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Abstract

Generally speaking, in a discrete location problem the decision maker chooses a set of facilities

among a �nite set of possibilities and decides to which facility each customer will be allocated

in order to minimize the allocation cost. However, it is natural to consider the more realistic

situation in which customers have their own criterion to choose one of the open facilities, based

for instance on delivery time or service quality. Giving freedom to the customers results in

costs for the decision maker which are greater than those coming from the forced allocation of

customers to facilities.

Here we consider several facility location problems on a directed network with two kinds of

costs. The so-called customer cost is the one that each customer takes into account to select the

facility that provides him with the service (like delivery time or a measure of loss of quality).

Therefore, once the facilities are located, a customer will choose that of minimum customer

cost for him. The so-called company cost includes any cost that derives from the allocation of

the customers (demand points) to the facilities they have chosen. The aim is to minimize the

company cost taking into account the decisions of the customers once the company opens its

facilities.

Additionally, the company can reduce its costs by upgrading the network. To this end, a

limited amount of money (budget) can be used to reduce (upgrade) the company costs associated

to the arcs of the network. Then, the aim is to simultaneously �nd the location of facilities and

the distribution of the budget (or part of it) among the arcs of the graph in order to minimize the

total cost, obtained adding up the upgraded company costs and the upgrading of the network.

Di�erent problems arise depending on the criterion used to locate the facilities and the

distribution scheme. In this article we will address the upgrading of the p-median location

problem, a two-stage facility location problem, a single allocation hub location problem and a

tree of hubs location problem.
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1 Introduction

In a classical discrete facility location problem on a network, a graph with a weight (cost) on each

arc is considered. The goal is to �nd locations for some facilities (on the nodes of the graph) which

are optimal with respect to an objective function, and to allocate all or part of the nodes to the

chosen facilities. Facility location models have wide application in the real world, e.g., in the �elds

of logistics, economics, emergency response, transport, distribution, just to name a few. Numerous

papers and books have contributed from many points of view to this research area. An overview of

most of the models, methods and applications can be found in the book edited by Laporte, Nickel

and Saldanha-da-Gama ([36]). The situation is usually presented as (i) the selection of a �nite

set of facilities among a �nite set of possibilities and (ii) the subsequent allocation of customers

(demand nodes) to facilities that minimizes the resulting cost. Then, customers are forced to use the

facility which is cheaper for the decision maker. This can be right when customers represent objects

without decision capacity, like depots that will be supplied from the facilities. Nevertheless, there

are situations where customers will not follow the decision maker instructions, but will choose the

facility on their own. For this reason, or simply because a company (the decision maker) wants to

give the best possible service to its customers (once the facilities are open), the facility that each

customer will choose can be known in advance and respected, even when the cost of supplying the

service is higher due to this greater degree of freedom for the customers.

Then we consider several facility location problems on a network with two kinds of costs. We

call customer cost the one that each customer takes into account to select the facility that provides

him with the service. One can easily imagine that the degree of satisfaction of a customer buying

online will be greater if the seller delivers the product sooner (coming from an open facility with less

travel time). But perhaps the route followed by the vehicle delivering this product involves a large

cost (due to outsourcing, small capacity vehicle or whatever). In any case, the company costs will

be unknown for the customers but a direct consequence of their decisions. Although the company

cannot (or does not want to) change the decisions of the customers, there is something that it can do:

reducing the costs of supplying customers by investing a given budget in some parts of the network.

And, what is in the heart of the location problems, to change the decisions about the location of

facilities, using the knowledge on both, the decisions of the customers and the improvements (and

consequent costs reductions) to be carried out on the network.

Several combined problems involving facility location and network decisions have been studied in

the literature. The initial model for the facility location/network design problem was introduced by

Daskin et al. [12]. Contreras and Fernández [9] presented a uni�ed framework for the general network

design problem that addresses classical problems involving combined location and network design
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decisions. Some recent applications can be found in the papers by Dukkanci et al. [17], Gokbayrak

[27] and Laporte et al. [37]. Problems of this type involve two decisions: locating facilities in a set of

nodes and selecting a set of links from the demand nodes to their allocated facilities. Several costs

are involved in the process, such as design costs (set-up costs of facilities and links), and operating

(service) costs to transport the demand through the network. Chrètienne et al. [7] deals with the

Location-Dispatching Problem, that consists of determining subsets located at nodes minimizing the

sum of two costs: a piecewise linear installation cost and an access cost. Drezner and Wesolowski

[16] and Melkote and Daskin [44] proposed models that aimed to determine where to locate facilities

and which network links to build in order to minimize the sum of set-up costs and operating costs.

Another approach that considers these costs simultaneously is to take into account the operating

costs in the objective function while requiring the overall design costs to satisfy a given budget

constraint. Melkote and Daskin [44] raised a scenario in which a budget could be used to construct

facilities or links on the network and the goal is to minimize the operating cost. In the paper by

Contreras et al. [8], the operating costs represent access times of demand nodes to their allocated

facilities in the network induced by the selected arcs, and the objective is to minimize the maximum

operating cost. The design costs are considered in a budget constraint. Simultaneously, the paths

connecting two nodes have to be determined.

Some authors have already studied the upgrading approach in di�erent location problems. Related

to median problems, Gassner [24] studied the 1-median problem in a network, and Sepasian and

Rahbarnia [51] dealt with the p-median problem on a path. In the continuous case, the Euclidean

1-median problem was analyzed by Plastria [48]. In the work of Alizadeh and Afrashteh [4], the

budget-constrained inverse median facility location problem on networks is studied. Concerning the

center objective, the 1-center problem was studied by Gassner [26] and Sepasian [49], and the inverse

version on trees was considered by Nguyen [45]. Nguyen and Teh [46] consider the uniform cost

reverse 1-centdian problem on networks, where edge lengths are reduced within a given budget. In

the case of undesirable facilities, obnoxious median location problems on trees have been studied

by Afrashteh et al. [2], Alizadeh et al. [3] and Gassner [25]. The upgrading version of the maximal

covering location problem with edge length modi�cations on networks has been recently considered by

Baldomero et al. [5], whereas Blanco and Marín [6] have applied upgrading to hub location problems.

Finally, some authors have considered upgrading in spanning tree problems (Krumke et al. [15, 32],

Sepasian and Monabbati [50]), �ow problems (Demgensky et al. [13], Holzhauser et al. [29]), shortest

and longest path problems (Fulkerson and Harding [22], Hambrusch and Tu [28]), and the bottleneck

constrained network upgrading problem (Krumke et al. [33]).

To the best of our knowledge, none of these papers consider, as we do, a �rst cost that is used to

allocate the customers to the facilities and a second cost which is a kind of operating cost (derived

or company cost). Only Espejo and Marín [19] have dealt with a problem where arc upgrading is

combined with two kinds of costs associated with the arcs of a network. These authors analyzed
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the upgrading of arcs in the p-median problem on a bi-network (a graph with two kinds of costs

associated to the edges/arcs), and build an objective function that involves only the second cost.

Another important di�erence is related to the budget. As we do here, it is used to reduce only the

costs of second type, and does not a�ect the customers costs. Then, since each demand node will be

always assigned to the facility with the lowest customer cost, the path from a demand node to their

allocated facility is determined independently of the use of the budget.

Regarding the models, our contribution in this paper is two-fold. We introduce new loca-

tion/allocation problems on networks dealing simultaneously with two costs (related to and derived

from the allocation) on the arcs, and the incorporation of the cost of upgrading the network to the

objective function, to determine which part of the budget (if any) should be invested in the cost

reduction. On the other hand, we develop mathematical models determining the locations of the

facilities, the allocation of the demand nodes to the facilities providing the lowest allocation cost,

and the distribution of the budget among the arcs of the network to reduce the derived company

costs associated to the allocation, in order to minimize the upgrading investment plus the upgraded

company costs. To concrete, we concentrate on modelling versions of the p-median location problem,

two-stage facility location problem, the single allocation p-hub location problem and tree of hubs

location problem.

Potential applications arise in the context of transportation networks, express shipment and

postal delivery and communication networks. In wireless sensor networks, facilities can represent

any kind of service provider (like cluster heads, time synchronization hubs, or network sinks) that

can be used by client nodes nearby. Speci�cally, for an energy e�cient clustering it is required that

clients connect to their closest facilities. Therefore, the allocation costs are given by the distances

customer-facility. Additionally, another edge costs are given representing the quality of the link, e.g.,

based on dissipated energy, latency or interference. This is a kind of communication cost that we

are interested in improving. For further details about facility location in wireless sensor networks see

the article of Frank [21]. This situation can be modelled as a p-median problem in a network with

two costs associated in each arc and upgrading in the communication cost.

Another interesting application is that of solid waste systems. The waste is collected from the

districts and transported to land�ll areas or to waste processing plants using collection vehicles.

The resources used for collection and transport, trucks and labor, can be utilized more e�ectively

if waste is transported to the disposal area via transfer stations. The location of transfer stations

becomes especially important, as we can see in the paper by Kirca and Erkip [31]. On the one hand,

using transfer stations allows spend less time in transporting and more time in collecting, and the

labor force is also more e�ectively utilized. On the other hand, transporting the waste from transfer

stations to land�ll is carried out with other vehicles (transfer vehicles) with a lower operating cost

than collection vehicles. The aim is to select a set of land�lls and transfer stations to open so that

each district is assigned to the transfer station and the land�ll with the lowest travel time. This
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allocation provides a operating cost or transportation cost that we want to reduce. The problem can

be viewed as a version of a two-stage facility location problem where the districts are the clients, and

the waste of the clients has to be collected from each district and sent to the land�ll (service facility)

through a transfer station (depot).

It is worth insisting on the fact that in contexts where the facilities provide a service and the

demand nodes represent users or customers, our model also allows considering the interests of both

locator and users. Instead of assigning the users to the facility based only in the interest of the

decision maker, the users establish their preferences for the location of the facilities (that can be

based on travel time or distances, waiting time, ordering cost, quality of the service, reliability or

any other). Once the facilities are located, the users will be allocated to the most preferred of

these facilities. The allocations imply a cost from each customer to its allocated facility that the

decision maker wants to reduce. This cost could be a transportation cost, a delivery time, delay

time or another one. The decision maker, whose budget is limited, must decide where to reduce

these derived costs. The reason to reduce these costs is the improvement of the service, saving

time or money, in�uence the purchase decision, among others, but always preserving the customers'

preferences for the allocated facility.

The rest of the paper is organized as follows. First, we formally de�ne the facility location

problems studied here and introduce some notation to be used in the following sections. The next

three sections are devoted to the analysis of the p-median location problem, the two-stage location

problem, the single allocation p-hub location problem and the tree of hubs location problem , all

on bi-networks with upgrading. Di�erent integer programming formulations are developed for the

aforementioned problems. A brief computational study will show the limits of the upgrading to

reduce the costs for the company. The paper �nishes with a section containing conclusions and some

possible future lines of research.

2 General description of the problem

Consider a directed bi-network (V,A, c1, c2) given by a directed graph (V,A) and two kinds of costs:

c1 (customer or allocation total cost) and c2 (company or derived unit cost), associated with the arcs

of A. Let I ⊆ V and K ⊆ V be the the sets of customers (demand nodes) and nodes candidates to

be selected as facilities, respectively. For each i ∈ I, a demand wi must be supplied.

A �xed amount of 1 ≤ p ≤ n− 1 of the nodes in K will be chosen as facilities. Once the subset

of facilities X ⊆ K has been determined, |X| = p, and depending on the particular model, every

demand node i chooses the facility (or facilities) that serves him with less c1 cost. This cost is

produced by the use of some arcs of the network, that we denote S(i,X). The use of the arcs in

S(i,X) produces in turn a cost C2(i,X) to the company. A budget B > 0 can be used to reduce

the company costs, taking into account that the reduction of the cost in each arc a ∈ A is limited to
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0 ≤ ua ≤ c2a, and that a unit cost ha ≤ B/ua for reducing c2a is applied.

The Generalized Induced Facility Location Problem with Upgrading consists then of simultaneously

selecting the subset of facilities X and distributing a budget B or part of it (for reducing the company

costs c2 of the arcs in the sets S(i,X)) in order to minimize the sum of the upgraded company costs

on the arcs of S(i,X) for all i ∈ I, plus the part of the budget invested in the upgrading. Note that

there will be some arcs in the network that will never been used by customers and then, there will

be never upgraded. Let then A∗ ⊆ A denote the set of arcs susceptible of been upgraded. Denoting

by ba the reduction of the company cost of arc a ∈ A, and by b(i,X) total reduction in the company

costs of the set S(i,X), the problem is

min
X⊂K
|X|=p

{∑
i∈I

wi(C
2(i,X)− b(i,X)) +

∑
a∈A∗

haba :
∑
a∈A∗

haba ≤ B; 0 ≤ ba ≤ ua, ∀a ∈ A∗

}
.

The closely related Induced p-Median Problem with Upgrading was studied by Espejo and Marín

in [19]. They showed that: (i) the location of the medians could change when the arcs are upgraded,

and (ii) the demand points were not in a natural way allocated to the facilities with the lowest

customer costs. Therefore, this property of the solution must be enforced in any formulation using

Closest Assignment Constraints (denoted by CAC, see Espejo et al. [18]).

It is assumed in the rest of the article that c1a, c
2
a ≥ 0 ∀a ∈ A, but no other condition on the costs

is required.

3 Generalized Induced p-Median Problem with Upgrading

The classical p-median problem on networks consists in the following. A set of p medians has to be

located in the vertices K ⊆ V of a directed network (V,A, c1). Let I ⊆ V be the customers set. Let

SP 1(s, ℓ) be the c1-shortest directed path from s ∈ V to ℓ ∈ V , that is assumed to be unique and

has cost C1
sℓ :=

∑
a∈SP 1(s,ℓ) c

1
a. Once the set of medians X ⊂ K has been determined we also assume

that for each i ∈ I, there exists only one ki ∈ X such that the shortest path from X to i is SP 1(ki, i).

Using the following variables

yk =

{
1 if k is chosen as a median

0 otherwise
∀k ∈ K,

xki =

{
1 if k = ki

0 otherwise
∀i ∈ I, ∀k ∈ K,
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the classical formulation of the p-median problem reads

(pM) min
∑
i∈I

wi

∑
k∈K

C1
kixki

s.t. xki ≤ yk, ∀i ∈ I, ∀k ∈ K, (1)∑
k∈K

xki = 1, ∀i ∈ I, (2)∑
k∈K

yk = p, (3)

xki ∈ {0, 1}, ∀i ∈ I, ∀k ∈ K, (4)

yk ∈ {0, 1}, ∀k ∈ K. (5)

The p-median problem has been widely studied. We refer the interested reader to the chapter

by Marín and Pelegrín in the book [42].

In the generalized induced p-median problem with upgrading, a bi-network (V,A, c1, c2) is given.

The total company cost associated to SP 1(s, ℓ), denoted by C2
sℓ, is obtained adding up the costs c2a

of the arcs a ∈ SP 1(s, ℓ), i.e., C2
sℓ :=

∑
a∈SP 1(s,ℓ) c

2
a. In addition to the location of the p medians, a

budget can be distributed among the arcs to reduce the company costs associated to the shortest

path from the medians to the customers, so that the sum of the company costs after the reduction

and the upgrading investment is minimal. Recall that arcs exist where a discount will never be

applied, since they do not belong to shortest paths from nodes in K to nodes in I. In particular, the

discount will be limited to arcs in the set A∗ = ∪i∈I ∪k∈K SP 1(k, i). Using variables ba ≥ 0 for the

reduction of the cost c2a, a ∈ A∗, the Generalized Induced p-Median Problem with Upgrading can be

formulated as a nonlinear program:

(IpM) min
∑
i∈I

wi

∑
k∈K

(C2
ki −

∑
a∈SP 1(k,i)

ba)xki +
∑
a∈A∗

haba (6)

s.t. (1)− (5)

yk +
∑
ℓ∈K:

C1
ℓi

>C1
ki

xℓi ≤ 1, ∀i ∈ I, ∀k ∈ K, (7)

∑
a∈A∗

haba ≤ B, (8)

ba ≤ ua, ∀a ∈ A∗, (9)

ba ≥ 0, ∀a ∈ A∗. (10)

Constraints (7) guarantee that customers are allocated to their preferred facilities (i.e., those with

minimum customer cost) and a budget B or part of it, limited by constraints (8) and (9), is applied

in the �rst addend of (6) to reduce the cost of the arcs, producing a nonlinearity. The amount �nally

invested in upgrading the arcs is also added in the second term of the objective function as a cost

for the company.
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A linearization of (6), based on the one developed by Espejo and Marín in [19], consists of

introducing variables zia representing the unit reduction in the path that serves node i when the arc

a ∈ A is upgraded. Let SP 1(i) ⊆ A be the set containing the arcs in any c1-shortest path to i ∈ I.

Then

zia :=
∑
k∈K:

a∈SP1(k,i)

baxki = ba
∑
k∈K:

a∈SP1(k,i)

xki, ∀i ∈ I, ∀a ∈ SP 1(i).

A linear reformulation of (IpM) is

(IpML) min
∑
i∈I

wi

∑
k∈K

C2
kixki −

∑
a∈SP 1(i)

zia

+
∑
a∈A∗

haba

s.t. (1)− (5), (7)− (10)

zia ≤ ba, ∀i ∈ I,∀a ∈ SP 1(i),

zia ≤ ua

∑
k∈K:

a∈SP1(k,i)

xki, ∀i ∈ I,∀a ∈ SP 1(i),

zia ≥ 0, ∀i ∈ I, ∀a ∈ SP 1(i).

When a customer i ∈ I is allocated to a median k ∈ K, all other customers i′ ∈ I in the path

SP 1(k, i) will be also allocated to k. Using this fact, the following result can be derived:

Proposition 3.1. The following are valid inequalities for (IpML):

xki ≤ xkℓ ∀i ∈ I, ∀k ∈ K, ∀ℓ ∈ I ∩ SP 1(k, i), ℓ ̸= i.

4 Generalized Induced Two-Stage Facility Location Problem

with Upgrading

A two-stage facility location problem consists of locating facilities and depots (distribution centers)

in a network (V,A, c1) and sending a product from the located facilities to customers through the

located depots. Some authors dealing with two-stage facility location and related problems are

Aardal et al. [1], De Oliveira et al. [14], Landete and Marín [35], Marín [38] and Marín and Pelegrín

[39, 40, 41]. In the version we extend here, q facilities and p depots have to be located in the vertices

of the network. Let J ⊆ V and K ⊆ V be the sets of candidates to be selected as facilities and

depots, respectively. Let I ⊆ V be the customers set. For each i ∈ I a demand wi must be supplied

from a facility in J through a depot in K. We assume that the capacity of facilities and depots is

unlimited. There are two main formulations for this problem, one using twice indexed variables and

another one using variables with three indices. Since they have di�erent properties, we present here

both.
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The �rst we introduce, with smaller size but weaker than the other one, is the twice-indexed

formulation. Location variable yk, k ∈ K, takes value 1 if k is chosen as a depot and tj takes value

1 if j ∈ J is chosen as a facility. Continuous variable xki, i ∈ I, k ∈ K, represents the fraction of

the demand wi of customer i met from depot k (note that this variable can also be restricted to take

values 0,1), and rjk, j ∈ J , k ∈ K, is the fraction of the total demand
∑

i∈I wi being transported

from plant j to depot k. Recall that C1
sℓ is the cost of the shortest path from s to ℓ. We can formulate

the problem as

(TS2) min
∑
i∈I

wi

∑
k∈K

C1
kixki +

∑
i∈I

wi

∑
j∈J

∑
k∈K

C1
jkrjk

s.t. (1)− (5)∑
i∈I

wixki =
∑
i∈I

wi

∑
j∈J

rjk, ∀k ∈ K, (11)∑
j∈J

tj = q, (12)

rjk ≤ tj, ∀j ∈ J,∀k ∈ K, (13)

rjk ≥ 0, ∀i ∈ I,∀j ∈ J, (14)

tj ∈ {0, 1}, ∀j ∈ J. (15)

Note that �ow conservation constraints (11) make the product demanded by the customers be served

to the corresponding depot from some facility. Note also that constraints rjk ≤ yk can be added to

the model forall j ∈ J and k ∈ K.

The second formulation for the classical two-stage location problem we present is the three times

indexed formulation. Since each depot is going to be optimally assigned to only one facility, binary

variable xjki, j ∈ J , k ∈ K, i ∈ I, takes value 1 if customer i is allocated to depot k and depot k is

allocated to facility j.

(TS3) min
∑
i∈I

wi

∑
j∈J

∑
k∈K

(C1
jk + C1

ki)xjki

s.t. (3), (5), (12), (15)∑
j∈J

∑
k∈K

xjki = 1, ∀i ∈ I, (16)∑
j∈J

xjki ≤ yk, ∀i ∈ I,∀k ∈ K, (17)∑
k∈K

xjki ≤ tj, ∀i ∈ I,∀j ∈ J, (18)

xjki ∈ {0, 1}, ∀j ∈ J, ∀k ∈ K, ∀i ∈ I. (19)

Constraints (16) ensure that all customer demands are satis�ed. Constraints (17) and (18) guarantee

that all customers are supplied through depots and facilities, respectively.
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The Generalized Induced Two-Stage Facility Location Problem with Upgrading on a directed bi-

network (V,A, c1, c2) consists of simultaneously locating q facilities and p depots and distributing at

most a budget B to reduce the company costs of sending the product to the customers from the

facilities through the depots, so that the total �reduced� company cost plus the upgrading cost is

minimum. Once the facilities and depots have been located, every depot will be served from the

facility providing the minimum directed c1-shortest path and every customer will be served from the

depot with minimum directed c1-shortest path as well. Let again SP 1(i) ⊂ A be the set of arcs that

belong to any c1-shortest path to i. The total customer and company costs when i is served from j

through k are given by Cn
jk + Cn

ki, n = 1, 2, respectively. We consider again variables ba to account

for the reduction of the company cost of arc a ∈ A∗, where A∗ is the set of arcs in the c1-shortest

paths depot�customer or facility�depot.

Based on (TS2), the �rst non-linear formulation for the problem is

(ITS2) min
∑
i∈I

wi

∑
k∈K

(C2
ki −

∑
a∈SP 1(k,i)

ba)xki +
∑
i∈I

wi

∑
j∈J

∑
k∈K

(C2
jk −

∑
a∈SP 1(j,k)

ba)rjk+∑
a∈A∗

haba

s.t. (1)− (5), (7)− (10), (11)− (15),

tj +
∑
ℓ∈K:

C1
ℓk

>C1
jk

rℓk ≤ 1, ∀j ∈ J, ∀k ∈ K. (20)

We are minimizing the total company cost after applying the reduction in arcs in c1-shortest paths

depot�customers (�rst term in the objective function) and facility�depot (second term), plus the

upgrading investment (third term). Constraints (20) guarantee that depots are allocated to the

facility with the minimum c1-shortest path.

A linearization of (ITS2) similar to the one derived for the p-median problem follows. Let zxia and
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zrka be the auxiliary variables. Then

(ITS2L) min
∑
i∈I

wi

∑
k∈K

C2
kixki −

∑
a∈SP 1(i)

zxia

+

(
∑
i∈I

wi)

∑
k∈K

(
∑
j∈J

C2
kjrjk −

∑
a∈SP 1(k)

zrka)

+
∑
a∈A∗

haba

s.t. (1)− (5), (7)− (10), (11)− (15), (20)

zxia ≤ ba, ∀i ∈ I,∀a ∈ SP 1(i),

zxia ≤ ua

∑
k∈K:

a∈SP1(k,i)

xki, ∀i ∈ I,∀a ∈ SP 1(i),

zxia ≥ 0, ∀i ∈ I, a ∈ SP 1(i),

zrka ≤ ba, ∀k ∈ K, ∀a ∈ SP 1(k),

zrka ≤ ua(
∑
i∈I

wi)
∑
j∈J:

a∈SP1(k,j)

rjk, ∀k ∈ K, ∀a ∈ SP 1(k),

zrka ≥ 0, ∀k ∈ K, ∀a ∈ SP 1(k).

Proposition 3.1 still holds for formulation (ITS2L). A similar result can be derived for the �rst

part of the routes:

Proposition 4.1. The following are valid inequalities for (ITS2L):

rjk ≤ rjℓ ∀j ∈ J, ∀k ∈ K, ∀ℓ ∈ K ∩ SP 1(j, k), ℓ ̸= k.

Through a similar process, and using auxiliary variables zia, we obtain a linear formulation and

valid inequalities for the problem based on (TS3):

(ITS3L) min
∑
i∈I

wi

∑
k∈K

∑
j∈J

(C2
jk + C2

ki)xjki −
∑

a∈SP 1(j,k)

zia −
∑

a∈SP 1(k,i)

zia

+
∑
a∈A∗

haba

s.t. (3), (5), (12), (15)− (19)∑
i∈I

∑
ℓ∈J:

C1
ℓk

>C1
jk

xℓki + tj ≤ 1, ∀k ∈ K, ∀j ∈ J,

∑
j∈J

∑
ℓ∈K:

C1
ℓi

>C1
ki

xjℓi + yk ≤ 1, ∀i ∈ I, ∀k ∈ K,

zia ≤ ba, ∀i ∈ I, ∀k ∈ K, ∀a ∈ SP 1(k, i) ∪ SP 1(k),

zia ≤ ua

∑
k∈K

∑
j∈J:

a∈SP1(k,i)∪SP1(j,k)

xjki, ∀i ∈ I, ∀ℓ ∈ K, ∀a ∈ SP 1(ℓ, i) ∪ SP 1(ℓ),

zia ≥ 0, ∀i ∈ I, ∀k ∈ K, ∀a ∈ SP 1(k, i) ∪ SP 1(k).

11
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Note that an arc a ∈ SP 1(k, i) ∩ SP 1(j, k) would be discounted twice in the objective function.

Some valid inequalities for (ITS3L) are given now.

Proposition 4.2. The following are valid inequalities for (ITS3L):

xjki ≤ xjkℓ ∀i ∈ I, ∀j ∈ J, ∀k ∈ K, ∀ℓ ̸= i : ℓ ∈ I ∩ SP 1(k, i),

xjki +
∑
ℓ̸=j

xℓks ≤ yk ∀i, s ∈ I, ∀j ∈ J, ∀k ∈ K.

5 Generalized Induced Single Allocation p-Hub Location Prob-

lem with Upgrading

In a classical p-hub location problem, there is an undirected network (V,E, c1) and a product to

be sent between some pairs of nodes. Although a directed network could also be considered, this

possibility is almost never approached in the literature of hub location. Since the cost of traversing

an edge e ∈ E can be di�erent depending of the direction followed by the �ow, we still de�ne A as

the set of arcs obtained from E by splitting every edge in two arcs. Let I ⊆ V represent the set of

origins and destinations of this product �ow and wij ≥ 0 the amount of product sent from origin

i ∈ I to destination j ∈ I. Every �ow must be routed via either one or two special nodes called hubs.

The hubs act as transshipment nodes by collecting the �ows from the origins and redistributing them

towards the destinations. Let K ⊆ V be the set of nodes candidates to be selected as hubs. Each unit

of product that traverses a = (s, ℓ) ∈ A incurs initially a cost c1a, although this cost could be smaller

when s and ℓ are both hubs. The goal is to locate p hubs and to route every shipment through the

most suitable hub or pair of hubs in such a way that the overall cost is minimized. Note that it is in

the essence of the problem that two hubs must be directly connected through only one edge, since

the economies of scale associated to the lower cost between hubs use this fact. Initially, for the sake

of simplicity, we consider that the subnetwork induced by K is complete, adding arcs with very large

c1-costs when needed. Nevertheless, the �ow can follow the shortest paths from hubs to destinations

and from origins to hubs. To simplify the notation, we call Oi :=
∑

j∈I wij and Di =
∑

j∈I wji. In

the forthcoming formulations we do not assume special properties of the costs like satisfaction of the

triangle inequality, symmetry or any other.

Special attention deserves the inter-hub discounted �ow. To model economies of scale, it is usual

in the literature to multiply the c1-cost between two hubs by a discount factor 0 < α < 1. Although

this way to proceed simplify the formulations of the problem, it is not evident that marking two nodes

as hubs make the cost between them be automatically reduced by a factor, regardless the amount

of �ow sent from one of them to the other. In other words, instead of invest a budget in upgrading

arcs one by one, it is generally assumed that the upgrading comes for free due to the (hypothetical)

higher amount of �ow in the inter-hub network. The kind of model we introduce in this paper �lls

in part this hole in the literature.

12
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There are two large families of hub location problems. Those that allow a customer to choose

di�erent pairs of hubs depending on the destination of the �ow (multiple allocation problems) and

those that enforce a customer to choose only one hub to send (and receive) all its �ow. Since, in the

philosophy behind our models, origins are assumed to be customers that choose the facility they are

allocated to by comparing c1-costs, it has sense to focus on the Single Allocation p-Hub Location

Problem. This last problem has been formulated in the literature in di�erent ways, see [20], [23],

[34], [43]. We present and use here only one formulation never considered before. For i ∈ I, m ∈ K,

we de�ne the variables Sim that measure the inter-hub transportation cost with origin at i sent to

all destinations through any �rst hub but using m ∈ K as the second hub. Using variables y and x

as before, the classical problem on a network (V,A, c1) can be formulated as

(Hub) min α
∑
i∈I

∑
m∈K

Sim +
∑
i∈I

∑
k∈K

(OiC
1
ik +DiC

1
ki)xki

s.t. (1)− (5)

Sim ≥
∑
j∈I

wijc
1
km(xki + xmj − 1), ∀i ∈ I, ∀k,m ∈ K, (21)

Sim ≥ 0, ∀i ∈ I, ∀m ∈ K. (22)

Constraints (21) only have e�ect when xki = 1. In such a case, the cost of sending all the �ow

from origin i ∈ I between hubs comes from arcs (k,m) for every j such that xmj = 1, which is the

wished e�ect of the constraints. Note that the cost c1km is the cost of a single arc, (k,m), whereas the

cost C1
ik in the objective function is obtained from the shortest path SP 1(i, k). If some �ow moves

from node s ∈ I ∩ K to node ℓ ∈ K, the cost to be applied is c1sℓ when both are hubs (and this

cost will be multiplied times α) but it is C1
sℓ when s is not a hub allocated to hub ℓ. It could hold

C1
sℓ < c1sℓ. In this second case, the arcs in the shortest path from s to ℓ would not bene�t of any

discount.

In our extension of the problem, with induced costs and upgrading, we use the bi-network

(V,A, c1, c2). As in previous sections, in the hub location problem the customer cost c1 could be

based on travel times, distances, preferences or any other, while the derived company cost c2 could

represent the transportation cost (per unit of �ow). Each route beginning at origin i, ending at

destination j, and traversing hubs k and m in this order, carries a customer cost (possibly to be

paid by two customers, i and j) C1
ik + C1

mj and a company cost C2
ik + c2km + C2

mj where C2
sℓ is again

the company cost associated to the c1-shortest directed path between s and ℓ. A budget B > 0 is

given and can be used to reduce the company costs of the inter-hub arcs. There is still a limit of

0 ≤ ua ≤ ca for the upgrading of arc a ∈ A∗ := (K ×K) and the reduction comes at a penalty of

0 ≤ ha ≤ B/ua like in previous models.

The Generalized Induced Single Allocation p-Hub Location Problem with Upgrading consists then

of locating p hubs, assigning each customer i ∈ I to a located hub and distributing the budget or

part of it to reduce the company costs, in such a way that the total company cost after upgrading
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plus the upgrading cost is minimized. Now, for each i ∈ I and m ∈ K, variable Sim represents the

upgraded inter-hub transportation cost with origin at i sent to all destinations through any �rst hub

but using m ∈ K as the second hub. Then we can formulate the problem as

(IHub) min
∑
i∈I

∑
m∈K

Sim +
∑
i∈I

∑
k∈K

(OiC
2
ik +DiC

2
ki)xki +

∑
a∈A∗

haba,

s.t. (1)− (5), (7), (8), (10), (22)

bkm ≤ ukmyk, ∀(k,m) ∈ A∗ (23)

bkm ≤ ukmym, ∀(k,m) ∈ A∗ (24)

Sim ≥
∑
j∈I

wij(c
2
km − bkm)(xki + xmj − 1), ∀i ∈ I, ∀(k,m) ∈ A∗. (25)

Note that in (IHub) costs C1
sℓ and C2

sℓ can be calculated beforehand since they are the customer

and company costs associated to the paths SP (s, ℓ) when s and ℓ are not both hubs and therefore,

the costs of the arcs of SP (s, ℓ) are not upgraded. When the subnetwork (K, (K×K)∩A) is sparse,

adding all the constraints (25) can be computationally very expensive. An alternative possibility is,

when wij > 0 for all i ̸= j ∈ I, to keep the arcs as they come, and add inequalities yk + ym ≤ 1 for

those k < m ∈ K such that (k,m) ̸∈ E. This sparsity can also make solutions with less than p hubs

less costly. Then, constraint (3) should be replaced by
∑

k∈K yk ≤ p.

Note also that we have the product of b- and x-variables in the set of constraints (25) instead of

having them in the objective function, as in the other problems previously studied. In (25) we �nd,

for �xed i ∈ I and k,m ∈ K,

Sim ≥
∑
j∈I

wijbkm(xki + xmj) = Oi

∑
m∈K

bkmxki +
∑
j∈I

wijbkmxmj.

In this case it is not the shortest path but the direct arc which has to be considered. Using variables

14
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z and z′, we can obtain the linearization of (IHub):

(IHubL) min
∑
i∈I

∑
m∈K

Sim +
∑
a∈A∗

haba+∑
i∈I

∑
k∈K

(OiC
2
ik +DiC

2
ki)xki,

s.t. (1)− (5), (7), (8), (10), (22)− (24)

Sim ≥
∑
j∈I

wij(
c2km(xki + xmj − 1)− zikm − z′jkm + bkm

)
, ∀i ∈ I, ∀k ∈ K, (26)

zikm ≤ bkm, ∀i ∈ I, ∀(k,m) ∈ A∗, (27)

zikm ≤ ukmxki, ∀i ∈ I, ∀(k,m) ∈ A∗,

zikm ≥ 0, ∀i ∈ I, ∀(k,m) ∈ A∗,

z′jkm ≤ bkm, ∀j ∈ I, ∀(k,m) ∈ A∗, (28)

z′jkm ≤ ukmxmj, ∀j ∈ I, ∀(k,m) ∈ A∗,

z′jkm ≥ 0, ∀j ∈ I, ∀(k,m) ∈ A∗.

Some additional constraints to strengthen (IHubL) follow.

Proposition 5.1. The inequalities in the following family are valid for (IHubL)

Sim ≥
∑
j∈I

(
min
k∈K

{wijc
2
km − ukmαijkm}xmj −

∑
k∈K

(wij − αijkm)bkm

)
, ∀i ∈ I, ∀m ∈ K,

whenever 0 ≤ αijkm ≤ wij ∀i, j ∈ I, ∀k,m ∈ K.

Proof. Let us consider (x, y, b, S, z) a feasible solution of (IHubL). For i ∈ I and m ∈ K, since

0 ≤ αijkm ≤ wij and ukm ≤ c2km, then wijc
2
km − ukmαijkm ≥ 0 and

∑
j∈I

(
min
k∈K

{wijc
2
km − ukmαijkm}xmj −

∑
k∈K

(wij − αijkm)bkm

)
≤

∑
j∈I

(∑
k∈K

{wijc
2
km − ukmαijkm}xmj −

∑
k∈K

(wij − αijkm)bkm

)
. (29)

If ym = 0, then from (24), (27) and (28) it follows bkm = 0, zikm = 0 and z′jkm = 0, and

∑
j∈I

(∑
k∈K

(wijc
2
km − ukmαijkm)xmj −

∑
k∈K

(wij − αijkm)bkm

)
=

∑
j∈I

∑
k∈K

(wijc
2
km − ukmαijkm)xmj,
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which is lower or equal to Sim by (26). Otherwise, if ym = 1, then bkm ≤ ukm (from (23)), and (29)

can be rewritten as∑
j∈I

(∑
k∈K

wij

(
c2kmxmj − bkm

)
−
∑
k∈K

αijkm (ukm − bkm)

)
≤

∑
j∈I

∑
k∈K

wij

(
c2kmxmj − bkm

)
=

∑
j∈I

wijxmj

∑
k∈K

(
c2km − bkm

)
,

and this is the inter-hub transportation cost (after reduction) with origin at i sent to all destinations

through any �rst hub but using m ∈ K as the second hub.

6 Generalized Induced Tree of Hubs Location Problem with

Upgrading

This section deals with a hub location model not requiring direct connection between hubs. Potential

applications arise when the costs of the links between hubs are very high and full interconnection

between hub nodes is prohibitive (see [30]). The model, developed by Contreras et al. in [10] and [11],

is a single-allocation hub location problem on an undirected network (V,E, c1). Like in the previous

chapter, since the cost of traversing an edge e ∈ E can be di�erent depending of the direction followed

by the �ow, we still de�ne A as the set of arcs obtained from E by splitting every edge in two arcs.

Now exactly p hubs have to be located, with the particularity that it is required that the hubs are

connected by means of a (non�directed) tree. Consider two sets I ⊂ V and K ⊂ V , with I ∩K = ∅,
representing the customers and potential hubs, respectively. For each i, j ∈ I, wij ≥ 0 denotes the

�ow that must be sent from i to j through a path of hubs inside the tree. The so-called Tree of Hubs

Location Problem aims to locate p ≥ 2 hubs, to select p− 1 edges of E that connect the hubs, and

to assign each customer in I to a located hub in such a way that the overall cost is minimized. The

cost (per unit of �ow) of the path from i to j is the sum of the cost of (i) the directed path from

i to its allocated hub (say k) at minimum c1−cost, (ii) the directed path between k and the hub

allocated to j (say m) through the unique path in the hubs subgraph, and (iii) the directed path

from m to j following the c1-shortest path. Now, C1
ki denotes the directed c1-shortest path from i to

k. Let 0 < α < 1 be a discount factor for the �ow between hubs.

In order to formulate this problem, Contreras et al. [10] considered two new sets of variables to

determine the unique path that exists in the tree between each pair origin-destination:

ykm =

{
1 if edge (k,m) belongs to the hubs tree

0 otherwise
∀(k,m) ∈ EK ,

vijkm =


1 if the �ow from i to j traverses the

two-hubs arc (k,m)

0 otherwise

∀i, j ∈ I, ∀(k,m) ∈ AK .
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Using variables y and x as before, and preserving the notation of previous sections, the formulation

reads

(THLP)min
∑
i∈I

∑
k∈K

(OiC
1
ik +DiC

1
ki)xki +

∑
i∈I

∑
j∈I

∑
(k,m)∈AK

αwijc
1
kmvijkm

s.t. (1)− (5)

vijkm + vijmk ≤ ykm, ∀i, j ∈ I, ∀(k,m) ∈ EK , (30)∑
m∈K: (k,m)∈AK

vijkm + xkj =
∑

m∈K: (m,k)∈AK

vijmk + xki, ∀i, j ∈ I,∀k ∈ K, (31)

∑
(k,m)∈EK

ykm = p− 1, (32)

ykm ≤ yk, ∀(k,m) ∈ AK , (33)

ykm ≤ ym, ∀(k,m) ∈ AK , (34)

vijkm ∈ {0, 1}, ∀i, j ∈ I, ∀(k,m) ∈ AK , (35)

ykm ∈ {0, 1}, ∀(k,m) ∈ EK . (36)

Assuming that ykm induces a connected graph in (K,EK), it will be a tree due to (32). The

connection between those hubs that have customers allocated to them is guaranteed by constraints

(30). To ensure that all hubs receive allocation, we can include in the formulation |K| dummy

customers ℓk and �x xkℓk = 1. The set of constraints (31) de�ne paths in the tree between customers.

Constraints (33) and (34) ensure that if a customer is allocated to an element of K, the latter has

been chosen as a hub.

In our extension, the bi-network (V,A, c1, c2) is considered. Note that c1-costs between elements

of K and c2-costs between elements of I will not be required. Once the hubs in X have been

located, every customer will follow the c1-shortest directed path to X to decide its reference hub.

The company costs associated to these c1-shortest paths can be subject to reduction. Let k and m

be the hubs to which customers i and j are allocated, respectively. Then, the total company cost to

send the product from i to j is the sum of the company cost associated to the c1-shortest path from

i to k, C2
ik, the c1-shortest path from m to j, C2

mj, and the sum of all company costs of the arcs c2st
between hubs (s, t) in the unique path in the tree of hubs that goes from k to m.

To formulate the Generalized Induced Tree of Hubs Location Problem with Upgrading, we de�ne

ba as the reduction of the transportation cost in the arc a ∈ AK The formulation we propose is then
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(ITHLP)min
∑
i∈I

∑
k∈K

(OiC
1
ik +DiC

1
ki)xki +

∑
a∈AK

haba +∑
i∈I

∑
j∈I

∑
(k,m)∈AK

wij(c
2
km − bkm)vijkm,

s.t. (1)− (5), (7), (30)− (36)∑
(k,m)∈AK

hkmbkm ≤ B, (37)

bkm ≤ ukmykm, ∀(k,m) ∈ AK , (38)

bkm ≥ 0, ∀(k,m) ∈ AK . (39)

A linearization of the products in the objective function can be done using variables

zijk :=
∑

m: (k,m)∈AK

bkmvijkm

∀i, j ∈ I, ∀k ∈ K. Then

(ITHLPL)min
∑
i∈I

∑
k∈K

(OiC
2
ik +DiC

2
ki)xki +

∑
a∈AK

haba +∑
i∈I

∑
j∈I

∑
(k,m)∈AK

wijc
2
kmvijkm −

∑
i∈I

∑
j∈I

∑
k∈K

wijzijk

s.t. (1)− (5), (7), (30)− (39)

zijk ≤
∑

m: (k,m)∈AK

bkm ∀i, j ∈ I, ∀k ∈ K,

zijk ≤
∑

m: (k,m)∈AK

ukmvijkm ∀i, j ∈ I, ∀k ∈ K,

zijk ≥ 0 ∀i, j ∈ I, ∀k ∈ K.

7 Analysis of budget impact on the solution

Although the main objective of the paper was not to carry out computational studies on the perfor-

mance of the formulations, it would be interesting to know how the amount of available budget a�ects

the solution and, in particular, the optimal value of the problem and the locations of the medians.

We have considered, only for the p-median formulation (IpML), several well-known instances from

the literature widely used to test p-median algorithms and available in [47].

We have taken, from the OR-Library, the uncapacitated p-median data �les, each of them con-

taining information of number of vertices, number of edges, number of medians and, for each edge,

the end vertices and the cost. This last value will be our c1-cost. We have split each edge in two
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Figure 1: E�ect of budget increment on the optimal value

arcs and duplicated the corresponding cost to obtain a directed network. For every cost c1a we have

taken c2a := c1a · (0.8+ 0.4U) where U is randomly and uniformly distributed in (0, 1). The maximum

of the reduction of the cost, ua, was �xed to c2a/2. The cost ha for reducing c2a was �xed to 1 in each

arc, and all the demands wi were considered equal to 1. The budget was progressively incremented

from 0 until no reduction in the optimal value of the problem was possible.

pmed1 pmed2 pmed3 pmed4 pmed5 pmed6 pmed7 pmed8 pmed9 pmed10

B p = 5 p = 10 p = 10 p = 20 p = 33 p = 5 p = 10 p = 20 p = 40 p = 67

50 1/- 0/- 0/- 0/- 1/- 0/- 0/- 0/- 4/- 12/-

100 1/0 1/1 0/- 0/- 4/3 0/- 0/- 0/- 3/2 10/6

200 1/0 1/0 0/- 1/1 4/1 0/- 0/- 0/- 2/1 14/7

300 1/0 1/0 0/- 1/0 2/0 0/- 0/- 0/- 4/4 11/3

500 1/0 1/0 0/- 1/0 3/2 1/1 0/- 0/- 3/0 14/3

600 1/0 1/0 0/- 1/0 1/0 1/0 0/- 0/- 4/2 14/4

700 1/0 1/0 0/- 1/0 2/1 1/0 0/- 0/- 4/2 13/5

800 1/0 1/0 0/- 1/0 1/0 1/0 0/- 0/- 5/2 13/3

900 1/0 1/0 0/- 1/0 2/1 1/0 0/- 0/- 3/3 15/3

1000 1/0 1/0 0/- 1/0 3/2 1/0 0/- 0/- 5/2 16/3

Table 1: E�ect of budget increment on the medians location

Figure 1 displays the percentage of improvement (in logarithmic scale) of the optimal value of

the objective function (respect to the optimal value when no upgrading is carried out, i.e, with a

budget equal to zero) for di�erent instances, depending on the budget. In the �gure, m represents the
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number of arcs of the instance. As can be seen, initially this percentage increases with the budget,

but beyond a certain budget value, there is no further improvement. Generally speaking, the larger

the value of p, the larger reduction of the cost.

Regarding the medians, the optimal solutions change with the budget, as we can see in Table 1.

For each instance and budget value, we compare the optimal medians with i) those of the optimal

solution when no upgrading is carried out (on the left of the slash sign), and ii) the optimal solution

of the previous row (on the right). Each column shows the number of medians being di�erent in each

case. Despite the correlation between c1- and c2-costs, for medium and large values of p the optimal

set of medians experiment signi�cant changes when a budget is invested in the upgrading of arcs.

8 Concluding remarks

This paper introduces new facility location problems related to upgrading arcs on a network with

two kinds of costs. The �rst cost (customer cost) is used to allocate the customers to the facilities

and the second cost (company cost) is a kind of operating cost associated to the allocation. Each

customer selects the facility that provides it with the service, once the company opens its facilities,

and the aim is to minimize the company cost taking into account the decisions of the customers.

Additionally, the company can reduce its costs by upgrading the network.

This problem allows to model more realistic situations where the facilities provide a service and

the demand nodes represent users or customers. Instead of assigning the users to the facility based

only in the interest of the decision maker, our model allows considering the interests of both locator

and users. The customers choose the facility on their own and the decision maker want to reduce

the cost of supplying the service, respecting the customers' decisions.

This work can be considered an initial attempt to address facility location problems on networks

considering two costs on the arcs, upgrading arcs, and the incorporation of the upgrading cost to the

objective function.

Di�erent problems have been considered depending on the criterion used to locate the facilities

and the distribution scheme. In this article have addressed the upgrading of the p-median location

problem, a two-stage facility location problem, a single allocation hub location problem and a tree

of hubs location problem. Di�erent integer programming formulations were developed for the afore-

mentioned problems. A brief computational study has shown the limits of the upgrading to reduce

the costs for the company.

The �ndings of this paper can be the basis of further research concerning facility location problems

with upgrading on a network with two costs. From a modelling point of view, the introduction of

capacity limits for the facility location problems would be also interesting since, in real life, facilities

work with a limited capacity. In future research, the upgrading of arcs in other location problems on

a bi-network could be considered.
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