstrated excellent performance and scalability with problem
size. In this paper, we enrich the convergence analysis for this algo-
rithm, proving strong convergence of the iterates with guaranteed rates.
In particular, we demonstrate that the trust-region algorithm recovers
superlinear, even quadratic, convergence rates when using a second-
order Taylor approximation of the smooth objective function term.
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2 Local Convergence of Inexact Nonsmooth Trust Regions

1 Introduction

We provide a comprehensive convergence analysis of the inexact trust-region
method introduced in [1, Alg. 1] for solving the optimization problem

min
x∈X

f(x) + ϕ(x), (1)

where X is a real Hilbert space, f : X → R is a smooth (possibly nonconvex)
function, and ϕ : X → [−∞,+∞] is a convex (possibly nonsmooth) function.
Our analysis includes the strong convergence of the iterates and the derivation
of convergence rates. As shown in [1, Th. 3], the trust-region method is guar-
anteed to converge even when the smooth objective function f and its gradient
are computed inexactly. This feature is essential for the numerical solution
of infinite-dimensional optimization problems, such as those governed by par-
tial differential equations (PDEs), since approximations and discretizations are
unavoidable [2–10]. As in [1], we assume that ϕ and its proximity operator
can be computed exactly. Although this limits the problem setting covered by
(1), relaxing this assumption raises fundamental complications with the anal-
ysis in [1]. However, when ϕ-related quantities are exactly computable, the
trust-region method exhibits excellent numerical performance, especially on
PDE-constrained optimization problems, where we observe mesh-independent
behavior, cf. [1, Sect. 5.2].

Employing first-order necessary optimality conditions, one can reformulate
(1) as the generalized equation: find x ∈ X satisfying

0 ∈ f ′(x) + ∂ϕ(x), (2)

where f ′ is the Fréchet derivative of f and ∂ϕ is the convex subdifferential of ϕ.
In the seminal reports [11, 12], Josephy established convergence rates of New-
ton and quasi-Newton methods for solving the finite-dimensional generalized
equation

0 ∈ h(x) +H(x), (3)

where h is a smooth vector-valued function and H is the normal cone to a
convex set. Josephy’s Newton-type methods for (3) generate iterates by solving
the auxiliary generalized equation

0 ∈ h(xk) +Bk(x− xk) +H(x), (4)

where xk is the current iterate and Bk is the Jacobian of h at xk or an
approximation thereof. Under the assumption of strong metric regularity, Jose-
phy showed that the iterates generated by solving (4), with Bk chosen to
be the Jacobian of h at xk, converge q-quadratically, while the iterates of
his quasi-Newton method converge q-superlinearly as long as Bk satisfies the
Dennis-Moré condition [13, 14]. The authors in [15, 16], see also [17], extend
Josephy’s methods to infinite-dimensional Banach space, allowing for more
general set-valued maps H.
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Numerous authors have enhanced Josephy’s pioneering work to handle
inexact step computations and to weaken the differentiability and metric reg-
ularity assumptions, cf. [18–21]. For example, the authors of [21] propose an
inexact Newton method for finite-dimensional generalized equations in which
the iterates xk+1 satisfy

(h(xk) +Bk(xk+1 − xk) +H(xk+1)) ∩Rk(xk, xk+1) ̸= ∅, (5)

where Rk is a set-valued map that encapsulates the inexactness. They assume
that h + H is semistable at a reference solution—a property that is related
to strong metric regularity as used in [11]—to prove q-superlinear, even q-
quadratic, convergence under specific assumptions on Rk. In [19], the authors
extend the inexact Newton method introduced in [21] to infinite dimensions
and replace the semistability assumption with strong metric subregularity to
achieve analogous convergence results. On the other hand, the authors of [20]
study (5) in finite dimensions, where they assume that h is semismooth, but
not necessarily differentiable. Under this assumption, along with strong met-
ric regularity, the authors prove that the inexact Newton and quasi-Newton
methods converge at a q-linear or q-superlinear rate. To achieve a q-quadratic
rate, h is required to be strongly semismooth. These results were extended in
[18] to the Banach space setting.

The well-known proximal (quasi-)Newton method [22, 23] is a specific real-
ization of Josephy’s (quasi-)Newton method applied to (2). The authors in
[23] provide a thorough convergence analysis for the proximal (quasi-)Newton
method in finite dimensions, globalized with a linesearch. In particular, they
demonstrate that proximal (quasi)-Newton methods converge q-superlinearly,
and that inexact proximal Newton methods also converge q-superlinearly for
specific subproblem stopping tolerances. However, these results require that
both f and ϕ are convex—an assumption that was later relaxed in [22]. In
contrast with [22], the authors in [24] analyze a proximal Newton method for
(1) with nonconvex f and ϕ restricted to the L1 penalty.

We establish similar convergence rates for the trust-region algorithm
introduced in [1, Alg. 1]. Like [22–24], we show q-linear, q-superlinear and q-
quadratic rates when using second-order Taylor approximations of the smooth
objective function f for the trust-region subproblem model. In Section 2, we
describe the assumptions on the problem data in (1) as well as on the trust-
region subproblem model. In Section 3, we review the trust-region algorithm
from [1] and in Section 4, we provide assumptions on the trial step computa-
tion that are required to obtain convergence rates. We present the convergence
analysis in Section 5, proving strong convergence of the trust-region iterates
along with convergence rates.

2 Notation and Problem Assumptions

We now introduce a list of assumptions on the problem data f and ϕ in (1)
as well as on the approximations of f used in the trust-region subproblems.
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Throughout, X denotes a real Hilbert space with inner product ⟨·, ·⟩ and norm
∥ · ∥. We associate X with its dual space X∗ and denote the Riesz representer
of the Fréchet derivative of a function w : X → R (i.e., the gradient of w)
by ∇w. To simplify the presentation, we employ the following notation. The
effective domain of ϕ is domϕ := {x ∈ X |ϕ(x) < +∞}. Moreover, we denote
the proximal gradient operator associated with ϕ and f by

G(x, t) :=
1

t
(x− Proxtϕ(x− t∇f(x)))

and its norm by h(x, t) := ∥G(x, t)∥ for all x ∈ X and t > 0. Here, Proxtϕ(·)
denotes the usual proximity operator,

Proxtϕ(x) := argmin
y∈X

{
1

2t
∥y − x∥2 + ϕ(y)

}
.

Recall that if h(x, t) = 0 for some t > 0, then h(x, t) = 0 for all t > 0 and
x is a critical point of (1) [1, Lem. 5]. We further denote by L(X), the space
of continuous linear operators that map X into itself and for A ∈ L(X), A∗

denotes the adjoint of A.
The results in the subsequent sections do not depend on all of the following

assumptions. As such, we explicitly state the required assumptions for each
result.

P1 The function ϕ : X → [−∞,+∞] is proper, closed and convex.

P2 The function f : X → R is L1-smooth on domϕ. That is, there exists an open
set V ⊆ X, containing domϕ, on which f is Fréchet differentiable and its gradient
∇f is Lipschitz continuous with modulus L1 > 0.

P3 The objective function F := f + ϕ is bounded below.

P4 The function f is locally strongly convex. In particular, there exist a positive
constant λ > 0 and a nonempty convex set U ⊆ V satisfying

⟨∇f(x)−∇f(y), x− y⟩ ≥ λ∥x− y∥2 ∀x, y ∈ U.

P5 Assumption P4 holds and there exists x̄ ∈ U at which h(x̄, t) = 0 for all t > 0.

P6 The function f is twice Fréchet differentiable on V and its Hessian ∇2f is
Lipschitz continuous with modulus L2 > 0.
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At each iteration of the trust-region algorithm, we compute a trial iterate
x+
k ∈ X that approximately solves the trust-region subproblem

min
x∈X
{mk(x) := fk(x) + ϕ(x)} subject to ∥x− xk∥ ≤ ∆k, (6)

where xk ∈ domϕ is the current iterate, fk is a smooth local model of f around
xk, and ∆k > 0 is the trust-region radius. Analogous to G, we define Gk(x, t)
with f replaced by fk and similarly define hk := ∥Gk(xk, r0)∥, where r0 > 0 is
fixed. As with the problem data assumptions, the following model assumptions
are not required for all results.

M1 The function fk : X → R is Mk-smooth on domϕ for all k. We denote the
associated open set on which fk is Lipschitz continuously differentiable by Vk ⊆ X.

M2 There exists a constant κgrad ≥ 0 such that gk := ∇fk(xk) satisfies

∥gk −∇f(xk)∥ ≤ κgrad min{hk,∆k} ∀ k.

M3 There exists a constant κcurv > 0 such that Mk ≤ κcurv for all k.

M4 The function fk is locally strongly convex for k sufficiently large. In particular,
there exist a positive integer K0, a positive constant m > 0, and nonempty convex
sets Uk ⊆ Vk satisfying

⟨∇fk(x)−∇fk(y), x− y⟩ ≥ m∥x− y∥2 ∀x, y ∈ Uk, ∀ k ≥ K0.

M5 The gradient of fk satisfies ∇fk(xk) = ∇f(xk) for k = 1, 2, . . . and for any
sequence {vk} ∈ V with ∥vk − xk∥ → 0, we have that

lim
k→∞

∥∇fk(vk)−∇f(vk)∥
∥vk − xk∥

= 0.

Assumptions P1–P3 and M1–M2 are the basic conditions required to prove
global convergence of [1, Alg. 1], cf. [1, Th. 3]. Although many of these assump-
tions can be relaxed to hold on some open, convex set containing the iterates
{xk} and trial iterates {x+

k }, we will work with the stated assumptions to
maintain consistency with [1]. In the forthcoming analysis, we use Assump-
tions P4–P5 and M3 to prove strong convergence of the trust-region iterates
{xk}. Moreover, we use P6 and M4–M5 to obtain convergence rates. Note
that assumption M5 requires that the model gradient is exact at xk, i.e.,
gk = ∇f(xk) and so M2 is automatically satisfied. Additionally, when the
model fk is the common quadratic model

fk(x) =
1

2
⟨Bk(x− xk), x− xk⟩+ ⟨gk, x− xk⟩, (7)
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where Bk = B∗
k ∈ L(X), Assumption M5 is closely related to the Dennis-Moré

condition [13, 14]

lim
k→∞

∥(Bk −∇2f(x̄))(xk+1 − xk)∥
∥xk+1 − xk∥

= 0. (8)

The following result extends [23, Lem. 3.8] to infinite dimensions when
Assumption P6 holds and Bk = ∇2f(xk).

Lemma 1 Suppose assumptions P1 and P6 hold, fk is given by the quadratic model
(7), gk = ∇f(xk), and Bk = ∇2f(xk). Then, M5 holds and

∥G(x, t)−Gk(x, t)∥ ≤ L2

2
∥x− xk∥2 ∀x ∈ V, ∀ t > 0.

Proof Fix x ∈ V and v ∈ X. Applying the fundamental theorem of calculus to
ψ(t) = ⟨∇f(xk + t(x− xk)), v⟩ yields

ψ(1)− ψ(0) = ⟨∇f(x)−∇f(xk), v⟩ =
∫ 1

0
⟨∇2f(xk + t(x− xk))(x− xk), v⟩ dt

and consequently

|⟨∇f(x)−∇fk(x), v⟩| = |⟨∇f(x)−∇f(xk)−∇2f(xk)(x− xk), v⟩|

≤
∫ 1

0
|⟨(∇2f(xk + t(x− xk))−∇2f(xk))(x− xk), v⟩| dt

≤ L2

2
∥v∥∥x− xk∥2. (9)

Maximizing both sides of the above inequality with respect to v ∈ X with ∥v∥ = 1
yields the inequality

∥∇f(x)−∇fk(x)∥ = ∥∇f(x)−∇f(xk)−∇2f(xk)(x− xk)∥ ≤ L2

2
∥x− xk∥2. (10)

Substituting x with the elements of a sequence {vk} ⊂ X satisfying ∥vk−xk∥ → 0 in
(10) proves that M5 is satisfied. For the final result, recall that the proximity operator
is nonexpansive [25, Cor. 23.11(i)] (i.e., Lipschitz continuous with unit modulus).
Therefore,

∥G(x, t)−Gk(x, t)∥ ≤ ∥∇f(x)−∇f(xk)−∇2f(xk)(x− xk)∥

and the result follows from (10). □

We conclude this section with a technical lemma regarding strong mono-
tonicity of the maps x 7→ G(x, t) and x 7→ Gk(x, t) for sufficiently small t > 0.
This lemma is closely related to [23, Lem. 3.9] and [24, Lem. 4.1], which are
restricted to finite dimensions. In Section 5, we use this result to help prove
convergence rates for the trust-region iterates {xk}.



Springer Nature 2021 LATEX template

Local Convergence of Inexact Nonsmooth Trust Regions 7

Lemma 2 Let assumptions P1, P2 and P4 hold. Then for fixed t ∈ (0, 2λL−2
1 ), the

map x 7→ G(x, t) is strongly monotone on U with parameter (λ− 1
2 tL

2
1), i.e.,

⟨G(x, t)−G(y, t), x− y⟩ ≥ (λ− 1
2 tL

−2
1 )∥x− y∥2 ∀x, y ∈ U.

On the other hand, if P1, M1 and M4 hold, then x 7→ Gk(x, t) is strongly monotone
on Uk with parameter (m− 1

2 tM
2
k ) for any t ∈ (0, 2mM−2

k ).

Proof Applying Moreau’s decomposition [25, Th. 14.3(ii)] to G yields

G(x, t) = ∇f(x) + 1

t
Prox(tϕ)∗(x− t∇f(x))

and thus

G(x, t)−G(y, t) = (∇f(x)−∇f(y))

+
1

t
(Prox(tϕ)∗(x− t∇f(x))− Prox(tϕ)∗(y − t∇f(y)))

for arbitrary, fixed x, y ∈ U . In the subsequent arguments, we use the notation

d := (x− t∇f(x))− (y − t∇f(y)) = (x− y)− t(∇f(x)−∇f(y))

and

w := Prox(tϕ)∗(x− t∇f(x))− Prox(tϕ)∗(y − t∇f(y)).

Note that if w = 0, then P4 ensures that ⟨G(x, t)−G(y, t), x− y⟩ ≥ λ∥x − y∥2 for
all t > 0. As such, we assume that w ̸= 0 and employ the self-adjoint linear operator
W ∈ L(X) defined by

Wv =
⟨w, v⟩
⟨w, d⟩w ∀ v ∈ X.

Since Prox(tϕ)∗(·) is nonexpansive, we have that ∥w∥2 ≤ ⟨w, d⟩ and the denominator
in the definition of W is positive. These definitions allow use to write

G(x, t)−G(y, t) = (∇f(x)−∇f(y)) + 1

t
Wd.

Computing the inner product of this quantity with (x− y) yields

⟨G(x, t)−G(y, t), x− y⟩ = ⟨∇f(x)−∇f(y), x− y⟩+ 1

t
⟨Wd, x− y⟩

= ⟨(I −W )(∇f(x)−∇f(y)), x− y⟩

+
1

t
⟨W (x− y), x− y⟩.

By the Fenchel-Young inequality, we have that

⟨W (∇f(x)−∇f(y)), x− y⟩ ≤ t

2
∥∇f(x)−∇f(y)∥2 +

1

2t
∥W (x− y)∥2,

which yields the bound

⟨G(x, t)−G(y, t), x− y⟩ ≥
(
⟨∇f(x)−∇f(y), x− y⟩ − t

2
∥∇f(x)−∇f(y)∥2

)
+

1

t

(
⟨W (x− y), x− y⟩ − 1

2
∥W (x− y)∥2

)
.
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Expanding the second parenthetical term in the above lower bound and recalling
that ∥w∥2 ≤ ⟨w, d⟩ yields

⟨W (x− y), x− y⟩ − 1

2
∥W (x− y)∥2 =

⟨w, x− y⟩2

⟨w, d⟩2

(
⟨w, d⟩ − 1

2
∥w∥2

)
≥ 1

2

⟨w, x− y⟩2

⟨w, d⟩2
∥w∥2 ≥ 0

and consequently,

⟨G(x, t)−G(y, t), x− y⟩ ≥ ⟨∇f(x)−∇f(y), x− y⟩ − t

2
∥∇f(x)−∇f(y)∥2.

By P2 and P4, we have that

⟨G(x, t)−G(y, t), x− y⟩ ≥ λ∥x− y∥2 − tL2
1

2
∥x− y∥2 =

(
λ− tL2

1

2

)
∥x− y∥2.

The lower bound is positive for t ∈ (0, 2λL−2
1 ) and hence G(·, t) is strongly monotone

for t ∈ (0, 2λL−2
1 ). We omit the proof for Gk as it is identical to the proof for G.

□

3 Trust-Region Algorithm

As discussed in Section 2, the trial iterate x+
k is only required to be an approx-

imate solution to the trust-region subproblem (6). In particular, we require
that x+

k satisfies the following two assumptions.

A1 There exists a constant κrad > 0 such that

x+k ∈ Bk := {x ∈ X | ∥x− xk∥ ≤ κrad∆k} ∀ k.

A2 There exists a constant κfcd > 0 such that

mk(xk)−mk(x
+
k ) ≥ κfcdhk min

{
hk

1 + ωk
,∆k

}
∀ k,

where ωk measures the curvature of fk over the trust region and is defined by

ωk := sup

{
2

∥s∥2
|fk(xk + s)− fk(xk)− ⟨gk, s⟩|

∣∣∣∣ 0 < ∥s∥ ≤ κrad∆k

}
.

Given a trial iterate x+
k that satisfies A1 and A2, traditional trust-region

algorithms decide whether or not to accept x+
k based on the ratio of actual

and predicted reduction

ρ∗k :=
aredk
predk

,

where

aredk := F (xk)− F (x+
k ) and predk := mk(xk)−mk(x

+
k ).
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Here, aredk is the reduction of the objective function F achieved by x+
k relative

to xk and predk is the reduction of the model mk. In many practical applica-
tions, the objective function F cannot be computed accurately [3, 5, 6, 10, 26].
Instead, aredk is replaced by an approximation denoted credk—the computed
reduction. The algorithm then decides whether or not to accept x+

k based on
the ratio of computed and predicted reduction

ρk :=
credk
predk

. (11)

If ρk ≥ η1, we set xk+1 = x+
k . Otherwise, we set xk+1 = xk. The trust-region

algorithm then increases the radius ∆k if ρk ≥ η2 and reduces ∆k if ρk < η1.
The algorithmic parameters 0 < η1 < η2 < 1 are user-specified with common
values η1 = 10−4 and η2 = 0.75. To ensure that credk is a sufficiently accurate
approximation of aredk, we require the following assumption.

A3 There exists a constant κobj ≥ 0 such that

|aredk − credk| ≤ κobj[ηmin{predk, θk}]
ζ ∀ k,

where ζ, η, and θk are (user-specified) positive real numbers that satisfy

ζ > 1, 0 < η < min{η1, (1− η2)}, and lim
k→∞

θk = 0.

Assumption A3 was originally used in [5], where it was motivated by [9,
Sect. 5.3.3]. The forcing sequence {θk} in A3 enables the inclusion of the arbi-
trary constant κobj within the error bound—a feature that is indispensable
when using error indicators that depend on uncomputable quantities. In par-
ticular, the inclusion of {θk} in Assumption A3 ensures that there exists a
positive integer Kη for which |aredk − credk| ≤ η predk for all k ≥ Kη (cf. [1,
Lem. 6]), which is closely related to the inexactness condition described in [26,
Ch. 10.6]. We state the trust-region algorithm as Algorithm 1. As shown in
[1], if A1–A3, M1–M2 and P1–P3 hold and if

∞∑
k=1

(1 + max{ωi | i = 1, . . . , k})−1 = +∞, (12)

then the iterates generated by Algorithm 1 satisfy

lim inf
k→∞

hk = 0 and lim inf
k→∞

h(xk, r0) = 0.

Note that if M3 holds, then (12) holds. Our task now is to employ assumptions
M3–M5 and P4–P6 to arrive at stronger convergence results.
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Algorithm 1 Nonsmooth Trust-Region Algorithm

Require: Initial guess x1 ∈ domϕ, initial radius ∆1 > 0, 0 < η1 < η2 < 1,
and 0 < γ1 ≤ γ2 < 1 ≤ γ3

1: for k = 1, 2, . . . do
2: Model Selection: Choose a model fk that satisfies M1 and M2
3: Step Computation: Compute x+

k ∈ X that satisfies A1 and A2
4: Computed Reduction: Compute credk that satisfies A3
5: Step Acceptance and Radius Update: Compute ρk as in (11)
6: if ρk < η1 then
7: xk+1 ← xk

8: ∆k+1 ∈ [γ1∆k, γ2∆k]
9: else

10: xk+1 ← x+
k

11: if ρk ∈ [η1, η2) then
12: ∆k+1 ∈ [γ2∆k,∆k]
13: else
14: ∆k+1 ∈ [∆k, γ3∆k]
15: end if
16: end if
17: end for

4 Trial Step Computation

The numerical implementation of Algorithm 1 from [1] approximately solves
the trust-region subproblem by first computing a Cauchy point [1, Sect. 3.1]
and then improving upon the Cauchy point using the spectral proximal gradi-
ent method with a monotonic line search [1, Alg. 5]. With this as motivation,
we assume that each trial step x+

k is computed by a procedure that generates
finitely many iterates {xk,0, xk,1, . . . , xk,nk

} with xk,0 = xk and x+
k = xk,nk

,
where nk ≤ maxit for all k and maxit is a (user-specified) positive integer.
Moreover, the iterates satisfy the following assumptions.

S1 There exists a constant µ ∈ (0, 1), independent of k, such that

mk(xk,j+1) ≤ mk(xk,j) + µQk,j and xk,j+1 ∈ Bk

for j = 0, . . . , nk − 1, where

Qk,j := ⟨∇fk(xk,j), xk,j+1 − xk,j⟩+ ϕ(xk,j+1)− ϕ(xk,j).

S2 The final iterate x+k = xk,nk
satisfies at least one of the stopping conditions:

∥x+k − xk∥ = κrad∆k (S2.1)

∥Gk(x
+
k , r0)∥ ≤ τkhk, (S2.2)

where {τk} ⊂ [0,∞) is a bounded sequence of relative stopping tolerances.

S3 If there exists xnk ∈ Bk that satisfies (S2.2), then x+k also satisfies (S2.2).
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The quantity Qk,j in S1 is a commonly used measure of sufficient decrease
for problems of the form (1) [22, 27, 28] and provides an upper bound on
the directional derivative of mk. The subproblem stopping condition (S2.2) is
closely related to stopping conditions used for inexact Newton methods, cf.,
[22–24, 29]. Assumptions S1 and S2 are satisfied by [1, Alg. 5] and provide guid-
ance for developing algorithms to compute trial iterates that satisfy A1 and A2.
Assumption S3 ensures that that any point generated by the subproblem solver
eventually behaves like an inexact Newton step. Similar assumptions exist
in the trust-region literature. For smooth linearly-constrained problems, [30]
assumes that if ∥x+

k −xk∥ ≤ κ∗
rad∆k for fixed κ∗

rad ∈ (0, κrad), then x+
k satisfies

(S2.2). An analogous assumption is used in [31, Th. 4.9] for smooth uncon-
strained problems. Although concrete subproblem solvers are beyond the scope
of this paper, one can satisfy S3 using a dogleg method [32] by requiring that
the Newton step used to construct the dogleg path satisfies (S2.2). Assump-
tions S1-S3 are not required to prove global convergence of Algorithm 1, but
are required to prove that the trial iterates x+

k are eventually always accepted.

5 Local Convergence Analysis

Our first result is common for trust-region methods (e.g., [26, Th. 6.4.6] is
a similar result for smooth, unconstrained optimization) and strengthens the
result in [1, Th. 3] under the additional assumption M3. In particular, we show
that the limit, not just the lower limit, of hk is zero.

Theorem 1 Suppose assumptions P1–P3, M1–M3, and A1–A3 are satisfied. Let
{xk} ⊂ X denote the iterates generated by Algorithm 1. Then,

lim
k→∞

hk = 0 and lim
k→∞

h(xk, t) = 0,

for any fixed t > 0.

Proof The proof of this result mirrors that of [26, Th. 6.4.6] with modifications
to account for inexact objective function values A3 and gradients M2. Let S :=
{k ∈ N | ρk ≥ η1} denote the indices of the successful iterations. We assume that
S is infinite since otherwise the result would follow from [1, Cor. 4]. To arrive at
a contradiction, we assume that there exists ϵ > 0 and a subsequence {ki} ⊆ S
satisfying

hki
≥ 2ϵ > 0 (14)

for all i. By [1, Th. 3], for each i there exists an iteration index ℓ > ki for which
hℓ < ϵ. Let ℓi > ki denote the first such index and define

K := {k ∈ S | ki ≤ k < ℓi ∀ i}.
Note that for all k ∈ K, we have that hk ≥ ϵ. By [1, Lem. 6], there exists a positive
integer Kη such that |ρ∗k − ρk| ≤ η for all k ≥ Kη. This and assumptions A2 and M3
ensure that

F (xk)− F (xk+1) ≥ (η1 − η)κfcdϵmin

{
ϵ

1 + κcurv
,∆k

}
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for all k ∈ K with k ≥ Kη. Since {F (xk)} is monotonically decreasing and bounded
below by P3, we have that the left-hand side converges to zero and hence so does
∆k. Consequently, for sufficiently large k ∈ K, we obtain that

∆k ≤ 1

κfcdϵ(η1 − η)
[F (xk+1)− F (xk)].

For i sufficiently large, this and the triangle inequality ensure that

∥xki
− xℓi∥ ≤

ℓi−1∑
j=ki
j∈K

∥xj − xj+1∥ ≤ κrad

ℓi−1∑
j=ki
j∈K

∆j ≤ κrad
κfcdϵ(η1 − η)

[F (xki
)− F (xℓi)].

Again, owing to the monotonicity of {F (xk)} and P3, we have that the right-hand
side above tends to zero and therefore so does ∥xki

− xℓi∥ as i goes to infinity. By
P2, we also have that ∥∇f(xki

)−∇f(xℓi)∥ tends to zero as i goes to infinity. Now,
P2, M2, and the nonexpansivity of the proximity operator ensure that

ϵ ≤ |hki
− hℓi |

≤ 2

r0
∥xki

− xℓi∥+ ∥gki
−∇f(xki

)∥+ ∥∇f(xki
)−∇f(xℓi)∥+ ∥∇f(xℓi)− gℓi∥

≤
(

2

r0
+ L1

)
∥xki

− xℓi∥+ κgrad(∆ki
+ γ3∆ℓi−1).

Since {∆k}k∈K converges to zero, so does the above upper bound, leading to a
contradiction. Hence, no subsequence satisfying (14) exists and consequently, hk → 0.
Now, owing to M2, we have that

lim
k→∞

h(xk, r0) ≤ lim
k→∞

∥G(xk, r0)−Gk(xk, r0)∥+ hk ≤ lim
k→∞

(1 + κgrad)hk = 0.

Since h(x, r0) ≥ h(x, t) for all t ≥ r0 [1, Lem. 2, part 2], we have that h(xk, t) → 0
for any fixed t ≥ r0. On the other hand, since th(x, t) ≤ r0h(x, r0) for all t ∈ (0, r0]
[1, Lem. 2, part 1], we have that h(xk, t) → 0 for any fixed t > 0. □

When compared with [1, Th. 3], Theorem 1 only requires the additional
assumption of bounded curvature, M3, which again implies (12). Under addi-
tional assumptions on f , namely P4 and P5, we can prove that the sequence
of iterates {xk} generated by Algorithm 1 strongly converge to a critical point
of (1). This improves upon [1, Cor. 3], which proves that strong accumulation
points of {xk} are critical points of (1).

Corollary 1 Let assumptions P1–P5, M1–M3 and A1–A3 hold, and suppose that
there exists a positive integer KU such that xk ∈ U for all k ≥ KU . Here, U is
defined in P4. Then, xk → x̄.

Proof By Theorem 1, we have that h(xk, t) → 0 for fixed t ∈ (0, 2λL−2
1 ). Hence, the

strong monotonicity of G from Lemma 2 and the criticality of x̄ ensure that(
λ− tL2

1

2

)
lim

k→∞
∥xk − x̄∥ ≤ lim

k→∞
∥G(xk, t)−G(x̄, t)∥ = lim

k→∞
h(xk, t) = 0,

proving the desired result. □
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Our final three results require the strongest assumptions on the model
to ultimately prove convergence rates for {xk}. Much like Theorem 1, the
next two results are common in the trust-region literature and ultimately
demonstrate that Algorithm 1 eventually accepts every trial iterate. See, for
example, [31, Th. 4.9] for unconstrained optimization and [30, Th. 5.3] for
linearly-constrained optimization.

Theorem 2 Let P1–P3, M1–M5, A1–A3 and S1 hold. Then, ∆k is bounded away
from zero for all k.

Proof We first bound |ρ∗k − 1| and then show that this bound converges to zero if
∥x+k − xk∥ → 0. To bound |ρ∗k − 1|, we note that |ρ∗k − 1| = |aredk − predk|/predk.
The ϕ terms cancel in |aredk − predk| and we can bound the numerator as

|aredk − predk| = |f(xk)− f(x+k )− fk(xk) + fk(x
+
k )|

=

∣∣∣∣∣
∫ 1

0

〈
∇f(xk + t(x+k − xk))−∇fk(xk + t(x+k − xk)), x

+
k − xk

〉
dt

∣∣∣∣∣
≤

∫ 1

0
∥∇f(xk + t(x+k − xk))−∇fk(xk + t(x+k − xk))∥ dt∥x+k − xk∥,

where the second equality follows from the fundamental theorem of calculus and the
inequality follows from Cauchy-Schwarz. By assumption M5, ∇fk(xk) = ∇f(xk) and
therefore, P2, M1 and M3 ensure that

∥∇f(xk + t(x+k − xk))−∇fk(xk + t(x+k − xk))∥
∥x+k − xk∥

≤ t(L1 + κcurv).

Consequently, M5 and the Lebesgue dominated convergence theorem yield

lim
k→∞

∫ 1

0

∥∇f(xk + t(x+k − xk))−∇fk(xk + t(x+k − xk))∥
∥x+k − xk∥

dt = 0

if ∥x+k − xk∥ → 0 or equivalently,∫ 1

0
∥∇f(xk + t(x+k − xk))−∇fk(xk + t(x+k − xk))∥ dt = o(∥x+k − xk∥).

Hence, if ∥x+k − xk∥ → 0, then

|aredk − predk| ≤ o(∥x+k − xk∥)∥x+k − xk∥.
To bound the denominator, we consider the sequence of subproblem iterates

{xk,1, . . . , xk,nk
}. We can bound the model decrease achieved at each iteration, using

again the fundamental theorem of calculus, as

mk(xk,j+1)−mk(xk,j)

= Qk,j +

∫ 1

0
⟨∇fk(xk,j + t(xk,j+1 − xk,j))−∇fk(xk,j), xk,j+1 − xk,j⟩ dt.

Employing S1, we have that∫ 1

0
⟨∇fk(xk,j + t(xk,j+1 − xk,j))−∇fk(xk,j), xk,j+1 − xk,j⟩ dt ≤ −(1− µ)Qk,j .
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In addition, M4 ensures that∫ 1

0
⟨∇fk(xk,j+t(xk,j+1−xk,j))−∇fk(xk,j), xk,j+1−xk,j⟩ dt ≥

m

2
∥xk,j+1−xk,j∥2.

Combining these results with S1, then yields

mk(xk,j)−mk(xk,j+1) ≥ −µQk,j ≥ − µ

1− µ
(1− µ)Qk,j

≥ µ

1− µ

m

2
∥xk,j+1 − xk,j∥2

Define κ0 := µ
1−µ

m
2 . Now, we can reuse some arguments from the proof of [30,

Th. 5.3]. Specifically, since nk ≤ maxit, we have

mk(xk)−mk(x
+
k ) ≥ κ0 max

0≤j≤nk

{∥xk,j+1 − xk,j∥2}

and
∥x+k − xk∥ ≤ (maxit+ 1) max

0≤j≤nk

{∥xk,j+1 − xk,j∥},

which yield the inequality predk ≥ κ1∥x+k − xk∥2 for κ1 := κ0

(maxit+1)2
. Combining

the bounds on the numerator and denominator, we arrive at

|ρ∗k − 1| ≤ o(∥x+k − xk∥)
∥x+k − xk∥

κ1∥x+k − xk∥2
= o(1)

and hence, |ρ∗k−1| → 0 as long as ∥x+k −xk∥ → 0. To conclude, suppose that ∆k → 0,

then ∥x+k − xk∥ → 0 and consequently, |ρ∗k − 1| → 0. Therefore, after sufficiently
many iterations ∆k is increased, contradicting the assumption that ∆k → 0. Hence,
there exists ϵ > 0 such that ∆k ≥ ϵ for all k. □

Building upon Theorem 2, the next results demonstrates that if S2 and S3
hold, then the trial iterate x+

k will satisfy (S2.2) for k sufficiently large. This
result is a critical step in obtaining a convergence rate.

Corollary 2 Let P1–P3, M1–M5, A1–A3 and S1–S3 hold. Suppose that xnk ∈ Uk

and xk,i ∈ Uk for i = 0, 1, . . . , nk and k ≥ K0, where Uk and K0 are defined in M4

and xnk is defined in S3. Then, there exists a positive integer K1 ≥ K0 such that x+k
satisfies (S2.2) and ∆k+1 ≥ ∆k for all k ≥ K1.

Proof By Theorem 2, there exists ϵ > 0 such that ∆k ≥ ϵ for all k. Since xnk ∈ Uk

for k ≥ K0, Lemma 2 ensures that

m∥xnk − xk∥ ≤ ∥Gk(x
n
k, t)−Gk(xk, t)∥ ≤ ∥Gk(x

n
k, t)∥+ ∥Gk(xk, t)∥

for fixed t ∈ (0, 2mκ−2
curv) and all k ≥ K0. If r0 < 2mκ−2

curv, then we set t = r0.
Otherwise, we have that

t∥Gk(xk, t)∥ ≤ r0∥Gk(xk, r0)∥ ⇐⇒ ∥Gk(xk, t)∥ ≤ r0
t
∥Gk(xk, r0)∥

by [1, Lem. 2]. Thus, (S2.2) ensures that

∥xnk − xk∥ ≤ max

{
1

m
,
r0
tm

}
(τk + 1)hk (15)
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and consequently, by Theorem 1 there exists a positive integer Kϵ ≥ K0 such that

∥xnk − xk∥ ≤ ϵ ∀ k ≥ Kϵ.

By S3, x+k satisfies (S2.2) for all k ≥ Kϵ. The bound (15) further shows that ∥x+k −
xk∥ → 0 and hence |ρk − 1| → 0 as demonstrated in the proof of Theorem 2.
The trust-region update mechanism in Algorithm 1 then ensures that there exists
K1 ≥ Kϵ for which ∆k+1 ≥ ∆k for all k ≥ K1. □

Our final result provides convergence rates for {xk} generated by Algo-
rithm 1, when the trust-region subproblem (6) is solved using the stopping
conditions in S2. We note that the former and latter results require M5,
which in turn requires that gk = ∇f(xk). This requirement is extremely diffi-
cult to overcome when determining convergence rates. In particular, it would
seem that any inexact gradient condition that ensures q-sublinear (or faster)
convergence may be difficult to enforce in general [33, Ch. 2.3.1].

Theorem 3 Let P1–P3, M1–M4, A1–A3, and S1–S3 hold. Suppose that xnk, xk,i ∈
Uk for i = 0, 1, . . . , nk for all k ≥ K0 and xk → x̄, where x̄ is a critical point of (1).

1. If M5 holds and the relative tolerance τk defined in (S2.2) satisfies τk → τ̄ with

0 < τ̄ <
m

r0L1 + 1
min

{
r0,

2m

κ2curv

}
,

then xk converges q-linearly to x̄.

2. If M5 holds and τk → 0, then xk converges q-superlinearly to x̄.

3. If P6 holds, fk is the quadratic model (7), gk = ∇f(xk), Bk = ∇2f(xk), and
τk ≤ τh1+α

k for fixed τ > 0 and α ≥ 0, then xk converges q-quadratically to x̄.

Proof Recall that M5 holds in case 3 by Lemma 1. By Corollary 2, we have that
xk+1 = x+k satisfy (S2.2) for k ≥ K1. By Lemma 2, M3 and the Cauchy-Schwarz
inequality, we have that

∥xk+1 − x̄∥ ≤ m−1∥Gk(xk+1, t)−Gk(x̄, t)∥
for fixed t ∈ (0, 2mκ−1

curv) and k ≥ K1. Using (S2.2), we have that

∥xk+1 − x̄∥ ≤ m−1
(
∥Gk(x̄, t)∥+max

{
1,
r0
t

}
τkhk

)
,

where the upper bound follows from similar arguments as in (15). In cases 1 and 2,
M5 and the nonexpansivity of the proximity operator ensure that

∥Gk(x̄, t)∥ = ∥Gk(x̄, t)−G(x̄, t)∥ = o(∥xk − x̄∥).
In case 3, Lemma 1 ensures that ∥Gk(x̄, t)∥ ≤ L2/2∥xk − x̄∥2. Moreover, P1–P2 and
the equality ∇fk(xk) = ∇f(xk) ensure that

hk = ∥Gk(xk, r0)−G(x̄, r0)∥ ≤ (L1 + r−1
0 )∥xk − x̄∥,

where the inequality follows from the arguments in the proof of [23, Lem. 2]. In
cases 1 and 2, these results yield

∥xk+1 − x̄∥ ≤ o(∥xk − x̄∥) +
L1 + r−1

0

m
max

{
1,
r0
t

}
τk∥xk − x̄∥,

for fixed t ∈ (0, 2mκ−2
curv) and similarly for case 3. The desired results follow directly

from this bound and the stated assumptions. □
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