
A proof system for certifying symmetry and
optimality reasoning in integer programming ?

Jasper van Doornmalen1, Leon Eifler2, Ambros Gleixner2,3, and Christopher
Hojny1

1 TU Eindhoven, The Netherlands, {m.j.v.doornmalen,c.hojny}@tue.nl
2 Zuse Institute Berlin, Germany, eifler@zib.de

3 HTW Berlin, Germany, gleixner@htw-berlin.de

Abstract. We present a proof system for establishing the correctness
of results produced by optimization algorithms, with a focus on mixed-
integer programming (MIP). Our system generalizes the seminal work of
Bogaerts, Gocht, McCreesh, and Nordström (2022) for binary programs
to handle any additional difficulties arising from unbounded and contin-
uous variables, and covers a broad range of solving techniques, including
symmetry handling, cutting planes, and presolving reductions. Consis-
tency across all decisions that affect the feasible region is achieved by
a pair of transitive relations on the set of solutions, which relies on the
newly introduced notion of consistent branching trees. Combined with
a series of machine-verifiable derivation rules, the resulting framework
offers practical solutions to enhance the trust in integer programming as
a methodology for applications where reliability and correctness are key.

1 Introduction

In this paper, we are concerned with general optimization problems of the form
OPT(f, F ) := min{f(x) : x ∈ F} for a real-valued function f : Rn → R and
a feasible region F ⊆ Rn defined by a set of constraints. In particular, we are
interested in the solution of mixed-integer programs (MIPs) to optimality, for
which state-of-the-art algorithms are composed of a large array of different solv-
ing techniques [1,2,16,45,57]. Though their correctness is proven on paper, with
today’s tools it seems prohibitively difficult to verify that they are implemented
correctly in complex software. In fact, there have been recurring reports of in-
correct results in different types of solvers [3, 13,19,34].

Instead of verifying correctness of an implementation, a more viable approach
is to supplement the computed result with a proof of correctness [4, 54] that
can be independently and automatically verified. This approach has long been
the standard in the SAT community [21, 22, 40, 64], but there also exist proof-
logging mechanisms for broader classes of problems such as in SMT solving [9,55],
pseudo-boolean optimization [29,35], or exact MIP [14].
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For MIP, no formal proof system has been developed to this date, and the
solving techniques that are certifiable in [14] are severely limited, not covering
any methods that remove parts of the feasible region from the search space, e.g.,
due to symmetry arguments. A seminal paper in this direction is [12], which
describes a proof system to handle symmetry- and redundancy-based reasoning
for pseudo-boolean optimization. Our work follows the same paradigm to develop
a proof system that addresses the challenges posed by the presence of unbounded
and continuous variables. As a result, we can certify the correctness of a wide
range of static and dynamic, global and local symmetry handling methods, and
many other state-of-the-art techniques from the MIP literature.

The overall strategy is to define a configuration as a snapshot of the deriva-
tions during the solving process. A trivial starting configuration is iteratively
updated by a series of rules that are proven to establish valid derivations, even-
tually certifying optimality or infeasibility of OPT(f, F ). To that end, in Sec. 2
we introduce the notion of a consistent branching tree, which is used to prevent
inconsistencies among all derivations that remove parts of the feasible region and
to define validity of a configuration. Vaguely speaking, any valid configuration
admits the same optimal objective value as OPT(f, F ). In Sec. 3, we present
a set of validity-preserving transition rules that make it possible to certify op-
timality or infeasibility sequentially. In Sec. 4, we illustrate the framework for
many MIP-techniques within LP-based branch-and-bound and discuss how cer-
tificates could be encoded and verified in practice. We conclude with an outlook
in Sec. 5.

2 Trees, Configurations, and Validity

The central ingredient of our proof system, as in [12], is a reflexive and transitive
relation on the solution space that defines a consistent direction for symmetry
handling and optimality-based reductions. While in [12] this preorder remains
mostly abstract, we provide a concrete construction designed to resolve the ad-
ditional difficulties introduced by the presence of continuous and unbounded
variables, and to capture the degrees of freedom due to locality in a branch-and-
bound process. We require the following notational conventions.

In the abstract setting of Secs. 2 and 3, we consider constraints to be arbitrary
subsets C ∈ P(Rn), the power set of Rn; C = Rn \ C denotes its complement.
For a set of constraints C ⊆ P(Rn), we write

⋂
C as a shorthand for

⋂
C∈C C.

For τ = (i1, . . . , ik) ∈ {±1, . . . ,±n}k, we define by slight abuse of notation

τ : Rn → Rk, τ(x) :=
(
sgn(i1)x|i1|, . . . , sgn(ik)x|ik|

)
,

where sgn(·) denotes the sign function, and τ(C) := {τ(x) : x ∈ C} for C ⊆ Rn.
We write τ E τ ′ = (i′1, . . . , i

′
k′) if ij = i′j for all 1 ≤ j ≤ k ≤ k′. We write δ+(v)

for the set of children of a node v in a directed graph, and [a] := {j ∈ Z+ : j ≤ a}.

Definition 1. Let C ⊆ P(Rn), then we call T = (V,E,B, σ) a C-consistent
branching tree if the following conditions hold:
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(T1) (V,E) is an arborescence with 1 ≤ |V | < ∞ and root r ∈ V .
(T2) Each v ∈ V has attached a branching constraint Bv ⊆ Rn, and Br = Rn.
(T3) For all u ∈ V with δ+(u) 6= ∅ we have

⋂
C ⊆

⋃
v∈δ+(u) Bv.

(T4) Each v ∈ V has attached a list σv ∈ {±1, . . . ,±n}`v , `v ∈ {0, 1, . . . , n}, of
signed variable indices without duplicates in |(σv)1|, . . . , |(σv)`v |.

(T5) For all u ∈ V , v ∈ δ+(u), we have σu E σv.
(T6) For all v ∈ V and i ∈ [`v], we have max{σv(x)i : x ∈

⋂
C} < ∞.

(T7) For all u ∈ V and v, w ∈ δ+(u), v 6= w, we have σu(Bv) ∩ σu(Bw) = ∅.
For a node u ∈ V with δ+(u) 6= ∅, (T3) and (T7) ensure that the children of
u partition the feasible region of u; in particular, for every x ∈

⋂
C, there is a

unique leaf of (V,E) whose feasible region contains x, denoted by leaf(x), see
Lems. 1 and 2 in Sec. A.1. Hence, for x, y ∈

⋂
C, there exists a deepest common

node w =: dcn(x, y) with x and y both contained in the feasible region of w. The
partitioning condition (T7) is stronger and further implies that all u ∈ V with
| δ+(u)| ≥ 2 have nontrivial σu. By (T5), also all successors v have `v ≥ `u ≥ 1.
The boundedness condition (T6) holds if all variables contained in at least one
σv have finite upper (lower) bound if contained with positive (negative) index.

Lem. 3 in Sec. A.1 shows that the relations �ε,T and �ε,T defined next
constitute a preorder resp. a strict order on the set of solutions in

⋂
C:

Definition 2. Let T be a C-consistent branching tree, ε > 0, and x, y ∈ Rn.
Let � and �ε denote the standard resp. a strict lexicographic order given by

x � y :⇔ x = y ∨ xi > yi for the smallest index i with xi 6= yi,

x �ε y :⇔ x 6= y ∧ xi ≥ yi + ε for the smallest index i with xi 6= yi.

Using v = dcn(x, y), we then define the relations �ε,T and �ε,T over
⋂
C by

x �ε,T y :⇔ σv(x) = σv(y) ∨ σv(x) �ε σv(y),

x �ε,T y :⇔ σv(x) �ε σv(y).

With this, we arrive at the following central notion of a configuration:
Definition 3. Let C,D ⊆ P(Rn), g : Rn → R, z ∈ R ∪ {∞}, ε > 0, and let T be
a branching tree. A configuration

(
C,D, g, z, T , ε

)
is called (F, f)-valid if:

(V1) T is C-consistent and ε > 0.
(V2) If z < ∞, there exists an x ∈ F with f(x) ≤ z.
(V3) For all ẑ < z, there exists an x ∈ F with f(x) ≤ ẑ if and only if there

exists an x ∈
⋂
C with g(x) ≤ ẑ.

(V4) For every x ∈
⋂
C with g(x) < z, there exists a y ∈

⋂
(C∪D) with y �ε,T x

and g(y) ≤ g(x).
As in [12], we call C the set of core and D the set of derived constraints. Thm. 1
states that the goal—to produce a valid configuration containing the contra-
diction ∅ ∈ D—yields a certificate of optimality (if z < ∞) or infeasibility (if
z = ∞). While it seems out of reach to produce such a configuration and check its
validity in one step, Thm. 2 provides a trivially valid starting configuration C0.
A proof in our system then becomes a sequence of valid configurations starting
at C0 and transitioning to richer configurations by iteratively applying a set of
machine-verifiable rules that are proven to preserve validity in Sec. 3.
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Theorem 1. Let
(
C,D, g, z, T , ε

)
be an (F, f)-valid configuration with ∅ ∈ D.

Then there exists no solution x ∈ F with f(x) < z.

Proof. Suppose there is an (F, f)-valid configuration
(
C,D, g, z, T , ε

)
with ∅ ∈ D,

and x ∈ F with f(x) = ẑ < z. By (V3), there is x̂ ∈
⋂
C with g(x̂) ≤ ẑ < z, and

by (V4), there exists a y ∈
⋂
(C ∪D). This contradicts

⋂
(C ∪D) ⊆

⋂
D = ∅. ut

Theorem 2. Let F ⊆ P(Rn), F =
⋂
F , and f : Rn → R. Then the initial

configuration C0 :=
(
F , ∅, f,∞, ({r}, ∅, {r 7→ Rn}, {r 7→ ( )}), 1

)
is (F, f)-valid.

Proof. (V2) holds due to z = ∞ and (V3) because
⋂
C =

⋂
F = F and g = f .

Since D = ∅, we can always choose y = x to satisfy (V4). Finally, the initial
tree ({r}, ∅, {r 7→ Rn}, {r 7→ ( )}) consists only of a root node r with Br = Rn

and empty σr = ( ). This tree trivially conforms to Def. 2, and ε = 1 > 0. ut

3 Validity-Preserving Transition Rules

The first two rules feature a special type of constraint called an implication.
Let A ⊆ P(Rn) be a collection of assumptions and C ⊆ Rn, then we define
[A  C] :=

⋂
A ∪ C, i.e., x ∈ [A  C] if and only if (x ∈

⋂
A ⇒ x ∈ C ).

In particular, any constraint C can be written as the implication [Rn  C].

Implicational derivation rule. This first rule allows to derive constraints that
preserve all feasible, improving solutions in a subset of Rn, i.e., under a (possibly
empty) set of assumptions A:

Theorem 3. Let
(
C,D, g, z, T , ε

)
be an (F, f)-valid configuration. Let C ⊆ Rn

and A ⊆ P(Rn). Then
(
C,D ∪ {[A C]}, g, z, T , ε

)
is also (F, f)-valid, if

C ⊇
⋂

(C ∪ D ∪ A) ∩ {x ∈ Rn : g(x) < z}. (1)

Resolution rule. A particular form of the implicational derivation rule allows to
derive new constraints by a disjunctive argument.

Corollary 1. Let
(
C,D, g, z, T , ε

)
be an (F, f)-valid configuration. Consider sets

A1,A2,C1,C2 ⊆ Rn, and let A1,A2 be sets of constraints with

[(A1 ∪ {A1}) C1] , [(A2 ∪ {A2}) C2] ∈ C ∪D ∧ A1 ∪A2 ⊇
⋂

(C ∪D). (2)

Then
(
C,D ∪ {[(A1 ∪ A2) (C1 ∪ C2)]}, g, z, T , ε

)
is also (F, f)-valid.

A typical example for resolution is the case where A1 = A2 contains the branch-
ing decisions up to a parent node in a search tree with exactly two children, and
C1 = C2 is a constraint derived previously for both children.

Objective bound update rule. When an improving solution is known, this rule
allows to update the value of z in a configuration:
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Theorem 4. Let
(
C,D, g, z, T , ε

)
be an (F, f)-valid configuration and x ∈

⋂
C

with g(x) = z′ < z. Then
(
C,D, g, z′, T , ε

)
is also (F, f)-valid.

Objective function update rule. If the constraints imply equations, it may be
desirable to substitute variables and update the objective function accordingly:

Theorem 5. Let
(
C,D, g, z, T , ε

)
be an (F, f)-valid configuration and g′ : Rn →

Rn. If
⋂
C ⊆ {x ∈ Rn : g′(x) = g(x)}, then

(
C,D, g′, z, T , ε

)
is also (F, f)-valid.

Redundance-based strengthening rule. The implicational derivation rule allows
the removal of suboptimal solutions only once z < ∞ has been established by the
objective bound update rule. The following rule allows the removal of feasible
solutions independently of the objective bound if a so-called witness ω is known:

Theorem 6. Let C =
(
C,D, g, z, T , ε

)
be an (F, f)-valid configuration and let

C ⊆ Rn. If there exists an ω : Rn → Rn such that

x ∈
⋂

(C ∪ D) ∧ x 6∈ C ⇒ ω(x) ∈
⋂

(C ∪ D ∪ {C}) ∧

ω(x) �ε,T x ∧ g(ω(x)) ≤ g(x)
(3)

holds for all x ∈ Rn, then
(
C,D ∪ {C}, g, z, T , ε

)
is also (F, f)-valid.

Proof. (V1), (V2), and (V3) are invariant. To show that also (V4) continues to
hold, let x ∈

⋂
C with g(x) < z. We need to prove that there is a y ∈

⋂
(C ∪

D ∪ {C}) with y �ε,T x and g(y) ≤ g(x). By (V4) for C, there is x′ ∈
⋂
(C ∪ D)

with x′ �ε,T x and g(x′) ≤ g(x). If x′ ∈ C, we can choose y = x′. Otherwise,
choose y = ω(x′). Then (3) guarantees that y ∈

⋂
(C∪D∪{C}), y �ε,T x′ �ε,T x,

and g(y) ≤ g(x′) ≤ g(x). By transitivity of �ε,T , this concludes the proof. ut

Dominance-based strengthening rule. Thm. 6 is limited to cases where a single
witness can repair removed solutions in one step such that they satisfy all core
and derived constraints at once. The next rule allows more complex reasoning:

Theorem 7. Let C =
(
C,D, g, z, T , ε

)
be an (F, f)-valid configuration and let

C ⊆ Rn. If there exists an ω : Rn → Rn such that

x ∈
⋂

(C ∪ D) ∧ x 6∈ C ⇒ ω(x) ∈
⋂

C ∧ ω(x) �ε,T x ∧ g(ω(x)) ≤ g(x) (4)

holds for all x ∈ Rn, then
(
C,D ∪ {C}, g, z, T , ε

)
is also (F, f)-valid.

Proof. Note that adding C to D keeps (V1), (V2), and (V3) invariant. To prove
that (V4) holds if one replaces D by D′ = D∪{C}, let x0 ∈

⋂
C with g(x0) < z.

We need to show that there is y ∈
⋂
(C ∪ D′) with y �ε,T x0 and g(y) ≤ g(x0).

We establish this by creating a (potentially infinite) sequence (xi)ki=1 with

xi :=

{
yi, if i is odd for some yi from (V4) for x = xi−1 in C,

ω(xi−1), if i is even,
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where k = inf{i ∈ Z+ : xi ∈
⋂
(C ∪ D ∪ {C})}. This sequence is well-defined,

which can be shown via induction by alternatingly applying (V4) and (4).
It suffices to prove k < ∞ as the alternating application of (V4) and (4)

guarantees xk �ε,T xk−1 �ε,T . . . �ε,T x0 and g(xk) ≤ g(xk−1) ≤ · · · ≤ g(x0),
so we can choose y = xk. To show finiteness, first note that (V4) and (4) imply

x2i �ε,T x2i−1 �ε,T x2i−2 �ε,T . . . �ε,T x2 �ε,T x1 �ε,T x0

for all i ∈ [k/2] = {j ∈ Z+ : j ≤ k/2}. Thus, Lem. 4 in the appendix shows
x2i �ε,T x2i−2 for all i ∈ [k/2], i.e., for each i ∈ [k/2], there is a ui ∈ V
with σui

(x2i) �ε σui
(x2i−2).

For the sake of contradiction, suppose k = ∞. Since V in T is finite, also
{σv : v ∈ V } is finite. Transitivity of �ε,T and k = ∞ then implies that
there exists u ∈ V and a subsequence (xij )∞j=1 with σu(x

ij+1) �ε,T σu(x
ij ) and

ij+1 > ij ∈ 2Z for all j ∈ Z+. Hence, for all j ∈ Z+, there is tj ∈ [`u] such that

σu(x
ij+1)tj ≥ σu(x

ij )tj + ε ∧ σu(x
ij+1)s = σu(x

ij )s for all s ∈ [tj − 1].

Since `u is finite, there exists an index t that infinitely often determines the
lexicographic difference. Among all such indices t, let t′ be the smallest one.

By (T6), all entries in σu(x), x ∈
⋂
C, are bounded from above. Hence, there

must exist infinitely many j with σu(x
ij+1)t′ < σu(x

ij )t′ ; otherwise, we would
have limj→∞ σu(x

ij )t′ = ∞. For all such j, due to σu(x
ij+1) �ε,T σu(x

ij ), there
must exist s ∈ [t′ − 1] with σu(x

ij+1)s ≥ σu(x
ij )s + ε. This is a contradiction

to t′ being minimal. Consequently, k < ∞. This concludes the proof. ut

In comparison to redundance-based strengthening, dominance-based strength-
ening is both weaker in the sense that ω(x) does not need to satisfy D and C
directly, and stricter in the sense that ω must result in an increase w.r.t. the
strict order �ε,T . Note that in both rules, C may be an implication [A  C],
e.g., a locally valid symmetry-breaking constraint for some node v ∈ V .

Epsilon shrinkage rule. The presence of ε in (V4) ensures consistent progress in
the proof of Thm. 7. It needs to be fixed for each dominance-based strengthening,
but intermediately, ε can be decreased to an arbitrarily small, positive value:

Theorem 8. Let
(
C,D, g, z, T , ε

)
be an (F, f)-valid configuration. If 0 < ε′ < ε,

then
(
C,D, g, z, T , ε′

)
is also (F, f)-valid.

Transfer rule. Derived constraints can be upgraded to core constraints. This
may restrict future applications of dominance-based strengthening, but can be
useful to facilitate an objective function update or the tree exchange rule below:

Theorem 9. Let
(
C,D, g, z, T , ε

)
be an (F, f)-valid configuration and let C ∈ D.

Then
(
C ∪ {C},D \ {C}, g, z, T , ε

)
is also (F, f)-valid.

Deletion rule. This rule allows to remove derived and redundant core constraints:



A proof system for certifying symmetry and optimality reasoning 7

Theorem 10. Let
(
C,D, g, z, T , ε

)
be an (F, f)-valid configuration, let C′ ⊆ C

and D′ ⊆ D. Then
(
C′,D′, g, z, T , ε

)
is also (F, f)-valid, if (a) C′ = C, or

(b) C′ = C \ {C} for C ⊇
⋂
C′, or (c) C′ = C \ {C}, σv = ( ) for all v ∈ V , and

C ⊆ Rn is derivable from
(
C′, ∅, g, z, T , ε

)
by redundance-based strengthening.

Tree exchange rule. The preorder �ε,T based on the tree T is essential in
guaranteeing that a valid configuration cannot contain contradictory derivations
across different applications of redundance- or dominance-based strengthening.
The following rule allows to install a new tree before any constraints have been
derived, or when all derived constraints have been deleted or transferred to C:

Theorem 11. Let
(
C, ∅, g, z, T , ε

)
be an (F, f)-valid configuration and let T ′ be

a C-consistent branching tree. Then
(
C, ∅, g, z, T ′, ε

)
is also (F, f)-valid.

Dimension extension rule. Last, but not least, the dimension of the problem
can be increased by introducing new variables that (initially) do not feature in
any of the constraints, the objective function, or the preorder-defining tree:

Theorem 12. Let
(
C,D, g, z, T , ε

)
be an (F, f)-valid configuration and let C′ =

{C × R : C ∈ C}, D′ = {C × R : C ∈ D}, g′ : Rn+1 → R, g′(x1, . . . , xn+1) =
g(x1, . . . , xn), and T ′ = (V,E,B′, σ) with B′

v = Bv × R for all v ∈ V . Then(
C′,D′, g′, z, T ′, ε

)
is also (F, f)-valid.

This allows to create extended formulations that help to derive new constraints,
typically by redundance-based strengthening, as discussed in the next section.

4 Certificates for mixed-integer programs

Let (P) denote a mixed-integer program min{cTx : Ax ≤ b, x ∈ Zp × Rn−p},
where m, p, n ≥ 0 are integers, p ≤ n, A ∈ Qm×n, b ∈ Qm, and c ∈ Qn. In the
following section, we show how many popular MIP techniques can be certified
within the framework of Secs. 2 and 3 and automatically verified.

Constraints in the abstract proof system were left to be arbitrary subsets
ofRn. In the MIP setting, the sets of core constraints C and derived constraints D
consist of integrality restrictions on variables and linear inequalities or implica-
tions [A  C], where C and each A ∈ A is a linear inequality. In the initial
configuration of Thm. 2, C = F contains the rows of Ax ≤ b, as well as xj ∈ Z
for all j ∈ [p]. The objective function is a linear function f(x) = cTx. In T , the
branching decisions Bv, v ∈ V , are also linear inequalities.

While a configuration does not explicitly contain the value of a dual bound, it
is natural that an LP-based branch-and-bound solver would maintain in D a set
of implications [A g(x) ≥ dA] per subproblem A, derived by the implicational
derivation rule using aggregation of constraints with dual multipliers, and apply
the resolution rule in order to derive globally valid dual bounds from these, much
like in [14].
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4.1 Presolving, Propagation, and Branch-and-Cut
A cutting plane for (P) is an inequality αTx ≤ β that is valid for the feasible
region of (P), while separating some infeasible point x∗. Cuts that are not valid
globally can be represented as an implication [A  C], where A contains the
local constraints for which the cut is valid. Hence, it is clear that any cutting
plane can—in the abstract proof system—be certified using the implication rule
presented in Thm. 3. However, the complexity of this in general as hard as
solving (P) [43]. Still, for a wide variety of cutting planes, efficient verification
is possible if some additional information is provided.
Aggregation. If there exist multipliers λi ≥ 0 such that C ≡

∑
i λiCi for some

linear constraints Ci, then C is redundant, and therefore the implication is triv-
ially satisfied. It is clear that if the indices and multipliers are specified, a verifier
can efficiently check that C ≡

∑
i λiCi holds. If the multipliers are not specified,

a verifier can solve an LP to find the correct multipliers and indices [27]. There-
fore, we can efficiently verify the validity of cuts that are derived by aggregation.
Disjunctive cuts. A disjunctive cut is a cut αTx ≤ β for which there exists a
disjunction (πTx ≤ π0)∨(πTx ≥ π0+1) such that the inequality is valid for both
{x : Ax ≤ b, πTx ≤ π0} and {x : Ax ≤ b, πTx ≥ π0 + 1} [7,18,46]. Moreover, for
all variables xi that are not integer πi is required to be 0. The verification for
this type of cut is possible if the correct disjunction is provided in the certificate,
which allows for a proof by aggregation for both sides of the disjunction. After-
wards, the validity of the complete cut can be verified by applying the resolution
rule, see [27] for details. As shown in [20], an efficient procedure for verifying
disjunctive cuts allows to verify many families of cuts including Chvátal-Gomory
cuts [15], Gomory mixed-integer cuts [42], mixed-integer rounding cuts [56], or
lift-and-project cuts [8]. In the appendix, we also provide examples for verifica-
tion of simple knapsack [6] and flowcover cuts [60].
Extended Formulations. There are other types of cuts that cannot be character-
ized as a split cut, e.g., reformulation-linearization cuts [63]. However, using the
dimension extension rule in combination with conic combinations of constraints,
the needed extended formulation can be produced in the certificate.
Presolving and Propagation. Presolving is a vital part of solving MIPs [2,32,62],
and often certifying a presolving step is straightforward. For example, if a vari-
able bound is tightened by constraint propagation [62], the new variable bound
can be verified by aggregation of existing constraints. Concretely, given some con-
straint αTx ≤ β, and assume finite bounds on all variables `i ≤ xi ≤ ui, i ∈ [n],
an activity-based upper bound for xi (assuming αi > 0) can be computed as
xi ≤ (β−

∑
αj≥0,j 6=i αj`j−

∑
αj<0,j 6=i αjuj)/αi. An automatically verifiable proof by

implicational derivation is to aggregate the original inequality αTx ≤ β with
−αj(xj ≤ uj) for αj < 0 and with αj(xj ≥ `j) for αj ≥ 0. Scaling the resulting
inequality by 1/αi yields a proof of the new bound. Similar arguments can be
made for many other presolving reductions, e.g., probing [2]. In the following, we
mention several key presolving techniques that actively exclude feasible solutions
of the original problem OPT(f, F ).
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Reduced cost fixing. This core technique dates back to the seminal paper of
Dantzig, Fulkerson, and Johnson on the traveling salesman problem [23], and
allows to tighten the bounds of a variable using information about the primal
bound, the LP objective value, and the dual multipliers of the variable’s bound
constraints. Reduced cost fixing can be verified using implicational derivation
(with z < ∞), see Sec. A.3.

Dominated columns. Dominated columns presolving [5, 33] fixes a variable xk

to one of its bounds, if there is another variable xj with cj ≤ ck, a∗j ≤ a∗k, and
xj is integer whenever xk is. If additionally local (i.e., derived) constraints need
to be considered, we assume that they were added to A ≤ b for the sake of this
paragraph. Such a fixing can be certified by the redundance-based strengthening
rule. For the sake of simplicity, assume that xj and xk are bounded below by 0
and that xj has no upper bound; in general, any lower bound and an implied
upper bound is possible. Then, a witness is given by ω : Rn → Rn with

ω(x)i =


xi, if i /∈ {j, k},
0, if i = k,

xi + xk, if i = j.

To verify that (3) of Thm. 6 is satisfied for ω, it is straightforward to check
that cTω(x) ≤ cTx. As a∗j ≤ a∗j , holds, any constraint satisfied by x is also
satisfied by ω(x). This can be automatically verified with an aggregation proof
similar as for constraint propagation. Furthermore, ω(x) trivially satisfies the
new constraint xk = 0. In presolving the tree T will typically be the initial tree,
hence ω(x) �ε,T x is a tautology.

4.2 Symmetry Handling

Let γ be a permutation of [n]. For x ∈ Rn, let γ(x) = (xγ−1(1), . . . , xγ−1(n)). A
permutation γ is a symmetry of a MIP (P) if x ∈ Rn is feasible for (P) if and
only if γ(x) is feasible, and cTx = cT γ(x). The symmetries of a MIP form a
group Γ , which is a subgroup of the symmetric group on [n], denoted by Sn.

Although this definition of symmetries is natural, finding all such symme-
tries is NP-hard [53]. One therefore usually restricts to symmetries that keep
the MIP formulation invariant. That is, γ ∈ Sn is a formulation symmetry if
there is a permutation π ∈ Sm of the constraints such that π(b) = b, γ(c) = c,
Aπ−1(i),γ−1(j) = Ai,j for all (i, j) ∈ [m] × [n], and the variable types are pre-
served. They have the advantage that it is easy to verify if a pair (γ, π) defines a
formulation symmetry, i.e., we can use them for verifying symmetry reductions.

To handle (formulation) symmetries Γ , many techniques have been dis-
cussed [24,30,44,45,48,49,51,52,58], and we show that four popular symmetry
handling techniques can be derived via our framework: orbital branching [59],
orbitopal reduction [10, 47], Schreier-Sims cuts (SST cuts) [50, 61], and lexi-
cographic order based reductions [11, 31]. As shown in [25], these methods are
compatible with adding constraints σv(x) � σv(γ(x)) for all γ ∈ Γ at the nodes v
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of a consistent branching tree T , the entries of σv being positive. Thus, to show
that the aforementioned methods fit into our framework, it is sufficient to derive
a representation of σv(x) � σv(γ(x)) via linear inequalities for suitable σv.

There are many degrees of freedom when building σv, v ∈ V . One can se-
lect, e.g., (a) some permutation π of [n] and assign σv = π for all v ∈ V ,
or (b) if v ∈ V \ {r} arises from its parent u by branching on xi, one can ex-
tend σu by i if i is not present in σu, yet. Approach (a) creates globally valid
symmetry handling inequalities (SHIs); approach (b) generates local SHIs that
are adapted to the branching history, allowing to derive reductions earlier, cf.
the discussion in [53]. As long as the tree is C-consistent, all choices of σv allow
to handle symmetries. Specialized symmetry handling methods might require a
special structure of σv though, see below.

Lexicographic order based reduction. A classic approach to handle symmetries is
to compute only solutions being lexicographic maximal representatives among a
class of symmetric solutions. This can be enforced by deriving reductions from
the relation σv(x) � σv(γ(x)). For integer variables with bounded domain con-
tained in [L,U ] of size D = U − L, this relation can be linearly expressed as

`v∑
i=1

(D + 1)`v−i · σv(x)i ≥
`v∑
i=1

(D + 1)`v−i · σv(γ(x))i, (5)

see, e.g., [31]. Prop. 1 in Sec. A.1 shows that (5) can be derived as local constraint
at node v within our framework via dominance-based strengthening by select-
ing ω = γ. Denote the corresponding derived constraint as Cγ

v = [Bv  (5)],
where Bv = {Bu : u is a node on the r-v-path in T }.

Typical reductions that are derived from σv(x) � σv(γ(x)) are variable fixings
in the binary case or variable bound tightenings in the integer case. Both type of
reductions can be encoded as linear constraints. If a solver finds a lexicographic
order based reduction at node v, e.g., xi ≤ ui for some i ∈ [n] and ui ∈ Z,
then this is the case because there is no x̄ that is feasible for the MIP and
satisfies x̄i ≥ ui + 1 and (5). Such a reduction can be derived in our framework
by first deriving Cγ

v . In a second step, a CG-proof can be used to show that{
x ∈ Zp ×Rn−p ∩

⋂
Bv : Ax ≤ b, xi ≥ ui + 1, x satisfies (5)

}
= ∅.

As CG-proofs are compatible with our framework, also xi ≤ ui can be derived.

Orbitopal reduction. While the previously discussed reductions are based on a
single permutation, orbitopal reduction handles symmetries of an entire specially
structured group Γ . Orbitopal reduction assumes the integer variables of a MIP
to be arranged in an s × t matrix X and Γ to operate on the variables by
exchanging the columns of X, i.e., Γ acts on the columns like St. As lexicographic
order based reductions, orbitopal reduction derives variable domain reductions.

In [25], we discuss that orbitopal reduction is implied by σv(x) � σv(γ(x)) for
all γ ∈ Γ , if σv can be partitioned into consecutive blocks of length t such that
each block corresponds to exactly one row of X. Variable domain reductions, e.g.,
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Xi,j ≤ ui,j for some (i, j) ∈ [s] × [t] with (i, j) ∈ σv, can be derived as above:
If all variables in X are bounded and integer, we derive (5) for all γ ∈ Γ and
use a CG-proof to show that no MIP solution satisfies Xi,j ≥ ui,j + 1. Deriving
all inequalities (5) is intractable though as Γ contains t! permutations. But, in
fact, it is sufficient to derive (5) for the t− 1 permutations that swap variables
of adjacent columns to derive the reductions of orbitopal reduction, see [45].

SST cuts. Let i ∈ [n] and orbΓ (i) = {γ(i) : γ ∈ Γ} be its orbit. Simple SHIs
are xi ≥ xj for j ∈ orbΓ (i) [49], but SHIs for different orbits can be incom-
patible. Compatibility can be ensured by adding these SHIs in rounds i ∈ [n]
for different Γi per round [50, 61]. For σ̂ ∈ Sn, round i adds xσ̂(i) ≥ xj for all
j ∈ orbΓi

(σ̂(i)), and Γi = {γ ∈ Γi−1 : γ(σ̂(j)) = σ̂(j), j ∈ [i−1]}, where Γ0 = Γ .
These SHIs (called SST cuts) can be derived from σ̂(x) � σ̂(γ(x)), γ ∈ Γ [25].

SST cuts can be defined for arbitrary variable types. Via dominance-based
strengthening a slightly weaker family of constraints, namely xi ≥ xj − ε instead
of xi ≥ xj , can be derived. If ε < 1 and the involved variables are integral, a
rounding argument can be used to also derive xi ≥ xj . For continuous variables,
xi ≥ xj − ε can be gradually made stronger by the epsilon shrinkage rule.

Orbital branching. To handle symmetries in binary programs, this branching
rule creates two child nodes [59]. In one node, it enforces xi = 1 for some i ∈ [n];
in the other node, it enforces xj = 0 for all j ∈ orbΓ ′ (i) for some subgroup Γ ′

of Γ . These reductions can be derived from SST cuts [25] if σv is adapted to
the branching decisions (cf. the discussion on σ above). Since SST cuts can be
derived in our framework, so can the reductions by orbital branching.

4.3 Encoding and Verification

For pure binary programming, the feasibility of implementing and applying the
seminal proof system in [12], which is the foundation of our work, has already
been demonstrated with great success [29, 35–39]. For general MIP, the cer-
tificate system [14] provides a blueprint for encoding and verifying feasibility
reasoning [26–28]. In the following, let us point out differences (and similari-
ties) to both of these that need to be addressed when approaching an actual
implementation of a verifier for MIP.

Both types of constraints in MIP are easily encoded: linear inequalities and
integrality conditions. The latter may be part of the original model or derived
from equations (represented natively or as pairs of inequalities) via integrality
of coefficients and right-hand sides. But unlike in the pure binary case, locally
valid inequalities over unbounded variables cannot generally be recast as globally
valid inequalities. A suitable verifier hence needs a native notion of implications
[A  C] as in [14]. As witnesses ω, affine maps x 7→ Qx + q, Q ∈ Qn×n,
q ∈ Qn, are both sufficient and easy to encode. In many cases, Q will be a sparse
permutation matrix, for which only off-diagonal elements need to be specified.

As described in [12], a preorder x � y on binary vectors can be elegantly
encoded and verified as a system of linear inequalities in x and y. This is not
possible in the presence of continuous and unbounded variables. Instead, the
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branching tree T = (V,E,B, σ) must be encoded as a generic graph structure
with unique identifiers for Bv and σv attached to the nodes v ∈ V . To verify
C-consistency, checking (T1), (T2), (T4), and (T5) is elementary. Checking (T3)
and (T7) is also simple when Bv are halfspaces given by linear inequalities.
If the boundedness condition (T6) does not follow trivially from bounds on
the variables, then it is the task of the certifier to provide derivations for the
boundedness and transfer them to the core before installing the tree via Thm. 11.

The tree is then used to evaluate ω(x) �ε,T x in (3) and (4). This can be
performed by starting at the root node and diving in the branching tree as long
as x and ω(x) are known to be contained in the same child. Here, x is a partial
solution with fixed values or tightened bounds according to the precondition
x ∈

⋂
(C ∪ D) ∧ x 6∈ C and elementary propagations of these constraints. If

all variables x are fixed, then dcn(x, ω(x)) and the result of ω(x) �ε,T x can
always be determined. For partial solutions, this evaluation may fail, but all
techniques discussed in Sec. 4 allow for a witness ω such that it succeeds. Some
of these techniques may require so-called subproofs, i.e., preliminary derivations
to strengthen the preconditions, which can afterwards be deleted again from D.
One example is the inductive derivation of (5) given in Prop. 1 in Sec. A.1.

Finally, in its most basic form, a verifier may require the certifier to provide
detailed justification for each derivation. In an advanced implementation, finding
some of these justifications can be automated by techniques like reverse unit
propagation [29,41], computing dual multipliers by a rational LP solver [27], or
heuristically detecting witnesses from the variable indices in the encoding of σ.

5 Outlook

In Sec. 4, we have outlined how the proof system presented in Secs. 2 and 3
covers a wide range of important methods implemented in state-of-the-art MIP
solvers today, having to stop short only of a discussion of lifting techniques and
infeasibility analysis, both of which typically require just implicational reasoning.

Beyond this, we are convinced that this system can be generalized further to
make it more convenient to use and potentially (dis)cover different algorithms:
(a) The σv may contain duplicate entries, and more generally could signify any
set of dimension-reducing mappings for which a suitably generalized extension
relation D holds. (b) The lexicographic order � used to compare σv(x) could
become any preorder with an ε-strict version that allows only finitely many strict
increases on the bounded image spaces of the σv. (c) The need to install a fixed
branching tree only known after solving could be eliminated by providing an
update rule that certifies a dynamic refinement of T while solving. We know that
such a rule in the style of Thm. 6 can be proven and works for the most common
scenario of binary variable-based branching schemes, but a more general version
seems to need inductive reasoning as in Thm. 7 and requires further research.
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A Auxiliary Results and Technical Proofs

In this appendix, we provide auxiliary results as well as the technical proofs that
we had deferred in the main part of the article.

A.1 Auxiliary Results

The first two results state that C-consistent branching trees have the properties
that one would expect from a tree generated by a branch-and-bound algorithm.
That is, the children of a node u partition the feasible region of the subproblem
at node u, and, for every feasible solution, we find exactly one leaf of the tree
in which the solution is feasible. In the following results, we use the notation
Bv := {Bu : u is a node on the r-v-path in T }.

Lemma 1. Let T be a C-consistent branching tree and u ∈ V with δ+(u) 6= ∅.
Then for all x ∈

⋂
(C ∪ Bu) there is exactly one v ∈ δ+(u) with x ∈

⋂
(C ∪ Bv).

Proof. Let u ∈ V with δ+(u) 6= ∅ and let x ∈
⋂
(C ∪ Bu). By (T3), there

is v ∈ δ+(u) with x ∈
⋂
(C ∪ Bv). In particular, for every such v ∈ δ+(u) we

have σu(x) ∈ σu(
⋂
(C ∪ Bv)) ⊆ σu(Bv). Uniqueness of v ∈ δ+(u) thus follows

from (T7). ut

Lemma 2. Let T be a C-consistent branching tree. Then for all x ∈
⋂
C, there

is exactly one leaf v ∈ V with x ∈
⋂
(C ∪ Bv).

Proof. Because of Br = Rn, x ∈
⋂
(C∪Br). The result follows by induction from

Lem. 1 and finiteness of V in T , see (T1). ut

A crucial component of an (F, f)-valid configuration as defined in Def. 3 is
the relation induced by a branching tree T . The next results state that this
relation and the corresponding strict relation define a preorder and strict order,
respectively. Afterwards, we also show that a transitivity property between these
two relations exists.

Lemma 3. Let T be a C-consistent branching tree. Then �ε,T defines a preorder
and �ε,T defines a strict order on

⋂
C.

Proof. Recall that �ε,T defines a preorder, if it is reflexive and transitive. Re-
flexivity holds as σdcn(x,x)(x) = σdcn(x,x)(x). For transitivity, let x, y, z ∈

⋂
C

with y �ε,T x and z �ε,T y. If v = dcn(x, y) = dcn(x, z) = dcn(y, z), transitiv-
ity follows by transitivity of = and �ε. In the following, we thus may assume
that not all deepest common nodes are the same. Hence w.l.o.g. we can select
pairwise distinct i, j, k ∈ {x, y, z} such that dcn(i, k) = dcn(j, k) and dcn(i, j)
is a proper successor of dcn(i, k). We call this proper successor the deepest node
and distinguish whether dcn(x, y), dcn(x, z), or dcn(y, z) is the deepest node:

i j k
⇔

x y z
∨

x z y
∨

y z x
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First, let v = dcn(x, y) be the deepest node and u = dcn(x, z) = dcn(y, z).
Then, y �ε,T x implies σv(y) = σv(x) ∨ σv(y) �ε σv(x), which in turn yields
that σu(y) = σu(x) ∨ σu(y) �ε σu(x) by (T5) because u is an ancestor of v.
Together with z �ε,T y ⇔ σu(z) = σu(y) ∨ σu(z) �ε σu(y), this shows z �ε,T x.

Second, let v = dcn(x, z) be the deepest node and u = dcn(y, z) = dcn(x, y).
Then, y �ε,T x implies σu(y) = σu(x) ∨ σu(y) �ε σu(x), and z �ε,T y yields
that σu(z) = σu(y) ∨ σu(z) �ε σu(y). In fact, we claim that for both rela-
tions σu(y) = σu(x) and σu(z) = σu(y) cannot hold. If we are able to show this,
σu(y) �ε σu(x) and σu(z) �ε σu(y) imply σv(y) �ε σv(x) and σv(z) �ε σv(y),
respectively, by (T5). Relation z �ε,T x then follows from transitivity of �ε.

To prove that σu(y) = σu(x) cannot hold, observe that u is not a leaf as v is
a proper successor of u. Since u = dcn(x, y), solutions x and y must be feasible
at different children of u. By (T7), we conclude σu(y) 6= σu(x), and analogously,
σu(z) 6= σu(y).

Third, let v = dcn(y, z) be the deepest node and u = dcn(x, y) = dcn(x, z).
Then, z �ε,T y implies σv(z) = σv(y) ∨ σv(z) �ε σv(y). As in the first case, this
yields σu(z) = σu(y) ∨ σu(z) �ε σu(y) by (T5) because u is an ancestor of v.
Together with y �ε,T x, this shows z �ε,T x, concluding the proof that �ε,T is
a preorder on

⋂
C.

To prove that �ε,T is a strict order on
⋂

C, we need to show that it is ir-
reflexive, antisymmetric, and transitive. Irreflexivity and antisymmetry follow
from irreflexivity and antisymmetry of �ε. For transitivity, let x, y, z ∈

⋂
C

with y �ε,T x and z �ε,T y. We pursue a similar strategy as above. If we
have v = dcn(x, y) = dcn(x, z) = dcn(y, z), then z �ε,T x follows from transitiv-
ity of �ε and that σv is used in all comparisons. Otherwise, we again distinguish
the three cases above.

First, let v = dcn(x, y) be the deepest node and u = dcn(x, z) = dcn(y, z).
Then, y �ε,T x yields σv(y) �ε σv(x). Thus, σu(y) = σu(x) ∨ σu(y) �ε σu(x)
by (T5). From z �ε,T y, we get σu(z) �ε,T σu(y). Combining this shows z �ε,T x.

Second, let v = dcn(x, z) be the deepest node and u = dcn(y, z) = dcn(x, y).
As above, y �ε,T x implies σu(y) �ε σu(x), and z �ε,T y yields σu(z) �ε σu(y).
Transitivity of �ε then implies σu(z) �ε σu(x). Since u is an ancestor of v, (T5)
implies σv(z) �ε σv(x), i.e, z �ε,T x holds.

Third, let v = dcn(y, z) be the deepest node and u = dcn(x, y) = dcn(x, z).
Then, z �ε,T y implies σv(z) �ε σv(y), which again implies σu(z) = σu(y) ∨
σu(z) �ε σu(y). From y �ε,T x, we derive σu(y) �ε σu(x). Transitivity of �ε

yields z �ε,T x. Relation �ε,T therefore defines a strict order. ut

Lemma 4. Let T be C-consistent and let x, y, z ∈
⋂

C be such that z �ε,T y
and y �ε,T x hold. Then, z �ε,T x.

Proof. If v = dcn(x, y) = dcn(x, z) = dcn(y, z), then the chain z �ε,T y �ε,T x
implies σv(z) �ε σv(y) = σv(x) ∨ σv(z) �ε σv(y) �ε σv(x). In the former case,
z �ε,T x follows immediately, and in the latter case it follows from transitivity
of �ε. In the remainder of the proof, we follow the same strategy and terminology
as in the proof of Lem. 3.
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First, let v = dcn(x, y) be the deepest node and u = dcn(x, z) = dcn(y, z).
Then, z �ε,T y implies σu(z) �ε σu(y), and y �ε,T x yields σv(y) = σv(x) ∨
σv(y) �ε σv(x). Condition (T5) then implies σu(y) = σu(x) ∨ σu(y) �ε σu(x).
Combining this with σu(z) �ε σu(y) shows z �ε,T x.

Second, let v = dcn(x, z) be the deepest node and u = dcn(y, z) = dcn(x, y).
From z �ε,T y, we derive σu(z) �ε σu(y), which implies σv(z) �ε σv(y) by (T5).
Moreover, analogously to the proof of lem. 3, we can show that y �ε,T x im-
plies σu(y) �ε σu(x), i.e., σu(y) = σu(x) cannot hold. Again by (T5), this
implies σv(y) �ε σv(x). Transitivity of �ε then shows that σv(z) �ε σv(x), and
thus, z �ε,T x holds.

Third, let v = dcn(y, z) be the deepest node and u = dcn(x, y) = dcn(x, z).
From y �ε,T x, we conclude σu(y) = σu(x)∨σu(y) �ε σu(x). As above, σu(y) =
σu(x) cannot hold due to (T7), thus σu(y) �ε σu(x) follows. By (T5), we obtain
σv(y) �ε σv(x). Combining this with z �ε,T y ⇔ σv(z) �ε σv(y), we conclude
that z �ε,T x holds. ut

The next lemma shows that C-consistency of a branching tree is preserved if
the set C of core constraints is extended.

Lemma 5. Let T be a C-consistent branching tree and C ⊆ Rn. Then T is also
C ∪ {C}-consistent.

Proof. (T1), (T2), (T4), (T5), (T7) do not involve C. Because
⋂

C is additionally
intersected with C, the boundedness in (T6) continues to hold. Condition (T3)
follows immediately, as

⋂
(C ∪ {C}) ⊆

⋂
C. ut

To be able to show that symmetry reductions for MIPs can be derived within
our framework, we require that a linear representation of the lexicographic order
can be derived from our framework, which is achieved by the following result.

Proposition 1. Let
(
C,D, g, z, T , ε

)
be an (F, f)-valid configuration with branch-

ing tree T = (V,E,B, σ) such that all entries of σv, v ∈ V , are positive. Let γ
be a symmetry of (

⋂
C, g) and L ≤ U be integers. Let v ∈ V be such that xi,

i ∈ σv, is an integer variable with L ≤ xi ≤ U . If ε ≤ 1, via dominance-based
strengthening, one can derive the validity of inequality

`v∑
i=1

(U − L+ 1)`v−1σv(x)i ≥
`v∑
i=1

(U − L+ 1)`v−1σv(γ(x))i (6)

at v. That is, if C ′ = {x ∈ Rn : x satisfies (6)}, one can derive C = [Bv  C ′].

We have designed the following proof in such a way that it is machine-verifiable.
To keep the presentation simple, we do not mention explicitly how the different
steps can be verified. But the idea is that case distinctions can be implemented as
“subproofs” in which we add some assumptions characterizing the case. By using
simple arguments in estimations, such as replacing a variable by their upper or
lower bound, these subproofs either prove the desired statement or lead to a
contradiction, showing thus the opposite statement.
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Proof. To prove that we can derive C via dominance-based strengthening, we
need to show that, if x ∈

⋂
(C ∪ D) and x /∈ C, then there exists ω : Rn → Rn

with g(ω(x)) ≤ g(x), ω(x) ∈
⋂
C, and ω(x) �ε,T x. We claim that ω = γ serves

as a witness.

Instead of proving the statement just for C, we show a stronger result.
Let ∆ = U − L+ 1 and

k∑
i=1

∆k−1σu(x)i ≥
k∑

i=1

∆k−1σu(γ(x))i, k ∈ [`v]. (7)

Let Ĉj
v = {x ∈ Rn : x satisfies (7) for k = j} and Cj

v = [Bv  Ĉj
u]. We claim

that we can derive Cj
v via dominance-based strengthening. If we can establish

this claim, the assertion follows as C = C`v
v .

To prove this claim, we proceed by induction. Our induction hypothesis is
that we can show, for all proper ancestors u of v, that we can derive Cj

u for
all j ∈ [`u], and for node v, we can derive Cj

v for all j ∈ [k − 1] where k < `v.
Our goal is to show that we can also derive Ck

v . Note that the induction base case
corresponds to k = 1. That is, the proof of the base case and the inductive step
is the same. Moreover, as (7) is invariant under shifting the variable domains, we
may assume w.l.o.g. that L = 0, which will simplify notation in the following.

In the inductive step, by the hypothesis, we may assume that, for all proper
ancestors u of v and j ∈ [`u], we have Cj

u ∈ D, and Cj
v ∈ D for all j ∈ [k − 1].4

To apply dominance-based strengthening, let x̄ ∈
⋂
(C∪D) with x̄ /∈ Ck

v . Since γ
is a symmetry of (

⋂
C, g), we have γ(x̄) ∈

⋂
C and g(γ(x̄)) = g(x̄). Thus, it

remains to show γ(x̄) �ε,T x̄.

Let w = dcn(x̄, γ(x̄)). Following the definition of �ε,T , we need to show
that σw(γ(x̄)) �ε σw(x̄). Since x̄ /∈ Ck

v , we have x̄ ∈
⋂

Bv and x̄ /∈ Ĉk
v . By the

former, w and v lie on a common rooted path in T . We distinguish whether w
is a proper ancestor of v or not. In the latter case, note that σw(γ(x̄)) �ε σw(x̄)
follows from (T5) if we can show σv(γ(x̄)) �ε σv(x̄).

First, suppose w is not a proper ancestor of v. By the induction hypothesis,
Cj

u ∈ D for all j ∈ [`u] and proper ancestors u of v, as well as Cj
v ∈ D for

all j ∈ [k − 1]. For all j ∈ [k − 1], this in particular means that x̄ ∈ Ĉj
v ,

because x̄ ∈
⋂
Bv. Suppose that there is one j′ ∈ [k−1] such that the inequality

in Ĉj′

v is strictly satisfied. Among all such j′, let j be the one that is minimal.

4 This assumption is only needed in the proof. In practice, one would remove the
previously derived constraints from D via the deletion rule after adding Ck

v .
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Then, since all variables are non-negative by the assumption L = 0,

k∑
i=1

∆k−iσv(x̄)i ≥
j−1∑
i=1

∆k−iσv(x̄)i +∆k−jσv(x̄)j

=

j−1∑
i=1

∆k−iσv(γ(x̄))i +∆k−jσv(x̄)j

≥
j−1∑
i=1

∆k−iσv(γ(x̄))i +∆k−jσv(γ(x̄))j +∆k−j

≥1 +

k∑
i=1

∆k−iσv(γ(x̄))i.

Here, the first inequality is due to L = 0. The third inequality holds as geometric
sums satisfy ∆k−j = 1 +

∑k
i=j+1(∆− 1)∆i, and σv(γ(x̄))j ≤ (U − L) = ∆− 1.

The second estimation holds as j is the smallest index for which (7) is a strict
inequality; its inequality (7) thus reduces to σv(x̄)j > σv(γ(x̄))j , which im-
plies σv(x̄)j ≥ 1 + σv(γ(x̄))j by integrality.

This inequality chain, however, is a contradiction to x̄ /∈ Ck
v . Consequently,

all inequalities in Ĉ1
v , . . . , Ĉ

k−1
v must be satisfied by x̄ with equality. The in-

equality in Ĉk
v then reduces to σv(x)k ≥ σv(γ(x))v. As such, since x̄ /∈ Ĉk

v , we
have σv(γ(x̄))k > σv(x̄)k. Again, by integrality, this implies

σv(γ(x̄))k ≥ 1 + σv(x̄)k ≥ ε+ σv(x̄)k.

As a consequence, σv(γ(x̄)) �ε σv(x̄) follows.
It remains to consider the case that w is a proper predecessor of v. In this

case, x̄ and γ(x̄) must be feasible at different children of w as w is the deepest
common node. By (T7), σw(γ(x̄))`w < σw(x̄)`w or σw(γ(x̄))`w > σw(x̄)`w . In the
former case, exactly the same arguments as above can be used to show

k∑
i=1

∆k−iσv(x̄)i ≥
k∑

i=1

∆k−iσv(γ(x̄))i,

as σv is an extension of σw by (T5), which is a contradiction to x̄ /∈ Ck
v . In the

latter case, we find (again using the same arguments) that σw(γ(x̄)) �ε σw(x̄).
After considering all cases, γ(x̄) �ε,T x̄ thus follows. ut

A.2 Technical Proofs

This section provides the missing technical proofs of the rules that allow to adapt
configurations while preserving their (F, f)-validity.
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Proof of Thm. 3 (Implicational Derivation Rule) Let C =
(
C,D, g, z, T , ε

)
be the previously given configuration. (V1), (V2), and (V3) are trivially pre-
served since they do not depend on the set of derived constraints. For (V4), let
x ∈

⋂
C with g(x) < z. By validity of C, there exists a y ∈

⋂
(C ∪ D) with

y �ε,T x and g(y) ≤ g(x) < z. It suffices to show y ∈ [A  C] =
⋂
A ∪ C. If

y 6∈
⋂
A, this holds trivially. If y ∈

⋂
A, then Condition (1) implies

y ∈
⋂

(C ∪ D ∪ A) ∩ {x ∈ Rn : g(x) < z} ⊆ C ⊆ [A C].

In either case, (V4) is satisfied for the updated configuration. ut

Proof of Corollary 1 (Resolution Rule) First, careful rewriting yields⋂
(C ∪ D) ⊆ [(A1 ∪ {A1}) C1] ∩ [(A2 ∪ {A2}) C2]

=
(⋂

(A1 ∪ {A1}) ∪ C1

)
∩
(⋂

(A2 ∪ {A2}) ∪ C2

)
⊆

(⋂
(A1 ∪ {A1}) ∪ C1 ∪ C2

)
∩
(⋂

(A2 ∪ {A2}) ∪ C1 ∪ C2

)
=

(⋂
(A1 ∪ {A1}) ∩

⋂
(A2 ∪ {A2})

)
∪ (C1 ∪ C2)

=
((⋂

A1 ∪ A1

)
∩

(⋂
A2 ∪ A2

))
∪ (C1 ∪ C2).

By this, every x ∈
⋂
(C ∪ D) ⊆ A1 ∪ A2 is contained in at least one of the

following three sets: in C1 ∪C2 or in
⋂

A1 (if x ∈ A1 \ (C1 ∪C2)) or in
⋂

A2 (if
x ∈ A2 \ (C1 ∪ C2)), i.e.,

x ∈
⋂

A1 ∪
⋂

A2 ∪ (C1 ∪ C2) = [(A1 ∪ A2) (C1 ∪ C2)] =: C.

Hence, C satisfies (1) for A = ∅ and any value of z (including the value in
the current configuration), and can be added to D, preserving validity of the
configuration. ut

Proof of Thm. 4 (Objective Bound Update Rule) Let C =
(
C,D, g, z, T , ε

)
be the previously given configuration. (V1) is preserved because it does not
involve the objective bound. Since z′ < ∞, for (V2) we need to show that there
exists an x ∈ F with f(x) ≤ z′. This is a direct consequence of (V3) for C. (V3)
and (V4) continue to hold for the updated configuration because the objective
bound becomes stricter and thus their statements become weaker. ut

Proof of Thm. 5 (Objective Function Update Rule) Assume that the
previously given configuration is C =

(
C,D, g, z, T , ε

)
. (V1) and (V2) are not

affected by the update of g. For (V3) let ẑ < z.
First, assume we have x ∈ F with f(x) ≤ ẑ. (V3) for C ensures that there

also exists x̂ ∈
⋂
C with g(x̂) ≤ ẑ < z, and (V4) for C gives us a y ∈

⋂
(C ∪ D)
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with g(y) ≤ g(x̂) ≤ ẑ. The condition of the theorem implies that g′(y) = g(y).
All in all, y ∈

⋂
C and g′(y) ≤ ẑ, so the forward implication in (V3) is preserved.

For the reverse direction, assume we have x ∈
⋂
C with g′(x) ≤ ẑ < z. Then

g(x) = g′(x) ≤ ẑ holds by the condition of the theorem. Now (V3) for C ensures
that there exists x ∈ F with f(x) ≤ ẑ.

To show (V4) for the updated configuration, let x ∈
⋂

C with g′(x) < z.
Again, the condition of the theorem implies g(x) = g′(x) < z. (V4) for C yields a
y ∈

⋂
(C∪D) with y �ε,T x and g(y) ≤ g(x). Finally g′(y) = g(y) ≤ g(x) = g′(x)

follows from the condition of the theorem. Hence, (V4) also holds for the updated
configuration. ut

Proof of Thm. 8 (Epsilon Shrinkage Rule) (V1) is trivially satisfied due
to ε′ > 0. (V2) and (V3) are not affected when changing ε to ε′. (V4) becomes
a weaker statement due to ε′ < ε. ut

Proof of Thm. 9 (Transfer Rule) Let C =
(
C,D, g, z, T , ε

)
be the previously

given configuration. (V1) is preserved according to Lem. 5, (V2) does not depend
on C and D, and (V4) is preserved because

⋂
(C ∪ {C}) ⊆

⋂
C and⋂(

(C ∪ {C}) ∪ (D \ {C})
)
=

⋂
(C ∪ D).

For (V3) let z′ < z. First, assume we have x ∈ F with f(x) ≤ z′. (V3) for C yields
x′ ∈

⋂
C with g(x′) ≤ z′ < z, and (V4) for C gives us a y ∈

⋂
(C∪D) ⊆

⋂
(C∪{C})

with g(y) ≤ g(x′) ≤ z′. Hence, the forward implication in (V3) is preserved. For
the reverse direction, assume we have x ∈

⋂
(C ∪ {C}) ⊆

⋂
C with g(x) ≤ z′.

Now (V3) for C directly yields an x ∈ F with f(x) ≤ z′.
ut

Proof of Thm. 10 (Deletion Rule) Let C =
(
C,D, g, z, T , ε

)
be the previously

given configuration. For (a), (V1), (V2), and (V3) are invariant. (V4) becomes
weaker, since

⋂
(C ∪ D′) ⊇

⋂
(C ∪ D).

For (b) and (c), it suffices to show that
(
C′,D, g, z, T , ε

)
is valid; then the

validity of the derived constraint deletion follows from (a). The proof for (b) is
trivial, since

⋂
C′ and

⋂
C define the same set.

For proving (c), note that (V2) is invariant, and (V1) is trivially preserved
since all σv are empty and the tree cannot have nodes with more than one child
(and ε > 0 is unchanged).

The forward direction of (V3) is trivial, since
⋂
C ⊆

⋂
C′. For the reverse

direction, we need to show that for any ẑ < z, if x ∈
⋂

C′ with g(x) ≤ ẑ then there
exists y ∈ F with f(y) ≤ ẑ. If x ∈ C, then x ∈

⋂
C and (V3) for C guarantees us a

suitable y. If x 6∈ C, then let ω be the witness provided alongside the application
of the redundance-based strengthening rule. By (3) applied to

(
C′, ∅, g, z, T , ε

)
,

i.e., with C = C′ and D = ∅, we know that ω(x) ∈
⋂
(C′ ∪ {C}) =

⋂
C and

g(ω(x)) ≤ g(x) ≤ ẑ. Now again, (V3) for C guarantees us a suitable y.
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For (V4), if x ∈ C then the condition immediately follows from the validity
of the previous configuration C since

⋂
(C′ ∪ D) ⊇

⋂
(C ∪ D). If x /∈ C, then we

can once again apply ω(x) ∈
⋂
C and g(ω(x)) ≤ g(x) ≤ ẑ, hence the condition

immediately follows from (V4) for C. ut

Proof of Thm. 11 (Tree Exchange Rule) (V1) holds because T ′ is assumed
to be C-consistent and ε > 0. (V2) and (V3) are independent of the tree. Due
to D = ∅ and the reflexivity of the preorders, (V4) holds trivially for y = x,
independently of the tree. ut

Proof of Thm. 12 (Dimension Extension Rule) (V1) and (V2) are invari-
ant under extension of the dimension. (V3) and (V4) on the new configuration
are equivalent to (V3) and (V4) on the previous configuration after projecting
out the newly added variable. ut

A.3 Auxiliary examples of verification

We provide several more detailed examples of automatic verification of cutting
planes.

Chvátal-Gomory cuts [15]. Given a valid inequality αTx ≤ β with αi = 0,
for all i > p, it is valid to round down all coefficients, while also rounding
down the right-hand-side, i.e.,

∑p
i=1 bαicxi ≤ bβc is valid. This is a special

case of a disjunctive cut, where the disjunction is given by
∑p

i=1 bαicxi ≤
bβc ∨

∑p
i=1 bαicxi ≥ bβc + 1 and the greater or equal part of the disjunction

contains no points in the feasible region. In the previously existing certificate
format for MIP called VIPR [14], CG-cuts are directly verified by checking the
correctness of the rounding, as well as the integrality requirements. We point out
that the interpretation as split cuts allows to verify a CG-cut without knowing
the original inequality αTx ≤ β, by solving an auxiliary LP to find the correct
Farkas multipliers to show infeasibility of

∑p
i=1 bαicxi ≥ bβc+ 1.

Knapsack cover cuts [6]. Given a knapsack constraint
∑n

j=1 ajxj ≤ b, where
x ∈ {0, 1}n, b ∈ Z>0, aj ∈ Z>0 for all j ∈ [n], a cover is a subset C ⊆ [n] such
that

∑
j∈C aj > b. The corresponding cover inequality is

∑
j∈C xj ≤ |C| − 1.

Any cover inequality can be verified as a split cut. We define the split dis-
junction

∑
j∈C xj ≤ |C| − 1 ∨

∑
j∈C xj ≥ |C|. For the first part of the disjunc-

tion, the cover inequality is trivially valid. For the second part,
∑

j∈C xj ≥ |C|
can be used to derive xj ≥ 1 for every j ∈ C by a simple aggregation proof.
Then xj ≥ 1 for all j ∈ C can be aggregated using multipliers aj to derive∑

j∈C ajxj ≥
∑

j∈C aj > b, which is a trivially verifiable contradiction to the
knapsack constraint. Applying the resolution rule certifies the cover inequality
as valid.
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Flowcover cuts [60]. Flowcover cuts make use of a structure commonly found
inside a MIP model, namely single-node flow sets, defined as

T :=

(x, y) ∈ {0, 1}n ×Rn
+ :

n∑
j=1

yj ≤ b, yj ≤ ajxj for j ∈ [n]


with 0 < aj ≤ b for all j ∈ [n]. A set C ⊆ {1, . . . , n} is a flow cover of T if∑

j∈C aj > b. We denote by (·)+ = max{0, ·}. The corresponding flow cover
inequality is

∑
j∈C yj +

∑
j∈C(aj − λ)+(1− xj) ≤ b, where λ =

∑
j∈C aj − b.

We can verify a flow cover inequality as a split cut with the disjunction∑
j∈C,aj≥λ(1−xj) ≤ 0∨

∑
j∈C,aj≥λ(1−xj) ≥ 1. In the first case, the inequality

reduces to
∑n

j=1 yj ≤ b, which is valid by definition of T . In the second case, we
can derive the following intermediate inequality:∑

j∈C

(aj − λ)+(1− xj) =
∑

j∈C,aj≥λ

aj(1− xj)− λ
∑

j∈C,aj≥λ

(1− xj) (8)

≤
∑
j∈C

aj(1− xj)− λ = b−
∑
j∈C

ajxj ≤

b−
∑
j∈C

ajxj

+

The inequality holds, since
∑

j∈C,aj≥λ(1− xj) ≥ 1 by assumption, and since
aj(1 − xj) ≥ 0. Then we derive the flow cover inequality using the additional
disjunction

∑
j∈C ajxj ≤ b ∨

∑
j∈C ajxj ≥ b + 1. In the first case, we find∑

j∈C yj ≤
∑

j∈C ajxj = b − (b −
∑

j∈C ajxj)
+, and adding the intermediate

inequality (8) gives the flow cover inequality. In the second case, the inequality∑
j∈C yj ≤ b = b − (b −

∑
j∈C ajxj)

+ holds and again adding the intermediate
inequality (8) gives the flow cover inequality.

Reduced cost fixing. Assume we solved the LP relaxation of (P), with optimal
objective value zMIP , and assume that we already found an integer feasible
solution with objective value zI < ∞. Let xj be a nonbasic variable at its lower
bound, and for the sake of simplicity assume that xj ≥ 0 with reduced cost
c̄j 6= 0. Then reduced cost fixing [17] states that the following inequality is valid:

xj ≤
⌊
zMIP − zLP

c̄j

⌋
Assume that xj is an integer variable, and for the sake of simplicity, assume
that all variables xi ≥ 0. The reduction of reduced cost fixing can be proven in
the setting of our proof system using the implication rule. We make a simple
aggregation proof, adding cTx ≤ zMIP and −(yTA)x ≤ zLP , where y are the
dual multipliers of the LP solution. This yields (c− yTA)x ≤ zMIP − zLP . Since
the LP has been solved to optimality, we can aggregate out all variables except xj

and the inequality stays valid. Dividing by c̄j = cj − yTAj yields the desired
inequality.

An analogous construction can be used to prove the validity of reduced cost
fixing for variables at their upper bound.


