
Computational and Applied Mathematics manuscript No.
(will be inserted by the editor)

Efficient Proximal Subproblem Solvers for a
Nonsmooth Trust-Region Method

Robert J. Baraldi · Drew P. Kouri

Received: date / Accepted: date

Abstract In [R. J. Baraldi and D. P. Kouri, Mathematical Programming, (2022),
pp. 1-40], we introduced an inexact trust-region algorithm for minimizing the sum
of a smooth nonconvex and nonsmooth convex function. The principle expense of
this method is in computing a trial iterate that satisfies the so-called fraction of
Cauchy decrease condition—a bound that ensures the trial iterate produces suf-
ficient decrease of the subproblem model. In this paper, we expound on various
proximal trust-region subproblem solvers that generalize traditional trust-region
methods for smooth unconstrained and convex-constrained problems. We intro-
duce a simplified spectral proximal gradient solver, a truncated nonlinear conju-
gate gradient solver, and a dogleg method. We compare algorithm performance on
examples from data science and PDE-constrained optimization.

Keywords Nonsmooth Optimization · Nonlinear Programming · Trust Regions ·
Large-Scale Optimization · Proximal Newton’s Method

This research was sponsored, in part, by the Department of Energy Office of Science under the
Early Career Research Program and the U.S. Air Force Office of Scientific Research. Sandia
National Laboratories is a multimission laboratory managed and operated by National Tech-
nology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell
International, Inc., for the U.S. Department of Energy’s National Nuclear Security Adminis-
tration under contract DE-NA0003525. This paper describes objective technical results and
analysis. Any subjective views or opinions that might be expressed in the paper do not neces-
sarily represent the views of the U.S. Department of Energy or the United States Government.

Drew P. Kouri
Sandia National Laboratories
P.O. Box 5800
Albuquerque, NM 87125, USA
E-mail: dpkouri@sandia.gov
ORCID: 0000-0002-7079-3195

Robert J. Baraldi (Corresponding Author)
Sandia National Laboratories
P.O. Box 5800
Albuquerque, NM 87125, USA
E-mail: rjbaral@sandia.gov
ORCID: 0000-0003-3699-6770

2 Robert J. Baraldi, Drew P. Kouri

Mathematics Subject Classification (2020) 49M15 · 49M37 · 65K05 ·
65K10 · 90C06 · 90C30

1 Introduction

In [4], we developed a trust-region method for the nonsmooth optimization problem

min
x∈X

f(x) + ϕ(x), (1)

where X is a Hilbert space, f : X → R is Fréchet differentiable with Lipschitz
continuous gradient, and ϕ : X → (−∞,+∞] is proper, closed and convex. The
method introduced in [4] permits and systematically controls inexactness in the
evaluations of f and its gradient ∇f , while guaranteeing convergence. This enables
the numerical solution of infinite-dimensional optimization problems, where finite-
dimensional approximations are indispensable for evaluating f and ∇f .

Inexactness notwithstanding, typical trust-region methods measure progress
using a Cauchy point (CP) or, more generally, a fraction of Cauchy decrease
(FCD) condition [18,37,42,53]. For smooth unconstrained problems, the CP is
the minimizer of a quadratic model in the steepest descent direction. When simple
constraints are present, the CP is any point along the projected gradient path that
produces sufficient decrease of the model [42,53]. In [4], we generalized the CP to
a point along the proximal gradient path and computed it using a bidirectional
proximal search, cf. [4, Alg. 2]. In this paper, we develop various trust-region sub-
problem solvers that improve upon the CP and are guaranteed to satisfy the FCD
condition, thereby ensuring convergence of the trust-region algorithm [4, Alg. 1].
Moreover, our subproblem solvers ensure rapid superlinear, even quadratic, con-
vergence of the trust-region algorithm when the problem data in (1) permits [5].

Since the inception of trust-region methods, numerous subproblem solvers have
been proposed, primarily for smooth problems. Early methods were so-called dog-
leg approaches because they employ a piecewise linear interpolation between the
CP and unconstrained Newton point to guarantee fraction of Cauchy decrease; cf.
Powell [44,45]. Powell’s dogleg method was extended in [21] to a double dogleg
path by adding an additional piecewise linear segment that biases the Newton
point, yielding improved local convergence. Dogleg methods are computationally
simple but produce potentially poor trial iterates near the trust-region radius. To
overcome this, Moré and Sorensen computed trial iterates by solving the refor-
mulated subproblem first-order optimality conditions with Newton’s method [41].
One could similarly solve the subproblem using Gaussian quadrature [28]. Around
the same time as [41], Steihaug [50] and Toint [52] introduced the truncated con-
jugate gradient (CG) method, which approximately solves the subproblem using
CG modified with stopping conditions that account for negative curvature and
the trust-region constraint. Truncated CG has also been used within trust-region
methods for solving various constrained optimization problems [30,31,37]. Mo-
tivated by truncated CG, the authors in [29], proposed solving the subproblem
using a truncated Lanczos method. More recently, [32,39] employed the spectral
projected gradient method [8] to compute a trial iterate for smooth unconstrained
and convex-constrained problems.

Efficient Nonsmooth Trust-Region Methods 3

The trust-region subproblem used in [4, Alg. 1] is

min
x∈X

{mk(x) := fk(x) + ϕ(x)} subject to ∥x− xk∥ ≤ ∆k, (2)

where xk ∈ X is the current iterate, fk is a local approximation of f around xk,
and ∆k > 0 is the current trust-region radius. The presence of nonsmooth ϕ in
(2) renders most of the aforementioned methods irrelevant. To rectify this, we in-
troduce extensions of these classical methods that verifiably produce trial iterates
satisfying the FCD condition. We establish three main solvers: 1) a simplified spec-
tral proximal gradient (SPG) method; 2) a nonsmooth truncated CG method; and
3) a nonsmooth dogleg method. Our SPG method streamlines the algorithm pro-
posed in [4, Alg. 5] by using a simplified spectral CP and handling the trust-region
constraint separately from the proximity operator computation. These modifica-
tions typically result in fewer evaluations of the proximity operator. Our truncated
CG approach is based on nonlinear CG with modifications that account for the
nonsmooth term as well as the trust-region constraint. For our dogleg framework,
we compute the Newton point using damped semismooth Newton, which requires
the application of a generalized Jacobian of the proximity operator. Fortunately,
the proximity operators for numerous ϕ are semismooth [10]. In the appendix, we
include a specialized orthant-based subproblem solver for L1-regularized problems
based on [13].

We organize the paper as follows. Section 2 introduces the notation and prob-
lem assumptions. Section 3 reviews the trust-region algorithm from [4] and high-
lights its basic functionality. Section 4 discusses global and local convergence of the
algorithm. Section 5 details the subproblem solvers, and Section 6 compares their
performance on six numerical examples arising from data science and optimization
problems constrained by partial differential equations (PDEs).

2 Notation and Problem Assumptions

Let X be a Hilbert space with inner product ⟨·, ·⟩ and norm ∥·∥, and let L(X)
denote the space of continuous linear operators that map X into itself. Recall that
L(X) is a Banach space endowed with the usual operator norm

∥B∥ = sup{∥Bx∥ | ∥x∥ ≤ 1} ∀B ∈ L(X).

To simplify the presentation, we identify the topological dual space X∗ with X
via Riesz representation. Following standard convex analysis notation, we denote
the subdifferential of a proper, closed and convex function ψ : X → (−∞,∞] by

∂ψ(x) := {η ∈ X |ψ(y) ≥ ψ(x) + ⟨η, y − x⟩ ∀ y ∈ X}.

and the effective domains of ψ and ∂ψ by

domψ := {x ∈ X |ψ(x) < +∞} and dom ∂ψ := {x ∈ X | ∂ψ(x) ̸= ∅},

respectively. Furthermore, the proximity operator of ψ is

Proxrψ(x) := argmin
y∈X

{ψ(y) + 1
2r ∥y − x∥2}, (3)

4 Robert J. Baraldi, Drew P. Kouri

for r > 0. When ψ = ιC is the indicator function of a nonempty, closed and convex
set C ⊂ X (i.e., ιC(x) = 0 if x ∈ C and ιC(x) = +∞ if x ̸∈ C), Proxrψ(x) is
the projection of x onto C. In the subsequent sections, we make repeated use of
the proximity operator’s firm nonexpansivity [6, Prop. 12.27]. For other useful
properties of the proximity operator, see [4, Sec. 2.2];

The convergence theory in [4] requires the following standard assumptions on
the problem data in (1).

Assumption 1 (Problem Data) The components of the objective function

F (x) := f(x) + ϕ(x)

in (1) satisfy the following conditions.

1. The function ϕ : X → (−∞,+∞] is proper, closed and convex.
2. The function f : X → R is L-smooth on domϕ. That is, f is Fréchet differen-

tiable and its gradient ∇f is Lipschitz continuous with modulus L > 0 on an
open set U ⊆ X containing domϕ.

3. The objective function F is bounded below, i.e., there exists κlb ∈ R such that
F (x) ≥ κlb for all x ∈ X.

Recall that if x̄ ∈ X is a local minimizer for (1), then it satisfies

−∇f(x̄) ∈ ∂ϕ(x̄) ⇐⇒ x̄ = Proxrϕ(x̄− r∇f(x̄))

for arbitrary, fixed r > 0. The second condition above motivates a natural algo-
rithmic stopping condition. Commonly, algorithms for (1) will stop iterating if the
current iterate x ∈ X satisfies

1
r ∥x− Proxrϕ(x− r∇f(x))∥ ≤ τ,

for a user-specified tolerance τ > 0 and fixed r > 0. For use in later sections,
we define the functions G : X × X × [0,∞) → X, Gf : X × [0,∞) → X, H :
X ×X × [0,∞) → R and h : X × [0,∞) → R by

G(x, g, r) := 1
r (x− Proxrϕ(x− rg)), Gf (x, r) := G(x,∇f(x), r)

H(x, g, r) := ∥G(x, g, r)∥ and h(x, r) := ∥Gf (x, r)∥ ,
(4)

respectively. The next proposition catalogues important properties of G and H.

Proposition 1 (Properties of G and H)

a: For fixed x, g ∈ X, r 7→ rH(x, g, r) is nondecreasing on (0,∞). In particular,
if r ≥ t > 0, then rH(x, g, r) ≥ tH(x, g, t). Moreover, this inequality is strict
if rG(x, g, r) ̸= tG(x, g, t).

b: For fixed x, g ∈ X, r 7→ H(x, g, r) is nonincreasing for r > 0.
c: For fixed x, g ∈ X and r > 0, the following inequality holds

−r ⟨g,G(x, g, r)⟩+ ϕ(x− rG(x, g, r))− ϕ(x) ≤ −rH(x, g, r)2. (5)

d: The maps (x, g, r) 7→ G(x, g, r) and (x, g, r) 7→ H(x, g, r) are continuous on
X ×X × (0,∞).

Efficient Nonsmooth Trust-Region Methods 5

e: For fixed r > 0, (x, g) 7→ H(x, g, r) satisfies

|H(x, g, r)−H(x′, g′, r)| ≤ 1

r

∥∥x− x′
∥∥+

∥∥g − g′
∥∥ ∀x, x′, g, g′ ∈ X. (6)

In particular, (x, g) 7→ H(x, g, r) is Lipschitz continuous.

Proof Parts a, b and c are direct consequences of [4, Lem. 2 & 3] with d = −g.
For part d, we recall that r 7→ Proxrϕ(y) is continuous for fixed y ∈ X [4, Lem. 3]
and y 7→ Proxrϕ(y) is Lipschitz continuous with unit modulus for fixed r ∈ (0,∞).
Now, suppose {(yn, rn)} ⊂ X × (0,∞) with yn → y and rn → r > 0. By Lipschitz
continuity, we have that

∥Proxrnϕ(yn)− Proxrϕ(y)∥ ≤ ∥yn − y∥+ ∥Proxrnϕ(y)− Proxrϕ(y)∥ .

Consequently, (y, r) 7→ Proxrϕ(y) is continuous. Hence, the composition of this
map with the continuous map (x, g, r) 7→ (x − rg, r) is also continuous. Part e
follows from the firm nonexpansivity of the proximity operator. ⊓⊔

3 Trust-Region Algorithm

To facilitate subproblem solver development, we choose fk in (2) to be the quadratic
model

fk(x) :=
1

2
⟨Bk(x− xk), x− xk⟩+ ⟨gk, x− xk⟩ , (7)

where Bk ∈ L(X) is self adjoint and gk ∈ X is an approximation of ∇f(xk).
The operator Bk encapsulates the curvature of f at xk and is often the Hessian
∇2f(xk) or a secant approximation thereof. At the k-th iteration of the trust-
region algorithm introduced in [4, Alg. 1], one computes a trial iterate x+k that
satisfies two conditions: there exists positive constants κrad, κfcd > 0, independent
of k, and a positive parameter tk > 0 for which (i) the trust-region constraint∥∥∥x+k − xk

∥∥∥ ≤ κrad∆k (8a)

holds, and (ii) the FCD

mk(xk)−mk(x
+
k) ≥ κfcdhkmin

{
hk

1 + ∥Bk∥
,∆k

}
(8b)

is satisfied, where
hk := H(xk, gk, tk) (9)

with H defined in (4). Note that (8b) ensures that x+k ∈ domϕk since the left-hand
side would be −∞ otherwise. Additionally, note that (8b) is a slight generalization
of [4, Eq. (12b)], where tk is a constant independent of the iteration number k.
It is common to choose tk to be the computed CP step length as is done in the
linear-constrained trust-region method of [37].

Given a trial iterate x+k that satisfies (8), the trust-region algorithm accepts or
rejects x+k based on the ratio of actual and predicted reduction

ρ∗k :=
aredk
predk

,

6 Robert J. Baraldi, Drew P. Kouri

where

aredk := F (xk)− F (x+k) and predk := mk(xk)−mk(x
+
k).

Here, aredk is the actual reduction of the objective function F achieved by x+k
relative to xk and predk is the reduction predicted by the model mk. In many
practical applications, the objective function F cannot be computed accurately
[19,27,34,35], necessitating the replacement of aredk in ρ∗k with an approximation
denoted credk—the computed reduction. Algorithmically, we decide whether or not
to accept x+k based on the ratio of computed and predicted reduction

ρk :=
credk
predk

. (10)

We set xk+1 = x+k if ρk ≥ η1 and xk+1 = xk otherwise. The trust-region algorithm
then increases the radius ∆k if ρk ≥ η2 and reduces ∆k if ρk < η1. The algorithmic
parameters 0 < η1 < η2 < 1 are user-specified with common values η1 = 10−4 and
η2 = 0.75.

To ensure credk is a sufficiently accurate approximation of aredk, we require
the following assumption.

Assumption 2 (Inexact Objective Function) The accuracy of the computed
reduction credk can be refined to satisfy the condition: there exists a constant
κobj ≥ 0, independent of k, such that

|aredk − credk| ≤ κobj [ηmin{predk, θk}]
ζ ∀ k, (11)

where ζ, η, and θk are (user-specified) positive real numbers that satisfy

ζ > 1, 0 < η < min{η1, (1− η2)}, and lim
k→+∞

θk = 0.

Here, ζ and η are independent of k.

Condition (11) was first used in [34], where it was motivated by [55, Sec. 5.3.3].
Recent work [7,51] has developed trust-region methods for general noisy objec-
tive functions that require an explicit bound on the noise (cf. [7, Eq. (2.16)] and
[51, Eq. (3)]). This requirement is often impossible to satisfy in, e.g., infinite-
dimensional problems, where the left-hand side of (11) may only be bounded by
an error indicator that depends on uncomputable constants like continuity, em-
bedding, or inf-sup constants in PDE applications [3,12].

Assumption 2 enables us to inexactly evaluate the objective function F . More-

over, since θk → 0 as k → +∞, we have that θk ≤ κ
−1/(ζ−1)
obj for sufficiently large

k and

|aredk − credk| ≤ κobj[ηmin{predk, θk}]θ
ζ−1
k ≤ ηmin{predk, θk}. (12)

The consequence of (12) on the accuracy of ρk is summarized in the next lemma.

Lemma 1 (Lemma 6 in [4]) If Assumption 2 holds, then there exists a positive
integer Kη satisfying

ρ∗k =
aredk
predk

∈ [ρk − η, ρk + η] ∀ k ≥ Kη. (13)

Efficient Nonsmooth Trust-Region Methods 7

Lemma 1 ensures that successful steps produce sufficient decrease in F as
demonstrated in the following corollary.

Corollary 1 (Corollary 2 in [4]) Let Assumption 2 hold and suppose x+k is a
trial iterate that satisfies (8b) with ρk ≥ η1, then

credk ≥ η1κfcdhkmin

{
hk

1 + ∥Bk∥
,∆k

}
.

Moreover, if k ≥ Kη where Kη is defined in Lemma 1, then

aredk ≥ (η1 − η)κfcdhkmin

{
hk

1 + ∥Bk∥
,∆k

}
.

As with the computed reduction, the gradient of f often cannot be evaluated
exactly in practice [19,27,33,35]. Instead, we require that the approximate gradient
satisfies the following assumption.

Assumption 3 (Subproblem Model) The accuracy of the model gradient gk
can be refined to satisfy the condition: there exists a constant κgrad ≥ 0, indepen-
dent of k, such that

∥gk −∇f(xk)∥ ≤ κgrad min{hk,∆k} ∀ k. (14)

Again, Assumption 3 differs from the general noisy objective function setting em-
ployed in [7,51] as it enables the use of error indicators that generally depend
on uncomputable constants. With Assumptions 2 and 3, we can now state the
trust-region algorithm for solving (1), listed in Algorithm 1.

Algorithm 1 Inexact Nonsmooth Trust-Region Algorithm
Require: Initial guess x0 ∈ domϕ, initial radius ∆0 > 0, 0 < η1 < η2 < 1, and 0 < γ1 ≤

γ2 < 1 ≤ γ3
1: for k = 0, 1, 2, . . . do
2: Gradient Approximation: Compute gk that satisfies Assumption 3
3: Model Selection: Choose self-adjoint Bk ∈ L(X) and build mk using (7)

4: Step Computation: Compute x+
k ∈ X that satisfies (8)

5: Computed Reduction: Compute credk that satisfies Assumption 2
6: Step Acceptance and Radius Update: Compute ρk as in (10)
7: if ρk < η1 then
8: xk+1 ← xk
9: ∆k+1 ∈ [γ1∆k, γ2∆k]
10: else
11: xk+1 ← x+

k
12: if ρk ∈ [η1, η2) then
13: ∆k+1 ∈ [γ2∆k,∆k]
14: else
15: ∆k+1 ∈ [∆k, γ3∆k]
16: end if
17: end if
18: end for

8 Robert J. Baraldi, Drew P. Kouri

4 Convergence Analysis

The global convergence analysis of Algorithm 1 is essentially the same as in [4],
despite the more general hk definition. As such, we state the basic convergence
results without proof unless significant modification is required.

Theorem 1 Let {xk} be the sequence of iterates generated by Algorithm 1. If
Assumptions 1, 2 and 3 hold and if

∞∑
k=0

(1 + max
i=1,...,k

∥Bi∥)−1 = +∞, (15)

then

lim inf
k→∞

hk = 0 and lim inf
k→∞

h(xk, tk) = 0. (16)

Proof The proof of this result is identical to that of [4, Th. 3].

Under mild additional assumptions, we can improve upon Theorem 1 to show
that the limit of h(xk, t), not just the lower limit, is zero for all t > 0.

Theorem 2 Let the assumptions of Theorem 1 hold. In addition, suppose there
exist κcurv > 0 and tmax > 0 such that ∥Bk∥ ≤ κcurv and tk ≤ tmax for all k.
Then,

lim
k→∞

H(xk, gk, t) = 0 and lim
k→∞

h(xk, t) = 0 ∀ t > 0.

Proof By Theorem 1, the existence of tmax and Proposition 1, we have that

lim inf
k→∞

H(xk, gk, tmax) = 0 and lim inf
k→∞

h(xk, tmax) = 0.

The result then follows from [5, Th. 1]. ⊓⊔

To derive a convergence rate for Algorithm 1, we require the following assump-
tions on the method used to generate the trial iterate x+k .

Assumption 4 (Subproblem Solver) There exists µ ∈ (0, 12), independent of

k, such that the trial iterate x+k satisfies the decrease condition

mk(x
+
k)−mk(xk) ≤ µ

(〈
gk, x

+
k − xk

〉
+ ϕ(x+k)− ϕ(xk)

)
=: µQk, (17)

the trust-region constraint (8a), and either

H(x+k ,∇fk(x
+
k), tk) ≤ τkhk or

∥∥∥x+k − xk

∥∥∥ = κrad∆k, (18)

where {τk} ⊂ [0,∞) is a bounded sequence of relative tolerances. Moreover, let
xnk ∈ X be any point that satisfies the first condition in (18). If there exists xnk
with ∥xnk − xk∥ ≤ κrad∆k, then x

+
k also satisfies the first condition in (18).

Efficient Nonsmooth Trust-Region Methods 9

The assumption that x+k eventually behaves like an inexact Newton iterate xnk is
common in the trust-region literature. For instance, similar conditions are used in
[43, Th. 4.9] for smooth unconstrained optimization and [37] for smooth convex-
constrained optimization.

Two of our subproblem solvers are iterative (cf. Algorithms 3 and 4), in which
case x+k is selected as the final element in a sequence of iterates, {xk,0, xk,1, . . . , xk,nk

}
with xk,0 = xk and xk,nk

= x+k . For these solvers, we employ the iteration decrease
condition

mk(xk,ℓ+1)−mk(xk,ℓ)

≤ µ (⟨∇fk(xk,ℓ), xk,ℓ+1 − xk,ℓ⟩+ ϕ(xk,ℓ+1)− ϕ(xk,ℓ))
(19)

for ℓ = 0, 1, . . . , nk, instead of (17). We further assume that the number of it-
erations is limited to maxit, i.e., nk ≤ maxit for k = 1, 2, See [5] for the
convergence analysis of iterative subproblem solvers. Under stronger assumptions
than the preceding two theorems, the next result demonstrates that Algorithm 1
ultimately accepts every x+k , which eventually satisfies the first condition in (18).

Theorem 3 Let the assumptions of Theorem 2 and Assumption 4 hold, and sup-
pose there exists an open set U0 ⊆ X containing a stationary point x̄ of (1) on
which f is twice continuously Fréchet differentiable. Furthermore, suppose that
xk → x̄, gk = ∇f(xk), and Bk in (7) satisfies:

1. There exists K0 ∈ N such that Bk is uniformly strongly monotone and bounded
for k ≥ K0, i.e., there exist m > 0 and κcurv > 0 such that

m ∥s∥2 ≤ ⟨Bks, s⟩ and ∥Bk∥ ≤ κcurv (20)

for all s ∈ X and k ≥ K0; and
2. The Dennis-Moré condition holds, i.e.,

lim
k→∞

∥(Bk −∇2f(x̄))(x+k − xk)∥
∥x+k − xk∥

= 0. (21)

Then, there exists a positive integer K1 such that xk+1 = x+k and ∆k+1 ≥ ∆k for
all k ≥ K1.

Proof The main distinction between this result and [5, Th. 2] is the use of a
quadratic model fk whose Hessian satisfies the Dennis-Moré condition (21), in
place of the gradient consistency condition M5 in [5].

We bound |ρ∗k − 1| = |(aredk − predk)|/predk and show that it converges to
zero if sk := x+k −xk → 0. Suppose sk → 0. To bound the numerator, we note that
the nonsmooth terms cancel. Therefore, Taylor’s theorem applied to the twice
continuously differentiable function σ 7→ f(xk + σsk) (for k sufficiently large)
ensures the existence of σk ∈ [0, 1] for which

|aredk − predk| = |f(xk)− f(x+k)− fk(xk) + fk(x
+
k)|

= 1
2

∣∣∣〈(Bk −∇2f(xk + σksk))sk, sk

〉∣∣∣
≤ 1

2

(∥∥∥(Bk −∇2f(x̄))sk

∥∥∥+
∥∥∥(∇2f(x̄)−∇2f(xk + σksk))sk

∥∥∥) ∥sk∥ .

10 Robert J. Baraldi, Drew P. Kouri

Since xk → x̄, sk → 0 and {σk} ⊂ [0, 1], we have that xk + σksk → x̄. Therefore,
the continuity of ∇2f and (21) ensure that

|aredk − predk| ≤ o(∥sk∥) ∥sk∥ as ∥sk∥ → 0.

Moreover, the sufficient decrease condition (17) ensures that

µQk ≥ mk(x
+
k)−mk(xk) = Qk + 1

2 ⟨Bksk, sk⟩
⇐⇒ −(1− µ)Qk ≥ 1

2 ⟨Bksk, sk⟩ .

Combining this with (20) yields

predk ≥ −µQk = − µ

1− µ
(1− µ)Qk ≥ µ

1− µ

m

2
∥sk∥2 =: κ0 ∥sk∥2 .

Combining the numerator and denominator bounds, we arrive at

|ρ∗k − 1| ≤ o(∥sk∥)
∥sk∥

κ0 ∥sk∥2
= o(1) as ∥sk∥ → 0.

Hence, if ∆k → 0, then ∥sk∥ → 0 and consequently |ρ∗k − 1| → 0. Therefore,
ρk ≥ η2 and ∆k+1 ≥ ∆k for all k sufficiently large, which contradicts ∆k → 0.
The result then follows from [5, Cor. 2]. ⊓⊔

Our final result provides convergence rates for {xk} generated by Algorithm 1,
when the trial iterates x+k satisfy Assumption 4.

Theorem 4 Let the assumptions of Theorem 3 hold.

1. If τk → τ̄ with

0 < τ̄ <
m

r0L+ 1
min

{
r0,

2m

κ2curv

}
, (22)

then xk converges q-linearly to x̄.
2. If τk → 0, then xk converges q-superlinearly to x̄.
3. If ∇2f(·) is Lipschitz continuous on U0 and τk ≤ τh1+αk for fixed τ > 0 and

α ≥ 0, then xk converges q-quadratically to x̄.

Proof The result follows from the proof of [5, Th. 3] with [5, Cor. 2] replaced by
Theorem 3. ⊓⊔

Before concluding this section, we provide a technical lemma that is useful for
verifying that the subproblem solvers described in the subsequent section satisfy
the sufficient decrease conditions (17) or (19).

Lemma 2 Consider p : R → (−∞,+∞] defined by p(t) = 1
2κt

2 + ψ(t), where
κ > 0 and ψ : R → (−∞,+∞] is closed, convex and satisfies ψ(0) = 0.

1. The map t 7→ ψ(t)/t is nondecreasing on (0,+∞).
2. If there exists t0 > 0 such that ψ(t0) < 0, then there exists t̄ > 0 such that

p(t) ≤ 1
2ψ(t) < 0 for all t ∈ [0, t̄].

3. Let t⋆ ∈ (0, t1] denote a minimizer of p over [0, t1] for t1 > 0. If there exists
t0 > 0 such that ψ(t0) < 0, then ψ(t⋆) < 0 and p(t⋆) ≤ 1

2ψ(t⋆).

Efficient Nonsmooth Trust-Region Methods 11

Proof To prove the first claim, let 0 < s ≤ t and define τ = s/t. The convexity of
ψ and the assumption that ψ(0) = 0 ensure that

ψ(s)/s = ψ(τt)/(τt) ≤ ((1− τ)ψ(0) + τψ(t))/(τt) = ψ(t)/t,

as desired.
For the second claim, suppose there exists t0 > 0 such that ψ(t0) < 0. We

notice that

p(t) ≤ 1
2ψ(t) ⇐⇒ t ≤ −ψ(t)/(κt).

Let t̄ = −ψ(t0)/(κt0) > 0. Then, for any t ∈ [0, t̄], the first claim ensures that

t ≤ t̄ = −ψ(t0)/(κt0) ≤ −ψ(t)/(κt) =⇒ p(t) ≤ 1
2ψ(t) < 0,

as desired.
Finally, assume there exists t0 > 0 such that ψ(t0) < 0. The proof of this claim

follows, in part, from the optimality of t⋆. In particular, we make repeated use of
the first-order optimality condition

−κt⋆ ∈ ∂(ψ + ι[0,t1])(t⋆),

which implies

ψ(t) ≥ ψ(t⋆) + κt⋆(t⋆ − t) ∀ t ∈ [0, t1]. (23)

Now, if t⋆ < t0, then ψ(t⋆) < 0 by the first claim. Otherwise, substituting t = t0
in (23) and noting that 0 < t0 ≤ t⋆ ≤ t1, we obtain

0 > ψ(t0) ≥ ψ(t⋆) + κt⋆(t⋆ − t0) ≥ ψ(t⋆).

For the second part of this proof, we substitute t = 1
2 t⋆ in (23) to obtain

p(t⋆) = ψ(t⋆) + (κt⋆)(t⋆ − 1
2 t⋆) ≤ ψ(12 t⋆) ≤

1
2ψ(t⋆),

where the final inequality follows because ψ is convex and satisfies ψ(0) = 0. ⊓⊔

Remark 1 (Sufficient Decrease for Iterative Subproblem Solvers) For iterative sub-
problem solvers, xk,ℓ+1 typically has the form xk,ℓ+1 = xk,ℓ + αk,ℓsk,ℓ for a step
sk,ℓ ∈ X and step length αk,ℓ > 0. In this setting, (19) can be rewritten as

p(αk,ℓ) ≤ µψ(αk,ℓ),

where p is defined in Lemma 2 with κ and ψ given by

κ = ⟨Bksk,ℓ, sk,ℓ⟩ and ψ(t) = t ⟨∇fk(xk,ℓ), sk,ℓ⟩+ ϕ(xk,ℓ + tsk,ℓ)− ϕ(xk,ℓ).

Suppose there exists t0 > 0 such that ψ(t0) < 0, then for all t ∈ (0, t0], ψ(t) < 0
by the first part of Lemma 2. Therefore, if κ ≤ 0, then we have that

p(t) ≤ ψ(t) ≤ µψ(t) ∀ t ∈ (0, t0]

and there exists αk,ℓ such that (19) holds. On the other hand, if κ > 0, then
Lemma 2 ensures the existence of αk,ℓ for which (19) holds. In fact, αk,ℓ can be
the minimizer of p(t) over some bounded interval [0, ᾱk,ℓ] for any ᾱk,ℓ > 0.

12 Robert J. Baraldi, Drew P. Kouri

5 Trust-Region Subproblem Solvers

Motivated by methods for smooth unconstrained and convex-constrained opti-
mization, we introduce three subproblem solvers that generate trial iterates x+k
satisfying the FCD condition (8b). The first is a dogleg approach based on [21],
the second a simplified version of the algorithm described in [32] that produces
trial iterates using the SPG method [9], and the third generalizes the truncated CG
method [50,52]. To achieve guaranteed global convergence as well as rapid local
convergence, the trial iterates x+k generated by these methods improve upon a CP.
The CP used in [4] is an extension of that used for smooth convex-constrained op-
timization [32,37,53] and satisfies Goldstein-type conditions. To compute this CP,
[4, Alg. 2] employs a bidirectional proximal search that typically requires multiple
evaluations of the proximity operator of ϕ to satisfy these conditions. To avoid
the computational expense of repeatedly evaluating the proximity operator, we
introduce a simplified CP based on the SPG step [8] that requires a single evalu-
ation of the proximity operator. This CP is computed as the first iteration of the
forthcoming SPG and truncated CG subproblem solvers. On the other hand, the
dogleg framework does not depend on a specific CP type, but rather only requires
a CP that satisfies (8). In our numerical experiments, the dogleg methods using
the CP computed via [4, Alg. 2] tend to outperform those using the simplified CP
introduced next.

5.1 Spectral Cauchy Points

We define the simplified CP at the k-th iteration of Algorithm 1 by

xck := xk + αk(pk(tk)− xk), (24)

for αk ∈ [0, 1] and tk ∈ [tmin, tmax], where pk(t) is the proximal gradient path

pk(t) := Proxtϕ(xk − tgk) (25)

and 0 < tmin ≤ tmax < +∞ are user-specified parameters. In general, tk ∈
[tmin, tmax] can be arbitrary. However, in our numerical examples we choose

tk = min {tmax,max {tmin, tk,0}} for tk,0 :=

{
∥gk∥2

⟨Bkgk,gk⟩ , if ⟨Bkgk, gk⟩ > 0
t0

∥gk∥ , otherwise,

where t0 > 0 is user specified. This specific choice of tk is related to the SPG or
safeguarded Barzilai-Borwein step, where tk,0 captures the curvature of Bk in the
direction gk when ⟨Bkgk, gk⟩ > 0. To determine αk, we first define

αk,max := min

{
1,

∆k
∥sk∥

}
,

where sk := (pk(tk)−xk) and then define αk to be the minimizer of the quadratic
upper bound qk(α), defined by

mk(xk + αsk)−mk(xk) = fk(xk + αsk) + ϕ(xk + αsk)− fk(xk)− ϕ(xk)

≤ α2 1
2 ⟨Bksk, sk⟩+ α(⟨gk, sk⟩+ ϕ(xk + sk)− ϕ(xk)) =: qk(α), (26)

Efficient Nonsmooth Trust-Region Methods 13

over the interval [0, αk,max]. The upper bound (26) follows from the convexity of
ϕ. Note that since αk ≤ αk,max, we have that xck satisfies (8a). In the following
proposition, we prove that xck additionally satisfies the FCD condition (8b).

Proposition 2 Let xck be defined by (24) with arbitrary tk ∈ [tmin, tmax] and
αk ∈ [0, 1] given as the minimizer of the quadratic optimization problem

min
α∈R

qk(α) subject to 0 ≤ α ≤ αk,max.

If hk > 0, then xck satisfies (8) with κfcd = 1
2 min{1, tmin} and κrad = 1.

Proof Suppose hk > 0. For simplicity, we define the following quantities

κk := ⟨Bksk, sk⟩ and dk := ⟨gk, sk⟩+ ϕ(xk + sk)− ϕ(xk),

and note that if κk > 0, then the unconstrained minimizer of qk is −dk/κk; recall
that dk ≤ −tkh2k from (5). In this case, we have αk = min{−dk/κk, αk,max}.
When κk = 0, we have that qk(α) = dkα ≤ −tkh2kα. Therefore, αk = αk,max > 0.
Finally, if κk < 0, then qk is concave and αk is either 0 or αk,max. Considering the
two cases that define αk,max, we see that

qk(αk,max) ≤ −hkmin{tkhk,∆k} < 0 = qk(0)

and hence αk = αk,max. This demonstrates that there are three cases we must
consider: αk = 1, αk = ∆k/ ∥sk∥, and αk = −dk/κk. The remainder of the proof
relies heavily on the bound (26), which in the notation of this proof is

mk(xk)−mk(xk + αsk) ≥ −1
2α

2κk − αdk = −qk(α) ∀α ∈ [0, 1].

Case αk = 1: If κk ≤ 0, then

mk(xk)−mk(x
c
k) ≥ −dk ≥ tkh

2
k ≥ tmin

h2k
1 + ∥Bk∥

,

where we used the facts that 1 + ∥Bk∥ ≥ 1 and tk ≥ tmin. If κk > 0, then the
unconstrained minimizer of qk, −dk/κk, is greater than or equal to one and so
−κk ≥ dk. Consequently,

mk(xk)−mk(x
c
k) ≥ −1

2
κk − dk ≥ −1

2
dk ≥ tmin

2

h2k
1 + ∥Bk∥

.

Case αk = ∆k/ ∥sk∥: If κk ≤ 0, then αk ≤ 1 and

mk(xk)−mk(x
c
k) ≥ −αkdk ≥ ∆k

∥sk∥
tkh

2
k = ∆khk.

If κk > 0, then αk = ∆k/ ∥sk∥ ≤ −dk/κk. Consequently,

mk(xk)−mk(xk + αksk) = αk(−1
2αkκk − dk) ≥ −αk

2
dk ≥ 1

2
∆khk.

Case αk = −dk/κk: In this case, 0 < −dk ≤ κk ≤ ∥Bk∥ ∥sk∥2 and

mk(xk)−mk(x
c
k) ≥

1

2

d2k
κk

≥ 1

2

t2kh
4
k

∥Bk∥ ∥sk∥2
≥ 1

2

h2k
1 + ∥Bk∥

.

Combining cases 1, 2 and 3 proves that (8b) holds for xck. ⊓⊔

14 Robert J. Baraldi, Drew P. Kouri

5.2 Dogleg Subproblem Solver

Dogleg and double dogleg approaches are common trust-region methods that con-
struct piecewise linear paths between the Cauchy and Newton points, and then
minimize the quadratic model along these paths. To generalize the dogleg ap-
proach to nonsmooth problems of the form (1), we first compute a CP using either
the simplified CP from Section 5.1 or [4, Alg. 2], and then compute a Newton
point xnk that approximately solves trust-region subproblem (2) while ignoring the
trust-region constraint:

min
x∈X

fk(x) + ϕ(x). (27)

A basic approach to computing the Newton point xnk is to apply a finite number
of iterations of a descent method to (27), starting at xck. However, if the proximal
mapping of ϕ is semismooth, we can instead compute xnk by applying a semismooth
Newton method [47] to solve the first-order optimality condition

x− Proxtϕ(x− t(Bk(x− xk) + gk)) = 0 (28)

or the normal mapping equation [49]

Bk(Proxtϕ(z)− xk) + gk + t−1(z − Proxtϕ(z)) = 0 with x = Proxtϕ(z). (29)

One advantage of (29) over (28) is that xnk ∈ domϕ by construction. Independent
of the approach for generating the Newton point, we assume that xnk satisfies the
basic model decrease condition

mk(x
n
k) < mk(x

c
k) < mk(xk). (30)

We denote the Cauchy and Newton steps by sck := xck − xk and snk := xnk − xk,
respectively. The dogleg algorithm is listed in Algorithm 2.

In our numerical examples, we compute the semismooth Newton step using
GMRES preconditioned with a rank-2 perturbation of the identity that approx-
imates the Jacobian. The applications of Bk required by GMRES constitute the
main computational expense of the method and could be reduced using problem-
specific preconditioners. Beyond this, selecting the simplified CP requires a single
evaluation of the proximity operator, while the bidirectional CP may require sev-
eral evaluations. However, for many problems, evaluating the proximity operator
is significantly cheaper than repeatedly solving the semismooth Newton system.

In the following result, we demonstrate that Algorithm 2 produces a viable
trial iterate x+k that eventually satisfies Assumption 4, and therefore we can expect
rapid convergence via Theorem 4.

Proposition 3 Algorithm 2 produces a trial iterate x+k that satisfies (8). More-
over, if Assumptions 1, 2 and 3 hold and if we require that the Newton point xnk
satisfies

mk(x
n
k)−mk(xk) ≤ µ (⟨gk, xnk − xk⟩+ ϕ(xnk)− ϕ(xk)) , (31a)

and
H(xnk ,∇fk(xnk), tk) ≤ τkhk, (31b)

where µ and τk are as in Assumption 4, then Algorithm 1 with subproblem solver
Algorithm 2 satisfies Assumption 4 and the convergence rates in Theorem 4 apply.

Efficient Nonsmooth Trust-Region Methods 15

Algorithm 2 Dogleg Subproblem Solver

Require: The trust-region radius ∆k and a relaxation parameter θ ∈ (0, 1) (e.g., θ = 0.7)
1: Compute a generalized Cauchy point xck, and define sck = xck − xk
2: if

∥∥sck∥∥ = ∆k then

3: Return x+
k = xck

4: else
5: Compute a point xnk that satisfies (30), and define snk = xnk − xk
6: if

∥∥snk∥∥ ≤ ∆k then

7: Return x+
k = xnk

8: else
9: Compute γ = 1 + θ(γ0 − 1) where γ0 ∈ (0, 1) solves

fk(xk + γ0s
n
k) + γ0(ϕ(x

n
k)− ϕ(xk)) + ϕ(xk) = mk(x

c
k)

10: if γ
∥∥snk∥∥ ≤ ∆k then

11: Compute the solution αk > 0 to the quadratic optimization problem

min
α∈[γ,∆k/∥snk∥]

{fk(xk + αsnk) + α(ϕ(xnk)− ϕ(xk)) + ϕ(xk)}

12: Return x+
k = xk + αks

n
k

13: else
14: Compute αk,max ∈ (0, 1) such that∥∥sck + αk,max(γs

n
k − sck)

∥∥ = ∆k

15: Compute the solution αk ∈ [0, 1] to the quadratic optimization problem

min
α∈[0,αk,max]

{fk(xck + α(γsnk − sck)) + α(ϕ(xk + γsnk)− ϕ(xck)) + ϕ(xck)}

16: Return x+
k = xck + αk(γs

n
k − sck)

17: end if
18: end if
19: end if

Proof The root γ0 ∈ (0, 1) in line 9 of Algorithm 2 exists since

q(α) = fk(xk + αsnk) + α(ϕ(xnk)− ϕ(xk)) + ϕ(xk)

is a continuous quadratic polynomial that satisfies

q(0) = mk(xk) > mk(x
c
k) > mk(x

n
k) = q(1).

See Figure 1 for an illustration of this fact. Now, if the condition on line 10 holds,
then the trial iterate x+k satisfies (8) since

mk(xk + αsnk) ≤ q(α) ≤ q(γ0) = mk(x
c
k) ∀α ∈ [γ0, 1],

where the first inequality follows from the convexity of ϕ. On the other hand, if
the condition on line 10 is violated, then αk,max in line 14 exists since ∥sck∥ < ∆k
and γ ∥snk∥ > ∆k, and again the convexity of ϕ ensures that

mk(x
c
k + α(γsnk − sck)) ≤ fk(x

c
k + α(γsnk − sck)) + α(ϕ(xk + γsnk)− ϕ(xck)) + ϕ(xck)

for all α ∈ [0, 1]. Consequently, (8) holds and Algorithm 2 produces a viable trial
iterate.

16 Robert J. Baraldi, Drew P. Kouri

α
0 1

mk(x
c
k)

γ0
α

0 1

mk(x
c
k)

γ0
α

0 1

mk(x
c
k)

γ0
α

0 1

mk(x
c
k)

γ0

Fig. 1 Possible cases at line 9 of Algorithm 2 when
〈
Bks

n
k , s

n
k

〉
̸= 0. The two left images

correspond to
〈
Bks

n
k , s

n
k

〉
< 0 while the two right images correspond to

〈
Bks

n
k , s

n
k

〉
> 0. The

blue curve is q(α), which satisfies q(0) = mk(xk), q(γ0) = mk(x
c
k) and q(1) = mk(x

n
k).

For the second part, since xnk satisfies (31), the trial iterate x+k satisfies (17)
and (18) from Assumption 4. Therefore, for sufficiently large ∆k, we have that
x+k = xnk . The result then follows from Theorem 4. ⊓⊔

5.3 Spectral Proximal Gradient Subproblem Solver

Building upon the dogleg approach of Section 5.2, we can improve upon the spec-
tral CP described in Section 5.1 using additional SPG iterations. This approach is
closely related to the subproblem solver described in [32] for convex-constrained
optimization, which was generalized to our problem class in [4]. In contrast to the
subproblem solver described in [4, Alg. 5], our solver does not perform a backtrack-
ing linesearch to compute the convex combination parameter α, nor does it require
the evaluation of the proximity operator of ϕ augmented with the indicator func-
tion of the trust-region constraint. Instead, we compute α ∈ [0, 1] by minimizing
a quadratic upper bound for our model, similar to (26). This subproblem solver is
listed in Algorithm 3. The algorithm employs stopping conditions similar to those
used in truncated CG for unconstrained problems. In particular, if negative curva-
ture is encountered, the algorithm takes the longest possible step in that direction.
Similarly, if the computed step violates the trust-region constraint, then the step
is truncated. In addition to these stopping conditions, we terminate Algorithm 3
if the iteration limit maxit is exceeded or if the stopping criterion

hk,ℓ ≤ min{τ̄ , τkhk,0} (32)

is satisfied for τ̄ > 0 and τk > 0. Here, xk,ℓ is the ℓ-th iterate and

hk,ℓ := H(xk,ℓ,∇fk(xk,ℓ), λk,ℓ),

where λk,ℓ ∈ [tmin, tmax] is the safeguarded spectral step length. During each
iteration, Algorithm 3 requires a single evaluation of the proximity operator and
a single application of the Hessian. Consequently, Algorithm 3 tends to be more
computationally efficient than Algorithm 2.

As in Section 5.2, we now demonstrate that the trial iterates generated by Al-
gorithm 3 eventually satisfy Assumption 4 and therefore recover rapid convergence
under Theorem 4.

Proposition 4 Algorithm 3 produces a trial iterate x+k that satisfies (8). More-
over, if Assumptions 1, 2 and 3 hold, then Algorithm 1 with subproblem solver

Efficient Nonsmooth Trust-Region Methods 17

Algorithm 3 SPG Trust-Region Subproblem Solver

Require: The initial guess xk,0 = xk, fk,0 = fk(xk), ϕk,0 = ϕ(xk), mk,0 = fk,0 + ϕk,0
dk,0 = gk, an integer maxit, and positive tolerances τ̄ and τk, the positive safeguards
tmin ≤ tmax, and λk,0 = tk ∈ [tmin, tmax]

1: Set ℓ = 0
2: while ℓ < maxit and hk,ℓ > min{τ̄ , τkhk,0} and

∥∥xk,ℓ − xk
∥∥ < ∆k do

3: Set s← Proxλk,ℓϕ(xk,ℓ − λk,ℓdk,ℓ)− xk,ℓ
4: Set αmax ← 1
5: if

∥∥xk,ℓ + s− xk
∥∥ > ∆k then

6: Set αmax > 0 so that
∥∥xk,ℓ + αmaxs− xk

∥∥ = ∆k
7: end if
8: Compute ϕ̂k,ℓ ← ϕ(xk,ℓ + s), b← Bks, and κ← ⟨b, s⟩
9: if κ ≤ 0 then
10: Set α← αmax

11: else
12: Set α← min{αmax,−(

〈
dk,ℓ, s

〉
+ ϕ̂k,ℓ − ϕk,ℓ)/κ}

13: end if
14: Set xk,ℓ+1 ← xk,ℓ + αs, dk,ℓ+1 ← dk,ℓ + αb, and ϕk,ℓ+1 ← ϕ(xk,ℓ+1)
15: if κ ≤ 0 then
16: Set λ̄← tk/

∥∥dk,ℓ+1

∥∥
17: else
18: Set λ̄← ⟨s, s⟩ /κ
19: end if
20: Set λk,ℓ+1 ← max{tmin,min{tmax, λ̄}}
21: Set ℓ← ℓ+ 1
22: end while
23: Return x+

k ← xk,ℓ+1 as the approximate solution

Algorithm 3 satisfies Assumption 4 and consequently the convergence rates in The-
orem 4 apply.

Proof The convexity of ϕ and the definition of s in line 3 of Algorithm 3 ensures
that

mk(xk,ℓ + αs) = fk(xk,ℓ + αs) + ϕ(xk,ℓ + αs)

≤ fk(xk,ℓ + αs) + α(ϕ(xk,ℓ + s)− ϕ(xk,ℓ)) + ϕ(xk,ℓ). (33)

The upper bound (33) is quadratic in α since fk is. Consequently, the α computed
in lines 4 through 13 in Algorithm 3 is the minimizer of (33) subject to the con-
straints that α ∈ [0, 1] and ∥xk,ℓ + αs− xk∥ ≤ ∆k. One consequence of this is
that

mk(xk,ℓ+1) ≤ mk(xk,ℓ) ∀ ℓ = 1, 2,

Since the first step xk,1 = xck, where x
c
k is the Cauchy point defined in (24), we

have that (8) is satisfied.
For the second part, we proceed similarly to the proof of Proposition 2. We

demonstrate that (19) is satisfied by considering three cases: α = 1, α solves
∥xk,ℓ + αs− xk∥ = ∆k and α = −(⟨dk,ℓ, s⟩+ ϕ̂k,ℓ − ϕk,ℓ)/κ = −ψ(1)/κ, where ψ
and κ are specified in Remark 1. As described in Remark 1, if κ ≤ 0 then (19)
holds since the SPG step satisfies ψ(1) < 0. Now suppose κ > 0. If α = 1, then
1 < −ψ(1)/κ or equivalently κ < −ψ(1), which ensures that

p(1) = 1
2κ+ ψ(1) < 1

2 (−ψ(1)) + ψ(1) = 1
2ψ(1).

18 Robert J. Baraldi, Drew P. Kouri

In the second case, we have that α ≤ min{1,−ψ(1)/κ} and so κα ≤ −ψ(1) and
−ψ(α)/α ≥ −ψ(1) by Lemma 2. These two facts imply

p(α) = 1
2κα

2 + ψ(α) ≤ 1
2α(−ψ(1)) + ψ(α) ≤ 1

2α(−ψ(α)/α) + ψ(α) = 1
2ψ(α).

Finally, if α = −ψ(1)/κ, then −ψ(1)/κ ≤ 1 and

p(α) = 1
2ψ(1)

2/κ+ ψ(α) ≤ 1
2α(−ψ(1)) + ψ(α) ≤ 1

2α(−ψ(α)/α) + ψ(α) = 1
2ψ(α).

Consequently, (19) is satisfied and we can expect rapid convergence from Theo-
rem 4. ⊓⊔

5.4 Nonlinear Conjugate Gradient Subproblem Solver

Motivated by its efficiency for solving smooth unconstrained [50,52] and con-
strained [30,31,37] optimization problems, we extend the truncated CG algorithm
to solve (2) with the potentially nonsmooth nonquadratic term ϕ. There are three
locations in the truncated CG algorithm that must be modified: first, we replace
the negative gradient computed at each iteration with the SPG step

pk,ℓ =
1

λk,ℓ
(Proxλk,ℓϕ(xk,ℓ − λk,ℓ∇fk(xk,ℓ))− xk,ℓ), (34)

where xk,ℓ denotes the ℓ-th CG iteration and λk,ℓ ∈ [tmin, tmax] is the safeguarded
spectral step length (see lines 15-19 in Algorithm 3); second, we replace the exact
line search with an iterative one since the model mk is not necessarily quadratic;
and third, we select the conjugacy parameter β using a nonlinear CG rule such as
the nonnegative Dai-Yuan parameter [20]

βk,ℓ = max

{
0,

∥pk,ℓ∥2

⟨pk,ℓ−1 − pk,ℓ, sk,ℓ−1⟩

}
.

Other such updates can be used, e.g. Fletcher-Reeves, Polak-Ribière, Hestenes-
Stiefel, etc. The cost of these modifications is modest; as in Section 5.3, we only
require a single proximity operator evaluation and a single application of the Hes-
sian per CG iteration.

During the line search, we incur the additional cost of repeatedly evaluating
the nonsmooth term ϕ. This procedure determines the step length α > 0 that
approximately minimizes the one-dimensional function

qk,ℓ(α) := mk(xk,ℓ + αsk,ℓ).

To determine α, we first minimize the quadratic upper bound of qk,ℓ

qk,ℓ(tγk,ℓ) ≤ fk(xk,ℓ + tγk,ℓsk,ℓ) + t(ϕ(xk,ℓ + γk,ℓsk,ℓ)− ϕ(xk,ℓ)) + ϕ(xk, ℓ), (35)

for t ∈ [0, 1], where γk,ℓ ∈ (0, ᾱk,ℓ] is chosen so that ϕ(xk,ℓ + γk,ℓsk,ℓ) < +∞ and
ᾱk,ℓ > 0 is chosen so that

∥xk,ℓ + ᾱk,ℓsk,ℓ − xk∥ = ∆k. (36)

Efficient Nonsmooth Trust-Region Methods 19

The upper bound in (35) follows from the convexity of ϕ. Since (35) is quadratic,
we can compute the exact minimizer, tk,ℓ. Using this minimizer, we define the ini-
tial guess α0

k,ℓ := tk,ℓγk,ℓ. We then approximately minimize qk,ℓ using finitely
many iterations of Brent’s method [11], which produces the step length αk,ℓ.
Since Brent’s method yields a sequence of decreasing function values, we have
that qk,ℓ(αk,ℓ) ≤ qk,ℓ(α

0
k,ℓ). In addition, we terminate Brent’s method when the

computed step satisfies (19), i.e., αk,ℓ satisfies

qk,ℓ(αk,ℓ)− qk,ℓ(0) ≤ µ(αk,ℓ ⟨∇fk(xk,ℓ), sk,ℓ⟩+ϕ(xk,ℓ+αk,ℓsk,ℓ)−ϕ(xk,ℓ)). (37)

Similar to other nonlinear CG methods, we employ restarts. That is, we set
βk,ℓ = 0 (i.e., revert to the SPG step) if the current step sk,ℓ does not produce
sufficient decrease [46] defined by the inequality

⟨∇fk(xk,ℓ), sk,ℓ⟩+ ϕ(xk,ℓ + sk,ℓ)− ϕ(xk,ℓ) > −(1− η) ∥pk,ℓ∥2 . (38)

With (38) in mind, we set

γk,ℓ :=

{
min{ᾱk,ℓ, λk,ℓ} if ℓ = 0 or βk,ℓ = 0,
min{ᾱk,ℓ, 1} otherwise,

(39)

which ensures that ϕ(xk,ℓ + α0
k,ℓsk,ℓ) < +∞. We list the complete routine in

Algorithm 4. In the following proposition, we demonstrate that the trial iterates

Algorithm 4 Truncated Nonlinear CG Trust-Region Subproblem Solver
Require: The initial guess xk,0 = xk, dk,0 = gk, an integer maxit, and positive tolerances τ̄ ,

τk, tmin ≤ tmax, λk,0 = tk ∈ [tmin, tmax], and η ∈ (0, 1]
1: Set ℓ← 0
2: Set pk,0 ← (Proxλk,0ϕ(xk,0 − λk,0dk,0)− xk,0)/λk,0 and sk,0 ← pk,0

3: Compute hk,0 ←
∥∥pk,0∥∥

4: while ℓ < maxit and hk,ℓ > min{τ̄ , τkhk,0} and
∥∥xk,ℓ − xk

∥∥ < ∆k do

5: Set bk,ℓ ← Bksk,ℓ and κk,ℓ ←
〈
bk,ℓ, sk,ℓ

〉
6: Compute αk,ℓ ∈ (0, ᾱk,ℓ] that satisfies (37), where ᾱk,ℓ is the positive root of (36)
7: Set xk,ℓ+1 ← xk,ℓ + αk,ℓsk,ℓ and dk,ℓ+1 ← dk,ℓ + αk,ℓbk,ℓ
8: if κk,ℓ ≤ 0 then

9: Set λ̄← tk/
∥∥dk,ℓ+1

∥∥
10: else
11: Set λ̄←

∥∥sk,ℓ∥∥2 /κk,ℓ
12: end if
13: Set ℓ← ℓ+ 1
14: Set λk,ℓ ← max{tmin,min{tmax, λ̄}}
15: Set pk,ℓ ← (Proxλk,ℓϕ(xk,ℓ − λk,ℓdk,ℓ)− xk,ℓ)/λk,ℓ

16: Set hk,ℓ ←
∥∥pk,ℓ∥∥

17: Set βk,ℓ ← max{0, h2
k,ℓ/

〈
pk,ℓ−1 − pk,ℓ, sk,ℓ−1

〉
}

18: Set sk,ℓ ← pk,ℓ + βk,ℓsk,ℓ−1

19: if
〈
dk,ℓ, sk,ℓ

〉
+ ϕ(xk,ℓ + sk,ℓ)− ϕ(xk,ℓ) > −(1− η)

∥∥pk,ℓ∥∥2 then
20: Set sk,ℓ ← pk,ℓ and βk,ℓ ← 0
21: end if
22: end while
23: Return x+

k ← xk,ℓ as the approximate solution

generated by Algorithm 4 are viable and, as before, yield rapid convergence under
Theorem 4. The latter result essentially follows from the restart procedure.

20 Robert J. Baraldi, Drew P. Kouri

Proposition 5 Algorithm 4 produces a trial iterate x+k that satisfies (8). More-
over, if Assumptions 1, 2 and 3 hold, then Algorithm 1 with subproblem solver
Algorithm 4 satisfies Assumption 4 and consequently the convergence rates in The-
orem 4 hold.

Proof Since the step length defined in Proposition 2 is feasible with respect to the
one-dimensional minimization problem considered here, we have that each step of
Algorithm 4 satisfies (8).

For the second part, reverting to the SPG step when (38) is satisfied ensures
that

ψ(t) = t ⟨∇fk(xk,ℓ), sk,ℓ⟩+ ϕ(xk,ℓ + tsk,ℓ)− ϕ(xk,ℓ) < 0

with t = λk,ℓ if (38) holds and with t = 1 otherwise. As a consequence, Lemma 2
ensures that there exists an αk,ℓ such that (37) is satisfied. Hence, (17) is satisfied
by Algorithm 4 and the result follows from Theorem 4. ⊓⊔

6 Numerical Results

We now apply the aforementioned methods to an array of applications. While we
hesitate to name a best solver for all problems, we compare them against [4, Alg. 5]
and by proxy other nonsmooth methods including FISTA, nmAPG, PANOC, etc.,
cf. [4, Sect. 5]. We demonstrate the performance of each subproblem solver on
six numerical examples: the first three arising from data science and the final
three from PDE-constrained optimization. For future reference, the support vector
machine, semilinear optimal control and topology optimization examples were also
used as tests in [4, Sect. 5].

Low-Rank Matrix Completion (LowRank). Our first example is the rank minimiza-
tion problem

min
X∈RM×N

1

2
∥AX − Y ∥2F + ∥X∥∗ , (40)

where ∥·∥F is the Frobenius norm, ∥·∥∗ is the nuclear norm, and A is a selection
matrix that observes 50% of the matrix entries [2,14,48]. In our example, M =
N = 225 and Y is the observed data, which we corrupt with additive Gaussian
noise (mean zero and variance 0.01). The matrix used to generate Y has rank
25. Recall that the nuclear norm has a computable proximity operator that is
semismooth [22].

Support Vector Machine (SVM). Our second example is the nonconvex support
vector machine problem

min
x∈Rn

1

m

m∑
i=1

{1− tanh(bi⟨ai, x⟩)}+ λ∥x∥1, (41)

where λ > 0, bi ∈ {−1, 1} are labels, and ai ∈ Rn are data points for i = 1, . . . ,m.
This problem was studied in [17] and is a nonsmooth extension of the problems
considered in [40,54]. We use the phishing data set [24] from the LIBSVM data
repository [15]. The number of data points is m =11,055 and the number of
features is n = 68. We set the regularization parameter to λ = 10−2.

Efficient Nonsmooth Trust-Region Methods 21

Logistic Regression (Logistic). Our third example is the sparse logistic regression
problem

min
xw∈Rn, xv∈R

1

m

m∑
i=1

{log(1 + exp(−bi(⟨ai, xw⟩+ xv)))}+ λ∥x∥1, (42)

where λ > 0, bi ∈ {−1, 1} are labels, and ai ∈ Rn are data points for i = 1, . . . ,m.
This problem has been used for classification [26,38,25]. We solve (42) for various
datasets from the LIBSVM data repository.

Optimal Control of Burgers’ Equation (Burgers). Our fourth example is the op-
timal control of Burgers’ equation

min
z∈L2(Ω)

1

2

∫
Ω

([S(z)](x)− w(x))2dx+
α

2

∫
Ω

z(x)2 dx+ β

∫
Ω

|z(x)|dx (43a)

where Ω = (0, 1) is the physical domain, α = 10−4 and β = 10−2 are penalty
parameters, w(x) = −x2 is the target state, and S(z) = u ∈ H1(Ω) solves the
weak form of Burgers’ equation

−νu′′ + uu′ = z + f in Ω,

u(0) = 0, u(1) = −1,
(44)

where f(x) = 2(ν + x3) and ν = 0.08. We discretize the state u using continuous
piecewise linear finite elements and the control z using piecewise constants on a
uniform mesh with n = 512 intervals.

Semilinear Optimal Control (Semilinear). Our fifth example is the optimal con-
trol of a semilinear elliptic PDE

min
z∈L2(Ω)

1

2

∫
Ω

([S(z)](x)− w(x))2dx+
α

2

∫
Ω

z(x)2 dx+ β

∫
Ω

|z(x)| dx (45a)

subject to − 25 ≤ z ≤ 25 a.e., (45b)

where Ω = (0, 1)2 is the physical domain, α = 10−4 and β = 10−2 are penalty
parameters, w ≡ −1 is the target state, and u = S(z) ∈ H1(Ω) solves the weak
form of the semilinear elliptic PDE

−∆u+ u3 = z in Ω (46a)

u = 0 on ∂Ω. (46b)

We discretize the state u using continuous piecewise linear finite elements on a
uniform triangular mesh with 131,072 elements and the control variable z using
piecewise constants on the same mesh, resulting in 131,072 degrees of freedom.

22 Robert J. Baraldi, Drew P. Kouri

Topology Optimization (TopOpt). Our final example is the compliance minimiza-
tion problem

min
ρ∈L2(Ω)

∫
Γt

T (x)[S(ρ)](x) dx (47a)

subject to

∫
Ω

ρ(x) dx = v|Ω|, 0 ≤ ρ ≤ 1 a.e., (47b)

where Ω = (0, 150)× (0, 50) is the physical domain, v = 0.4 is the volume fraction,
Γd = {0} × [0, 50] is the fixed boundary, Γt = ∂Ω \ Γd is the traction boundary
and S(ρ) = u ∈ H1(Ω)2 solves the weak form of the linear elasticity equations

−∇ · (K(ρ) : ε) = 0 in Ω (48a)

ε = 1
2 (∇u+∇u⊤) in Ω (48b)

K(ρ) : εn = T in Γt (48c)

u = 0 in Γd. (48d)

Here, n denotes the outward pointing normal vector,

K(ρ) := [κmin + (1− κmin)F(ρ)3]K0,

K0 is the usual isotropic elasticity matrix, F is the Helmholtz filter [36] with filter
radius 0.1, κmin = 10−4, and T ∈ L2(Γt)

2 is the traction force: T (x) = (0, 0) for
x ∈ Γt \({150}× [0, 1]) and T (x) = (0,−1) for x ∈ {150}× [0, 1]. For our numerical
results, the Young’s modulus is 200 and the Poisson ratio is 0.29. We discretize
the displacements u and the filtered density F(ρ) using continuous piecewise linear
finite elements on a 150× 50 uniform quadrilateral mesh, and the density ρ using
piecewise constants on the same mesh, resulting in 7,500 degress of freedom.

For each example, we employ the quadratic model (7) with gk = ∇f(xk)
and Bk = ∇2f(xk), making Algorithm 1 an inexact proximal Newton method
that rigorously handles indefinite Hessians. We test up to six subproblem solvers,
depending on the nonsmooth term ϕ:

– SPG is the spectral proximal gradient solver described in [4, Alg. 5];
– SPG2 is the spectral proximal gradient solver Algorithm 3;
– NCG is the nonlinear CG solver Algorithm 4;
– SEMI is Algorithm 2 with the Newton point computed via (28)1;
– NORM is Algorithm 2 with the Newton point computed via (29)1;
– OBM is the L1-specific solver described in Appendix A.

As demonstrated in [4, Sect. 5], SPG outperformed various competing methods,
reducing the time-to-solution by factors between 7x and 70x. We use the following
algorithmic parameters for all examples: ∆0 = 50, η1 = 0.05, η2 = 0.9, γ1 =
γ2 = 0.25, γ3 = 2.5, µ1 = 10−4, βdec = 0.1, and βinc = 10. We employ the
bidirectional CP algorithm [4, Alg. 2] for SEMI, NORM and OBM, and allow at most
two iterations of increase. This choice of CP resulted in the best performance for
these subproblem solvers when compared with the simplified CP (24). We stop
Algorithm 1 if hk ≤ 10−5 and we stop the iterative subproblem solvers using
the condition (32) with the absolute tolerance τ̄ = 10−5 and tolerance sequence

1 This method requires that the proximity operator is semismooth.

Efficient Nonsmooth Trust-Region Methods 23

Example AlgType iter fval grad hess phi prox time (s)

RankMin

SPG 4 5 5 40 99 111 1.80
SPG2 4 5 5 49 67 52 0.91
NCG 8 9 7 89 2053 179 3.67
SEMI 3 4 4 483 25 178 17.25
NORM 2 3 3 475 17 173 15.77

SVM

SPG 21 22 18 231 603 695 0.64
SPG2 31 32 28 406 591 425 0.97
NCG 22 23 16 162 3251 310 0.46
SEMI 20 21 20 3668 135 1716 7.53
NORM 12 13 12 2364 79 1160 4.78
OBM 78 79 74 607 1107 440 1.49

Logistic

SPG 9 10 10 153 401 208 0.45
SPG2 18 19 19 306 457 325 0.52
NCG 10 11 9 123 2513 247 0.37
SEMI 23 24 23 4385 2315 151 4.15
NORM 16 17 17 3907 107 2625 4.12
OBM 70 71 70 568 1043 396 1.04

Burgers

SPG 11 12 8 127 331 3940 0.28
SPG2 13 14 10 154 208 158 0.11
NCG 15 16 10 115 2033 220 0.13
SEMI 18 19 15 3828 173 1863 1.24
NORM 12 13 9 2773 99 881 0.76
OBM 14 15 11 101 117 81 0.08

Semilinear

SPG 2 3 3 34 91 67 8.67
SPG2 2 3 3 34 51 37 8.49
NCG 2 3 3 32 1469 67 9.39
SEMI 8 9 9 1331 59 333 68.84
NORM 6 7 7 978 45 299 52.53

TopOpt

SPG 15 16 15 201 463 509 5.74
SPG2 106 107 105 1735 1860 1835 43.92
NCG 20 21 19 269 11987 543 7.89
SEMI 86 87 86 18052 577 20644 401.88
NORM 109 110 105 34309 739 26213 712.46

Table 1 Algorithmic performance for all examples: iter is the number of trust-region itera-
tions, fval and grad are the numbers of f and ∇f evaluations, respectively, hess is the number
of ∇2f applications, phi is the number of ϕ evaluations, prox is the number of proximity op-
erator evaluations, and time (s) is the total wallclock time in seconds.

τk = 10−3hk. We set the maximum number of iterations for each subproblem solver
to 15. For NCG, we set the number of Brent’s iterations in (37) to 10. For SEMI and
NORM, we solve (28) and (29), respectively, using semismooth Newton, globalized
with a line search. We compute the semismooth Newton step using GMRES with
a maximum of 10 iterations and precondition the solve with a rank-2 perturbation
of the identity similar to BFGS. For OBM, we set maxit = 1 and maxitcg = 5.

We summarize the performance of all subproblem algorithms in Table 1, where
we tabulate the number of trust-region iterations (iter), the number of f (fval)
and ∇f (grad) evaluations, the number of ∇2f applications (hess), the number
of ϕ evaluations (phi), the number of proximity operator evaluations (prox), and
the wallclock time in seconds (time (s)). We additionally include performance
profiles in the style of [23]. We use the performance ratio ϱp,s given by

ϱp,s :=
tp,s

min{tp,s′ | s′ ∈ S} ,

24 Robert J. Baraldi, Drew P. Kouri

(a) Performance plot for the Table 1 examples. (b) Performance plot for Logistic using vari-
ous LIBSVM datasets.

Fig. 2 Algorithmic performance for all examples with ς ∈ [1, 20]. For the examples in Table 1
(Figure 2(a)), the win rates are Ps(1) = {1/6, 1/3, 1/3, 0, 0, 1/6} corresponding to the solvers
S = {SPG, SGP2, NCG, SEMI, NORM, OBM}. For the Logistic example (Figure 2(b)), the win
rates are Ps(1) = {0.0303, 0.8788, 0, 0, 0, 0.0909}.

where tp,s is the wallclock time in seconds required to solve problem p using solver
s. We denote the set of solvers by S := {1, . . . , ns} and a set of problems by
P := {1, . . . , np}. The performance profile represents the probability that a given
solver’s performance ratio is within a factor ς ∈ R of the best possible ratio, i.e.,

Ps(ς) :=
1

np
size {p ∈ P | ϱp,s ≤ ς} .

The performance ratio of a solver s ∈ S that cannot solve problem p is given the
(arbitrary) value ϱp,s = ϱM = 1000 (e.g., since OBM is an L1-specific solver, its
performance ratio is assigned ϱM for RankMin, Semilinear and TopOpt). If the
set of problems P is large, then solvers with large Ps are preferred. When P is
small, one can draw conclusions for that set of problems by comparing the win
percentage Ps(1). Figure 2 encompasses two plots: Figure 2(a) (ns = 6, np = 6)
displays the performance profile for all the solvers on the examples summarized in
Table 1 with the Logistic example using the phishing data set; and Figure 2(b)
(ns = 6, np = 33) depicts the solver performance on the Logistic example only,
but using all classification datasets from the LIBSVM data repository [16] that were
not overly large—we excluded any data set that was stored in a compressed format
like .zip, .bz, .xz, or .tar. The 33 datasets that we used are listed in the data
availability statement.

In Table 1, we observe that all subproblem solvers perform comparably in terms
of total trust-region iterations on all problems with the exception of TopOpt. As
one might expect, the dogleg methods SEMI and NORM require the most Hessian
applications, which are used to iteratively compute the Newton points. In many
of the examples, the application of the Hessian is the dominant cost, which is re-
flected in the computational times for SEMI and NORM as depicted in Figure 2(a).
On the other hand, NCG requires the most evaluations of ϕ, which is required for
the Brent’s line search. The cost of these evaluations is especially apparent on
RankMin, where evaluating ϕ requires the computation of a singular value decom-
position. As a general trend, SPG, SPG2 and NCG tend to outperform the other

Efficient Nonsmooth Trust-Region Methods 25

methods with respect to wallclock time because they require fewer applications
of the Hessian and proximity operator; this is reiterated in Figure 2. It is worth
noting that SPG2 has the lowest cost per iteration. However, it is not competitive
on TopOpt. A possible reason is that the smooth objective function in TopOpt is
highly nonconvex, resulting in a model Hessian Bk with many directions of nega-
tive curvature. Consequently, the spectral step size is rarely used when selecting
λk,ℓ. In contrast, SPG works quite well on TopOpt. The main difference between
SPG and SPG2 is the CP, suggesting that the CP computed via bidirectional prox-
imal search [4, Alg. 5] produces a better step for TopOpt then the simplified CP
defined by (24). In Figure 2(b), we see that SPG2 attains the highest win per-
centage Ps(1) and is a close second in achieving Ps(ς) = 1. The other SPG-based
methods perform comparably on all data sets for Logistic and the L1-specific
algorithm OBM performs notably well. Again, the dogleg methods clearly perform
worse than the other methods since they are hindered by the expensive Hessian
evaluations for solving the semismooth Newton system. Of course, this cost can be
reduced with good preconditioners for the semismooth Newton system. However,
such preconditioners would be problem dependent and are beyond the scope of
this paper.

7 Conclusion

We have introduced three new subproblem solvers for the trust-region algorithm
introduced in [4, Alg. 1], each generalizing a smooth counterpart, that are generally
comparable to the SPG-based solver described in [4]. Our methods provide guar-
anteed rapid local convergence under specific assumptions on the problem data.
Moreover, we have demonstrated the performance of these subproblem solvers
on six numerical examples taken from data science and PDE-constrained opti-
mization. While there is no clearly superior method, we do generally see that the
broader class of methods based on SPG (i.e., SPG, SPG2, and NCG) tend to excel
for the applications studied. Although our numerical results are inconclusive re-
garding a clear winner, we expect that each method may have a niche application
on which it outperforms the others. In addition, we expect that the performance
of the individual methods can be improved by modifying or replacing certain ex-
pensive components like Brent’s method in NCG or GMRES in SEMI and NORM. We
leave this as future research.

Statements and Declarations

Competing Interests: The authors declare that they have no conflicts of interest.
Data Availability: The data sets used for the SVM and Logistic examples were
downloaded from the LIBSVM data repository and include: a1a-a9a, australian,
breast-cancer, diabetes, fourclass, german.numer, heart, ionosphere scale,
liver-disorders, madelon, mushrooms, phishing, skin nonskin, sonar scale,
splice, svmguide1, svmguide3, and w1a-w8a. The other data generated for the
numerical results are available from the corresponding author upon reasonable
request.

26 Robert J. Baraldi, Drew P. Kouri

References

1. Andrew, G., Gao, J.: Scalable training of L1-regularized log-linear models. In: 24th Inter-
national Conference on Machine Learning, pp. 33–40. ACM (2007)

2. Aravkin, A.Y., Burke, J.V., Drusvyatskiy, D., Friedlander, M.P., Roy, S.: Level-set methods
for convex optimization. Mathematical Programming Series B 174, 359–390 (2019)

3. Babuška, I.: Error-bounds for finite element method. Numerische Mathematik 16(4),
322–333 (1971)

4. Baraldi, R.J., Kouri, D.P.: A proximal trust-region method for nonsmooth optimization
with inexact function and gradient evaluations. Mathematical Programming 201(1), 1–40
(2022)

5. Baraldi, R.J., Kouri, D.P.: Local convergence analysis of an inexact trust-region method
for nonsmooth optimization. Optimization Letters p. submitted (2023)

6. Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in
Hilbert Spaces. CMS Books in Mathematics. Springer International Publishing, Cham,
Switzerland (2018)

7. Bellavia, S., Gurioli, G., Morini, B., Toint, P.: The impact of noise on evaluation complex-
ity: The deterministic trust-region case. Journal of Optimizaton Theory and Applications
196, 700–729 (2023)

8. Birgin, E.G., Mart́ınez, J.M., Raydan, M.: Nonmonotone spectral projected gradient meth-
ods on convex sets. SIAM Journal on Optimization 10(4), 1196–1211 (2000)

9. Birgin, E.G., Mart́ınez, J.M., Raydan, M.: Spectral projected gradient methods: review
and perspectives. J. Stat. Softw 60(3), 1–21 (2014)

10. Bolte, J., Daniilidis, A., Lewis, A.: Tame functions are semismooth. Mathematical Pro-
gramming 117, 5–19 (2009)

11. Brent, R.P.: Algorithms for minimization without derivatives. Courier Corporation (2013)
12. Brezzi, F.: On the existence, uniqueness and approximation of saddle-point problems aris-

ing from lagrangian multipliers. Publications des séminaires de mathématiques et infor-
matique de Rennes (S4), 1–26 (1974)

13. Byrd, R.H., Nocedal, J., Oztoprak, F.: An inexact successive quadratic approximation
method for L-1 regularized optimization. Mathematical Programming 157(2), 375–396
(2016)

14. Candés, E.J., Recht, B.: Exact matrix completion via convex optimization. Foundations
of Computational Mathematics 9, 717–772 (2009)

15. Chang, C.C., Lin, C.J.: LIBSVM: A library for support vector machines. ACM Trans-
actions on Intelligent Systems and Technology 2(3), 1–27 (2011). Software available at
http://www.csie.ntu.edu.tw/ cjlin/libsvm

16. Chang, C.C., Lin, C.J.: LIBSVM: A library for support vector machines. ACM Transac-
tions on Intelligent Systems and Technology 2, 27:1–27:27 (2011). Software available at
http://www.csie.ntu.edu.tw/ cjlin/libsvm

17. Chen, Z., Milzarek, A., Wen, Z.: A trust-region method for nonsmooth nonconvex opti-
mization (2021)

18. Conn, A.R., Gould, N.I.M., Sartenaer, A., Toint, P.L.: Convergence properties of mini-
mization algorithms for convex constraints using a structured trust region. SIAM Journal
on Optimization 6(4), 1059–1086 (1996). DOI 10.1137/S1052623492236481

19. Conn, A.R., Gould, N.I.M., Toint, P.L.: Trust region methods. SIAM, Philadelphia, PA
(2000)

20. Dai, Y.H., Yuan, Y.: A nonlinear conjugate gradient method with a strong global conver-
gence property. SIAM Journal on optimization 10(1), 177–182 (1999)

21. Dennis Jr., J.E., Mei, H.H.W.: Two new unconstrained optimization algorithms which
use function and gradient values. J. Optim. Theory and Applics. 28, 453–482 (1979).
DOI 10.1007/BF00932218

22. Ding, C., Sun, D., Sun, J., Toh, K.C.: Spectral operators of matrices: Semismoothness
and characterizations of the generalized jacobian. SIAM Journal of Optimization 30(1),
630–659 (2020)

23. Dolan, E.D., Moré, J.: Benchmarking optimization software with performance profiles.
Mathematical Programming Series A 91, 201–213 (2002)

24. Dua, D., Graff, C.: UCI machine learning repository (2017). URL
http://archive.ics.uci.edu/ml

25. Duchi, J., Shalev-Shwartz, S., Singer, Y., Chandra, T.: Efficient projections onto the l 1-
ball for learning in high dimensions. In: Proceedings of the 25th international conference
on Machine learning, pp. 272–279 (2008)

Efficient Nonsmooth Trust-Region Methods 27

26. Efron, B., Hastie, T., Johnstone, I., Tibshirani, R.: Least angle regression (2004)
27. Garreis, S., Ulbrich, M.: An inexact trust-region algorithm for constrained problems in

Hilbert space and its application to the adaptive solution of optimal control problems
with PDEs. Preprint, submitted, Technical University of Munich (2019)

28. Golub, G.H., von Matt, U.: Quadratically constrained least squares and quadratic prob-
lems. Numerische Mathematik 59, 561–580 (1991)

29. Gould, N.I.M., Lucidi, S., Roma, M., Toint, P.L.: Solving the trust-region subproblem
using the lanczos method. SIAM Journal on Optimization 9(2), 504–525 (1999). DOI
10.1137/S1052623497322735

30. Heinkenschloss, M., Ridzal, D.: A matrix-free trust-region SQP method for equality con-
strained optimization. SIAM Journal on Optimization 24(3), 1507–1541 (2014)

31. Kelley, T., Sachs, E.: A trust region method for parabolic boundary control problems.
SIAM Journal on Optimization 9(4), 1064–1081 (1999)

32. Kouri, D.P.: A matrix-free trust-region Newton algorithm for convex-constrained opti-
mization. Optimization Letters pp. 1–15 (2021)

33. Kouri, D.P., Heinkenschloss, M., Ridzal, D., van Bloemen Waanders, B.G.: A trust-region
algorithm with adaptive stochastic collocation for PDE optimization under uncertainty.
SIAM Journal on Scientific Computing 35(4), A1847–A1879 (2013)

34. Kouri, D.P., Heinkenschloss, M., Ridzal, D., van Bloemen Waanders, B.G.: Inexact ob-
jective function evaluations in a trust-region algorithm for PDE-constrained optimization
under uncertainty. SIAM Journal on Scientific Computing 36(6), A3011–A3029 (2014)

35. Kouri, D.P., Ridzal, D.: Inexact trust-region methods for PDE-constrained optimization.
In: Frontiers in PDE-Constrained Optimization, pp. 83–121. Springer, New York, NY
(2018)

36. Lazarov, B.S., Sigmund, O.: Filters in topology optimization based on Helmholtz-type
differential equations. International Journal for Numerical Methods in Engineering 86(6),
765–781 (2011)

37. Lin, C.J., Moré, J.J.: Newton’s method for large bound-constrained optimization problems.
SIAM Journal on Optimization 9(4), 1100–1127 (1999)

38. Liu, J., Chen, J., Ye, J.: Large-scale sparse logistic regression. In: Proceedings of the 15th
ACM SIGKDD international conference on Knowledge discovery and data mining, pp.
547–556 (2009)

39. Maciel, M.C., Mendonça, M.G., Verdiell, A.B.: Monotone and nonmonotone trust-region-
based algorithms for large scale unconstrained optimization problems. Computational
Optimization and Applications 54(1), 27–43 (2013)

40. Mason, L., Baxter, J., Bartlett, P., Frean, M.: Boosting algorithms as gradient descent in
function space. In: Proc. NIPS, vol. 12, pp. 512–518 (1999)

41. Moré, J.J.: Computing a trust region step. SIAM Journal on scientific and statistical
computing 4(3), 553–572 (1983)

42. Moré, J.J.: Trust regions and projected gradients. In: System Modelling and Optimization,
pp. 1–13. Springer, New York, NY (1988)

43. Nocedal, J., Wright, S.: Numerical Optimization. Springer Series in Operations Research
and Financial Engineering. Springer New York (2006)

44. Powell, M.: A hybrid method for nonlinear equations. In: P. Robinowitz (ed.) Numerical
Methods for Nonlinear Algebraic Equations, pp. 87–144. Gordon and Breach Science,
London (1970)

45. Powell, M.: A new algorithm for unconstrained optimization. In: J.B. Rosen, O.L. Man-
gasarian, K. Ritter (eds.) Nonlinear Programming, pp. 31–66. Academic Press, New York
(1970)

46. Powell, M.J.D.: Restart procedures for the conjugate gradient method. Mathematical
programming 12, 241–254 (1977)

47. Qi, L., Sun, J.: A nonsmooth version of newton’s method. Mathematical Programming
58, 353–367 (1993)

48. Recht, B., Fazel, M., Parrilo, P.A.: Guaranteed minimum-rank solutions of linear matrix
equations via nuclear norm minimization. SIAM Review 52(3), 471–501 (2010). DOI
10.1137/070697835. URL https://doi.org/10.1137/070697835

49. Robinson, S.M.: Normal maps induced by linear transformations. Mathematics of Opera-
tions Research 17(3), 691–714 (1992)

50. Steihaug, T.: The conjugate gradient method and trust regions in large scale optimization.
SIAM Journal on Numerical Analysis 20(3), 626–637 (1983)

28 Robert J. Baraldi, Drew P. Kouri

51. Sun, S., Nocedal, J.: A trust-region method for noisy unconstrained optimization. Math-
ematical Programming 202, 445–472 (2023)

52. Toint, P.: Towards an efficient sparsity exploiting newton method for minimization. In:
Sparse matrices and their uses, pp. 57–88. Academic press (1981)

53. Toint, P.L.: Global Convergence of a Class of Trust-Region Methods for Nonconvex Min-
imization in Hilbert Space. IMA Journal of Numerical Analysis 8(2), 231–252 (1988).
DOI 10.1093/imanum/8.2.231

54. Wang, X., Ma, S., Goldfarb, D., Liu, W.: Stochastic quasi-Newton methods for nonconvex
stochastic optimization. SIAM Journal on Optimization 27(2), 927–956 (2017)

55. Ziems, J.C., Ulbrich, S.: Adaptive multilevel inexact SQP methods for PDE-constrained
optimization. SIAM Journal on Optimization 21(1), 1–40 (2011). DOI 10.1137/080743160

A L1-Specific Orthant-Based Method Subproblem Solver

The OBM subproblem solver in Section 6 is tailored to L1-regularization and is adapted from
the orthant-based method described in [13]. This solver has close ties to the subproblem solver
described in [37] for linearly-constrained optimization. For this method, X = L2(D) defined
on the measurable space (D,F , µ) and

ϕ(x) = β ∥x∥1 := β

∫
D
|x| dµ,

for β > 0. Extending the notation in [1], we denote the minimum-norm subgradient of the
model mk at the ℓ-th subproblem iterate xk,ℓ by

vk,ℓ(w) :=


gk,ℓ(w) + β if xk,ℓ(w) > 0 or (xk,ℓ(w) = 0 ∧ gk,ℓ(w) < −β)
gk,ℓ(w)− β if xk,ℓ(w) < 0 or (xk,ℓ(w) = 0 ∧ gk,ℓ(w) > β)

0 if xk,ℓ(w) = 0 and gk,ℓ(w) ∈ [−β, β]
(49)

for w ∈ D, where gk,ℓ := ∇fk(xk,ℓ). Note that −vk,ℓ is the steepest descent direction for mk

at xk,ℓ and the directional derivative m′
k(xk,ℓ;−vk,ℓ) < 0 whenever −gk,ℓ ̸∈ ∂ϕ(xk,ℓ), i.e.,

m′
k(xk,ℓ;−vk,ℓ) = sup

η∈∂ϕ(xk,ℓ)

〈
gk,ℓ + η,−vk,ℓ

〉
= −

∥∥vk,ℓ∥∥2 < 0

[6, Prop. 17.22]. Using vk,ℓ, we define the active set Ak,ℓ := {w ∈ D | vk,ℓ(w) = 0}. Roughly
speaking, we eliminate the active components from the trust-region subproblem and only solve
for the inactive ones D \ Ak,ℓ. Instead of computing a search direction sk,ℓ by approximately
solving the modified problem

min
s∈X

1

2
⟨Bks, s⟩+

〈
vk,ℓ, s

〉
subject to ∥s∥2 ≤ ∆k, s(w) = 0 for a.a. w ∈ Ak,ℓ

(50)

using projected truncated CG [30], we compute sk,ℓ by explicitly eliminating the active com-
ponents. Let Pk,ℓ ∈ L(X) denote the projection onto the inactive set D \ Ak,ℓ, i.e.,

[Pk,ℓs](w) := s(w)(1− 1Ak,ℓ
(w)),

where 1Ak,ℓ
(w) = 1 if w ∈ Ak,ℓ and 1Ak,ℓ

(w) = 0 if w ∈ D \ Ak,ℓ. Then, we can rewrite (50)

in reduced form as

min
s∈X

1

2

〈
(P ∗
k,ℓBkPk,ℓ)s, s

〉
+

〈
P ∗
k,ℓvk,ℓ, s

〉
subject to ∥Pk,ℓs∥2 ≤ ∆k, (51)

which we approximately solve using truncated CG [50]. Let ŝk,ℓ ∈ X denote an approximate
solution to (51), then sk,ℓ = Pk,ℓŝk,ℓ is an approximate solution to (50). Given sk,ℓ, we
perform a backtracking line search to determine a step length that satisfies the sufficient
decrease condition (17). The full routine is described in Algorithm 5.

Efficient Nonsmooth Trust-Region Methods 29

Algorithm 5 Orthant-based subproblem solver for L1-regularized problems

Require: The iteration limit maxit ∈ N, decrease factor βdec ∈ (0, 1), descent parameter
µ ∈ (0, 1), CG iteration limit maxiticg ∈ N, and positive tolerances τ̄ , τk, δabs and δrel

1: Set ℓ← 0 and compute the Cauchy point xk,0 = xck
2: Compute gk,0 ← gk +Bk(xk,0 − xk) and hk,0 ← H(xk,0, gk,0, tk)

3: while ℓ < maxit and hk,ℓ > min{τ̄ , τkhk,0} and
∥∥xk,ℓ − xk

∥∥
2
< ∆k do

4: Compute vk,ℓ from (49) and the corresponding active set Ak,ℓ
5: Set r ← P ∗

k,ℓvk,ℓ and ρ1 ← ⟨r, r⟩
6: Set d← −r and sk,ℓ ← 0
7: for i = 1, . . . , maxitcg do
8: Compute b← (P ∗

k,ℓBkPk,ℓ)d and κ← ⟨b, d⟩
9: if κ ≤ 0 then
10: Compute α > 0 as the solution to

∥∥xk,ℓ + sk,ℓ + αd− xk
∥∥ = ∆k

11: Set sk,ℓ ← sk,ℓ + αd
12: break
13: end if
14: Compute α← ρi/κ
15: if

∥∥xk,ℓ + sk,ℓ + αd− xk
∥∥ ≥ ∆k then

16: Compute α > 0 as the solution to
∥∥xk,ℓ + sk,ℓ + αd− xk

∥∥ = ∆k
17: Set sk,ℓ ← sk,ℓ + αd
18: break
19: end if
20: Update the step sk,ℓ ← sk,ℓ + αd
21: Update the residual r ← r + αb
22: Compute ρi+1 ← ⟨r, r⟩
23: if

√
ρi+1 ≤ min{δabs, δrel

√
ρ1} then

24: break
25: end if
26: Compute β ← ρi+1/ρi
27: Set the trial step d← βd− p
28: end for
29: Set the step length σ ← 1
30: Set the trial iterate xk,ℓ+1 ← xk,ℓ + σsk,ℓ
31: while mk(xk,ℓ+1) > mk(xk,ℓ) + µmin{0,

〈
gk,ℓ, xk,ℓ+1 − xk,ℓ

〉
+ ϕ(xk,ℓ+1) − ϕ(xk,ℓ)}

do
32: Set the step length σ ← βdecσ
33: Set the trial iterate xk,ℓ+1 ← xk,ℓ + σsk,ℓ
34: end while
35: Compute gk,ℓ+1 ← gk,ℓ + σBksk,ℓ and hk,ℓ+1 ← H(xk,ℓ+1, gk,ℓ+1, tk)
36: Update ℓ← ℓ+ 1
37: end while
38: Return x+

k ← xk,ℓ as the approximate solution

