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Abstract

Same-Day Delivery (SDD) services aim to maximize the fulfillment of online orders while min-

imizing delivery delays but are beset by operational uncertainties such as those in order volumes

and courier planning. Our work aims to enhance the operational efficiency of SDD by focusing

on the ultra-fast Order Dispatching Problem (ODP), which involves matching and dispatching or-

ders to couriers within a centralized warehouse setting, and completing the delivery within a strict

timeline (e.g., within minutes). We introduce important extensions to ultra-fast ODP such as order

batching and explicit courier assignments to provide a more realistic representation of dispatching

operations and improve delivery efficiency. As a solution method, we primarily focus on NeurADP,

a methodology that combines Approximate Dynamic Programming (ADP) and Deep Reinforce-

ment Learning (DRL), and our work constitutes the first application of NeurADP outside of the

ride-pool matching problem. NeurADP is particularly suitable for ultra-fast ODP as it addresses

complex one-to-many matching and routing intricacies through a neural network-based VFA that

captures high-dimensional problem dynamics without requiring manual feature engineering as in

generic ADP methods. We test our proposed approach using four distinct realistic datasets tai-

lored for ODP and compare the performance of NeurADP against myopic and DRL baselines by

also making use of non-trivial bounds to assess the quality of the policies. Our numerical results

indicate that the inclusion of order batching and courier queues enhances the efficiency of deliv-
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ery operations and that NeurADP significantly outperforms other methods. Detailed sensitivity

analysis with important parameters confirms the robustness of NeurADP under different scenarios,

including variations in courier numbers, spatial setup, vehicle capacity, and permitted delay time.

Keywords: Order dispatching, Ultra-fast delivery, NeurADP, Value function approximation

1. Introduction

The widespread adoption of online shopping, particularly accelerated by the COVID-19 pan-

demic, has transformed traditional markets in recent years and compelled many businesses to em-

brace streamlined direct delivery of products to customers [7]. One notable consequence of this

shift is the emergence of Same-Day Delivery (SDD) services, which have fundamentally changed

shopping behaviors by offering the convenience of online ordering and near-instant access to prod-

ucts. The SDD has seen a remarkable growth in recent years, with a valuation of $5.77 billion in

the United States in 2019 and a projected value of $15.6 billion by 2024 [20]. Recognizing the

evolving dynamics of the retail landscape, major players such as Target, Walmart, and Amazon

have all acknowledged the significance of providing competitive same-day shipping options and

have looked to expand their same-day shipping services [21]. As a result of this rapid expansion,

centralized warehouses have become the central hub for managing incoming online orders and

dispatching fleets of couriers, all with the goal of providing efficient and prompt service.

With the growing popularity of SDD operations, it is crucial to prioritize operational effi-

ciency. The primary goal of SDD operations is to maximize the fulfillment of online orders while

minimizing delivery delays. Nevertheless, SDD services naturally encompass several considera-

tions that need to be taken into account in managing delivery operations. The courier shift sched-

ules, vehicle capacities and dynamic routing of delivery couriers are some of the important con-

siderations in this regard. Additionally, SDD operations involve a substantial level of uncertainty

that stems from factors such as the timing, volume, deadlines, and destination locations of orders.

These multitude of factors pose significant challenges for SDD operators, who must navigate them

to provide efficient services. To this effect, Voccia et al. [28] introduce the Same-Day Delivery

Problem (SDDP) as a framework to define the complex decision-making and routing logistics in-

volved in ensuring the timely delivery of online orders within strict time constraints.
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The SDDP may be decomposed into two distinct sub-problems: the Vehicle Routing Problem

(VRP) and the Order Dispatching Problem (ODP). The VRP addresses the routing aspect, while

the ODP concentrates on the matching and dispatching components of the problem. Both sub-

problems are usually relevant in the context of a centralized warehouse handling stochastic order

arrivals for cost-effective and timely delivery to customers. The VRP involves minimizing total

vehicle travel distance, time, or cost while accounting for congestion, capacity, and time windows.

On the other hand, the ODP involves assigning orders to couriers, minimizing fulfillment time and

avoiding capacity breaches, factoring in location, time windows, and order size.

In this paper, we focus on the ultra-fast ODP, which involves the matching and dispatching

aspects of the SDDP. Specifically, we explore a centralized decision-making problem in which

a warehouse dispatches fleets of couriers, each with their own shift schedules, to maximize the

number of orders served throughout the day. These orders arrive stochastically, and the ware-

house’s primary objective is to ensure ultra-fast deliveries, e.g., completing them within minutes.

This requirement of urgent delivery introduces a critical time constraint, distinguishing it from

other SDDP/ODP works which allow for more lenient delivery timelines. Furthermore, despite

the widespread adoption of this rapid delivery approach by global delivery giants such as Getir, a

renowned Turkish delivery service, and Gorillas, a Germany-based platform specializing in swift

grocery and essential item deliveries, this particular delivery setting is not well-studied in the lit-

erature. In this regard, our paper contributes to the existing literature on the SDDP and ODP by

building upon the work of Kavuk et al. [9], which focuses on an order dispatching problem based

on Getir’s operations. Specifically, they develop a deep reinforcement learning (DRL) approach

for ODP to make informed decisions regarding only the acceptance or rejection of incoming orders

to a single depot while the order assignments to the couriers are based on predefined rules. The

main contributions of our paper are summarized in what follows.

We propose a novel Markov decision process (MDP) model that introduces several innovative

features and capabilities to the single-depot ODP. In particular, in terms of operational enhance-

ments (1) we employ batching as a means of enhancing the efficiency of the order dispatching

operations and we utilize courier queues which enable the concurrent handling and emptying of
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all orders within the queue, rather than being limited to serving one order at a time, (2) we make

explicit courier assignments to optimize the allocation of orders to couriers, and (3) we enforce

hard deadlines to ensure timely delivery of orders. By incorporating these considerations, our

proposed MDP model for ODP provides a more comprehensive and realistic representation of the

dispatching process, thereby enhancing its practical relevance.

Inspired by its effective application to the ride-pool matching problem, and observing the

suitability of our problem’s structure to leverage its strengths, we adopt the Neural Approximate

Dynamic Programming (NeurADP) as the solution approach. NeurADP is an innovative method-

ology introduced by Shah et al. [18] which combines Approximate Dynamic Programming (ADP)

and DRL techniques and has exclusively been applied within the ride-sharing framework. Our

study constitutes the first application of NeurADP beyond its original context, expanding its po-

tential applications and further demonstrating its effectiveness in addressing real-world dynamic

decision-making problems. We note that NeurADP is well-suited for ultra-fast ODP as it can ad-

dress complex one-to-many matching and routing intricacies through a neural network-based value

function approximation (VFA) that captures high-dimensional problem dynamics without requir-

ing manual feature construction as in many other ADP frameworks. In order to demonstrate the

effectiveness of NeurADP, we compare it with a large set of myopic and DRL baselines. We also

conduct a sensitivity analysis to investigate the influence of various factors on the performance of

NeurADP.

In our numerical study, to support our research and facilitate comprehensive evaluations, we

introduce three original datasets specifically tailored for order dispatching operations in addition

to considering a commonly used dataset from the literature. These datasets capture diverse real-

world scenarios and provide a rich environment for training and testing our proposed methods. The

availability of these datasets benefits future researchers in the field, fostering further advancements

in the study of ODP and SDDP. Furthermore, we explore the effects of the number of agents

considered, the spatial setup, the allowed vehicle capacity, and the permitted delay time. This

analysis enhances our understanding of the robustness and adaptability of NeurADP in diverse

scenarios, offering valuable insights to practitioners seeking to implement this approach in real-
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world applications. Importantly, our analysis also provides several managerial insights related to

the ultra-fast ODP:

• NeurADP improves order fulfillment by 6.7%- 16.9% in the baseline configuration com-

pared to the benchmark policies thanks to its ability to intelligently batch orders and opti-

mize courier utilization. Furthermore, the greatest benefits of NeurADP-based policies are

observed when there are fewer couriers who are working at or near full capacity or when the

operation faces tighter delivery schedules.

• In terms of fulfillment strategy, NeurADP policy shows that the companies can enhance

their efficiency by strategically batching the orders and ensuring the swift return of couriers

to the warehouse, rather than attempting to maximize the number of orders loaded onto each

courier’s vehicle. That is, the companies can potentially serve more orders with quicker

turnaround which could be more beneficial than simply loading couriers with as many orders

as possible, especially in a high-demand and fast-paced delivery environment.

• The significance of policy intelligence in optimizing order fulfillment varies depending on

the operation environment, particularly based on the sparsity of the delivery locations and

their distance to the central warehouse. In cases where deliveries are more dispersed, the

effectiveness of a policy becomes markedly more crucial. On the other hand, when deliv-

ery locations are densely clustered and closer to the warehouse, the relative importance of

having an intelligent policy diminishes. This suggests that companies operating in diverse

geographic settings should tailor their dispatching policies to the specific distribution char-

acteristics of each area to optimize courier efficiency and order fulfillment rates.

The remainder of the paper is organized as follows. Section 2 offers a comprehensive review

of the relevant SDD literature in the context of both the VRP and ODP, better positioning our re-

search within the existing body of work. Section 3 provides a formal description of the problem

setting for our ODP. In Section 4, we describe the NeurADP solution methodology. Details regard-

ing the datasets and benchmark policies used in the experiments are provided in Section 5. The

results of the computational experiments are presented in Section 6, followed by a conclusion in

5



Section 7 that summarizes the research findings and suggests avenues for future research.

2. Literature Review

We review the relevant literature by exploring the challenges and solutions related to the

SDDP and its sub-problems, particularly ODP, highlighting the latest research and findings in this

field, as well as placing our work and contributions within the broader context of the existing

literature. In order to tackle the challenges in the SDDP, various strategies have been proposed,

encompassing heuristic algorithms, machine learning models, combinatorial optimization models,

reinforcement learning (RL) algorithms, and market-based mechanisms. Table 1 presents the most

relevant studies to ours from the SDDP literature. This table comprises six indicators regarding the

problem context and solution methodology. These are “Solution Technique”, which describes the

approach employed to solve the problem, “Large Capacity”, which denotes whether couriers are

allowed to carry multiple sets of orders simultaneously, “Multi-Courier”, which indicates consid-

eration of more than one courier, “Hard Deadlines”, which signifies the presence of strict delivery

deadlines, “Bundling”, which pertains to the possibility of bundling/batching orders at the same

decision-making step, and “Shifts”, which indicates the incorporation of courier shifts into the

respective problem formulation.

VRP has been explored within the context of the SSDP in various works. Ulmer et al. [26]

presented an ADP-based order assignment/dispatching and routing policy which allows same-day

delivery vehicles to better integrate dynamic requests into delivery routes through preemptive de-

pot returns. Joe and Lau [8] combined DRL with a simulated annealing-based routing heuristic

for a dynamic VRP. Their method uses a state representation based on the total cost of the re-

maining routes of the vehicles. Additionally, Côté et al. [6] proposed a re-optimization heuristic

and a branch-and-regret heuristic that uses sampled scenarios to anticipate future events to ad-

dress a variation of the VRP that involves urgent deliveries of time-sensitive orders. Ngu et al.

[12] presented a decentralized multi-agent RL approach in formulating and solving the VRP using

a parameter-sharing deep Q-network. Ulmer [22] proposed a method called anticipatory pricing

and routing policy to improve the cost-efficiency of same-day delivery for e-commerce retailers.

By dynamically adjusting prices based on delivery deadlines and using a guided offline VFA, this
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Table 1: Summary of relevant studies. (ADP: Approximate Dynamic Programming, DRL: Deep Reinforcement
Learning, CH: Combinatorial Heuristic, MIP: Mixed Integer Programming, PFA: Policy Function Approximation,
NeurADP: Neural Approximate Dynamic Programming)

Study Problem Solution
Technique

Large
Capacity

Multi-
Courier

Hard
Deadlines

Bundling Shifts

Ulmer et al. [26] VRP ADP ✓ ✓

Joe and Lau [8] VRP DRL ✓ ✓

Côté et al. [6] VRP CH ✓ ✓ ✓

Ngu et al. [12] VRP DRL ✓ ✓

Klapp et al. [10] ODP MIP ✓ ✓

Kavuk et al. [9] ODP DRL ✓ ✓

Ulmer and Streng [23] ODP PFA ✓ ✓ ✓ ✓

Ulmer and Thomas [24] ODP PFA ✓ ✓ ✓

Chen et al. [5] ODP DRL ✓ ✓ ✓

Cardona Peláez et al. [4] ODP PFA ✓ ✓ ✓

Our Work ODP NeurADP ✓ ✓ ✓ ✓ ✓

policy incentivizes customers to select efficient delivery options, allowing the fleet to serve more

orders and increase revenue. Finally, Dayarian et al. [7] explored the concept of drone replenish-

ment in the context of same-day home delivery. They introduced the VRP with drone resupply and

proposed various algorithms to optimize the delivery process, quantifying the potential benefits of

using drones for delivery vehicles.

Several studies have specifically focused on the dispatching aspect of the SDDP. Car-

dona Peláez et al. [4] explored a two-echelon fleet approach that utilizes intra-route replenishment

and policy function approximation (PFA) based on real-life geographical distributions to optimize

fleet configuration and maintain service levels. Whereas Ulmer and Thomas [24] used fleets of

heterogeneous drones and vehicles to perform deliveries, utilizing PFA based on geographical

districting to decide which delivery method of transportation to use. Similarly, Chen et al. [5]

proposed a same-day delivery system using both vehicles and drones and presented a deep Q-

learning approach to learn the value of assigning customer orders to either drones, vehicles, or not

offering service at all. To enable real-time dispatch decisions that balance speedy delivery with

consolidation, Ulmer and Streng [23] introduced a novel same-day delivery approach that com-

bines autonomous vehicles with pickup stations and utilized a PFA approach. In addition, Klapp
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et al. [10] formulated an arc-based Mixed Integer Programming (MIP) model and designed local

search heuristics to solve the deterministic version of the ODP and derived an apriori solution for

the stochastic case. Finally, Kavuk et al. [9] presented a DRL approach to solving the ODP for

ultra-fast delivery, using deep Q-networks to learn the actions of warehouses and considering two

reward functions: one related to the number of orders served and the other to minimize delivery

delays.

In this paper, we consider the matching and dispatching components of the SDDP, particu-

larly ODP, differentiating our focus from prior research that primarily concentrated on the routing

elements [6, 8, 12, 26]. In particular, we consider a centralized decision-making scenario where a

warehouse is tasked with coordinating fleets of couriers, each operating on its own shift schedule

in order to optimize the total number of orders fulfilled throughout the day. These orders are sub-

ject to stochastic arrivals, and the primary goal of the warehouse is to achieve ultra-fast deliveries,

aiming to complete them within a matter of minutes. This imperative for rapid delivery imposes

a crucial time constraint, setting it apart from previous SDDP and ODP works which permit more

relaxed delivery time-frames [8, 10, 12, 26]. The imperative to handle deliveries within minutes

necessitates the capability of real-time decision-making, thereby challenging the feasibility of past

traditional offline solutions [10]. The dynamic nature of the problem is further accentuated by

the stochastic arrival of orders, requiring dispatching and matching strategies to flexibly adapt to

varying patterns, distinguishing it from the approaches seen in previous works [17, 26]. Moreover,

the added complexity arises from the individual courier shift schedules, which demand meticulous

coordination and optimization to meet the stringent ultra-fast delivery criteria. This inclusion of

courier shifts sets our work apart from prior studies such as [4, 5, 23, 24] which did not encompass

this facet. In the pursuit of achieving such rapid deliveries, the allocation of couriers to orders be-

comes a task of precise resource allocation optimization, a contrast to the focus of traditional ODP

studies, which primarily revolve around dispatching timing and transportation mode decisions (

e.g., see [4, 23, 24]). Despite the widespread adoption of this rapid delivery approach by delivery

corporations such as Getir and Gorillas, this particular delivery setting has not been well-studied

in the existing literature.
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We introduce a comprehensive set of improvements for order dispatching operations in the

context of ultra-fast delivery, building upon the work of Kavuk et al. [9]. Their research closely

aligns with ours, particularly as they focus on addressing the ODP encountered by Getir. In their

study, Kavuk et al. [9] employed DRL to determine only the acceptance or rejection decisions for

incoming orders. However, their work does not take into account important ODP considerations

including courier assignment and order batching, and importantly, their framework does not im-

pose strict delivery deadlines, rather penalizing the delays. Furthermore, their empirical analysis

is limited to a single dataset and the rule-based baselines for comparative analysis. To further en-

hance the existing problem framework, our work introduces innovative features and capabilities,

namely, order batching, explicit courier assignment and hard deadlines. Hence, it helps streamline

the coordination and efficiency of order dispatching, contributing to the practical relevance of this

problem. Moreover, we extend the scope of the problem to encompass different urban settings

and larger-scale dispatching operations, involving more agents, orders, and a broader geographical

area. This expansion enables us to capture the intricacies and challenges of managing substantial

dispatching tasks, providing valuable insights for real-world applications. To tackle these chal-

lenges, we adapt the innovative NeurADP approach for order dispatching, which was originally

designed for ride-sharing, marking its first application outside its original context and showcasing

its effectiveness in dynamic decision-making problems. Moreover, to support our research and

facilitate comprehensive evaluations, we introduce three novel tailored datasets for order dispatch-

ing.

3. Problem Description and Formulation

We present a dynamic order dispatching model that aims to efficiently match couriers with

incoming batches of online orders. Our model considers the spatial and temporal demand patterns

of the orders, which arrive dynamically over a 24-hour decision horizon and are served by a single

centralized depot. This choice of a single central depot is particularly important in the context of

ultra-fast delivery, where efficiency and speed are paramount. For instance, the logistics of coor-

dinating multiple depots may introduce unnecessary delays and complexities, ultimately hindering

the goal of rapid order fulfillment. Orders are generated stochastically and have specific delivery
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deadlines based on their arrival time. Once an order is assigned to a courier, it is accepted into

the system and its delivery prior to its designated drop-off deadline is guaranteed. Moreover, the

model takes into account a predetermined group of heterogeneous couriers available during the

planning horizon, considering their capacity constraints and shift schedules. All couriers have in-

dividual shift start times, with each shift lasting six hours (excluding breaks) to reflect real-world

shift lengths.

Our model incorporates several key problem specifications in the ultra-fast delivery setting

to efficiently manage the dispatch and delivery process. First, multiple orders may arrive at any

decision epoch, and couriers located at the warehouse are promptly dispatched upon being matched

to these orders. Secondly, once a courier is dispatched with a set of orders, they must complete

all assigned deliveries before returning to the depot, precluding any preemptive returns. To aid in

this process, a queue is maintained for each courier with a capacity equivalent to their vehicle’s

limit. This queue accommodates both pending orders awaiting pickup and delivery, as well as new

orders which may be matched to an on-shift courier as they continue their deliveries. Orders are

incorporated into the queue only if their inclusion maintains adherence to constraints regarding

timely delivery of all orders within the queue, steering clear of overloading courier vehicles, and

staying within courier shift duration during order deliveries. Furthermore, the queue of orders

is rearranged prior to the courier dispatching from the depot so as to optimize the route from

the warehouse to each order destination location and back. However, once an order is assigned

to a specific courier’s queue, it cannot be transferred to another courier’s queue. Lastly, in line

with prior research on ODP, unmatched orders beyond their arrival period are assumed to exit

the system [9]. This assumption reflects customers’ general expectation of timely confirmation

regarding the acceptance of their requests.

The primary objective of our model is to maximize the total number of online orders fulfilled

within the decision horizon. To achieve this, our assignment decisions consider future order arrival

uncertainties and the potential downstream impact of current decisions. To handle the complexity

of these decisions, we formulate an MDP model and adapt a NeurADP solution framework, en-

abling effective real-time decision-making under uncertainty. To this end, we partition the finite
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planning horizon into discrete time intervals, with each interval having a duration of δ (e.g., five

minutes). We assume that decisions are made at the onset of each interval, while exogenous in-

formation is observed continuously throughout. Following each interval, the state of the system

is updated by incorporating the decisions and the observed external information. The collection

of epochs for decision-making is denoted as T := {0, . . . , T}. At each decision epoch, the aim

is to match “available” couriers with incoming orders. The availability of a courier is determined

by several factors, including whether they are on their shift, their available capacity, and whether

adding a new order to their assigned order set would comply with the maximum allowed delay for

any order and would not extend the courier beyond their shift end time. Both the couriers who are

stationed at the warehouse, as well as those who are away from the warehouse making deliveries,

are eligible to be paired with incoming orders, provided they satisfy the availability constraints.

Once paired with a batch of incoming orders, couriers located at the warehouse are promptly

dispatched so as to adhere to the ultra-fast delivery requirements, while those making deliveries

maintain a queue for orders to pick up and deliver after completing their ongoing assignments.

The courier’s queue accepts orders up until the moment the courier returns to the warehouse, at

which point it is emptied, and the courier is promptly dispatched with any orders that may have

accumulated in their queue. Couriers who are off-shift cannot be matched with orders, keeping

their queues empty.

Each courier has a predetermined start time for their shift, with each shift spanning a dura-

tion of six hours, without any scheduled breaks. Incoming orders are typically associated with a

specific delivery deadline which can be set in different ways depending on the company policies.

For instance, in their paper, Kavuk et al. [9] consider a 45-minute delivery time for any given order

and employ a reward function that promotes fast deliveries below this 45-minute target. Lastly, it

should be noted that, at each time step, orders have the potential to be consolidated (i.e., batched)

either with other concurrent orders or with previously assigned orders for each respective courier.

The network housing the depot is characterized as N = (L, E), where L = {0, 1, . . . , L} corre-

sponds to the depot and customer locations, and E = L × L represents the distance between each

respective pair of locations, determined by the Haversine distances. Given two locations ℓ, ℓ′ ∈ L,
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we denote the travel time between ℓ and ℓ′, leaving ℓ at time t, by timet(ℓ, ℓ
′), such that ℓ = 0

always denotes the depot location. Next, we present the components that make up the MDP model.

3.1. State Variables

The state of the system at time t ∈ T is defined by St = (Ct, Ot), such that Ct represents

the state of all couriers, and Ot the state of all incoming orders awaiting delivery. The state of

an individual courier may be represented as a three-dimensional attribute vector defined by c =

(cshift, cret, cords) ∈ C with C denoting the set of possible courier states. In this representation,

cshift indicates the time at which the shift of the courier starts. Moreover, if the courier is away

from the warehouse fulfilling deliveries, cret signifies the time required for them to complete

their deliveries and return to the warehouse. This value is set to zero if the courier is not on

shift or is already at the warehouse. Lastly, cords represents the courier’s queue and encompasses

significant details about the courier’s current tasks, including the orders they are currently assigned

for delivery upon their return to the warehouse. The sequence of online orders assigned to the

queue is optimized to minimize travel time for delivering all orders, and it is rearranged prior to

a courier departing from the depot to make deliveries. Subsequently, the state of an online order

is represented by a two-dimensional attribute vector denoted as o = (odest, odead) ∈ O with O

denoting the set of possible incoming orders. Here, odest denotes the destination of the order,

while odead corresponds to the specific delivery deadline time. When an order is received between

decision epochs t− 1 and t, the deadline attribute odead is determined at the start of epoch t using

the equation

odead = t+ timet(0, odest) + delaymax. (1)

where delaymaxindicates the maximum allowed time beyond the original travel duration from

the depot to the order’s drop-off location. While this method of calculating the delivery deadlines

is slightly different than Kavuk et al. [9]’s approach, we note that our proposed framework can

accommodate alternative ways of setting the delivery deadlines. Whereas we note that explicitly

setting a delay parameter can help setting more realistic customer expectations.
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3.2. Decision Variables

At each decision epoch t ∈ T , we determine the matching between available couriers (i.e.,

those idly waiting in the warehouse or the busy couriers with available space in their queues)

and incoming online orders considering the current system state. More specifically, we begin by

examining the feasibility of grouping the set of incoming orders into batches, taking into account

the order drop-off deadlines, and then evaluate the potential for assigning a specific batch to a

courier, taking into consideration both capacity and timing limitations. To evaluate the feasibility

of batching a set of orders together, or taking a single order by itself, we make sure whether a

batch is able to be delivered before each order’s respective drop-off deadline. In other words, a

batching is feasible if there exists a viable route for a courier to deliver each order in the batch, as

well as the orders it is currently assigned to, prior to each order’s respective deadline beginning

from the warehouse. Furthermore, when deciding if a courier can be paired with a batch of orders,

we consider the following factors: (i) the courier’s active status and current shift, (ii) whether the

newly assigned batch pushes the courier’s queue beyond the allowed limit, (iii) the courier’s ability

to deliver all orders before their specific deadlines, and (iv) whether the courier can complete all

deliveries and return to the depot before their shift ends. We subsequently define the collection of

actions taken at time t as at ∈ At(St), such that At(St) denotes the set of all feasible actions for

state St. These actions encompass both the matching of couriers to order batches, as well as the

determination of delivery sequencing within each courier’s assigned orders.

We define the reward collected at time step t ∈ T as follows:

Rt(at) =
∑
c∈Ct

(β · qt(atc) − ωt(atc)) . (2)

Here, qt(·) provides the number of orders fulfilled by a courier by taking the input action at time

t, whereas ωt(·) represents the time required for a courier to deliver all the orders in its queue,

including the ones associated with its current task and return to the warehouse. To ensure that

the first term has more weight than the second one in the objective function, the multiplier of β

is introduced. This parameter serves as a constant which takes into consideration elements such

as maximum allowed queue size and geographical area. Its computation involves determining the
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longest conceivable queue duration, encompassing travel duration between different points and

from those points to the warehouse on the map. For instance, if we consider a maximum queue

size of three, β is determined by computing the three longest travel durations between different

locations on the map. The incorporation of β is thus aimed at giving precedence to the maximiza-

tion of the total number of orders fulfilled in each time interval. Nevertheless, when two feasible

actions serve an equal number of orders, the decision rests on the option that enables the courier to

finish their tasks in the least amount of time. This emphasis ensures that couriers become available

more swiftly to handle new groups of orders.

3.3. Exogenous Information and Transition Function

During each time step within the decision horizon, the system receives a collection of online

orders which constitute the exogenous information. The orders arriving between time t and t + 1

are denoted as Wt+1. Moreover, W0 represents the orders which have accumulated during the

time between the final time step in the previous day and the initial time step t = 0, given a 24-hour

planning horizon. Subsequently, the evolution of the system state from time t to t+1 is determined

by the transition function that depends on the arrival of online orders and the decision tuple at ∈

At(St). By introducing the post-decision state [15], the state transition can be divided into two

distinct parts. The post-decision state captures the system state immediately after a decision has

been made but prior to the arrival of exogenous information in the subsequent time step. The initial

transition (3a) leads to the post-decision state via the action at, and is denoted by SCourier-Post
t .

As unfulfilled orders exit the system at each time step, the post-decision state consists solely of

information related to the couriers. The subsequent transition (3b) occurs from the post-decision

state to the next state, influenced by the arrival of exogenous information Wt+1:

SCourier-Post
t = statepost(St, at) (3a)

St+1 = statenext(SCourier-Post
t ,Wt+1) (3b)
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Due to the assumption that unassigned orders exit the system at the end of each decision epoch,

the state of orders at time t+ 1 is defined as follows:

Ot+1 = Wt+1 (4)

Furthermore, the state of couriers at time t+ 1 is described as follows:

Ct+1 = SCourier-Post
t (5)

such that SCourier-Post
t denotes the state of all couriers after taking the actions at and simulating

their movements forward in time by one period, prior to the arrival of new exogenous information.

For a courier, their state remains unchanged in the next time step if they are not on their shift or if

they are at the warehouse without any assigned orders. Yet, if a courier is at the depot and receives

new orders, they are sent out with their state updated to show the estimated return time. Similarly,

if a courier is already out delivering and receives new online orders, their queue adapts while they

continue their ongoing delivery route.

3.4. Optimal Policy

The objective in our order dispatching problem is to maximize the expected number of online

orders served throughout the operation horizon:

max
π∈Π

EW=(W0,...,WT )

[∑
t∈T

Rt (A
π
t (S

π
t (W )))

∣∣S0

]
. (6)

Through the solution of Equation (6), we can identify a policy π from a set of feasible policies Π

which maximizes the reward when its recommended actions Aπ
t (St) are sequentially implemented

at realized states. The realized states are defined as follows:

Sπ
0 (W ) = S0 (7a)

Sπ
t+1(W ) = statenext(statepost(Sπ

t (W ),Aπ
t (S

π
t (W ))),Wt+1), t = 0, . . . , T − 1 (7b)
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such that S0 corresponds to the initialized couriers, as well as the orders which have accumulated

during the time interval from the final time step in the previous day up to the starting point at t = 0

within the initial state of the decision horizon, provided a 24-hour decision horizon. The future

reward is determined by taking the expectation with respect to the stochastic process described by

W . The actions and states encountered during each decision epoch depend solely on the revealed

random variables up to that point, and accordingly the overall reward relies on the realization of

the complete vector W . By solving the Bellman optimality equations, the optimal values Vt(St) at

each state St can be calculated as

Vt(St) = max
at∈At(St)

{
Rt(at) + EWt+1 [Vt+1(St+1)]

}
(8)

where St+1 = statenext(statepost(St, at),Wt+1). To compute the value function Vt(·), a

backward induction procedure can be employed, which involves working backward in time from

the final epoch T [15]. This procedure considers the rewards associated with taking the optimal

actions and the probabilities of transitioning between states. The recursive process continues un-

til reaching the first stage, t = 0. However, this approach becomes impractical even for small

instances due to the requirement of enumerating all possible outcomes and actions. Accordingly,

ADP-based methods can be used to solve such problems.

4. Solution Methodology

In this section, we first describe an ADP approach for the ODP, highlighting its handling of

the curses of dimensionality, VFA and updating methods. Subsequently, we introduce NeurADP as

the more suitable method for our order dispatching problem and discuss its main distinctions from

the ADP approach. Lastly, we provide our adaptation of the NeurADP algorithm for our problem

setting.

4.1. ADP and VFA for Ultra-fast ODP

As outlined in Section 3, feasible decisions in the ODP involve not only the acceptance and

rejection of incoming orders, but also the assignment of accepted order batches to courier queues
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and the determination of their respective routes. Recall the feasible set of decisions denoted by

At(St). The definition of this set ensures that couriers are on their shifts, have adequate capacity

for assigned orders, have viable routes for timely delivery, including any previously assigned or-

ders, and can return to the depot before their shift concludes. Given this, the optimal policy for the

ODP may be obtained using the Bellman optimality equations defined in Equation (8). However,

computing Vt(St) exactly proves intractable for complex large-scale problems such as the ODP

due to what Powell [15] classifies as the “three curses of dimensionality”, referring to the chal-

lenges of managing the state, action, and outcome space. More specifically, solving the Bellman

optimality equation for a state St requires computing the anticipated downstream reward. This

involves multiplying the value of each possible outcome St+1 by the probability determined by the

exogenous information Wt+1. However, for large-scale problems such as the ODP, the outcome

space becomes excessively large, resulting in the first curse of dimensionality. To overcome this,

ADP utilizes the concept of post-decision states, dividing the dynamic programming equation into

two parts:

Vt(St) = max
at∈At(St)

{Rt(at) + V Post
t (SCourier-Post

t )} (9a)

V Post
t (SCourier-Post

t ) = EWt+1

[
Vt+1(St+1)

∣∣SCourier-Post
t

]
(9b)

To avoid enumerating the entire outcome space and evaluating future values, Equation (9a)

establishes a deterministic optimality equation based on the post-decision state. Hence, it

eliminates the need for such exhaustive computations. Equation (9b) expresses the post-

decision state value function as the expected value of downstream rewards, where St+1 =

statenext(SCourier-Post
t ,Wt+1). However, the computational challenge arises from the high-

dimensional state space, making it difficult to compute value functions for all feasible post-decision

states. In the ODP, the post-decision state is influenced by various factors related to couriers and

their potential states, including their current locations and shift-times, as well as their assigned

orders and their respective deadlines. This complexity increase, known as the “second curse of

dimensionality”, is associated with the exponential increase in the state space. To address this, an
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approximation of the post-decision state value function, V Post
t (SCourier-Post

t ), can be used.

There exist several types of value function approximations [16]. One approach to VFA in-

volves the utilization of lookup tables in conjunction with state-wise aggregation. More specif-

ically, a unique entry is assigned to each state in the lookup table, applying varying levels of

aggregation to state values and using weighted summations to improve the accuracy of VFAs ob-

tained from the aggregation levels. The utilization of basis functions offers an alternative approach

for performing VFAs. These functions serve the purpose of transforming the original state space

into a typically lower-dimensional form, with the goal of capturing influential state features which

impact their values.

Another method employed for VFA is the dual heuristic approach, which relies upon the con-

cept of marginal values. More specifically, rather than exclusively focusing on the inherent value

associated with occupying a particular state, this method places greater importance on assessing

how the value function changes concerning that state’s derivative, hence enabling the prioritization

of the rate of change in value rather than the absolute value itself. This often leads to more efficient

problem-solving across a wide array of practical applications. Furthermore, this approach is par-

ticularly valuable for resource allocation problems, such as the ODP, where vector-valued decision

problems, namely (9a) in this framework, are typically addressed, e.g., using linear, nonlinear,

or integer programming. The dual heuristic approach has found widespread application in the

transportation domain, for problems such as the ride-pool matching problem [29], taxi-on-demand

[1, 19], and crowd-shipping [11]. However, we observe that this approach would have some impor-

tant drawbacks when applied to the ODP. Since this observation motivates our proposal of instead

employing NeurADP for the ODP, we next briefly explain the dual heuristic approach.

In its common practice, we would define the linear approximation of the courier-based post-

decision value function using the linear decomposition of the function V̄ Post
t (SCourier-Post

t ).

This function incorporates the courier vector attributes in the post-decision state, specifically

{SCourier-Post
tc }c∈C , and is formally defined as follows:

V̄ Post
t (SCourier-Post

t ) :=
∑
c∈C

v̄Posttc SCourier-Post
tc (10)
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wherein v̄Posttc represents the expected down-stream reward associated with a courier being in the

post-decision state of c at time t. This representation provides a considerable computational bene-

fit, since rather than computing value functions for each possible post-decision state at the current

time t, we need only
∣∣C∣∣ variables, which are denoted as v̄Posttc . In the subsequent ADP algo-

rithm, where n represents the iteration number and is used to index all the relevant components,

the update for v̄Posttc is defined as follows:

v̄Post,ntc = (1− αn) v̄Post,n−1
tc + αn v̂Post,ntc (11)

such that αn represents the step-size at iteration n of the algorithm, v̄Post,n−1
tc signifies the current

approximate value of v̄Posttc , and v̂Post,ntc represents the observed marginal values associated with

having an additional courier of type c at time t. The partial derivative values v̂Post,ntc may be

obtained as the numerical derivative of the following MIP model:

max Rt+1(S
n
t+1, at+1) +

∑
c∈C

v̄Post,n−1
t+1,c SCourier-Post,n

t+1,c (12a)

s.t. at+1 ∈ AMIP
t+1(S

n
t+1) (12b)

where AMIP
t (·) represents an MIP formulation of the ODP feasible decisions. Such an MIP model

would necessitate introducing decision variables for order acceptance/rejection, assignment of or-

der batches to couriers, as well as those to decide courier routes along with various sets of con-

straints to ensure their feasibility. As such, this would not be a computationally viable approach,

in particular due to the need to solve this MIP to optimality a large number of times. Therefore,

in the literature, the common approach has been to transform the MIP into its linear programming

(LP) relaxation, e.g., at+1 ∈ ALP
t+1(S

n
t+1), and using LP duals; in our case this would be dual values

associated with the constraints pertaining to courier flow conservation.

4.2. Motivation for NeurADP

The ADP methodology described above is not suitable for our ODP due to several reasons.

Firstly, as noted for AMIP
t+1(·), our problem setting involves a complex decision-making process
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which necessitates a more intricate one-to-many matching between couriers and batches of online

orders, as opposed to a straightforward one-to-one courier-order matching. Additionally, complex

routing decisions have to be made for each courier adhering to respective order deadlines, further

complicating the decision space. On the other hand, due to poor LP relaxations, updating the VFA

parameters with the dual values of the matching LP is not a preferable option either. Furthermore,

to mitigate the curses of dimensionality, ADP commonly employs an aggregated attribute space.

For the ODP, this approach involves consolidating courier-related attributes, such as their locations,

rather than considering each courier’s individual state. However, crafting these state attributes

manually requires domain expertise, which is challenging in the context of the ODP. This primarily

stems from the complexity of the ODP as it involves numerous couriers with varying shift times,

different numbers of orders, each having unique deadlines, and traveling along distinct trajectories.

While such a manual approach may be reasonable in transportation problems such as the taxi-

on-demand problem with a single request per driver, it becomes impractical when dealing with

couriers who have personalized shifts and multiple orders to manage. Finally, although linear

and piece-wise linear VFAs offer simplicity in their integration into MIP models, this simplicity

may diminish modeling accuracy and representational power. This becomes particularly evident

in intricate, high-dimensional problem settings characterized by non-linear dynamics and complex

attribute dependencies, as observed in the ODP, rendering them inferior options for our specific

problem setting.

NeurADP, introduced by Shah et al. [18] to address the one-to-many case of the ride-pool

matching problem, is an innovative ADP-based algorithm explicitly designed to overcome the lim-

itations of traditional ADP methods when dealing with large-scale problems. While both NeurADP

and ADP aim to solve sequential decision-making problems by approximating the value functions

of post-decision states, they differ in their approach. As mentioned, ADP typically relies on linear

or piece-wise linear VFAs. In contrast, NeurADP utilizes a non-linear neural network-based VFA.

This allows for an automatic compact low-dimensional state-space representation without the need

for domain expertise for state-space aggregation as a means of dealing with high state space di-

mensionality. The neural network-based non-linear value function is then innovatively integrated
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into the MIP-based framework through a two-step decomposition: (1) the set of feasible actions

for each courier is enumerated, (2) a matching integer program (much simpler than the aforemen-

tioned MIP consisting of all the decisions of the ODP) is solved over all couriers, with the values

associated with each action integrated into the integer programming (IP) model as constants. Fur-

thermore, rather than using LP-based duals to update these approximations as in ADP, NeurADP

leverages DRL techniques for updating its value function approximations. More specifically, the

gradients associated with the network parameters are computed and adjusted by minimizing the

L2-norm between the current value function estimate and a one-step projection of the return de-

rived from the Bellman equation. To enhance stability, NeurADP incorporates off-policy updates

along with DRL techniques such as the implementation of a target network and Double Q-learning

[27]. These additions further refine the algorithm and contribute to its improved performance. We

explain these concepts in our ODP adaptation in more detail next.

4.3. NeurADP Solution Methodology

We next detail the NeurADP algorithm for our problem setting. We first describe the two-step

decomposition enabled by NeurADP and explain identifying feasible courier-order matchings and

the IP model for obtaining optimal matching. Then, the NeurADP-based VFA is explained, which

is followed up by the description of the overall algorithm. Lastly, a brief discussion on the neural

network architecture is provided.

4.3.1. Two-step decomposition

At every decision epoch t, given the state of the system St = (Ct, Ot), the NeurADP solution

methodology begins with enumerating feasible matchings between couriers and incoming batches

of online orders. To evaluate the feasibility of batching a set of orders together or delivering a

single order by itself, we take into consideration whether a batch can be delivered before each

order’s respective drop-off deadline. In other words, a batching is feasible if there exists a viable

route for a courier to deliver each order in the batch, as well as the orders it is currently assigned to,

prior to each order’s respective deadline, beginning from the warehouse. With respect to the orders

present in Ot, we first define Bt to represent the set of all order batchings with the minimum batch
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size of one and the maximum batch size of the available capacity of an empty courier’s queue,

denoted by queuemax. It is important to note that while we denote the maximum queue size to be

equal for all couriers in our model, this simplification is made for the sake of notational clarity, and

it may be varied for each courier in practice. To assess whether it is possible to match a courier c

to a new order batch b, we consider the following constraints:

cshift ≤ t (13a)

cshift + shiftlength > t (13b)∣∣cords∣∣+ ∣∣b∣∣ ≤ queuemax (13c)

Here, the constraints presented in equations (13a) and (13b) ensure that the courier is actively

working during the time when the batch of orders is assigned to them, with shiftlength denoting

the shift length of couriers, while constraint (13c) guarantees that adding the orders from the newly

assigned order batch to the courier’s existing queue of previously matched orders does not exceed

the maximum allowed capacity. Assuming the courier is currently on duty and has adequate storage

capacity for both their new and previously assigned orders, we next confirm the existence of a

feasible sequence for these combined orders. This sequence must ensure that each order delivery

is completed before the respective drop-off deadline, and that the courier is able to successfully

complete all deliveries and return to the warehouse prior to the end of their shift. We establish

the new queue of online orders for courier c, encompassing both the previously assigned orders as

well as those within batch b, by cords′ , such that cords′ = cords ∪ b. We then define D = |cords′|,

and introduce Z as the set of all permutations of cords′ where each σ ∈ Z represents a unique

sequence for delivering the online orders in cords′ . For instance, if cords′ = {4, 6, 12} and σ =

(12, 4, 6), then order 12 from cords′ is delivered first, followed by the order 4, and finally the order

6. Furthermore, given permutation σ, we let oσ(d)drop indicate the earliest drop-off time of the order at

the drop-off index d in σ, and o
σ(d)
dest to represent its drop-off destination. Note that, given σ, these

earliest drop-off times can be calculated in a forward manner starting from d = 1 to d = D, where

o
σ(1)
drop = t+ timet(o, o

σ(1)
dest), o

σ(2)
drop = o

σ(1)
drop + timet(o

σ(1)
dest, o

σ(2)
dest) and so on. Our goal is to ensure
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the existence of a permutation σ ∈ Z of online orders which meets the following constraints:

o
σ(d)
dead ≤ o

σ(d)
drop ∀d ∈ {1, . . . , D} (14a)

cshift + shiftlength > o
σ(D)
drop + timet(o

σ(D)
dest, 0) (14b)

Constraint (14a) ensures that the courier is able to deliver all of their assigned orders prior to their

individual deadlines. Furthermore, constraint (14b) guarantees that the courier is able to fulfill all

deliveries and return the depot prior to the end of their shift. Then, the feasible set of matches at

time t between couriers and order batchings may be described as follows:

Ft = {(c, b) ∈ Ct ×Bt : (13a) − (13c), (14a) − (14b)} (15)

We note that the feasible set of matches, Ft, can be enumerated efficiently for the ultra-fast ODP

with the capacitated couriers. Whereas for higher dimensional or less restricted problem set-

tings (e.g., see [18]), full enumeration might not be achievable, in which case a subset of feasible

matches can be heuristically generated.

In the second step, the NeurADP algorithm builds the following matching IP model to deter-

mine the decisions for each courier:

MatchingIP: max
∑
c∈Ct

∑
f∈Ft∪{∅}

rtcf · atcf + scoret(c ↔ f) · atcf (16a)

s.t.
∑

b∈Bt:(c,b)∈Ft

atcb + atc∅ = 1 ∀c ∈ Ct (16b)

∑
c∈Ct

∑
b∈Bt:(c,b)∈Ft;o∈b

atcb ≤ 1 ∀o ∈ Ot (16c)

atcf ∈ {0, 1} ∀c ∈ Ct, f ∈ Ft ∪ {∅} (16d)

At each time step, there exists a default action for each courier denoted by ∅, indicating that

they will not be assigned a new batch of orders. The constraints represented by (16b) guarantee

that each individual courier c at time t is assigned to exactly one feasible action. Similarly, (16c)
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ensures that each individual order o is assigned to at most one courier. Furthermore, (16d) ensures

that all decision variables are binary. (Importantly, we note that the set of actions for feasible

matchings, Ft, may be further reduced by considering only the permutation for each updated queue

cords′ which minimizes the time taken to make all deliveries in the queue and return to the depot.)

Finally, the objective in (16a) calculates the total reward over the immediate reward of assigning

courier c to the feasible matching f , which is calculated as in Equation (2) and denoted by rtcf , as

well as the downstream reward, denoted by scoret(c ↔ f), gained from matching a courier c to

a feasible decision f at time t.

4.3.2. NeurADP-based VFA

Next, given the MatchingIP, we detail how NeurADP approximates the value functions,

linking it to the ADP content reviewed in Section 4.1. To derive the dispatching policy, NeurADP

looks to solve the Bellman optimality equations introduced in Equation (8). Similar to ADP, Neu-

rADP utilizes the concept of post-decision states, and divides the dynamic programming equation

into two parts, namely Equation (9a) and Equation (9b). Furthermore, it aims to approximate

the post-decision state value function, denoted by V Post
t (SCourier-Post

t ), also by first performing

a courier-based decomposition. More specifically, the value function of the courier-based post-

decision state is decomposed into the individual couriers’ value functions as follows:

V̄ Post
t (SCourier-Post

t ) ≈
∑
c∈C

Ṽ Post
tc (SCourier-Post

tc ). (17)

NeurADP then approximates the value functions of individual couriers. In doing so, the assump-

tion is made that a courier’s long-term reward is minimally affected by the actions of other couriers

in the current decision epoch. This assumption, rooted in the idea that long-term rewards pri-

marily stem from the interaction between delivery routes, enables modeling that focuses on the

pre-decision state of other couriers. Thus, it simplifies and expedites the optimization of delivery

routes and schedules by reducing computational complexity and not heavily weighing the numer-

ous possible actions of other couriers. The approximation of individual courier value functions can
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be succinctly expressed as:

Ṽ Post
tc (SCourier-Post

tc ) ≈ V̂ Post
tc (SCourier-Post

tc , {Stc′}c′ ̸=c). (18)

Here, the approximated post-decision state value function for courier c, denoted by V̄ Post
tc , accepts

input data about its own post-decision state, SCourier-Post
tc , as well as auxiliary pre-decision state

information from the other couriers, {Stc′}c′ ̸=c. This auxiliary data provides context about the

environment in which courier c operates before taking an action, including the number of couriers

on break, those at the warehouse, the average occupied capacity of other couriers, and the volume

of incoming orders at that time step. Incorporating this additional information allows for a more

accurate evaluation of the post-decision state value, considering that order acceptance is influenced

not just by a courier’s state, but also by the competitive nature of their operational environment.

The overarching value function may thus be written as follows:

V̄ Post
t (SCourier-Post

t ) ≈
∑
c∈C

V̂ Post
tc (SCourier-Post

tc , {Stc′}c′ ̸=c). (19)

The individual value functions, V̂ Post
tc (·), are linearly integrated into the overall value function

within the MatchingIP. That is, scoret(c ↔ f) terms in the MatchingIP objective, which

reflect the estimated long-term value of assigning a specific courier (c) to a particular feasible

matching (f ), are derived from V̂ Post
tc (·). Specifically, for each (c, f) pair, first the post-decision

state, SCourier-Post
tc , is determined and then the corresponding value from the approximated value

function, V̂ Post
tc (·), is obtained from the trained neural network to calculate the scoret(c ↔ f)

values. This approach reduces the evaluations of the non-linear value function from an exponential

to a linear scale with respect to the number of couriers.

To update the individual courier-based VFAs, NeurADP explicitly calculates the gradients

associated with each parameter using standard symbolic differentiation libraries. It then adjusts

these parameters to minimize the L2 distance between the one-step return estimate of the Bellman

equation and the current value function estimate. In order to tackle stability and scalability issues,

which are particularly vital in neural network value function learning, NeurADP employs a com-
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bination of methodological and practical strategies. These include the use of off-policy updates to

stabilize Bellman updates and addressing data scarcity by directly storing sets of feasible actions.

NeurADP additionally utilizes a singular neural network for individual courier value functions and

employs prioritized experience replay to reuse experience efficiently. Moreover, practical sim-

plifications such as utilizing low-dimensional embeddings for discrete locations and introducing

Gaussian noise for exploration during training are strategically implemented. This ensures that

learning remains manageable and is precisely tailored to the complexities and subtleties of the

underlying problem space.

4.3.3. Overall algorithm

The overall NeurADP algorithm for the ODP is presented in Figure 1 in the form of a flow-

chart. Initially, the system, along with prediction and target neural networks (used as value func-

tions for courier post-decision states), and couriers with their shifts are initialized. Orders stochas-

tically arrive and, depending on courier availability, feasible actions between couriers and orders

are enumerated. During training, these actions are stored as future training experiences. The

prediction neural network scores each action based on immediate rewards and the value of the

resultant post-decision state, with Gaussian noise added for exploratory purposes during training

[13].

The MatchingIP defined in (16a)-(16d) is utilized to determine optimal actions, maximiz-

ing immediate and anticipated downstream rewards. If training, the replay buffer is checked for

sufficient experiences to begin sampling and value function training. When utilizing a prioritized

replay buffer, the associated weights with each experience are retrieved. The target neural network

scores feasible actions from the experience, and the MatchingIP chooses the best actions. The

prediction network updates the value of each post-decision state at time t through gradient descent,

using the MatchingIP-selected best action value at time t + 1. If a prioritized replay is in use,

experience weights are updated. After sampling experiences, the algorithm collates rewards from

the current iteration, simulates courier movements, and advances in time. If the subsequent time

step marks the day’s end, the iteration concludes; otherwise, it progresses to the new time step.
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Figure 1: NeurADP algorithm flowchart.

4.3.4. Neural network architecture

The architecture of the underlying neural network value function begins with an embedding

layer which takes as input the current location of the courier as well as the destination locations of

its matched orders. From here, these embedded location representations, complemented by their

associated delays, are inputted into an LSTM layer. The output is then combined with additional

pertinent auxiliary information and proceeds through several dense layers, ultimately yielding a

single value. Furthermore, parameter tuning is undertaken throughout the network’s architecture,

encompassing modifications to embedding sizes and variations in the number of dense layers.

5. Experimental Setup

In this section, we describe the datasets and the benchmark policies employed in our numeri-

cal study. All the experiments are conducted using Python 3.6.13 on Google Cloud servers and we

use IBM ILOG CPLEX Optimization Studio version 12.10.0 to solve the IP models.
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5.1. Datasets

In our numerical study, we examine four distinct geographical-based datasets containing de-

livery information of online orders: the Brooklyn, Chicago, Bangalore, and Iowa datasets. The

Brooklyn and Chicago datasets [2] encompass delivery data for online DoorDash requests within

their respective urban cities, while the Bangalore dataset [14] incorporates order requests from

restaurants in Bangalore, India. Finally, the Iowa dataset, which was introduced by Ulmer et al.

[25], is comprised of destination locations for meal deliveries within Iowa City. Each dataset in-

cludes latitude-longitude points for drop-off locations associated with real-world order requests

from which we extract a frequency distribution of the popularity of each delivery location within

the city from which we sample. The datasets for Brooklyn, Iowa, Chicago, and Bangalore consist

of 988, 500, 117, and 77 unique destination locations, respectively. A warehouse is located at the

centre of each distribution of order destinations and the distance between each pair of locations is

calculated via the haversine formula. To account for real-world travel time variations influenced

by travel direction and accurately depict the unevenness in travel between two points, randomness

is incorporated into the travel time values. This involves introducing an additional noise of up to

10% to each value.

We consider a 24-hour problem horizon which is broken into 5-minute decision epochs (i.e.,

δ = 5 minutes). For all the datasets, the number of requests which arrive between each decision

epoch is sampled based upon a distribution of real-world order requests, as presented in Kavuk

et al. [9], with a 1-order request standard deviation band. Figure 2 shows a series of box plots that

illustrate the distribution of distances between drop-off locations and the warehouse in each dataset.

The calculation of the multiplier term β in the reward function (2) depends on the courier capacity

parameter and the dataset as described in Section 3.2. For instance, for the Brooklyn dataset, for

the capacity of 1, 2, 3 and 4, the β values are 50, 73, 96, and 119, respectively. Similarly, for the

courier capacity value of 3, the β values are 467, 43, and 260 for Bangalore, Chicago and Iowa

datasets, respectively.

Figure 3 displays the geographic distribution of delivery locations in the Brooklyn dataset

(as a representative dataset) along with the distribution of order arrivals throughout the day. The
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Figure 2: Distribution of drop-off points for each dataset.

schedules of couriers are manually planned in advance to accommodate the anticipated fluctuations

in order volume throughout the day. This entails scheduling fewer shifts during expected periods

of low demand and scheduling more shifts during peak hours. More specifically, the quantity of

couriers on duty closely mirrors the pattern of order arrivals depicted in Figure 3b. Between the

hours of 3 AM and 6 AM, when the order volume is at its lowest, the courier staffing reaches its

minimum. Conversely, the staffing level reaches its peak during the rush-hour period of 7 PM to 9

PM.
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Figure 3: Brooklyn dataset specifications.
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5.2. Benchmark Policies

We consider a family of benchmark policies in our comparative analysis with NeurADP,

namely, a set of myopic policies, which we denote by Myopic, as well as a group of DRL poli-

cies, labeled as DRL. Generally, myopic policies encompass greedy strategies which prioritize

immediate rewards obtained from actions taken in the present time step, while disregarding any

future consequences of these decisions. These policies facilitate a streamlined decision-making

process, offering benefits when addressing complex and dynamic problems where it may not be

feasible to calculate a globally optimal policy, as seen in the case of our order dispatching prob-

lem. However, as a result of their greedy nature, myopic policies may not always produce optimal

long-term policies, and are thus often used as baselines. The employed Myopic policies follow

a similar pattern and are implemented as follows. Available couriers are sorted so as to prioritize

varying system dynamics, such as distance to the warehouse and available capacity. Each courier

is then examined individually, with the aim of identifying the action between the courier and the

set of incoming orders which maximizes the courier’s order fulfillment while minimizing delivery

time. For instance, in the case where couriers are sorted based upon proximity to the warehouse,

we begin by evaluating feasible actions for the nearest courier. Among the available actions, we

select the one which maximizes the number of orders which are matched, while minimizing the

delivery time for both newly assigned and previously assigned orders. In cases where multiple

actions serve an equal number of orders, the preference is given to the action which allows the

courier to complete their assigned deliveries more quickly. Once an action is determined for a

courier, we finalize the matching and move on to the next available courier in the sorted queue.

We examine a collection of DRL policies the ultra-fast ODP, which are derived from those

introduced in [9]. At each time step, we employ a trained Double Deep-Q Network (DDQN) to

make accept-reject determinations for incoming online orders. The problem and decision dynamics

are outlined as follows. The orders are sorted based upon their estimated delivery durations (direct

delivery time). We evaluate each order individually and utilize the DDQN network to determine

whether to accept or reject the order. If the decision is to accept, we employ a straightforward

heuristic to match the order with an available courier, taking into account varying system dynamics
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such as distance to the warehouse and available capacity. A reward of 1 is accrued if an order is

accepted and successfully matched with an available courier, and 0 reward is accrued otherwise.

In the event that an order is accepted but cannot be fulfilled due to courier unavailability caused

by capacity or time constraints, the order is disregarded, resulting in no reward. Once a decision is

made and the order is either matched or ignored, we proceed to the next order in the sorted queue.

The DDQN network, responsible for learning the accept-reject actions, is a feed-forward neural

network and it is trained with the same dataset used for NeurADP. It receives inputs regarding the

state of the couriers, including their distances to the warehouse, their currently assigned orders,

and the number of couriers on not on shift or at the warehouse. Additionally, information about the

specific order under consideration is incorporated, encompassing details such as the destination

location and delivery deadline. The network comprises four hidden layers with 32, 64, 64, and

32 neurons, respectively, and an output layer with two neurons representing the accept and reject

decisions.

6. Results

In this section, we present results from our detailed numerical study for the ultra-fast ODP. We

primarily consider the average number of orders fulfilled within the 24-hour decision horizon while

comparing the performance of the NeurADP policy against the two classes of benchmark policies.

More specifically, we assess each policy over 20 days of testing data and subsequently compute

the average total number of orders that each policy has encountered and fulfilled across these test

days. Orders are generated via sampling at every decision epoch, and, according to a given policy,

a feasible decision is made to batch them together and match them with couriers. Upon matching,

the couriers’ assigned orders are updated, and a simulation of the couriers’ movement toward their

next destination takes place. Below, we first introduce two novel artificial bounds on the achievable

performance level that enhance our understanding of the quality of our solutions. Then, we delve

into the analysis of our overall findings.
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6.1. Artificial Bounds on Achievable Performance Level

Considering that problems such as the ODP often involve large, complex and highly dynamic

systems, deriving optimal solutions for such problems is often infeasible and methodologies for

deriving theoretical bounds are usually unsatisfactory [3]. As such, practitioners typically evaluate

policy performance based on the total potential reward available throughout the problem horizon.

In the case of the ODP, this corresponds to the total number of online orders received in the system.

However, depending upon the problem context and parameters, this overarching upper limit may

not be realistic or reasonable to achieve, as it may be infeasible to come close to the maximum

potential reward. For instance, in the ODP, though the system may receive a large number of

orders throughout the day, provided the capacity constraints of couriers, order deadlines, number

of couriers, and courier shift times, it may not be feasible to serve even half of those orders. As

such, we introduce two novel benchmark ceilings.

For our first benchmark ceiling, we consider a scenario where orders are served immediately

upon being matched with couriers, which we define as Direct. Specifically, we maintain the

same constraints based on courier capacities and order deadlines. However, once a batch of orders

is matched with the available couriers, we assume that all orders are delivered by the start of the

subsequent decision epoch. This implies that all available couriers, as long as they are on their

shift, will be ready in the following time step with an empty queue. This allows us to establish

a lower bound, relative to the total number of orders observed, on how well our NeurADP and

benchmark policies could have performed, even in this unrealistic setting. The second benchmark

ceiling involves applying the NeurADP framework to each individual day’s worth of orders in our

testing dataset. Instead of training our NeurADP policy on a separate training dataset, deriving

a policy that maximizes the expected reward, and subsequently testing it on a separate testing

dataset, we train the NeurADP policy on the same testing dataset that we ultimately evaluate it

on. This results in an alternative NeurADP policy, which we refer to as NeurADP-Fixed. This

policy aims to derive the best policy based on a deterministic set of orders for a specific day.

This approach provides us with additional insights into the performance of alternative policies for

ultra-fast ODP.
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6.2. Order Dispatching Performance

We evaluate the results from our experiments with respect to four primary inputs: the num-

ber of couriers, delay time, courier capacity, and geographical location. The number of couriers

is obtained by accounting for all the couriers working within a 24-hour period, while the delay

time represents the maximum duration of time a courier has from an order’s entry into the sys-

tem to their drop-off. This duration is used to determine the order deadline, calculated using

Equation (1). The courier capacity specifies the maximum number of orders a courier can carry

simultaneously, while the geographic location pertains to the spatial dataset and the distribution of

requests based on geography. In our baseline configuration, we utilize the Brooklyn dataset and

set the parameters to include 15 couriers, a maximum allowable delay time of 10 minutes, and a

maximum courier capacity of 3 orders. Due to the extensive computational time required to derive

the NeurADP-Fixed ceiling values for each experiment, we consider it exclusively for the ex-

periments related to our baseline configuration and the varying number of couriers and utilize the

Direct ceiling for the remaining experiments. We begin by examining the baseline configuration

to identify the most suitable benchmark policies from the Myopic and DRL policy classes, which

are later used in the comparative analysis with the NeurADP policy.

6.2.1. Baseline Configuration

Our primary benchmark policies exhibit several variations in the matching process between

orders and couriers. In the DRL policy, we have the flexibility to match accepted orders with

couriers based on either their distance or current queue capacity. In terms of distance, the order can

be assigned to the closest available courier or the farthest one. Regarding capacity, we can allocate

the order to the courier with the least occupied queue or the most occupied queue. Similarly, for

the Myopic policy, the matching of a batch of orders can be determined by considering both the

proximity of distance and the capacity of the courier queue. We consider four variations of each

benchmark policy. “DC” represents the utilization of distance in the matching process, where the

closest courier is chosen. Conversely, “DF” signifies that the farthest courier is selected based

on distance. Moreover, “CE” denotes the utilization of capacity for matching, with the emptiest

courier being selected, while “CF” indicates the selection of the fullest courier based on capacity.
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Table 2 provides the outcomes of the considered policy variants for the baseline configuration

of our experimental setup. The table includes the NeurADP-Fixed value, which indicates the

average number of orders served using the fixed ceiling, as well as the percentage of orders fulfilled

by each policy, denoted as “% Filled”. More specifically, we calculate the average number of orders

served by each policy and divide it by the fixed ceiling value. This result is then multiplied by 100,

and a standard deviation is provided for each policy. Furthermore, the percentage increase of the

NeurADP policy compared to the other benchmark policies is included in the final right-most

column labeled “% Incr. NeurADP”. This metric is calculated by subtracting the average number

of orders fulfilled by the benchmark policies from the average number of orders fulfilled by the

NeurADP policy, then dividing the result by the “Fixed Ceiling” value, multiplied by 100.

Table 2: Performance of different policies for ultra-fast ODP for baseline configuration (avg. number of orders
fulfilled over 20-day test window is reported for the Fixed Ceiling; performance of other policies are w.r.t. Fixed
Ceiling, provided as mean±stdev)

.

Policy Fixed
Ceiling

% Filled % Incr.
NeurADP

NeurADP 955.00 97.96 ± 1.97 -

DRL-DC - 86.04 ± 1.53 +11.92
DRL-DF - 83.65 ± 1.74 +14.31
DRL-CE - 81.04 ± 1.75 +16.92
DRL-CF - 85.81 ± 1.64 +12.15

Myopic-DC - 91.27 ± 1.64 +6.69
Myopic-DF - 87.79 ± 2.15 +10.17
Myopic-CE - 88.58 ± 1.32 +9.38
Myopic-CF - 90.77 ± 2.18 +7.19

In general, we observe that the NeurADP policy consistently outperforms all variations of

benchmark policies for both the DRL and Myopic cases. This can be attributed to its enhanced

ability to efficiently match batches of orders with available couriers, which we explore in more

detail in further experiments below. Additionally, we find that the Myopic policies exhibit con-

sistently superior performance compared to the DRL-based policies. One possible explanation for

this trend is that the Myopic policy settings prioritize maximizing the number of incoming orders

batched together when matching them with a given courier. On the other hand, the DRL policy

tends to make simpler accept/reject decisions for each individual order and matches them individ-
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ually as well (i.e., DRL-based approach does not try to identify the best batch of orders). Further-

more, we note that among the various benchmark policy variations, ‘DRL-DC’ and ‘Myopic-DC’

consistently yield the best performance. As a result, we utilize ‘DRL-DC’ as our DRL policy and

‘Myopic-DC’ as our Myopic policy for the remainder of the experiments.

6.2.2. Impact of Number of Couriers

We examine the impact of the number of available couriers on the number of fulfilled orders

throughout the 24-hour problem horizon. The results of these experiments are presented in Table 3

for 10, 15, and 20 couriers. We once again utilize the NeurADP-Fixed ceiling, whose values of

average orders served are shown under “Fixed Ceiling”, and present the percentage of orders each

policy fulfills based upon this ceiling in columns labeled “% NeurADP Filled”, “% Myopic Filled”,

and “% DRL Filled”. As before, we calculate the average number of orders served by each policy

and divide it by the ceiling value. This result is then multiplied by 100, and a standard deviation

is provided for each policy. The final two columns illustrate the percentage increase in the average

number of orders fulfilled by the NeurADP policy compared to that of the Myopic and DRL poli-

cies, respectively. This metric is calculated by subtracting the average number of orders fulfilled

by the benchmark policies from the average number of orders fulfilled by the NeurADP policy,

then dividing the result by the “Fixed Ceiling” value, multiplied by 100. These column definitions

remain consistent throughout the subsequent tables presented.

Table 3: Impact of number of couriers on order fulfillment for the Brooklyn dataset (avg. number of orders fulfilled
over 20-day test window is reported for the Fixed Ceiling; performance of other settings are w.r.t. Fixed Ceiling,
provided as mean±stdev).

Number of
Couriers

Fixed
Ceiling

% NeurADP Filled % Myopic Filled % DRL Filled % Incr. Over
Myopic

% Incr.
Over DRL

10 couriers 691.85 97.89 ± 1.43 86.37 ± 1.06 82.14 ± 1.52 +11.52 +15.75
15 couriers 955.00 97.96 ± 1.97 91.27 ± 1.64 86.04 ± 1.53 +6.69 +11.92
20 couriers 1134.70 98.30 ± 1.98 95.21 ± 2.23 90.22 ± 1.79 +3.09 +8.08

We observe that, once again, NeurADP is able to consistently outperform the benchmark

policies. This superiority in performance is due to several factors. First, the NeurADP policy

enables, on average, a greater number of agents to be available at the warehouse, compared to the

benchmark policies. More specifically, in the scenario with 10 couriers, there are on average 0.37
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couriers available at the warehouse at each decision epoch throughout the day, while there are only

0.06 for each of the DRL and Myopic policies. This is due to NeurADP’s ability to match batches

of orders to couriers which minimize their travel time away from the warehouse, yet maximize

their orders fulfilled. More specifically, unlike the other policies which look to fill the queue of

each courier at each time step, the NeurADP policy looks to rather match couriers with orders

which best allow them to return to the warehouse as soon as possible. Doing so allows them to be

able to be available to more incoming orders in subsequent time steps. This can be better seen in

Figure 4, in which we see that the average return time of a courier making a delivery is consistently

lower than both benchmark policies for the NeurADP. Additionally, we see that NeurADP accepts

orders which on average require less travel time to be delivered. More specifically, the average

direct travel time from the depot to the delivery location for an accepted order is 14.41 minutes for

NeurADP, while it is 15.24 and 15.61 minutes for the DRL and Myopic policies, respectively.

Furthermore, the average queue size of couriers making deliveries is 1.42 orders for NeurADP,

while it is respectively 1.84 and 2.02 for the DRL and Myopic cases. Thus, by ignoring orders at

each time step, which may be out of the way for couriers, and by prioritizing return times to the

depot, NeurADP is able to more efficiently serve orders throughout the day. This superiority in

performance deteriorates, however, as more couriers are incorporated into the environment. This

can be attributed to the diminishing significance of the quality of the employed policy as more

couriers become available. In other words, when there are a large number of couriers available to

handle order deliveries at each time step, the specific policy being used becomes less critical since

most policies are capable of performing relatively well in such scenarios.

6.2.3. Impact of Delay Time

We next assess the impact of the permitted delay time on the number of orders served. The

summary results for this experiment are provided in Table 4. We employ the Direct ceiling

to establish the upper bound on the number of orders fulfilled and illustrate the percentage of

fulfilled orders by each policy based on this ceiling. Similar to previous experiments, we observe

that the NeurADP policy outperforms the two benchmark policies for all variations of delay time.

Moreover, we once again notice a decline in relative performance improvements attributed to the
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Figure 4: Brooklyn dataset base-case auxiliary statistics.

NeurADP policy compared to the two benchmark policies as the problem setting becomes less

restrictive (i.e., when the maximum allowed delay time is increased).

Table 4: Impact of delay time on order fulfillment for the Brooklyn dataset (avg. number of orders fulfilled over
20-day test window is reported for the Direct Ceiling; performance of other settings are w.r.t. Direct Ceiling, provided
as mean±stdev).

Delay Time Direct
Ceiling

% NeurADP Filled % Myopic Filled % DRL Filled % Incr. Over
Myopic

% Incr.
Over DRL

5 minutes 1560.75 55.80 ± 0.95 49.95 ± 0.84 46.33 ± 0.76 +5.85 +9.47
10 minutes 1578.65 59.26 ± 0.62 55.21 ± 0.92 52.04 ± 0.50 +4.04 +7.22
15 minutes 1584.75 59.65 ± 0.50 56.84 ± 0.47 53.51 ± 0.47 +2.81 +6.14

Figure 5 illustrates the fulfillment of orders by each policy over the problem horizon in the 10-

minute delay scenario. Initially, when there are relatively few incoming orders, all policies exhibit

similar performance in fulfilling the incoming orders. However, as the day progresses and a higher

volume of orders arrives at each decision epoch, the NeurADP policy surpasses the benchmark

policies, especially during peak hours. This observation highlights that when the number of orders

is low and there are sufficient couriers available, all policies perform relatively well. However,

as the number of orders increases and couriers become busier, making informed and intelligent

decisions becomes crucial. In such situations involving ultra-fast delivery during peak periods, the
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NeurADP policy demonstrates superior performance, effectively outperforming the other policies.
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Figure 5: Orders seen and fulfilled throughout the day for the Brooklyn dataset.

6.2.4. Impact of Courier Capacity

Table 5 presents the results on the impact of the maximum capacity size of a courier and the

number of orders fulfilled. These results reaffirm the superiority of the NeurADP policy compared

to the benchmark policies across different capacity variations. Interestingly, the findings suggest

that the addition of extra capacity yields diminishing returns. Specifically, increasing the capacity

from 1 to 2 orders results in an average increase of 172.51 orders served among the three policies.

However, the subsequent increases in capacity from 2 to 3 orders and from 3 to 4 orders correspond

to smaller increases of 107.67 and 64.68 orders served, respectively. This trend is also observed

in the average filled queue size of couriers making deliveries. The increase in filled queue size

from a maximum capacity of 1 to 2 orders is 0.44 orders on average, while the increases from 2

to 3 orders and 3 to 4 orders are only 0.27 and 0.11 orders, respectively. It is important to note

that capacity depends on various factors, such as delay time, and increasing capacity may not

necessarily translate into serving more orders due to time constraints or couriers available. Thus,

our findings suggest that while the NeurADP policy exhibits improvement over the DRL policy up
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to a capacity of 3 orders, the improvement diminishes for a capacity of 4 orders. This indicates

that as the capacity increases, the problem setting becomes less restrictive, allowing for a wider

range of effective policies, which benefits the NeurADP policy and enables it to benefit from

smarter decision-making. However, as the capacity continues to increase, the improvement of

NeurADP over the DRL policy declines, suggesting that well-performing policies can be more

easily obtained and that the quality of the policy becomes less crucial when the problem setting

becomes too non-restrictive. The improvement of NeurADP over the Myopic policy follows a

similar general trend as well.

Table 5: Impact of courier capacity on order fulfillment for the Brooklyn dataset (avg. number of orders fulfilled over
20-day test window is reported for the Direct Ceiling; performance of other settings are w.r.t. Direct Ceiling, provided
as mean±stdev).

Courier
Capacity

Direct
Ceiling

% NeurADP Filled % Myopic Filled % DRL Filled % Incr. Over
Myopic

% Incr.
Over DRL

1 order 993.10 62.82 ± 0.96 58.75 ± 1.01 58.48 ± 1.05 +4.07 +4.34
2 orders 1481.95 55.03 ± 0.69 51.47 ± 0.65 49.08 ± 0.43 +3.56 +5.95
3 orders 1578.65 59.26 ± 0.62 55.21 ± 0.92 52.04 ± 0.50 +4.04 +7.22
4 orders 1614.00 61.10 ± 0.55 58.54 ± 0.60 55.25 ± 0.45 +2.56 +5.85

6.2.5. Impact of Geographic Location

The experimental results related to different geographic locations are presented in Table 6,

which include Chicago, Brooklyn, Iowa, and Bangalore datasets. Each dataset has its unique dis-

tribution of order and delivery locations, as depicted in Figure 2 and Figure 3. We observe that

in datasets where the delivery area is more concentrated, like the Chicago dataset, all policies

perform well in fulfilling order requests, and the performance advantage of the NeurADP pol-

icy over the benchmark policies is relatively small. However, as the delivery area expands and

the delivery locations become more scattered, the improvement of the NeurADP policy over the

benchmark policies becomes more significant. This can be explained by the following reason-

ing: in dense areas where delivery locations are close to the depot, making smarter decisions in

matching couriers to orders or rejecting certain orders to wait for the next time step becomes less

critical. This is because even with sub-optimal matching, the courier will still be able to fulfill all

assigned orders and return to the warehouse on time for the next time step. However, in datasets
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with sparse delivery locations, such as the Bangalore dataset, where travel time from the depot to

each location is longer, making sub-optimal matching decisions between couriers and incoming

orders becomes more costly. A courier being occupied with sub-optimal assignments for a longer

duration means they are unavailable to serve new orders, leading to delays. This becomes more

apparent when comparing the average return times of couriers for each policy across the different

datasets. For the Chicago dataset, the average return time for couriers making deliveries under the

NeurADP policy is 3.63 minutes, while it is 4.63 and 4.22 minutes for the DRL and Myopic poli-

cies, respectively, showing a relatively small difference. In contrast, for the Bangalore dataset,

the average return time for a courier in the NeurADP policy is 18.27 minutes, while it is 30.66

and 30.03 minutes for the DRL and Myopic policies, respectively, demonstrating a much larger

disparity. As such, making poor matching decisions in sparse scenarios incurs higher costs, and

having a smarter policy becomes significantly more important.

Table 6: Impact of geographic location on order fulfillment (avg. number of orders fulfilled over 20-day test window
is reported for the Direct Ceiling for each location; performance of the policies are w.r.t. Direct Ceiling, provided as
mean±stdev).

Geographic
Location

Direct
Ceiling

% NeurADP Filled % Myopic Filled % DRL Filled % Incr. Over
Myopic

% Incr.
Over DRL

Chicago 1601.60 96.93 ± 0.37 96.61 ± 0.32 94.51 ± 0.35 +0.33 +2.43
Brooklyn 1578.65 59.26 ± 0.62 55.21 ± 0.92 52.04 ± 0.50 +4.04 +7.22
Iowa 1549.90 38.19 ± 0.46 30.63 ± 0.50 30.02 ± 0.61 +7.56 +8.17
Bangalore 1468.80 24.14 ± 0.24 16.88 ± 0.33 15.54 ± 0.52 +7.25 +8.60

6.3. Computational Performance of NeurADP

Lastly, we provide a comprehensive overview of the auxiliary statistics related to the Neu-

rADP algorithm drawn from our experiments. Notably, the algorithm takes approximately 8 hours

to execute in our baseline experiment. Within a NeurADP iteration, the computational time is

predominantly consumed by three tasks: data preparation for the neural network and evaluation

of feasible actions (42.48%), the generation of feasible actions while satisfying the constraints

(28.83%), and the MatchingIP-driven action selection process (26.39%). Other tasks collec-

tively account for less than 1% of the total computational time. The considerable time spent on

generating feasible actions highlights the value of experience sampling, suggesting that storing
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such actions for future reference could lead to significant computational savings. Our results also

show that including auxiliary information in our post-decision state gives a modest performance

enhancement of 0.61%. Considering the less pronounced geographic competition among couriers

in the ODP compared to the ride-pool matching problem, it can be expected that such additional

information about other system agents might not yield significant benefits. Nevertheless, given the

slight performance boost and minimal computational overhead, we have opted to incorporate this

auxiliary information in our experiments.

7. Conclusion

This paper addresses the challenges and complexities of the same-day delivery problem by

focusing on the order dispatching and matching aspects. Our work builds upon existing research

and contributes to the literature by introducing innovative features and capabilities. It proposes the

incorporation of batching and courier queues to enhance dispatching operations, providing a more

realistic representation of the order dispatching process. Additionally, the scope of the problem is

expanded to consider larger problem sizes, capturing the complexities of managing larger-scale dis-

patching operations. Furthermore, our paper introduces the application of the NeurADP approach

to solving ultra-fast ODP, extending the potential applications of NeurADP beyond its original

context. The effectiveness of NeurADP is demonstrated through implementation and comparison

with myopic and DRL baselines, highlighting its advantages. Original datasets tailored for order

dispatching operations are introduced to support the research and facilitate comprehensive eval-

uations. The paper also presents artificial bounds for evaluating solution quality and conducts a

sensitivity analysis to investigate the performance of NeurADP under various factors. Overall, this

work contributes to advancing the understanding and applicability of solution methodologies in

the field of order dispatching and same-day delivery, providing valuable insights for practitioners

and future research endeavors.

Future work may aim to enhance the representation of uncertainty in this problem setting by

introducing loading and pickup delays, thereby capturing real-world dynamics more accurately.

Additionally, exploring the incorporation of time-dependent uncertainty in order arrivals would

provide insights into how service efficiency and quality impact the frequency of incoming order
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requests. Furthermore, multi-modal delivery within this scenario, encompassing various trans-

portation modes like drones, autonomous vehicles, and traditional couriers can be investigated in

future works as well. This approach would address the emerging trend of utilizing diverse delivery

methods to optimize efficiency and address a range of delivery scenarios. Finally, fairness aspects

of delivery services in this expedited delivery setting, aiming to ensure equitable access to timely

deliveries across all geographical areas constitute an interesting research avenue.
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