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Abstract
The Chambolle–Pock algorithm (CPA), also known as the primal-dual hybrid gradient method (PDHG),

has surged in popularity in the last decade due to its success in solving convex/monotone structured problems.
This work provides convergence results for problems with varying degrees of (non)monotonicity, quantified
through a so-called oblique weak Minty condition on the associated primal-dual operator. Our results reveal
novel stepsize and relaxation parameter ranges which do not only depend on the norm of the linear mapping,
but also on its other singular values. In particular, in nonmonotone settings, in addition to the classical
stepsize conditions for CPA, extra bounds on the stepsizes and relaxation parameters are required. On the
other hand, in the strongly monotone setting, the relaxation parameter is allowed to exceed the classical upper
bound of two. Moreover, sufficient convergence conditions are obtained when the individual operators belong
to the recently introduced class of semimonotone operators [19]. Since this class of operators encompasses
many traditional operator classes including (hypo)- and co(hypo)monotone operators, this analysis recovers
and extends existing results for CPA. Several examples are provided for the aforementioned problem classes
to demonstrate and establish tightness of the proposed stepsize ranges.

Keywords. convex and nonconvex optimization · monotone and nonmonotone variational inequalities · inclu-
sion problems · Chambolle–Pock · primal-dual hybrid gradient · semimonotone operators
AMS subject classifications. 47H04 · 49J52 · 49J53 · 65K05 · 65K15 · 90C26.

1 Introduction
This paper considers composite inclusion problems of the form

find x ∈ �n such that 0 ∈ TPx B Ax + L⊤BLx, (P-I)

where A : �n ⇒ �n, B : �m ⇒ �m are two (possibly nonmonotone) operators, and L ∈ �m×n is a nonzero
matrix. Problems of this form emerge naturally in a wide variety of applications in optimization and variational
analysis. For instance, in the framework of convex optimization, inclusion (P-I) corresponds to the first-order
optimality condition of

minimize
x∈�n

g(x) + h(Lx), (1.1)

where A = ∂g and B = ∂h represent the subdifferentials of proper lsc convex functions g and h.
One of the central algorithms for solving (P-I) is the Chambolle–Pock algorithm (CPA) [12] (also known

as the primal-dual hybrid gradient (PDHG) method [57, 18, 25]). Given strictly positive stepsizes γ, τ > 0, a
sequence of strictly positive relaxation parameters (λk)k∈� and an initial guess (x0, y0) ∈ �n+m, this algorithm
consists of the following iterates. 

x̄k ∈ JγA
(
xk − γL⊤yk)

ȳk ∈ JτB−1
(
yk + τL(2x̄k − xk)

)
xk+1 = xk + λk(x̄k − xk)
yk+1 = yk + λk(ȳk − yk)

(CPA)
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The convergence analysis of CPA in literature largely relies upon an underlying monotonicity assumption. In
this work, we identify classes of nonmonotone problems along with corresponding stepsize and relaxation
parameter conditions for which CPA remains convergent. To this end, we rely on casting CPA as an instance of
the preconditioned proximal point algorithm (PPPA). This connection was previously exploited in [18, 25, 14,
30, 11] in the monotone setting. Many other widely used numerical methods can also be interpreted as special
cases of PPPA, see e.g. [16, 45, 48, 17, 14]. In particular, consider the inclusion problem of finding a zero of a
set-valued operator T : �n ⇒ �n, i.e.,

find z ∈ �n such that 0 ∈ Tz. (G-I)

Then, given a symmetric positive semidefinite preconditioning matrix P ∈ �n×n and a sequence of strictly
positive relaxation parameters (λk)k∈�, the (relaxed) preconditioned proximal point algorithm applied to (G-I)
consists of the following fixed point iterations.{

z̄k ∈ (P + T )−1Pzk

zk+1= zk + λk(z̄k − zk) (PPPA)

By selecting a particular form for the preconditioner P and the operator T , the Chambolle–Pock algorithm can
be retrieved. Specifically, consider the so-called primal-dual inclusion

find z = (x, y) ∈ �n+m such that 0 ∈ TPDz =
[

Ax
B−1y

]
+

[
L⊤y
−Lx

]
. (PD-I)

Then, letting zk = (xk, yk) and z̄k = (x̄k, ȳk), CPA is equivalent to applying PPPA to the primal-dual inclusion
(PD-I), with preconditioner

P =
[ 1
γ
In −L⊤

−L 1
τ
Im

]
. (1.2)

As a result of this equivalence, the convergence properties of CPA can be inferred from those of PPPA. In the
monotone setting, convergence of PPPA is well understood, not only for positive definite preconditioners [34,
45, 46, 47] but also for positive semidefinite ones [30, Thm. 3.4], [11, §2.1]. Analogously, the convergence of
CPA for monotone inclusions is relatively well-understood, provided that the stepsizes γ and τ satisfy a certain
stepsize condition. The standard assumption in the first works on CPA such as [12, 18, 25] was that the stepsizes
γ and τ satisfy γτ∥L∥2 < 1. This assumption was later relaxed to γτ∥L∥2 ≤ 1 in [14, 30, 39], broadening the
scope of the analysis to Douglas-Rachford splitting (DRS), for which τ = 1/γ and L = I. Interestingly, when
interpreting CPA as a particular instance of PPPA, the stepsize condition discussed in these works is directly
linked to the positive definiteness of the preconditioning matrix P in PPPA. This connection becomes evident
by observing that, owing to the Schur complement lemma, P is positive definite under the traditional stepsize
condition γτ∥L∥2 < 1 and positive semidefinite under the relaxed stepsize condition γτ∥L∥2 ≤ 1.

Recently, convergence of PPPA in the nonmonotone setting has been considered in [19] under the assump-
tion that T admits a set of oblique weak Minty solutions, defined as follows.

Definition 1.1 (V-oblique weak Minty solutions [19]). An operator T : �n ⇒ �n is said to have V-oblique
weak Minty solutions at (a nonempty set) S⋆ ⊆ zer T for some symmetric matrix V ∈ �n×n if

⟨v, z − z⋆⟩ ≥ qV (v), for all z⋆ ∈ S⋆, (z, v) ∈ gph T , (1.3)

where the quadratic form qV (v) B ⟨v,Vv⟩. Whenever V = ρI for some ρ ∈ �, we use the notation of ρ-weak
Minty solutions.

One key aspect of this assumption is its generality, as V is allowed to be any (possibly indefinite) symmetric
matrix. For instance, if V is equal to the zero matrix, (1.3) reduces to the classic Minty variational inequality
(MVI) [36, 20], while if V = ρI the so-called weak MVI is retrieved. In literature, weak MVI and the closely
related notion of cohypomonotonicity have been employed in the context of the extragradient and the forward-
backward-forward method [15, 44, 43, 9, 22], as well as the classic PPA method [41, 27, 13, 22].

Leveraging the results from [19] and the primal-dual connection between CPA and PPPA, the first part of
this work will focus on establishing convergence of CPA under the assumption that the primal-dual operator
TPD admits a set of V-oblique weak Minty solutions. To account for the inherent structure present within

2



TPD, we impose a specific block diagonal form for V = blkdiag(VP,VD), which depends on the fundamental
subspaces of L (see (3.3) and the discussion thereafter). Furthermore, we demonstrate that by restricting our
obtained results to the case where L = I and τ = 1/γ, the convergence results for nonmonotone DRS from [19,
Sec. 3] are retrieved.

In contrast to the setting of DRS, where the convergence results follow in a straightforward manner from
those of PPPA (see proof of [19, Thm. 3.3]), convergence results for CPA are more challenging to obtain,
not only due to additional stepsize parameter τ, but mainly due to the additional complexity in the algorithm
introduced by the matrix L. This difficulty is overcome through considering the singular value decomposition
of L and using the corresponding orthonormal basis to carefully decompose the preconditioner P and the
oblique weak Minty matrix V (see proof of Theorem 3.4).

In practice, it might be difficult to determine whether the associated primal-dual operator of a given inclu-
sion problem admits V-oblique weak Minty solutions. This issue will be addressed in the second part of this
work, where we introduce the class of (M,R)-semimonotone operators and provide several calculus rules for
this class, allowing to verify the existence of V-oblique weak Minty solutions based on the semimonotonicity
properties of the underlying operators A and B. The class of semimonotone operators is defined as follows.

Definition 1.2 (semimonotonicity). Let M,R ∈ �n×n be symmetric (possibly indefinite) matrices. An operator
A : �n ⇒ �n is said to be (M,R)-semimonotone at (x̃, ỹ) ∈ gph A if

⟨x − x̃, y − ỹ⟩ ≥ qM(x − x̃) + qR(y − ỹ), for all (x, y) ∈ gph A, (1.4)

where qX(·) B ⟨·, ·⟩X for any symmetric matrix X ∈ �n×n. An operator A is said to be (M,R)-semimonotone if
it is (M,R)-semimonotone at all (x̃, ỹ) ∈ gph A. It is said to be maximally (M,R)-semimonotone if its graph is
not strictly contained in the graph of another (M,R)-semimonotone operator.

Throughout, whenever M = µIn and R = ρIn where µ, ρ ∈ �, the prefix (M,R) is replaced by (µ, ρ) and
condition (1.4) reduces to

⟨x − x̃, y − ỹ⟩ ≥ µ∥x − x̃∥2 + ρ∥y − ỹ∥2, for all (x, y) ∈ gph A. (1.5)

The class of (µ, ρ)-semimonotone operators was introduced in [19, Sec. 4] and enjoys a lot of addi-
tional freedom compared to more traditional operators classes. For instance, it encompasses the classes of
(hypo)monotone, co(hypomonotone), ρ-semimonotone [40, Def. 2], averaged and firmly nonexpansive opera-
tors (see [19, Rem. 4.2 & Fig. 4]).

In this work, this notion is generalized by characterizing the operator class with matrices (M,R) instead
of scalars (µ, ρ). This generalization is crucial to capture and exploit the specific structure emerging in CPA.
To illustrate this, the next theorem provides a simplified version of our main result (see Corollary 5.5 for the
full statement). For instance, if µA is positive, (µAL⊤L, ρAIn)-semimonotonicity of A in Theorem 1.3 could be
replaced by (µA∥L∥2, ρA)-semimonotonicity, which is in general a much more restrictive assumption.

Theorem 1.3 (convergence of CPA under semimonotonicity (simplified)). Let operators A : �n ⇒ �n

and B : �m ⇒ �m be outer semicontinuous. Suppose that there exists (x⋆, y⋆) ∈ zer TPD such that A is
(µAL⊤L, ρAIn)-semimonotone at (x⋆,−L⊤y⋆) ∈ gph A, B is (µBIm, ρBLL⊤)-semimonotone at (Lx⋆, y⋆) ∈ gph B
and the semimonotonicity moduli (µA, µB, ρA, ρB) ∈ �4 satisfy either one of the following conditions.

(i) (either) µA = µB = 0 and ρA = ρB = 0 (monotone case).

(ii) (or) µA + µB > 0 and ρA = ρB = 0.

(iii) (or) ρA + ρB > 0 and µA = µB = 0.

(iv) (or) µA + µB > 0, ρA + ρB > 0 and min{0, µAµB
µA+µB

}min{0, ρAρB
ρA+ρB

} < 1
4∥L∥2 .

Then, there exist positive stepsizes γ, τ and relaxation sequences (λk)k∈� such that if the resolvents JγA, JτB−1

have full domain1, any sequence (z̄k)k∈� = (x̄k, ȳk)k∈� generated by CPA either reaches a point z̄k ∈ zer TPD in
a finite number of iterations or every limit point of (z̄k)k∈� belongs to zer TPD.

1The full domain assumption is imposed to ensure that the iterates of CPA are well-defined.

3



This convergence result possesses two primary attributes that deserve attention. First of all, it only requires
semimonotonicity of the involved operators at a single point, as opposed to the traditional global assumptions
of (hypo)- and co(hypo)monotonicity. Secondly, by considering the more general class of semimonotone oper-
ators, we obtain fundamentally new convergence results (see case 1.3(iv)), not covered by any existing theory
for CPA. Most notably, this includes examples where µAµB < 0 and ρAρB < 0, for which neither the primal nor
the dual nor the primal-dual inclusion are monotone (see e.g. Example 5.8).

As first observed in [50], CPA can be viewed as a particular instance of proximal ADMM. Exploiting this
connection it is possible to obtain convergence results for CPA based on those for nonconvex proximal ADMM,
see [31, 8]. This approach leads to requirements for L such as full row rank assumption, and restrictions on
its condition number (see [8, Ass. 1, Rem. 2(c)]). Recently, a Lagrangian-based method with switching mech-
anism was developed in [24] for a more general class of nonconvex optimization problems. Notably, when
restricting to the linear composite setting of (P-I), their work is the first able to circumvent these rank assump-
tions. Our convergence results for CPA also do not depend on any explicit rank conditions on L, allowing to
cover rank-deficient cases without introducing a switching mechanism.

1.1 Contributions
The main contribution of the paper is to establish convergence of CPA under the assumption that the primal-
dual operator TPD admits a set of V-oblique weak Minty solutions, which leads to novel stepsize and relaxation
parameter ranges in both strongly monotone and nonmonotone settings (see Theorem 3.4 and the preceding
discussion). Interestingly, in contrast to the classical stepsize condition γτ∥L∥2 ≤ 1 in the monotone setting,
the conditions obtained through our analysis not only depend on the norm of L but also on its other singular
values. The tightness of our main convergence theorem is demonstrated through Examples 3.6 and 3.7.

As our second main contribution, convergence results are provided for the class of semimonotone oper-
ators [19, Sec. 4], which can be viewed as a natural extension of the (hypo)- and co(hypo)monotone opera-
tors. We show that the stepsize requirements reduce to a look-up table depending on the level of (hypo)- and
co(hypo)monotonicity (see Corollary 5.5). These results are made possible by establishing a link between the
oblique weak Minty assumption for the primal-dual operator and semimonotonicity of the underlying opera-
tors A and B, relying on the extended calculus rules developed in Section 4 (see also Theorem 5.1).

1.2 Organization
The paper is structured in the following manner. In Section 1.3, some notation and standard definitions are
provided. Section 2 recalls the main convergence results from [19] for PPPA in the nonmonotone setting. In
Section 3, the primal-dual equivalence between CPA and PPPA is established, which lead to convergence of
CPA under an oblique weak Minty assumption on the associated primal-dual operator. In Section 3.1, two
particular examples are provided which demonstrate tightness of our main convergence theorem. Section 4
discusses and introduces various calculus rules for the class of (M,R)-semimonotone operators. Leveraging
these calculus rules, Section 5 presents a set of sufficient conditions for the convergence of CPA, based on the
semimonotonicity of the underlying operators, along with several examples. Finally, Section 6 concludes the
paper. For the sake of readability, several proofs and auxiliary results are deferred to the Appendix.

1.3 Notation
The set of natural numbers including zero is denoted by � B {0, 1, . . .}. The set of real and extended-real
numbers are denoted by � B (−∞,∞) and � B � ∪ {∞}, while the positive and strictly positive reals are
�+ B [0,∞) and �++ B (0,∞). We use the notation (wk)k∈I to denote a sequence with indices in the set
I ⊆ �. When dealing with scalar sequences we use the subscript notation (γk)k∈I . We denote the positive part
of a real number by [·]+ B max{0, ·} and the negative part by [·]− B min{0, ·}. With id we indicate the identity
function x 7→ x defined on a suitable space. The identity matrix is denoted by In ∈ �n×n and the zero matrix
by 0m×n ∈ �m×n; we write respectively I and 0 when no ambiguity occurs. Adopting the notation from [7], we
say a matrix P ∈ �m×n is empty if min(m, n) = 0 and use the conventions P0n×0 = 0m×0, 00×mP = 00×n and
0m×000×n = 0m×n. Given a matrix P ∈ �m×n, we denote the range of P by R(P) and the kernel of P by N(P).
The trace of a square matrix P ∈ �n×n is denoted by tr P.
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We denote by �n the standard n-dimensional Euclidean space with inner product ⟨·, ·⟩ and induced norm
∥ · ∥. The set of symmetric n-by-n matrices is denoted by Sn. Given a symmetric matrix P ∈ Sn, we write
P ⪰ 0 and P ≻ 0 to denote that P is positive semidefinite and positive definite, respectively. Furthermore,
for any P ∈ Sn we define the quadratic function qP(x) B ⟨x, Px⟩. Let diag(·) denote the diagonal matrix
whose arguments constitute its diagonal elements. For arbitrary matrices A and B, we define the direct sum
A ⊕ B = blkdiag(A, B), where blkdiag(·) denotes the block diagonal matrix whose arguments constitute its
diagonal blocks. We denote the kronecker product between two matrices of arbitrary size by ⊗.

Two vectors u, v ∈ �n are said to be orthogonal if ⟨u, v⟩ = 0, and orthonormal if they are orthogonal and
∥u∥ = ∥v∥ = 1. Two linear subspaces U ⊆ �n and V ⊆ �n are said to be orthogonal if any u ∈ U and any
v ∈ V are orthogonal. We say that U ∈ �n×m is an orthonormal basis for a linear subspace U ⊆ �n if U has
orthonormal columns and R(U) = U.

The effective domain of an extended-real-valued function f : �n → � is given by the set dom f B
{x ∈ �n | f (x) < ∞}. We say that f is proper if dom f , ∅ and that f is lower semicontinuous (lsc) if the
epigraph epi f B {(x, α) ∈ �n ×� | f (x) ≤ α} is a closed subset of�n+1. We denote the limiting subdifferential
of f by ∂ f . We denote the normal cone of a set E ⊆ �n by NE and the projection onto E is denoted by
ΠE(x) B arg minz∈E ∥z − x∥. An operator or set-valued mapping A : �n ⇒ �d maps each point x ∈ �n to
a subset A(x) of �d. We will use the notation A(x) and Ax interchangeably. We denote the domain of A by
dom A B {x ∈ �n | Ax , ∅}, its graph by gph A B {(x, y) ∈ �n × �d | y ∈ Ax}, and the set of its zeros by
zer A B {x ∈ �n | 0 ∈ Ax}. The inverse of A is defined through its graph: gph A−1 B {(y, x) | (x, y) ∈ gph A}.
The resolvent of A is defined by JA B (id + A)−1. We say that A is outer semicontinuous (osc) at x̃ ∈ dom A if

lim sup
x→x̃

Ax B {y | ∃xk → x̃,∃yk → y with yk ∈ Axk} ⊆ Ax̃.

Outer semicontinuity of A everywhere is equivalent to its graph being a closed subset of �n ×�d.

Definition 1.4 ((co)monotonicity). An operator A : �n ⇒ �n is said to be µ-monotone for some µ ∈ � if

⟨x − x̃, y − ỹ⟩ ≥ µ∥x − x̃∥2, for all (x, y), (x̃, ỹ) ∈ gph A,

and it is said to be ρ-comonotone for some ρ ∈ � if

⟨x − x̃, y − ỹ⟩ ≥ ρ∥y − ỹ∥2, for all (x, y), (x̃, ỹ) ∈ gph A.

A is said to be maximally (co-)monotone if its graph is not strictly contained in the graph of another (co-
)monotone operator. We say that A is monotone if it is 0-monotone.

Definition 1.5 (parallel sum of operators). The parallel sum between operators A, B : �n ⇒ �n is defined as
A □ B B (A−1 + B−1)−1.

Definition 1.6 ([37, Def. 9.2.1] parallel sum of matrices). Let X,Y ∈ �n×n denote two matrices. We say that X
and Y are parallel summable if

R(X) ⊆ R(X + Y) and R(X⊤) ⊆ R((X + Y)⊤),

or equivalently R(Y) ⊆ R(X + Y) and R(Y⊤) ⊆ R((X + Y)⊤). For parallel summable matrices X and Y, their
parallel sum is defined as [37, Cor. 9.2.5]

X □ Y B X(X + Y)†Y = Y(X + Y)†X = X − X(X + Y)†X = Y − Y(X + Y)†Y.

If both X and Y are nonsingular, then, X □ Y = (X−1 + Y−1)−1.

Definition 1.7 (parallel sum of extended-real numbers). Let a, b ∈ �. We say that a and b are parallel
summable if either a = b = 0 or a + b , 0 and their parallel sum is defined as

a □ b B
{

0, if a = b = 0,
ab

a+b , otherwise,

where we use the convention that a □∞ = a.
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2 Preliminaries on the preconditioned proximal point method
Departing from the classical monotone setting of [46], convergence of relaxed PPPA was established in [19]
for a class of nonmonotone operators that admit a set of oblique weak Minty solutions (see Definition 1.1).
This result will serve as our primary tool for establishing convergence of CPA in the nonmonotone setting,
which is why we will reiterating it here. In particular, their analysis involves the following assumptions.

Assumption I. The operator T in (G-I) and the symmetric positive semidefinite preconditioner P in (PPPA)
satisfy the following properties.

a1 T : �n ⇒ �n is outer semicontinuous.

a2 The preconditioned resolvent (P + T )−1P has full domain.

a3 There exists a nonempty set S⋆ ⊆ zer T and a symmetric, possibly indefinite matrix V ∈ Sn such that T has
V-oblique weak Minty solutions at S⋆ for V.

a4 P ∈ Sn is a symmetric positive semidefinite matrix such that

η̄ B 1 + λmin(U⊤VPU)2 > 0, (2.1)

where U is any orthonormal basis for the range of P.

In contrast to the convergence analysis techniques relying on firm nonexpansiveness of the resolvent map-
ping, the analysis of [19] relies on a projective interpretation of the preconditioned proximal point algorithm,
which dates back to [52, 51, 29]. Most notably, it was demonstrated in [19, Lem. 2.2] that the update rule for
the (shadow) sequence generated by PPPA can be interpreted as a relaxed projection onto a certain halfspace,
and that if any iterate belongs to this halfspace, which contain the set of projected oblique weak Minty solu-
tions ΠR(P) S⋆, this implies its optimality. Based on this insight, the following convergence result for PPPA
was established.

Theorem 2.1 ([19, Thm. 2.3] convergence of PPPA). Suppose that Assumption I holds, and consider a se-
quence (zk, z̄k)k∈� generated by PPPA starting from z0 ∈ �n with relaxation parameters λk ∈ (0, 2η̄) such that
lim infk→∞ λk(2η̄ − λk) > 0, where η̄ is defined as in (2.1). Then, either a point z̄k ∈ zer T is reached in a finite
number of iterations or the following hold for the sequence (zk, z̄k)k∈�.

(i) v̄k := P(zk − z̄k) ∈ T z̄k for all k and (v̄k)k∈N converges to zero.

(ii) Every limit point (if any) of (z̄k)k∈� belongs to zer T.

(iii) The shadow sequences (ΠR(P) zk)k∈�, (ΠR(P) z̄k)k∈� are bounded.

Moreover, if (P + T )−1P is (single-valued) continuous then,

(iv) The limit points of (ΠR(P) zk)k∈� are in ΠR(P) zer T.

(v) If in Assumption I.a3, S⋆ = zer T, then (ΠR(P) zk)k∈� converges to some element of ΠR(P) zer T and
(z̄k)k∈� converges to some element of zer T. Finally, if λk is uniformly bounded in the interval (0, 2), then
(zk)k∈� converges to some element of zer T.

As mentioned in [19], Assumption I.a3 can be further relaxed by only requiring (1.3) to hold on (z, v) ∈
gph T ∩ (R((P + T )−1P) × R(P)) instead. Under this relaxed assumption, all results from Theorem 2.1 remain
valid, as the proof of Theorem 2.1 only involves invoking (1.3) at points in this restricted set. This relaxation
will prove to be relevant in Example 3.6.

3 Chambolle–Pock under oblique weak Minty
In the monotone setting, it is well-known that CPA can be interpreted as applying PPPA to the primal-dual
operator TPD [18, 25, 14, 30, 11]. Relying upon the abstract duality framework from [1], [2, Sec. 6.9], this

2As U⊤VPU is similar to a symmetric matric, its eigenvalues are real [19, Eqn. (2.9)].
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equivalence can be extended to the nonmonotone setting. Within this framework, inclusion problems (P-I) and
(PD-I) are labelled as the primal and the primal-dual inclusion, respectively. Related to these two inclusions
is the dual inclusion, given by

find y ∈ �n such that 0 ∈ TDy B (−L)A−1(−L⊤)(y) + B−1(y), (D-I)

A fundamental equivalence property for these inclusions is summarized below.

Proposition 3.1 ([2, Prop. 6.9.2]). Let (x, y) ∈ �n ×�m. The following statements are equivalent:

(i) (x, y) ∈ zer TPD

(ii) x ∈ zer TP and y ∈ TD

(iii) (x,−L⊤y) ∈ gph A and (Lx, y) ∈ gph B

Furthermore, it holds that zer TP = {x | ∃y : (x, y) ∈ zer TPD} and zer TD = {y | ∃x : (x, y) ∈ zer TPD}.
A solution of the primal inclusion (P-I) (and of the dual inclusion (D-I)) can thus be obtained by finding

a solution of the associated primal-dual inclusion. Now, consider applying PPPA to the primal-dual inclusion
(PD-I), with the preconditioner P given by (1.2). Then, each iteration corresponds to first finding a solution for
x̄k and ȳk to the inclusions

1
γ

xk − L⊤yk ∈ ( 1
γ
id + A)x̄k and 1

τ
yk − Lxk ∈ − 2Lx̄k + ( 1

τ
id + B−1)ȳk

and then performing a relaxation step zk+1 = zk + λk(z̄k − zk). Multiplying the two relations by γ and τ,
respectively, and reordering the terms, the update rule for CPA is retrieved. This result is summarized in the
following lemma.

Lemma 3.2 (equivalence of CPA and PPPA). Let z0 = (x0, y0) ∈ �n+m be the initial guess for CPA and
for PPPA applied to the primal-dual inclusion (PD-I), with the preconditioner P given by (1.2). Then, the
sequences (zk)k∈� = (xk, yk)k∈�, (z̄k)k∈� = (x̄k, ȳk)k∈� generated by CPA satisfy update rule PPPA.

Leveraging this connection, we will establish the convergence of CPA based on Theorem 2.1 for PPPA.
In contrast to the classical stepsize condition γτ∥L∥2 ≤ 1 in the monotone setting, our upcoming analysis will
demonstrate that the stepsize condition on γ and τ for CPA in general does not only depend on ∥L∥, i.e., the
largest singular value of L, but also its other singular values. Therefore, let r denote the rank of L, and without
loss of generality, let σ1, . . . , σd denote its distinct strictly positive singular values in descending order with
respective multiplicities m1, . . . ,md. Then, it holds that r =

∑d
i=1 mi. Define Σ = σ1Im1 ⊕ · · · ⊕σdImd ∈ �r×r and

consider the singular value decomposition

L =
[
Y Y ′

][Σ
0

][
X⊤

X′⊤

]
, Y =

[
Y1 · · · Yd

]
, X =

[
X1 · · · Xd

]
, (3.1)

where the zero matrix is in �(m−r)×(n−r), Yi ∈ �m×mi and Xi ∈ �n×mi , i ∈ [d], have orthonormal columns that
span the eigenspace corresponding to eigenvalue σ2

i of LL⊤ and L⊤L, respectively, and Y ′ ∈ �m×(m−r) and
X′ ∈ �n×(n−r) have orthonormal columns which span the null space of L⊤ and L, respectively. The projection
onto the range and the kernel of L and L⊤ can be expressed as [21, Sec. 2.5.2]

ΠR(L) = YY⊤, ΠR(L⊤) = XX⊤, ΠN(L) = In − XX⊤ = X′X′⊤ and ΠN(L⊤) = Im − YY⊤ = Y ′Y ′⊤. (3.2)

These projections will play a central role in our upcoming analysis. In particular, we will work under the
following assumptions on the individual operators A and B and the (nonzero) matrix L.

Assumption II. In problem (P-I), the following hold.

a1 Operators A and B are outer semicontinuous.

a2 For the selected positive stepsizes the corresponding resolvents have full domain, i.e., dom JγA = �
n and

dom JτB−1 = �m.
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a3 The set zer TPD is nonempty and there exist parameters βP, β
′
P, βD, β

′
D ∈ � and a nonempty set S⋆ ⊆ zer TPD

such that the primal-dual operator TPD has V-oblique weak Minty solutions at S⋆, where

V B VP ⊕ VD =
(
βP ΠR(L⊤) +β

′
P ΠN(L)

)
⊕

(
βD ΠR(L) +β

′
D ΠN(L⊤)

)
∈ Sn+m, (3.3)

and the following conditions hold, where γmin and γmax are defined as in (3.7):

(i) [βP]−[βD]− < 1
4∥L∥2 and [β′P]−[β′D]− < 1

∥L∥2 , (ii) [−β′P]+ < γmax and [−β′D]+ < 1
γmin∥L∥2 .

Note that in Assumption II.a3, the matrix V consists of two blocks VP and VD, each involving projections
onto the range and the kernel of L and L⊤. This imposed structure on V is not simply an arbitrary choice, but
it aligns perfectly with the inherent structure present within the primal-dual operator itself. To illustrate this,
consider the following lemma, which translates Assumption II.a3 to the properties of the associated primal
and dual inclusions. This lemma extends [19, Lem. 3.2], which considers the case L = I.

Lemma 3.3 (oblique weak Minty for primal and dual operator). Suppose that Assumption II.a3 holds and let

S⋆
P B {x⋆ | ∃y⋆ : (x⋆, y⋆) ∈ S⋆} ⊆ zer TP and S⋆

D B {y⋆ | ∃x⋆ : (x⋆, y⋆) ∈ S⋆} ⊆ zer TD.

Then, the primal operator TP has VP-oblique weak Minty solutions at S⋆
P and the dual operator TD has VD-

oblique weak Minty solutions at S⋆
D.

Proof. Note that
{(

(xA, yB), (yA + L⊤yB, xB − LxA)
) | (xA, yA) ∈ gph A, (xB, yB) ∈ gph B

}
is equal to gph TPD.Con-

sequently, by Assumption II.a3 it holds for all (x⋆, y⋆) ∈ S⋆, (xA, yA) ∈ gph A and (xB, yB) ∈ gph B that〈
yA + L⊤yB, xA − x⋆

〉
+

〈
xB − LxA, yB − y⋆

〉
≥ qVP

(yA + L⊤yB) + qVD
(xB − LxA), (3.4)

♠ In (3.4), consider xA ∈ dom(A)∩ dom(B ◦ L) = dom TP , ∅ and let xB = LxA. Then, it holds for all x⋆ ∈ S⋆
P ,

yA ∈ A(xA) and yB ∈ B(LxA) that 〈
yA + L⊤yB, xA − x⋆

〉
≥ qVP

(yA + L⊤yB). (3.5)

Since (xA, yA + L⊤yB) ∈ gph TP by construction and S⋆
P ⊆ zer TP by Proposition 3.1 it follows by definition

that TP has VP-oblique weak Minty solutions at S⋆
P .

♠ Analogously, consider yB ∈ dom
(
A−1 ◦ (−L⊤)

)∩dom
(
B−1) = dom TD , ∅ and let yA = −L⊤yB in (3.4). Then,

it holds for all y⋆ ∈ S⋆
D , xA ∈ A−1 ◦ (−L⊤)(yB) and xB ∈ B−1(yB) that〈

xB − LxA, yB − y⋆
〉
≥ qVD

(xB − LxA). (3.6)

Since (yB, xB − LxA) ∈ gph TD by construction and S⋆
D ⊆ zer TD by Proposition 3.1 it follows by definition that

TD has VD-oblique weak Minty solutions at S⋆
D , completing the proof

Consequently, Lemma 3.3 implies that the blocks VP and VD from (3.3) can be interpreted as the primal
and the dual blocks of V , respectively. As shown in the proof of Lemma 3.3, the quadratic terms qVP

(yA+L⊤yB)
and qVD

(xB−LxA) emerging in oblique weak Minty inequality correspond to the primal and the dual problems,
respectively. By selecting VP and VD as in (3.3), these terms can be written as

qVP
(yA + L⊤yB) = βP∥ΠR(L⊤) yA + L⊤yB∥2 + β′P∥ΠN(L) yA∥2,

qVD
(xB − LxA) = βD∥ΠR(L) xB − LxA∥2 + β′D∥ΠN(L⊤) xB∥2,

reducing to the norm of the scaled sum of a vector belonging to the range of L⊤ and another to its nullspace
(resp., range of L and nullspace of L⊤). This decomposition proves essential in the proof of Theorem 3.4, as it
enables to split condition (2.1) into two terms, one depending only on βP and βD and the other only depending
on β′P and β′D (see (3.13)).

One of the main aspects of the upcoming convergence proof for CPA is showing that Assumption I holds
for the operator TPD and preconditioner P from (1.2). To this end, the stepsizes γ and τ and the relaxation
parameter λ need to adhere to certain conditions as well. These conditions are summarized in the following
rules.
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Table 1: Definition of η′ in Relaxation parameter rule I.

rank L = n rank L < n

rank L = m +∞ 1 + 1
γ
β′P

rank L < m 1 + 1
τ
β′D min

{
1 + 1

γ
β′P, 1 +

1
τ
β′D

}

Stepsize rule I. Define
δ B 1 + [βPβD]−

(
∥L∥2 − σ2

d

)
.

The stepsizes satisfy γ ∈ (
max

{
γmin, [−β′P]+

}
,min

{
γmax,

1
[−β′D]+∥L∥2

})
and τ ∈ (

max
{
τmin(γ), [−β′D]+

}
, 1
γ∥L∥2

]
, where

γmin B
2[−βP]+

δ +
√
δ2 − 4βPβD∥L∥2

, γmax B
δ +

√
δ2 − 4βPβD∥L∥2

2[−βD]+∥L∥2 , τmin(γ) B
[−βD]+(γ + βP)

γ(δ − βPβD∥L∥2) + βP
. (3.7)

In the monotone setting corresponding to βP = βD = β
′
P = β

′
D = 0, this stepsize rule reduces to the classical

stepsize rule γ ∈ (0,+∞) and τ ∈ (0, 1/γ∥L∥2]. On the other hand, when L = I, it reduces to γ ∈ (
γmin, γmax

)
and

τ ∈ (
τmin(γ), 1/γ

]
, where

γmin =
2[−βP]+

1 +
√

1 − 4βPβD
, γmax B

1 +
√

1 − 4βPβD

2[−βD]+
, τmin(γ) B

[−βD]+(γ + βP)
γ(1 − βPβD) + βP

,

which matches the stepsize range for Douglas–Rachford splitting from [19, Thm. 3.3] (taking τ = 1/γ).

Relaxation parameter rule I. Define

θγτ(σ) B

√(
1

2γβP − 1
2τβD

)2
+ βPβDσ2. (3.8)

Let η̄ B min{η, η′}, where η′ is defined as in Table 1 and

η B



1 + 1
2γβP +

1
2τβD − θγτ(σd), if βPβD < 0

1 + 1
2γβP +

1
2τβD − θγτ(∥L∥), if βPβD ≥ 0

 if γτ < 1
∥L∥2 ,

1 + 1
γ
βP +

1
τ
βD, if γτ = 1

∥L∥2 and d = 1,
1 + 1

2γβP +
1
2τβD − θγτ(σd), if βPβD < 0

1 + 1
2γβP +

1
2τβD − θγτ(σ2), if min{βP, βD} ≥ 0

1 + 1
γ
βP +

1
τ
βD, otherwise

 if γτ = 1
∥L∥2 and d > 1.

(3.9)

The relaxation sequence (λk)k∈� satisfies λk ∈ (0, 2η̄) and lim infk→∞ λk(2η̄ − λk) > 0.

Observe that in Relaxation parameter rule I there is an interplay between the stepsizes γ and τ and the
range of admissible relaxation parameters λ. In the monotone setting βP = β

′
P = βD = β

′
D = 0 and this interplay

vanishes as this relaxation rule reduces to the classical condition λ ∈ (0, 2). In strongly monotone settings, this
interplay allows us to select relaxation parameters beyond the classical upper bound of two. For instance, when
βP > 0 and β′P > 0, then for small enough stepsizes γ the upper bound on λ will be larger than two (see [19,
Ex. 6.2] for an example in the DRS setting where L = I and τ = 1/γ). Conversely, when βD > 0 and β′D > 0, this
phenomenon will occur for small enough τ. Finally, when all β parameters are strictly positive then the upper
bound for λ is larger than two for all valid stepsizes γ and τ (see e.g. Example 3.7).

Having discussed our underlying assumptions and stepsize/relaxation parameter rules, we will now present
our main convergence theorem for CPA. The proof relies on carefully decomposing both the preconditioner P
and the oblique weak Minty matrix V into two separate, orthogonal matrices. Exploiting the inherent structure
present in these orthogonal matrices, the conditions from Assumption I are reduced to a set of eigenvalue
problems of two-by-two matrices (see (3.14)).
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Theorem 3.4. Suppose that Assumption II holds, that γ and τ are selected according to Stepsize rule I and that
the relaxation sequence (λk)k∈� is selected according to Relaxation parameter rule I. Consider the sequences
(zk)k∈� = (xk, yk)k∈� and (z̄k)k∈� = (x̄k, ȳk)k∈� generated by CPA starting from z0 ∈ �n+m. Then, either a point
z̄k ∈ zer TPD is reached in a finite number of iterations or the following hold for the sequences (zk)k∈� and
(z̄k)k∈�.

(i) v̄k := P(zk − z̄k) ∈ TPDz̄k for all k and (v̄k)k∈N converges to zero.

(ii) Every limit point (if any) of (z̄k)k∈� belongs to zer TPD.

(iii) The sequences (ΠR(P) zk)k∈�, (ΠR(P) z̄k)k∈� are bounded.

Moreover, if JγA and JτB−1 are continuous, then

(iv) The limit points of (ΠR(P) zk)k∈� are in ΠR(P) zer TPD.

(v) If in Assumption II.a3, S⋆ = zer TPD, then (ΠR(P) zk)k∈� converges to some element of ΠR(P) zer TPD and
(z̄k)k∈� converges to some element of zer TPD. Finally, if λk is uniformly bounded in the interval (0, 2),
then (zk)k∈� converges to some element of zer TPD.

Proof. First, outer semicontinuity of TPD follows from that of A and B [49, Theorem 5.7(a)], showing Assump-
tion I.a1. Second, Assumption I.a2 holds since JγA and JτB−1 having full domain implies that the preconditioned
resolvent (P + TPD)−1P has full domain, owing to [49, Lemma 12.14]. Third, Assumption I.a3 is immediate.
It only remains to show that Assumption I.a4 holds, i.e., that (2.1) holds. Let Zi B Xi ⊕ Yi ∈ �(m+n)×(2mi) and
Z′ B X′ ⊕ Y ′ ∈ �(m+n)×(m+n−2r) where Yi, Xi, Y ′ and X′ are defined as in (3.1). Let

Z B
[
Z1 · · · Zd

]
∈ �(m+n)×(2r),

which by construction has orthonormal columns. The preconditioner P can be decomposed as

P =
[ 1
γ
In −L⊤

−L 1
τ
Im

]
(3.1)
=

[ 1
γ
In −XΣY⊤

−YΣX⊤ 1
τ
Im

]
(3.2)
=

[ 1
γ

XX⊤ −XΣY⊤

−YΣX⊤ 1
τ
YY⊤

]
︸                  ︷︷                  ︸

CZP̂Z⊤

+
(

1
γ

X′X′⊤
)
⊕

(
1
τ
Y ′Y ′⊤

)︸                     ︷︷                     ︸
CZ′P′Z′⊤

, (3.10)

where

P̂i =

[ 1
γ
−σi

−σi
1
τ

]
, P̂ =

(
(P̂1 ⊗ Im1 ) ⊕ · · · ⊕ (P̂d ⊗ Imd )

)
and P′ = 1

γ
In−r ⊕ 1

τ
Im−r.

By construction, Z′ is an orthonormal basis for the range of Z′P′Z′⊤, since P′ ≻ 0. Let Û = (Û1 ⊗ Im1 ) ⊕ · · · ⊕
(Ûd ⊗ Imd ), where Ûi is an orthonormal basis for R(P̂i), for i ∈ [d]. Since P̂i ≻ 0 for i ∈ [2, d], select Ûi = I2
for i ∈ [2, d], so that Û = (Û1 ⊗ Im1 ) ⊕ I(2r−2m1). Since P̂ conforms to the same block-diagonal structure, Û is
an orthonormal basis for R(P̂). Moreover, since the columns of Z are orthonormal, ZÛ is an orthonormal basis
for R(ZP̂Z⊤). Consequently, an orthonormal basis for R(P) is given by

U =
[
ZÛ Z′

]
=

[
Z1(Û1 ⊗ Im1 ) Z2 · · · Zd Z′

]
. (3.11)

Analogous to (3.10), the V-oblique weak Minty matrix as defined in (3.3) can be decomposed as

V
(3.2)
=

(
βPXX⊤

)
⊕

(
βDYY⊤

)︸                    ︷︷                    ︸
CZV̂Z⊤

+
(
β′PX′X′⊤

)
⊕

(
β′DY ′Y ′⊤

)︸                        ︷︷                        ︸
CZ′V ′Z′⊤

, (3.12)

where

V̂i = diag(βP, βD), V̂ =
(
(V̂1 ⊗ Im1 ) ⊕ · · · ⊕ (V̂d ⊗ Imd )

)
and V ′ = β′PIn−r ⊕ β′DIm−r.

Since Z and Z′ both have orthonormal columns, i.e., Z⊤Z = I2r and Z′⊤Z′ = Im+n−2r, and since R(Z) and R(Z′)
are orthogonal, it follows from (3.10)-(3.12) that

U⊤VPU =
[
Û⊤Z⊤

Z′⊤

]
(ZV̂Z⊤ + Z′V ′Z′⊤)(ZP̂Z⊤ + Z′P′Z′⊤)

[
ZÛ Z′

]
= Û⊤V̂ P̂Û ⊕ Z′⊤V ′P′Z′.
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As a result, condition (2.1) is equivalent to

η̄ = 1 + λmin(U⊤VPU) = min
( C η︷                 ︸︸                 ︷
1 + λmin(Û⊤V̂ P̂Û),

C η′︷                    ︸︸                    ︷
1 + λmin(Z′⊤V ′P′Z′)

)
> 0. (3.13)

Due to the block diagonal structure of Û⊤V̂ P̂Û, it follows that

η = 1 +min
{
λmin(Û⊤i V̂iP̂iÛi)

}d

i=1

= 1 +min
{
λmin(Û⊤1 V̂1P̂1Û1),

{
λmin(V̂iP̂i)

}d

i=2

}
(3.14)

= 1 +min
{
λmin(Û⊤1

[ 1
γ
βP −βPσ1

−βDσ1
1
τ
βD

]
Û1),

{
1

2γβP +
1
2τβD − θγτ(σi)

}d

i=2

}
,

where θγτ(·) is defined as in (3.8). Conversely, by definition of Z′, V ′ and P′, it holds that

η′ = λmin

((
In−r +

1
γ
β′PX′⊤X′

)
⊕

(
Im−r +

1
τ
β′DY ′⊤Y ′

))
= λmin

((
1 + 1

γ
β′P

)
In−r ⊕

(
1 + 1

τ
β′D

)
Im−r

)
,

which matches the definition of η′ provided in Table 1. In what follows, condition η > 0 is studied for γτ∥L∥2 <
1 and 1 − γτ∥L∥2 = 0, respectively.

♠ γτ∥L∥2 < 1: Then, P̂1 ≻ 0 so that Û1 = I2 and

η = 1 +min
{
λmin(V̂iP̂i)

}d

i=1
= 1 +min

{
1

2γβP +
1
2τβD − θγτ(σi)

}d

i=1
,

which matches the definition of η provided in (3.9).

♠ γτ∥L∥2 = 1: Then, the matrix P̂1 has 1
γ
+ 1

τ
and zero as eigenvalues, so that

Û1 =
√

τ
γ+τ

[
1
−√γ/τ

]
and P̂1 = ( 1

γ
+ 1

τ
)Û1Û⊤1 . (3.15)

Therefore,

η = 1 +min
{
λmin( τ

γ+τ

[
1 −√γ/τ

][ 1
γ
βP −βPσ1

−βDσ1
1
τ
βD

][
1
−√γ/τ

]
),
{

1
2γβP +

1
2τβD − θγτ(σi)

}d

i=2

}
= 1 +min

{
1
γ
βP +

1
τ
βD,

{
1

2γβP +
1
2τβD − θγτ(σi)

}d

i=2

}
,

where we used that
√
γτσ1 = 1. This matches the definition of η provided in (3.9).

It remains to show that η̄ B min{η, η′} > 0 if and only if γ and τ are chosen according to Stepsize rule I.

♠ η > 0: By analyzing the six different cases from (3.9), it follows from Lemmas A.1 and A.2 that the set of
pairs (γ, τ) ∈ �2

++ satisfying γτ ∈ (0, 1/∥L∥2] and η > 0 is given by{
(γ, τ) ∈ �2 | γ ∈ (

γmin, γmax
)
, τ ∈ (

τmin(γ), 1
γ∥L∥2

]}
(3.16)

In particular, for the first and fourth case this follows from Lemma A.2(ii), for the second case this follows
from Lemmas A.2(i) and A.2(iii) since [βP]−[βD]− < 1

4∥L∥2 by Assumption II.a3(i) and for the fifth case this
follows from Lemma A.2(i). Finally, for the third and the sixth case this follows from Lemma A.1, by plugging
in τ = 1

γ∥L∥2 into 1 + 1
γ
βP +

1
τ
βD > 0 and observing that δ = 1.

♠ η′ > 0: By algebraic manipulation, it follows that the set of pairs (γ, τ) ∈ �2
++ satisfying γτ ∈ (0, 1/∥L∥2] and

η′ > 0 is given by {
(γ, τ) ∈ �2 | γ ∈ (−[β′P]−, 1

−[β′D]−∥L∥2
)
, τ ∈ (−[β′D]−, 1

γ∥L∥2
]}
. (3.17)

This set is nonempty iff [β′P]−[β′D]− < 1
∥L∥2 , which is ensured by Assumption II.a3(i).
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♠ η̄ B min{η, η′} > 0: As a consequence of the previous two results, the set of pairs (γ, τ) ∈ �2
++ satisfying γτ ∈

(0, 1/∥L∥2] and η̄ > 0 is given by the intersection of (3.16) and (3.17), i.e., by Stepsize rule I. This intersection is
nonempty if and only if −[β′P]− < γmax and 1

−[β′D]−∥L∥2 > γmin, which is ensured by Assumption II.a3(ii).

Consequently, Assumption I holds, and owing to Lemma 3.2 all claims for CPA follow from Theorem 2.1.

Note that by a telescoping argument, a rate of O( 1
N ) can be obtained for mink=0,1,...,N ∥v̄k∥2 when λk is

uniformly bounded in the interval (0, 2η̄) (see [19, thm. 2.3(iv)]).
Observe that Theorem 3.4 discusses not only the convergence of (zk)k∈�, but also of its projection onto

the range of the preconditioner (ΠR(P) zk)k∈�. In particular, convergence of (ΠR(P) zk)k∈� is established under
weaker assumptions than for (zk)k∈�. When P is positive definite, meaning that γτ < 1/∥L∥2, this is irrelevant
because in this case the range of P is full. However, in the positive semidefinite case, when γτ = 1/∥L∥2,
these sequences are no longer identitical. This observation is not surprising, as it is a natural extension of the
convergence results for DRS, i.e., when L = I and γ = 1/τ. In particular, in the DRS setting it was shown that
the convergence of (ΠR(P) zk)k∈� to ΠR(P) zer TPD is equivalent to the convergence of the shadow sequence
(sk)k∈� B (xk −γyk)k∈� to the set

{
x⋆ − γy⋆

∣∣∣ (x⋆, y⋆) ∈ zer TPD
}

[19, Thm. 3.3]. This is why in classical results
for DRS, typically convergence of the sequences (z̄k)k∈� and (sk)k∈� is established as opposed to convergence
of (zk)k∈� [33, 53]. In the following proposition, this shadow sequence interpretation is generalized to arbitrary
L matrices.

Proposition 3.5 (convergent sequences). Using the SVD of L from (3.1), define the function ψ : �m+n →
�m+n−m1 as

f (x, y) B
(
X⊤1 x −

√
γ
τ
Y⊤1 y, X⊤2:x, Y⊤2:y

)
, (3.18)

where X2: B
[
X2 · · · Xd X′

]
and Y2: B

[
Y2 · · · Yd Y ′

]
3. Consider a sequence (zk)k∈� = (xk, yk)k∈�

generated by CPA starting from z0 ∈ �n+m, where γτ = 1
∥L∥2 and define

sk B ψ(xk, yk) and T B
{
ψ(x⋆, y⋆)

∣∣∣ (x⋆, y⋆) ∈ zer TPD

}
, (3.19)

Then, the following statements hold.

(i) The limit points of (ΠR(P) zk)k∈� are in ΠR(P) zer TPD if and only if the limit points of (sk)k∈� are in T .

(ii) The sequence (ΠR(P) zk)k∈� converges to ΠR(P) zer TPD if and only if (sk)k∈� converges to T .

Proof. First, by plugging in (3.15) into (3.11), observe that

U =
[√

τ
γ+τ

Z1

[
Im1

−√γ/τIm1

]
Z2 · · · Zd Z′

]
=


√

τ
γ+τ

X1 X2 0 · · · Xd 0 X′ 0

−
√

γ
γ+τ

Y1 0 Y2 · · · 0 Yd 0 Y ′

. (3.20)

Therefore, ψ corresponds to the linear mapping

ψ(x, y) =
(√

(γ+τ)
τ

Im1 ⊕ Im+n−2m1

)
U⊤

[
x
y

]
.

As a result, the claims follow from (3.19), using that ΠR(P) = UU⊤ and that U has orthonormal columns.

Notably, Proposition 3.5 along with Theorem 3.4 establishes the convergence of an (m+n−m1)-dimensional
sequence (sk)k∈� of CPA when γτ = 1

∥L∥2 . Since sk = xk − γyk when L = I and τ = 1/γ, it follows immediately
that Theorem 3.4 matches the convergence results for DRS obtained in [19, Thm. 3.3]. A simple example
where (sk)k∈� converges while (zk)k∈� diverges is provided in Example 3.7.

Finally, it is worth noting that, analogous to the analysis performed in [19, Sec. 3.3], it is possible to
establish linear convergence of CPA for piecewise polyhedral mappings.

3When L has orthogonal rows (resp. columns) with identical norm, then X2: (resp. Y2:) are empty and the terms X⊤2: x (resp. Y⊤2:y) vanish.
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3.1 Examples
In this subsection, two examples of CPA will be considered, demonstrating some of the main attributes of our
obtained convergence results from Theorem 3.4. Supplementary Python code verifying these results can be
found on GitHub4 and the proofs are deferred to Appendix B.

In the first example, the tightness of the bounds on the relaxation parameter λ from Theorem 3.4 will
be demonstrated through a simple system of linear equations. In this setting, the iterations of CPA can be
expressed as a linear dynamical system, so that tight bounds on the relaxation parameter λ can be obtained by
ensuring stability. Note that in this example, an artificial parameter c is introduced when splitting the problem
into the form A+ L⊤BL. While this parameter may appear inconsequential at first sight, it does indeed have an
impact on the convergence of CPA applied to this splitting, as becomes apparent in (3.22).

Example 3.6 (saddle point problem). Consider the problem of finding a zero of the following structured linear
inclusion

0 ∈ TPx =
[
bℓ2 a
−a bℓ2

]
x =

A︷   ︸︸   ︷[
0 a
−a 0

]
x +

L⊤︷     ︸︸     ︷[
ℓ 0 0
0 ℓ 0

] B︷     ︸︸     ︷b 0 0
0 b 0
0 0 c


L︷︸︸︷ℓ 0

0 ℓ
0 0

x, (3.21)

where a, b, ℓ ∈ �\{0} and c ∈ �. Note that any solution to the inclusion problem 0 ∈ TPx is a minimax solution
of f (x1, x2) B ax1x2 +

bℓ2

2 (x2
1 − x2

2) when b > 0 and a maximin solution when b < 0. Consider the sequence
(zk)k∈� = (xk, yk)k∈� generated by applying CPA to (3.21) with τ = 1

γ∥L∥2 and fixed relaxation parameter λ.
Then, the following assertions hold.

(i) By examining the spectral radius of the algorithmic operator, it can be seen that the sequence (ΠR(P) zk)k∈�
converges iff λ ∈

(
0, λ̄

)
and that (zk)k∈� converges iff λ ∈

(
0,min

{
2, λ̄

})
, where

λ̄ B min
{
2
(
1 + bℓ2

γ(a2+b2ℓ4) +
ba2ℓ2γ

a2+b2ℓ4

)
, 2

(
1 + γcℓ2

)}
. (3.22)

This upper bound is strictly positive iff 1 + γcℓ2 > 0 and either b > 0 or

b < 0, a2 , b2ℓ4 and γ ∈
(
min{− 1

bℓ2 ,− bℓ2

a2 },max{− 1
bℓ2 ,− bℓ2

a2 }
)
.

(ii) Theorem 3.4(v) is tight in the sense that it matches the bounds on the relaxation parameter λ from (3.22),
when in (1.3) the vector v is restricted to R(P) (see the remark below Assumption I).

(iii) The range of parameters a, b, c and ℓ for which CPA converges includes cases where neither the primal,
nor the dual, nor the primal-dual problem are monotone. An example of this is when a = 10, b = c = − 1

4
and ℓ = 2. Owing to Example 3.6(i), the sequence (zk)k∈� then converges if and only if

γ ∈
(

1
100 , 1

)
and λ ∈

(
0, 2 − 2

101γ − 200γ
101

)
.

The second example focusses on a particular instance of Theorem 3.4. Specifically, it considers the case
where βP and βD are both strictly positive, the number of distinct singular values of L is strictly larger than 1
and γτ∥L∥2 = 1. Then, Theorem 3.4 states that the admissible range for the relaxation parameter λ depends
on the second largest singular value of L (see Relaxation parameter rule I). Although the following simple
example involves n separable inclusions, it proves sufficient to demonstrate that this result is not merely a
consequence of our analysis, but that this is also observed in practice.

Example 3.7 (influence of singular values). Let n ∈ {2, 3, . . .} and L = diag (1, ℓ2 . . . ℓn), where |ℓk | < 1,
∀k ∈ {2, . . . , n}. Let

A = diag
(
1, 1 +

√
1 − ℓ2

2, . . . , 1 +
√

1 − ℓ2
n

)
and B = diag

(
1, 1

1+
√

1−ℓ2
2

, . . . , 1
1+
√

1−ℓ2
n

)
.

Consider the sequences (zk)k∈� = (xk, yk)k∈� and (sk)k∈� generated by applying CPA to 0 ∈ Ax + L⊤BLx with
γ = τ = 1 and fixed relaxation parameter λ, where sk is defined as in (3.19). Then, the following assertions
hold.

4https://github.com/brechtevens/Minty-CP-examples.
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Figure 1: Convergence of the sequence (sk)k∈� =
(
X⊤1 xk−Y⊤1 yk, X⊤2: x

k, Y⊤2:y
k)

k∈� from Example 3.7 for n = 3, ℓ2 = 1/2,
ℓ3 = 1/5 and λ = 2.1. (a) Norm of the sequence (zk)k∈� = (xk, yk)k∈�. This sequence does not converge, since λ has
been selected larger than two (see Theorem 3.4(v)). (b) Norm of the sequence (X⊤1 xk − Y⊤1 yk)k∈�, which converges to
zero. (c) Visualization of the primal sequences (xk)k∈� and (X⊤2: x

k)k∈�. It can be seen that although (xk)k∈� does not
converge (its first coordinate diverges), its projection onto the 2-dimensional space spanned by the columns of X2:

does converge to zero (marked by a red dot). (d) Visualization of the dual sequences (yk)k∈� and (Y⊤2:y
k)k∈�. Analogous

to the primal setting, (yk)k∈� diverges while (Y⊤2:y
k)k∈� converges to zero.

(i) The associated primal-dual operator TPD has a
( 1

2 In ⊕ 1
2 In

)
-oblique

weak Minty solution at (0, 0) = zer TPD.
(ii) By Theorem 3.4(v) and Proposition 3.5, the sequences (ΠR(P) zk)k∈�

and (sk)k∈� converge to zero if λ is selected according to Relaxation
parameter rule I, i.e., if λ ∈ (0, λ̄), where

λ̄ = 2
(
1 + 1

2γβP +
1
2τβD − θγτ(max{|ℓ2|, . . . , |ℓn|})

)
= 3 −max{|ℓ2|, . . . , |ℓn|}.

(iii) Let n = 3, ℓ2 ∈ (0, 1) and ℓ3 = 1/5. Then, by examining the spec-
tral radius of the algorithmic operator, it can be seen that the set
of relaxation parameters for which the sequences (ΠR(P) zk)k∈� and
(sk)k∈� converge is almost entirely covered by Theorem 3.4(v) (see
Figure 2).

0 0.5 1
2

2.4

2.8

ℓ2

λ̄spectral

λ̄

Figure 2: The upper bounds λ̄ and
λ̄spectral for Example 3.7, where
λ̄spectral is obtained by examining
the spectral radius of the algorith-
mic operator.

Finally, Figure 1 provides a numerical experiment demonstrating the convergence of the sequence (sk)k∈� for
λ larger than two.

4 Semimonotone operators
In this section, we provide calculus rules for the class of (M,R)-semimonotone operators defined in Defini-
tion 1.2, generalizing the class of (µ, ρ)-semimonotone operators introduced in [19, Sec. 4]. Sufficient condi-
tions for the convergence of CPA applied to (P-I) for (M,R)-semimonotone operators A and B will be provided
in Section 5. The proofs of the calculus rules in this section are deferred to Appendix B.

For some choices of M and R, it follows from the Fenchel-Young inequality that all operators satisfy the
definition of (M,R)-semimonotonicity, as stated below.

Proposition 4.1. Let M,R ∈ Sn. If M ≺ 0, R ≺ 0 and M ⪯ 1
4 R−1, then all operators A : �n ⇒ �n satisfy the

definition of (M,R)-semimonotonicity.

In what follows, various basic properties of (M,R)-semimonotone operators will be provided. For instance,
by definition, their inverses belong to the same class of operators, with the roles of M and R reversed. Addi-
tionally, the following proposition analyzes scaling and shifting of semimonotone operators, as well as the
cartesian product of two semimonotone operators.
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Proposition 4.2 (inverting, shifting, scaling and cartesian product). Let operator A : �n ⇒ �n be (maximally)
(MA,RA)-semimonotone [at (x̃A, ỹA) ∈ gph A] and operator B : �m ⇒ �m be (maximally) (MB,RB)-semi-
monotone [at (x̃B, ỹB) ∈ gph B]. Let α ∈ �++. Then, the following hold.

(i) The inverse operator A−1 is (maximally) (RA,MA)-semimonotone [at (ỹ, x̃) ∈ gph A−1].

(ii) For all u,w ∈ �n, operator T (x) B w + αA(x + u) is (maximally) (αMA, α
−1RA)-semimonotone [at

(x̃A − u,w + αỹA)].

(iii) Operator T B A × B is (maximally)
(
MA ⊕ MB,RA ⊕ RB

)
-semimonotone [at (x̃, ỹ) ∈ gph T where x̃ =

(x̃A, x̃B) and ỹ = (ỹA, ỹB)].

In Definition 1.2, there is some freedom in selecting the matrices M and R, which might lead to a tradeoff
between both. One particular class of operators for which this is true is the class of linear operators. This is
summarized in the following proposition, which generalizes [6, Prop. 5.1] for µ-monotone and ρ-comonotone
operators and [19, Prop. 4.5] for (µ, ρ)-semimonotone operators.

Proposition 4.3 (linear operator). Let D ∈ �n×n and let M,R ∈ Sn. Then, D is (M,R)-semimonotone if and
only if 1

2 (D + D⊤) − M − D⊤RD ⪰ 0.

Given a certain matrix D and a desired semimonotonicity modulus M, it might be difficult to determine
whether there exists an R satisfying D⊤RD ⪯ 1

2 (D + D⊤) − M, as this corresponds to solving a linear matrix
inequality (LMI). The study of LMIs in general form has been extensively explored within the control and
systems theory communities, leading to well-known results such as the Kalman–Yakubovich–Popov lemma,
Finsler’s lemma and the (nonstrict) projection lemma [10, 26, 4, 35]. In this work, we rely on a particular
result for LMIs of the form D⊤XD ⪯ Y , which is due to [54, 55] and relies upon the classical results from
[42, 28, 3, 23] for the linear matrix equality D⊤XD = Y .

Proposition 4.4 (symmetric solution of D⊤XD ⪯ Y). Let D ∈ �m×n and Y ∈ Sn. Then,

(i) The set of solutions C B
{
X ∈ Sm | D⊤XD ⪯ Y

}
is nonempty if and only if

ΠN(D) Y ΠN(D) ⪰ 0 and rank(ΠN(D) Y ΠN(D)) = rank(ΠN(D) Y). (4.1)

(ii) If (4.1) holds, then X⋆ ∈ C, where

X⋆ =
[
0 I

][−Y D⊤

D 0

]†[0
I

]
= (D†)⊤

(
Y − Y ΠN(D)(ΠN(D) Y ΠN(D))† ΠN(D) Y

)
D†. (4.2)

Moreover, D⊤XD ⪯ D⊤X⋆D ⪯ Y for all X ∈ C.

(iii) If the matrix equation D⊤XD = Y is consistent, i.e. if R(Y) ⊆ R(D⊤), then X⋆ = (D†)⊤YD† is the solution
of D⊤XD = Y with minimal trace tr X2.

Applying this result to Proposition 4.3, the following corollary for linear operators is obtained.

Corollary 4.5 (linear operator). Let D ∈ �n×n and let M ∈ Sn. Then,

(i) There exists R ∈ Sn such that D is (M,R)-semimonotone if and only if

ΠN(D) MΠN(D) ⪯ 0 and rank(ΠN(D) MΠN(D)) = rank
(
ΠN(D)( 1

2 D − M)
)
. (4.3)

(ii) If (4.3) holds, then D is (M,R⋆)-semimonotone, where

R⋆ =
[
0 I

][M − 1
2 (D + D⊤) D⊤

D 0

]†[0
I

]
. (4.4)

In particular, when D is either symmetric or skew-symmetric, it holds that

R⋆ = 1
2 (D + D⊤)† − D†

⊤
MD† + (D†)⊤MΠN(D)(ΠN(D) MΠN(D))† ΠN(D) MD†. (4.5)
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Note that R⋆ can be seen as the most optimal choice for R, as it solves the LMI from Proposition 4.3
as tightly as possible. A second consequence of Proposition 4.4 is the following result, which considers the
semimonotonicity of an operator of the form DT D⊤.

Corollary 4.6 (semimonotonicity of DT D⊤). Let D ∈ �n×m and let operator T : �m ⇒ �m be (M,Y)-
semimonotone [at (D⊤ x̃, ỹ) ∈ gph T]. If (4.1) holds for D and T , then DT D⊤ is (DMD⊤, X⋆)-semimonotone
[at (x̃,Dỹ)] where X⋆ is given by (4.2).

Leveraging the previous result for the semimonotonicity of DT D⊤, the semimonotonicity of the sum and
parallel sum of two semimonotone operators is investigated next. First, consider the following set, which will
be referred to as the effective domain of the parallel sum.

Definition 4.7 (effective domain of parallel sum). The set

dom□ B {(A, B) ∈ Sn × Sn | A + B ⪰ 0, A and B are parallel summable} (4.6)

is the effective domain of the parallel sum between two symmetric (possibly indefinite) matrices. Let A = αIn

and B = βIn where α, β ∈ �. Then, (A, B) ∈ dom□ reduces to

(α, β) ∈ dom□ = {(α, β) | α + β > 0 or α = β = 0}.

In the upcoming two propositions, it is shown that the sum and parallel sum of two semimonotone operators
are also semimonotone operators, if the involved semimonotonicity matrices belong to the effective domain of
the parallel sum. The first result generalizes [19, Prop. 4.7] for the sum of two (µ, ρ)-semimonotone operators.

Proposition 4.8 (sum and parallel sum). Let operator A : �n ⇒ �n be (MA,RA)-semimonotone [at (x̃A, ỹA) ∈
gph A] and operator B : �n ⇒ �n be (MB,RB)-semimonotone [at (x̃B, ỹB) ∈ gph B].

(i) If (RA,RB) ∈ dom□ [and x̃A = x̃B C x̃], then A+B is (MA+MB,RA□RB)-semimonotone [at (x̃, ỹA+ ỹB)].

(ii) If (MA,MB) ∈ dom□ [and ỹA = ỹB C ỹ], then A□B is (MA□MB,RA+RB)-semimonotone [at (x̃A+ x̃B, ỹ)].

When one of the two involved operators is linear, more precise statements for the resulting semimono-
tonicity matrices can be derived. For instance, consider the following lemma for the sum of a semimonotone
operator and a (skew-)symmetric matrix. This result will be used later in Theorem 5.1 for analyzing the primal-
dual operator TPD.

Lemma 4.9 (sum with (skew-)symmetric matrix). Let D ∈ �n×n be a (skew-)symmetric matrix and operator
T : �n ⇒ �n be (D⊤MD,R+R′)-semimonotone [at (x̃, ỹ) ∈ gph T], where R(R′) ⊆ N(D) and (M,R) ∈ dom□.
Then, T + D is (0,R′ + M □ R)-semimonotone [at ((x̃A, ỹB), (ỹA + L⊤ỹB, x̃B − Lx̃A))].

5 Chambolle–Pock for semimonotone operators
In Section 3, convergence of CPA was established under an oblique weak Minty assumption on the underlying
primal-dual operator. This section aims to provide a set of sufficient conditions for the convergence of CPA for
composite inclusion problems involving semimonotone operators.

5.1 Existence of oblique weak Minty solutions
The main tool for establishing simplified conditions for CPA for semimonotone operators is the following
calculus rule, which connects the semimonotonicity of the individual operators A and B to the existence of
V-oblique weak Minty solutions of the primal-dual operator TPD.

Theorem 5.1 (primal-dual operator). In the primal-dual inclusion (PD-I), suppose that there exists a nonempty
set S⋆ ⊆ zer TPD and matrices RA,R′A,RB ∈ Sn and MA,MB,M′B ∈ Sm such that for every z⋆ = (x⋆, y⋆) ∈ S⋆

the following hold.

(i) (MA,MB) ∈ dom□, (RA,RB) ∈ dom□, R(R′A) ⊆ N(L) and R(M′B) ⊆ N(L⊤).
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(ii) Operator A is (L⊤MAL,RA + R′A)-semimonotone at (x⋆,−L⊤y⋆) ∈ gph A.

(iii) Operator B is (MB + M′B, LRBL⊤)-semimonotone at (Lx⋆, y⋆) ∈ gph B.

Then, TPD has ((R′A + RA □ RB) ⊕ (M′B + MA □ MB))-oblique weak Minty solutions at S⋆.

Proof. Let (x⋆, y⋆) ∈ S⋆ and decompose the primal-dual operator as TPD = T + D, where T B A × B−1 and
D(x, y) B (L⊤y,−Lx). By Proposition 4.2(i), B−1 is (LRBL⊤,MB +M′B)-semimonotone at (y⋆, Lx⋆) ∈ gph B−1,
so that T is

(
D⊤(MA⊕RB)D, (RA+R′A)⊕ (MB+M′B)

)
-semimonotone at

(
(x⋆, y⋆), (−L⊤y⋆, Lx⋆)

) ∈ gph T due to
Proposition 4.2(iii). Consequently, by Lemma 4.9 it follows that TPD is

(
0, (R′A +RA □RB)⊕ (M′B +MA □MB)

)
-

semimonotone at ((x⋆, y⋆), 0). The claim then follows by Definition 1.1.

Suppose that the underlying assumptions from Theorem 5.1 hold. Then, by virtue of the particular form of
V = ((R′A +RA □RB)⊕ (M′B +MA □MB)) from Theorem 5.1, the primal-dual operator TPD has V-oblique weak
Minty solutions at S⋆, where V is given by (3.3) and

βP = λmin(X⊤(RA □ RB)X), βD = λmin(Y⊤(MA □ MB)Y), β′P = λmin(X′⊤R′AX′), β′D = λmin(Y ′⊤M′BY ′), (5.1)

where X, X′,Y,Y ′ are defined as in (3.1). Hence, Assumption II.a3 holds if the parameters from (5.1) satisfy
II.a3(i) and II.a3(ii).

5.1.1 Examples

As an implication of Theorem 5.1, consider the following result for the primal-dual operator emerging in
constrained QP problems.

Example 5.2 (constrained QP). Consider the following quadratic program

minimize
x∈�n

1
2 x⊤Qx + q⊤x subject to Lx ∈ C, (5.2)

where Q ∈ Sn, q ∈ �n. L ∈ �m×n and C B {x ∈ �m | li ≤ xi ≤ ui, i = 1, . . . ,m}, where l, u ∈ �m. The
associated first-order optimality condition is given by 0 ∈ Ax + L⊤BLx, where A : x 7→ Qx + q and B B NC .
Suppose that L is full column rank or ΠR(L⊤) QΠN(L) = 0. Then, the following assertions hold.

(i) Operator A is (L⊤MAL,R′A) -semimonotone, where MA = L†⊤QL† and R′A = ΠN(L) Q† ΠN(L).

(ii) Let (x⋆, y⋆) ∈ zer TPD and MB(y⋆) = diag
( |y⋆1 |

u1−l1
, . . . ,

|y⋆n |
un−ln

)
. Then, operator B is

(
MB(y⋆), 0

)
-semimonotone

at (Lx⋆, y⋆) ∈ gph B.

(iii) If there exists a primal-dual pair (x⋆, y⋆) ∈ zer TPD satisfying
(
MA,MB(y⋆)

) ∈ dom□, then Assump-
tion II.a3 is satisfied for βP = 0, βD = λmin

(
Y⊤

(
MA □ MB(y⋆)

)
Y
)
, β′D = 0 and β′P = λmin

(
X′⊤Q†X′

)
,

provided that [βD]−[β′P]− < 1
∥L∥2 .

Proof. See Appendix B.

Leveraging this result, one can easily verify the underlying assumptions for Theorem 3.4, i.e., Assump-
tion II, for (nonconvex) quadratic programs. Consider the following numerical example, where Theorem 3.4
is applied to a nonconvex QP with an indefinite Q matrix where L is full row rank. An example where L is
rank-deficient is provided later in Example 5.7.

Example 5.3. Let Q = diag(1,−1, 2), q = [ −1 1 −1 ]⊤, L =
[

1 1
4 0

0 1 0

]
and C B

{
x ∈ �2 | 2 ≤ xi ≤ 4, i = 1, 2

}
in

Example 5.2. Then, the global minimizer is given by x⋆ = [ 1 4 1
2 ]⊤ and the following assertions hold.

(i) Operator A is
(
diag(1,−1, 0), diag(0, 0, 1

2 )
)
-semimonotone.

(ii) Operator B is
(
diag(0, 3

2 ), 0
)
-semimonotone at (Lx⋆,−L†⊤Ax⋆) =

([
2
4

]
,
[

0
3

])
∈ gph B.

(iii) The primal-dual pair (x⋆,−L†⊤Ax⋆) ∈ zer TPD is a V-oblique weak Minty solution of TPD with V given
by (3.3), where βP = 0, βD = −3, β′P =

1
2 and β′D = 0 as in (5.1).
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Table 2: Range of the stepsizes γ and τ for CPA involving semimonotone operators.

µA = µB = 0
µA + µB > 0

µAµB ≥ 0 µAµB < 0

ρA = ρB = 0
γ ∈ (

0,+∞)
τ ∈ (

0, 1
γ∥L∥2

]
γ ∈ (

0,− 1
(µA□µB)∥L∥2

)
τ ∈ (−(µA □ µB), 1

γ∥L∥2
]

ρ
A
+
ρ

B
>

0 ρAρB ≥ 0
γ ∈ (

0, γmax
)

τ ∈ (
τmin(γ), 1

γ∥L∥2
]

ρAρB < 0
γ ∈ (−(ρA □ ρB),+∞)
τ ∈ (

0, 1
γ∥L∥2

] γ ∈ (
γmin,+∞)

τ ∈ (
0, 1

γ∥L∥2
] γ ∈ (

γmin, γmax
)

τ ∈ (
τmin(γ), 1

γ∥L∥2
]

(iv) The sequence (zk)k∈� = (xk, yk)k∈� generated by CPA with fixed relaxation parameter λ converges for

γ ∈
(
0, −1

βD∥L∥2
)
≈ (0, 0.26), τ ∈

(
−βD,

1
γ∥L∥2

]
≈ (3, 0.779

γ
], λ ∈ (0, 2 + 2

τ
βD) = (0, 2 − 6

τ
),

where we used that ∥L∥2 = 33+
√

65
32 ≈ 1.28.

Proof. The claimed assertions follow from those of Example 5.2 and Theorem 3.4, using that L† =
[ 1 0 0
− 1

4 1 0

]⊤
,

ΠR(L⊤) = diag(1, 1, 0), MA =
1
16

[
16 −4
−4 −15

]
, MA □ diag(0, 3

2 ) = diag(0,−3) and continuity of JγA and JτB−1 .

5.2 Sufficient conditions for convergence of CPA
Theorem 5.1 requires range conditions (5.1(i)) to hold for the semimonotonicity matrices of A and B. In this
subsection, it is shown that this can be achieved by imposing a certain structure on the semimonotonicity
matrices. In particular, consider the following set of assumptions.

Assumption III. In problem (P-I), suppose that zer TPD is nonempty and that there exists a nonempty set
S⋆ ⊆ zer TPD such that for every z⋆ = (x⋆, y⋆) ∈ S⋆ it holds that A is (µAL⊤L, ρAIn)-semimonotone at
(x⋆,−L⊤y⋆) ∈ gph A, B is (µBIm, ρBLL⊤)-semimonotone at (Lx⋆, y⋆) ∈ gph B and the semimonotonicity moduli
(µA, µB, ρA, ρB) ∈ �4 satisfy either one of the following conditions.

(i) (either) µA = µB = 0 and ρA = ρB = 0 (monotone case).

(ii) (or) µA + µB > 0 and ρA = ρB = 0.

(iii) (or) ρA + ρB > 0 and µA = µB = 0.

(iv) (or) µA + µB > 0, ρA + ρB > 0 and [µA □ µB]−[ρA □ ρB]− < 1
4∥L∥2 .

Owing to Theorem 5.1, Assumption III ensures that the primal-dual operator TPD has oblique weak Minty
solutions. This key result is stated in the following corollary.

Corollary 5.4. Suppose that Assumption III holds. Then, the primal-dual operator TPD has V-oblique weak
Minty solutions at S⋆, where V is given by (3.3) and

βP = ρA □ ρB, βD = µA □ µB, β′P =
{

0, if rank L = n,
ρA, if rank L < n, , β′D =

{
0, if rank L = m,
µB, if rank L < m. (5.3)

Proof. Observing that (µA, µB) ∈ dom□ and (ρA, ρB) ∈ dom□ and using that ρAIn = ρA ΠR(L⊤) +β
′
P ΠN(L) and

µBIm = µBΠR(L) +β
′
D ΠN(L⊤), the claim follows from Theorem 5.1.

Based on Corollary 5.4, one can thus easily verify Assumption II.a3 for CPA. Moreover, by plugging in the
values for βP, β

′
P, βD, β

′
D from (5.3) into Stepsize rule I and Relaxation parameter rule I, the following simplified

rules are obtained.
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Table 3: Definition of η′ in Relaxation parameter rule II.

rank L = n rank L < n

rank L = m +∞ 1 + 1
γ
ρA

rank L < m 1 + 1
τ
µB min

{
1 + 1

γ
ρA, 1 + 1

τ
µB

}
Stepsize rule II. Let δ B 1 + [(µA □ µB)(ρA □ ρB)]−(∥L∥2 − σ2

d). The stepsizes γ and τ satisfy the bounds
provided in Table 2, where

γmin B − 2(ρA □ ρB)

δ +
√
δ2 − 4(µA □ µB)(ρA □ ρB)∥L∥2

, γmax B −
δ +

√
δ2 − 4(µA □ µB)(ρA □ ρB)∥L∥2

2(µA □ µB)∥L∥2 ,

and τmin(γ) B − (µA □ µB)(γ + (ρA □ ρB))
γ(δ − (µA □ µB)(ρA □ ρB)∥L∥2) + (ρA □ ρB)

.

Relaxation parameter rule II. Let η′ be defined as in Table 3 and define

∆γ,τ B
1

2γ (ρA □ ρB) + 1
2τ (µA □ µB) and θγτ(σ) B

√
∆2
γ,τ + (µA □ µB)(ρA □ ρB)σ2.

The relaxation sequence (λk)k∈� satisfies λk ∈ (0, 2η̄) and lim infk→∞ λk(2η̄ − λk) > 0, where

η̄ B



1 + ∆γ,τ − θγτ(∥L∥), if µAµBρAρB ≥ 0
min

{
1 + ∆γ,τ − θγτ(σd), η′

}
, otherwise

 if γτ < 1
∥L∥2 ,1 + 2∆γ,τ, if max{µAµB, ρAρB} ≤ 0

min
{
1 + 2∆γ,τ, η′

}
, otherwise

 if γτ = 1
∥L∥2 and d = 1,

1 + 2∆γ,τ, if max{µAµB, ρAρB} ≤ 0
1 + ∆γ,τ − θγτ(σ2), if min{µAµB, ρAρB} > 0
min

{
1 + ∆γ,τ − θγτ(σd), η′

}
, otherwise

 if γτ = 1
∥L∥2 and d > 1.

Most notably, the resulting stepsize rule for CPA corresponds to a simple look-up table, analogous to the
one from [19, Thm. 5.2] for DRS. The relaxation rule on the other hand is more involved, and depends on the
choice of stepsizes γ and τ, the singular values of L and the semimonotonicity moduli of A and B.

Finally, based on the key result summarized in Corollary 5.4, the following corollary for the convergence
of CPA for semimonotone operators is obtained.

Corollary 5.5 (convergence of CPA under semimonotonicity). Suppose that Assumption II.a1, Assumption II.a2
and Assumption III hold, that γ and τ are selected according to Stepsize rule II and that the relaxation sequence
(λk)k∈� is selected according to Relaxation parameter rule II. Then, all the claims of Theorem 3.4 hold.

Proof. See Appendix B.

Owing to the pointwise nature and parameter diversity of the underlying semimonotonicity assumptions,
Corollary 5.5 serves as a universal framework for analyzing the convergence of CPA, both in monotone and
nonmonotone settings. Notably, it encompasses and extends many of the existing results in literature. Several
examples are provided below.

Remark 5.6 (connection to existing theory). Case (i) of Assumption III can be interpreted as a pointwise
variant of the classical monotonicity assumption for CPA [12]. In case (ii) of Assumption III, a monotone
problem is split in a nonmonotone fashion. In the optimization setting, this was already studied in [38]. To
see this, let g be a proper lsc µg-convex function with µg > 0 and h be a proper lsc µh-convex function. Then,
A = ∂g is (µg/∥L∥2L⊤L, 0)-semimonotone and B = ∂h is (µh, 0)-semimonotone. Then, Corollary 5.5 requires that
µg/∥L∥2 + µh > 0, which matches [38, Thm. 2.8]. Note that case (iii) of Assumption III can be interpreted as the
dual counterpart of case (ii), as the assumptions of the latter hold for A and B in the primal inclusion problem if
and only if the assumptions of the former hold for B−1 and A−1 in the dual one (see (D-I)). Up to the knowledge
of the authors, no particular instances of case (iv) of Assumption III have been covered in literature, even in the
minimization setting. Note that this case includes both results in the monotone and nonmonotone setting.
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5.2.1 Examples

Corollary 5.5 provides a set of sufficient conditions for the convergence of CPA which can be easily verified
based on the calculus rules for semimonotone operators developed in Section 4 and [19, Sec. 4]. To demonstrate
this, Corollary 5.5 will be applied to several examples previously discussed in this paper.

First of all, consider the following constrained QP, where Q is an indefinite matrix and L is rank-deficient.
Previously, it was shown for the nonconvex QP from Example 5.3 that convergence of CPA can be established
using Theorem 5.1 and Theorem 3.4. In this example, we show that if the monotonicity of A can be expressed
in the form µAL⊤L, then this result can be obtained directly using Corollary 5.5.

Example 5.7. Consider the QP from Example 5.2, where Q = diag(−3,−2, 1), q = [ 0 1 0 ]⊤, L =
[

1 0 0
1 1 0
1 −1 0

]
and

C B
{
x ∈ �2 | 1/2 ≤ xi ≤ 1, i = 1, 2, 3

}
. Then, the global minimizer is given by x⋆ = [ 1 0 0 ]⊤ and the following

assertions hold.

(i) Operator A is
(
µAL⊤L, diag(0, 0, 1)

)
-semimonotone where µA = −1.

(ii) Operator B is
(
µBI, 0

)
-semimonotone at (Lx⋆,−L†⊤Ax⋆) =

(
[ 1 1 1 ]⊤, [ 1 1 1 ]⊤

) ∈ gph Bwhere µB = 2.

(iii) The sequence (zk)k∈� = (xk, yk)k∈� generated by CPA with fixed relaxation parameter λ converges for

γ ∈ (
0, −1

(µA□µB)∥L∥2
)
= (0, 1

6 ), τ ∈ (−(µA □µB), 1
γ∥L∥2

]
= (2, 1

3γ ], λ ∈ (
0, 2+ 2

τ
(µA □µB)

)
= (0, 2− 4

τ
).

Proof. The claimed assertions follow from those of Example 5.2 and Corollary 5.5, using that A is
(
µAL⊤L, 0

)
-

semimonotone, L† = 1
6

[
2 2 2
0 3 −3
0 0 0

]
and continuity of JγA and JτB−1 .

Next, we revisit the two examples of Section 3.1, this time under the lens of semimonotonicity. First of
all, consider the linear inclusion problem from Example 3.6, where the parameters a, b, c, l are selected as in
Example 3.6(iii).

Example 5.8 (saddle point problem (revisited)). Consider inclusion problem (3.21) with a = 10, b = c = − 1
4

and ℓ = 2. Using Proposition 4.3, it follows that A is
(
L⊤L,− 1

25 In

)
-semimonotone and B is

(
− 3

10 Im,
1
5 L⊤L

)
-

semimonotone. By Corollary 5.5, the sequence (zk)k∈� generated by applying CPA to (3.21) with τ = 1
γ∥L∥2 and

fixed relaxation parameter λ converges for

γ ∈ (γmin, γmax) ≈ (0.055, 0.528) and λ ∈
(
0, 2 − 1

10γ − 24γ
7

)
.

The obtained range of stepsize parameters is only a subset of the tight range obtained in Example 3.6(iii).
However, this should not come as a surprise, since part of the information about operators A and B is lost by
analyzing them under the lens of semimonotonicity. This is also observed in the second example.

Example 5.9 (influence of singular values (revisited)). Consider the composite inclusion problem 0 ∈ Ax +
L⊤BLx from Example 3.7. It follows from Proposition 4.3 that A is

(
1
2 L⊤L, 1

2 In

)
-semimonotone and B is(

1
2 In,

1
2 LL⊤

)
-semimonotone. By Corollary 5.5 and Proposition 3.5, the sequences (ΠR(P) zk)k∈� and (sk)k∈�

generated by applying CPA with γ = τ = 1 and fixed relaxation parameter λ, converge to zero if λ is selected
according to Relaxation parameter rule II, which reduces to

λ ∈
(
0, 2

(
1 + 1

2γβP +
1
2τβD − θγτ(max{|ℓ2|, . . . , |ℓn|})

))
=

(
0, 5/2 − 1/2 max{|ℓ2|, . . . , |ℓn|}

)
.

In Example 3.7(i), it was shown that TPD has ( 1
2 In ⊕ 1

2 In)-oblique weak Minty solutions at zer TPD. On
the other hand, here it is shown that A is ( 1

2 L⊤L, 1
2 In)-semimonotone and B is ( 1

2 In,
1
2 LL⊤)-semimonotone.

Applying Corollary 5.4, this implies that TPD only has a ( 1
4 In ⊕ 1

4 In)-oblique weak Minty solution at (0n, 0n) =
zer TPD. By analyzing A and B under the lens of semimonotonicity, some additional looseness is inevitably
introduced. More specifically, the information that A and B are linear and symmetric, that A = B−1 and that
A = 1/2L⊤L + 1/2A⊤A are lost in this process.
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6 Conclusion
In this work, convergence of the Chambolle–Pock algorithm (CPA) was established for a class of nonmonotone
problems, characterized by an oblique weak Minty assumption on the associated primal-dual operator. To fa-
cilitate the verification of this underlying assumption, a generalization of the class of semimonotone operators
(see [19]) was introduced, and sufficient conditions for the convergence of CPA were provided for inclusion
problems involving operators belonging to this class. Notably, when restricting to minimization problems, our
results reveal that for certain problem classes no explicit rank or condition number restriction on the linear
mapping is required.

It would be interesting to explore if in the above-mentioned class of problems can be further extended
when the operators are known to be subdifferentials. Other future research directions include extensions to the
setting where the preconditioning is indefinite, allowing to cover the extended Chambolle–Pock stepsize range
γτ∥L∥2 ≤ 4/3 from [32, 5], as well as analyzing other splitting methods in nonmonotone settings.

A Auxiliary lemmas
Lemma A.1 (solution of quadratic inequality). Let βP, βD ∈ �, ∥L∥ > 0, σd ∈ (0, ∥L∥] and let δ B 1 +
[βPβD]−

(
∥L∥2 − σ2

d

)
. Then, the following hold.

(i) There exists a γ > 0 satisfying βD∥L∥2γ2 + δγ + βP > 0 if and only if [βP]−[βD]− < 1
4∥L∥2 .

(ii) If [βP]−[βD]− < 1
4∥L∥2 , then γ > 0 satisfies βD∥L∥2γ2 + δγ + βP > 0 if and only if γ ∈ (γmin, γmax)

Proof. See [19, Fact A.2].

Lemma A.2. Let βP, βD ∈ �, ∥L∥ > 0, σd ∈ (0, ∥L∥] and define the set

Γ(·) B
{
(γ, τ) ∈ �2

++

∣∣∣ γτ ∈ (
0, 1/∥L∥2

]
and 1 + 1

2γβP +
1
2τβD > θγτ(·)

}
,

where θγτ(·) is defined as in (3.8). Then, the following hold.

(i) If min{βP, βD} > 0 or βPβD = 0, then, for any σ ∈ [σd, ∥L∥], the set Γ(σ) is nonempty and given by (3.16).

(ii) If βPβD < 0, then the set Γ(σd) is nonempty and given by (3.16).

(iii) If max{βP, βD} < 0, then the set Γ(∥L∥) is nonempty if and only if [βP]−[βD]− < 1
4∥L∥2 , in which case Γ(∥L∥)

is given by (3.16).

Proof. Let σ ∈ [σd, ∥L∥]. Solving the square root inequality 1 + 1
2γβP +

1
2τβD > θγτ(σ), it follows that

Γ(σ) =

(γ, τ) ∈ �2
++

∣∣∣∣∣∣∣ γτ ∈ (
0, 1/∥L∥2

]
,

Γ1B︷              ︸︸              ︷
1 + 1

2γβP +
1
2τβD > 0 and

Γ2(σ)B︷                                         ︸︸                                         ︷
1 + 1

γ
βP +

1
τ
βD +

1
γτ
βPβD(1 − γτσ2) > 0

.
Define c1(σ, γ) = γ(1 − βPβDσ

2) + βP and c2(γ)βD(γ + βP), so that γτΓ2(σ) = c1(σ, γ)τ + c2(γ).

♠ Lemma A.2(i): If min{βP, βD} > 0, then Γ1 > 0 and Γ2(σ) > 0 since 1 − γτσ2 ≥ 0. On the other hand, if
βP = 0 (resp. βD = 0), then Γ1 > 0 and Γ2(σ) > 0 iff 1 + 1

γ
βP > 0 (resp. 1 + 1

τ
βD > 0). Therefore, it follows by

algebraic manipulation that Γ(σ) is nonempty and given by (3.16).

♠ Lemma A.2(ii): If min{βD, βP} < 0, then either 1
γ
βP +

1
τ
βD ≥ 0, in which case by definition Γ1 > 0, or

1
γ
βP+

1
τ
βD < 0, in which case Γ1 > Γ2(σd) since 1−γτσ2

d ≥ 0, so that it only remains to verify that Γ2(σd) > 0.

♢ βP > 0, βD < 0: Then, c1(σd, γ) > 0 and c2(γ) < 0 and thus (γτ)Γ2(σd) > 0 if and only if τ > −c2(γ)/c1(σd ,γ) =

τmin(γ). The stepsize range for τ is nonempty if for some γ > 0 it holds that

τmin(γ) < 1/γ∥L∥2 ⇐⇒ c2(γ)γ∥L∥2 + c1(σd, γ) = βD∥L∥2γ2 +
(
1 + βPβD

(∥L∥2 − σ2
d
))
γ + βP > 0, (A.1)

which is guaranteed by Lemma A.1(i). Therefore, it follows from Lemma A.1(ii) that

Γ(σd) =
{
(γ, τ) ∈ �2

∣∣∣∣ γ ∈ (
0, γmax

)
and τ ∈

(
τmin(γ), 1/γ∥L∥2

]}
= (3.16).
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♢ βP < 0, βD > 0: Observe that Γ2(σd) ≤ 0 for all γ ∈ (
0, −βP/(1−βPβDσ

2
d)
]
. Therefore, it holds that γ >

−βP/(1−βPβDσ
2
d) and c1(σd, γ) > 0, in which case Γ2(σd) is equivalent to τ > −c2(γ)/c1(σd ,γ) = τmin(γ). Ensuring

that τmin(γ) < 1/γ∥L∥2, i.e., solving (A.1) as before, yields γ ∈
(
γmin,+∞

)
. Finally, by observing that γmin >

−βP > −βP/(1−βPβDσ
2
d), it follows that c2(γ) ≥ 0 and thus τmin(γ) ≤ 0, so that

Γ(σd) =
{
(γ, τ) ∈ �2

∣∣∣∣ γ ∈ (
γmin,+∞

)
and τ ∈

(
0, 1/γ∥L∥2

]}
= (3.16).

♠ Lemma A.2(iii): First, observe that Γ1 > 0 for (γ, τ) ∈ �2
++ if and only if γ > −βP/2 and τ > −γβD/(2γ+βP). As a

result, the set Γ(∥L∥) is empty when βPβD ≥ 1/∥L∥2, as in this case the (quadratic) inequality −γβD/(2γ+βP) < 1/γ∥L∥2
does not have a positive solution for γ > −βP/2. Consider the following cases, assuming that βPβD < 1/∥L∥2.

♢ γ ∈ (−βP/2, −βP/(1−βPβD∥L∥2)): Then, Γ2(∥L∥) > 0 if and only if τ < τmin(γ). Since it is easy to verify that in
this case −γβD/(2γ+βP) > τmin(γ), no such γ belong to the set Γ(∥L∥).
♢ γ = −βP/(1−βPβD∥L∥2): Then, Γ2(∥L∥) ≤ 0 for all τ > 0.

♢ γ > −βP/(1−βPβD∥L∥2): Then, Γ2(∥L∥) > 0 if and only if τ > τmin(γ) > −γβD/(2γ+βP). The stepsize range for τ is
nonempty if there exists some γ > 0 such that τmin(γ) < 1/γ∥L∥2, which holds by Lemma A.1(i) if and only if
[βP]−[βD]− < 1/4∥L∥2, in which case it follows from Lemma A.1(ii) that Γ(∥L∥) is equal to (3.16).

Lemma A.3. Let D B [ In In ], (Y1,Y2) ∈ dom□ and define Y = Y1 ⊕ Y2. Then, (4.1) holds and X⋆ as defined in
(4.2) is equal to Y1 □ Y2.

Proof. Let E = 1
2

[
1
−1

]
. Observe that D† = 1

2

[
In
In

]
and ΠN(D) =

1
2

[
In −In
−In In

]
, so that

ΠN(D) Y = (E ⊗ In)
[
Y1 −Y2

]
, ΠN(D) Y ΠN(D) = (EE⊤) ⊗ (Y1 + Y2),

rank(ΠN(D) Y) = rank
[
Y1 Y2

]
, rank(ΠN(D) Y ΠN(D)) = rank(Y1 + Y2).

Consequently, (4.1) holds owing to [37, Thm. 9.2.4], since Y1 + Y2 ⪰ 0 and Y1 and Y2 are parallel summable.
The claim for X⋆ follows from Proposition 4.4(ii), since

X⋆ = 1
4 (Y1 + Y2) − 1

4 (Y1 − Y2)(E ⊗ In)⊤
(
(EE⊤) ⊗ (Y1 + Y2)

)†
(E ⊗ In)(Y1 − Y2)

= 1
4 (Y1 + Y2) − 1

4 (Y1 − Y2)(Y1 + Y2)†(Y1 − Y2)

= 1
4 (Y1 + Y2) − 1

4 (Y1 + Y2 − 2Y2)(Y1 + Y2)†(Y1 + Y2 − 2Y2)

= 1
2 Y2(Y1 + Y2)†(Y1 + Y2) + 1

2 (Y1 + Y2)(Y1 + Y2)†Y2 − Y2(Y1 + Y2)†Y2 = Y1 □ Y2,

where the second equality holds since for arbitrary matrices Z1, Z2 it holds that (Z1 ⊗ Z2)† = Z†1 ⊗ Z†2 and the
final equality holds by definition of the parallel sum and parallel summability.

Lemma A.4. Suppose that Assumption III holds and that the sets gph(ΠR(L⊤) A−1) and gph(ΠR(L) B) are not
singletons. Then, it holds that [µA]+[ρA]+ ≤ 1/4σ2

d and [µB]+[ρB]+ ≤ 1/4σ2
d.

Proof. Suppose that µA, ρA > 0 and ρA, ρB > 0, for otherwise the two claims hold trivially. Consider yD ∈
dom

(
A−1 ◦ (−L⊤)

) ∩ dom
(
B−1) = dom TD , ∅ and let y = −L⊤yD. By semimonotonicity of A at (x⋆,−L⊤y⋆) it

holds for all (x⋆, y⋆) ∈ S⋆, x ∈ A−1(y) = A−1 ◦ (−L⊤)(yD) that

⟨x − x⋆, y + L⊤y⋆⟩ ≥ qµAL⊤L(x − x⋆) + ρA∥y + L⊤y⋆∥2 ≥ µAσ
2
d∥ΠR(L⊤)(x − x⋆)∥2 + ρA∥y + L⊤y⋆∥2, (A.2)

where the involved norms are nonzero since gph(ΠR(L⊤) A−1) is not equal to the singleton
{
(−L⊤y⋆,ΠR(L⊤) x⋆)

}
.

On the other hand, since y = −L⊤yD ∈ R(L⊤), it holds by the Fenchel-Young inequality with modulus 2µAσ
2
d >

0 that

⟨x − x⋆, y + L⊤y⋆⟩ = ⟨ΠR(L⊤)(x − x⋆), y + L⊤y⋆⟩ ≤ µAσ
2
d∥ΠR(L⊤)(x − x⋆)∥2 + 1

4µAσ
2
d
∥y + L⊤y⋆∥2. (A.3)

Combining (A.2) and (A.3), it follows that ρA ≤ 1
4µAσ

2
d
.
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Analogously, consider xP ∈ dom(A) ∩ dom(B ◦ L) = dom TP , ∅ and let x = LxP. Then, it holds for all
(x⋆, y⋆) ∈ S⋆, y ∈ B(x) = B(LxP) by the semimonotonicity assumption of B at (Lx⋆, y⋆) that

⟨x − Lx⋆, y − y⋆⟩ ≥ µB∥x − Lx⋆∥2 + qρBLL⊤ (y − y⋆) ≥ µB∥x − Lx⋆∥2 + ρBσ
2
d∥ΠR(L)(y − y⋆)∥2, (A.4)

where the involved norms are nonzero since gph(ΠR(L) B) is not equal to the singleton
{
Lx⋆,ΠR(L) y⋆

}
. On the

other hand, since x = LxP ∈ R(L), it holds by the Fenchel-Young inequality with modulus 2µB > 0 that

⟨x − Lx⋆, y − y⋆⟩ = ⟨x − Lx⋆,ΠR(L)(y − y⋆)⟩ ≤ µB∥x − Lx⋆∥2 + 1
4µB
∥ΠR(L)(y − y⋆)∥2. (A.5)

Finally, combining (A.4) and (A.5), it follows that ρBσ
2
d ≤ 1

4µB
, establishing the claim.

Proposition A.5 (normal cone of a box). The normal cone operator NC : �n ⇒ �n of the n-dimensional box
C B {x ∈ �n | li ≤ xi ≤ ui, i = 1, . . . , n} is

(
diag

( |ṽ1 |
u1−l1

, . . . , |ṽn |
un−ln

)
, 0

)
-semimonotone at (x̃, ṽ) ∈ gph NC .

Proof. By Proposition 4.2(iii) it suffices to show that NCi is
( |ṽi |

ui−li
, 0

)
-semimonotone at (x̃i, ṽi) ∈ gph NCi . Using

the fact that |x̃i − xi| ≤ ui − ℓi and monotonicity of NC , we have for all xi ∈ Ci that

|ṽi |
ui−ℓi
|x̃i − xi|2 ≤ |ṽi||x̃i − xi| = ⟨ṽi, x̃i − xi⟩.

B Omitted proofs

Proof of Example 3.6 (saddle point problem).

♠ 3.6(i): By defining H B I + λ
(
(P + TPD)−1P − I

)
and substituting τ = 1

γℓ2 , the update rule for zk corresponds
to the linear dynamical system zk+1 = Hzk. Global asymptotic stability of this system is achieved if and only if
the spectral radius of the matrix H is strictly less than one, which holds iff λ ∈

(
0,min

{
2, λ̄

})
. Analogously, the

convergence result for (ΠR(P) zk)k∈� can be obtained by analyzing the spectral radius of ΠR(P) H.

♠ 3.6(ii): The primal-dual operator and its inverse are given by

TPD =

[
A L⊤

−L B−1

]
and T−1

PD =

[
(A + L⊤BL)−1 −(A + L⊤BL)−1L⊤B

BL(A + L⊤BL)−1 B − BL(A + L⊤BL)−1L⊤B

]
owing to the Schur complement lemma. Therefore, when the vector v in (1.3) is restricted to R(P), Assump-
tion II.a3 is equivalent to

z⊤
(

TPD+T⊤PD
2 − T⊤PDVTPD

)
z ≥ 0, for all z ∈ �n : z ∈ T−1

PDR(P), (B.1)

where V is given by (3.3). Using that L = YΣX⊤, where Y = I3, Σ =
[ |ℓ|I2

0

]
and X = sgn(ℓ)I2, it follows from

(3.20) that

U =


1√

1+γ2ℓ2
I2 0

− γℓ√
1+γ2ℓ2

I2 0

0 1

 and V = βPI2 ⊕ βDI2 ⊕ β′DI1,

where U is an orthonormal basis for R(P). As a result, (B.1) is satisfied if and only if

(
T−1

PDU
)⊤( TPD+T⊤PD

2 − T⊤PDVTPD

)
T−1

PDU ⪰ 0 ⇐⇒ bℓ2(1+a2γ2)−(βP+γ
2ℓ2βD)(a2+b2ℓ4)

(a2+b2ℓ4)(1+γ2ℓ2) I2 ⊕ (c − β′D)I1 ⪰ 0

⇐⇒ 1
γ
βP + γℓ

2βD ≤ bℓ2(1+a2γ)
γ(a2+b2ℓ4) and β′D ≤ c.

Therefore, the upper bound on λ implied by Theorem 3.4 is given by

λmax B 2 min
{
1 + 1

γ
βP + γℓ

2βD, 1 + γℓ2β′D
}
≤ min

{
2 + 2 bℓ2(1+a2γ)

γ(a2+b2ℓ4) , 2(1 + γcℓ2)
}
= λ̄.
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♠ 3.6(iii): For this particular instance tr TP = −2 and tr TD = tr TPD = −12. Since the trace of a matrix equals
the sum of its eigenvalues, the proof is completed.

Proof of Example 3.7 (influence of singular values).

♠ 3.7(i): By [6, Prop. 5.1(ii)] and using that A, B and L are symmetric, TPD is 1
2 -comonotone if and only if

TPD+T⊤PD
2 − 1

2 T⊤PDTPD =

[
A − 1

2 (A⊤A + L⊤L) − 1
2 (AL − LB−1)

− 1
2 (LA − B−1L) B−1 − 1

2 (B−1⊤B−1 + LL⊤)

]
⪰ 0. (B.2)

Using that B−1 = A, that L is symmetric and that A and L commute, i.e., AL = LA, this condition reduces
to A − 1

2 (A⊤A + L⊤L) ⪰ 0, which holds by definition of A and L. Noting that zer TPD = (0n, 0n), the claim is
established.

♠ 3.7(ii): Follows from Theorem 3.4 and Proposition 3.5, using that ∥L∥ = 1 and γτ = 1
∥L∥2 .

♠ 3.7(iii): Analogous to the setting of Example 3.6(i), the update rule for ΠR(P) zk can be expressed as the
linear dynamical system ΠR(P) zk+1 = ΠR(P) HΠR(P) zk, where H B I + λ

(
(P + TPD)−1P − I

)
and P is defined

as in (1.2). This system is globally asymptotically stable if and only if the spectral radius of ΠR(P) H is strictly
less than one, i.e., if and only if λ ∈ (0, λ̄spectral), where

λ̄spectral ∈ arg max
λ

λ subject to ∥ΠR(P) H(λ)∥2 < 1.

The values for λ̄spectral reported in Figure 2 are obtained by solving this problem using SymPy.

Proof of Proposition 4.1. By the Fenchel-Young inequality, it holds for any R ≻ 0 that

⟨x − x̃, y − ỹ⟩ ≥ 1
4 qR−1 (x − x̃) − qR(y − ỹ), for all (x, y), (x̃, ỹ) ∈ gph A.

Therefore, (1.4) is always satisfied when M ⪯ 1
4 R−1.

Proof of Proposition 4.2 (inverting, shifting, scaling and cartesian product).

♠ 4.2(ii): First, consider the assertion where A is semimonotone only at (x̃A, ṽA). Define s̃ = x̃A − u and
t̃ = y + αṽA, such that (s̃, t̃) ∈ gph T . Then, it holds for all (s, t) ∈ gph T that〈

s − s̃, t − t̃
〉
= α

〈
(s + u) − (s̃ + u), α−1(t − y) − α−1(t̃ − y)

〉
(semimonotonicity of A at (x̃A, ṽA)) ≥ α qM((s + u) − (s̃ + u)) + α qR(α−1(t − y) − α−1(t̃ − y))

= qαM(s − s̃) + qα−1R(t − t̃),

where we used that (s̃ + u, α−1(t̃ − y)) = (x̃A, ṽA) and (s + u, α−1(t − y)) ∈ gph A. Hence, it follows that T is
(αMA, α

−1RA)-semimonotone at (s̃, t̃).

If A is (MA,RA)-semimonotone at all (x̃A, ỹA) ∈ gph A, we then know that T is (αMA, α
−1RA)-semimonotone

at all points in the set
{
(x̃A − u, y + αṽA) | (x̃A, ṽA) ∈ gph A

}
. Since this set is equal to gph T , it follows that T is

(αMA, α
−1RA)-semimonotone (everywhere).

♠ 4.2(iii): Let A and B be semimonotone at respectively (x̃A, ṽA) and (x̃B, ṽB). Since gph T is equal to the set
{((xA, xB), (vA, vB)) | vA ∈ AxA, vB ∈ BxB}, it holds for all (x, v) ∈ gph T that

⟨x − x̃, v − ṽ⟩ = ⟨xA − x̃A, vA − ṽA⟩ + ⟨xB − x̃B, vB − ṽB⟩
(semimonotonicity of A and B) ≥ qMA

(xA − x̃A) + qRA
(vA − ṽA) + qMB

(xB − x̃B) + qRB
(vB − ṽB)

= qMA⊕MB
(x − x̃) + qRA⊕RB

(v − ṽ).

and thus T is
(
MA ⊕ MB,RA ⊕ RB

)
-semimonotone at (x̃, ṽ) ∈ gph T .

If A and B are semimonotone at all points in their graph, then T is
(
MA ⊕ MB,RA ⊕ RB

)
-semimonotone at all

points in gph T , which completes the proof.
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Proof of Proposition 4.3 (linear operator). Owing to the linearity of D, (M,R)-semimonotonicity corresponds
to having ⟨x,Dx⟩ ≥ qM(x) + qR(Dx) for all x ∈ �n, which is equivalent to the LMI in the statement.

Proof of Proposition 4.4 (symmetric solution of D⊤XD ⪯ Y).

♠ 4.4(i): First, note that the problem of finding an X ∈ Sn such that D⊤XD ⪯ Y is equivalent to the problem of
finding a pair (X,Z) ∈ Sn ×Sm such that

D⊤XD = Y − Z (B.3)

and Z ⪰ 0. Second, observe that by [23, Prop. 1] the involved linear matrix equality is solvable for X ∈ Sn

if and only if R(Y − Z) ⊆ R(D⊤), i.e., ΠN(D) Z = ΠN(D) Y. By [28, Thm. 2.2], a matrix Z ⪰ 0 satisfying this
condition exists if and only if (4.1) holds, and the general solution is given by

Z = Y ΠN(D)(ΠN(D) Y ΠN(D))† ΠN(D) Y + D⊤(D†)⊤GD⊤(D†)⊤, (B.4)

where G ∈ Sn is an arbitrary symmetric positive semidefinite matrix.

♠ 4.4(ii): Substituting (B.4) into (B.3) yields

D⊤XD = Y − Y ΠN(D)(ΠN(D) Y ΠN(D))† ΠN(D) Y − D⊤(D†)⊤GD⊤(D†)⊤,

of which the general solution is given by [23, Prop. 1]

X = (D†)⊤(Y − Y ΠN(D)(ΠN(D) Y ΠN(D))† ΠN(D) Y −G)D†

= X⋆−(D†)⊤GD†

+H − ΠR(D) HΠR(D) (B.5)

where H ∈ Sn is an arbitrary matrix. Substituting (B.5) into D⊤XD ⪯ Y shows that

Y − D⊤XD = Y − D⊤X⋆D + ΠR(D⊤) GΠR(D⊤) ⪰ Y − D⊤X⋆D ⪰ 0.

Finally, the alternative expression for X⋆ given in (4.2) follows directly from [56, Lemma 3].

♠ 4.4(iii): [7, Fact 6.4.38]

Proof of Corollary 4.6 (semimonotonicity of DT D⊤). If (4.1) holds, then it follows from Proposition 4.4 that
D⊤X⋆D ⪯ Y . Therefore, it only remains to be to shown that this implies (DMD⊤, X⋆)-semimonotonicity of
DT D⊤ [at (x̃,Dỹ)].

First, consider the case where T is semimonotone only at a single point (D⊤ x̃, ỹ). Let (D⊤x, y) ∈ gph T and
denote u = Dy and ũ = Dỹ. Then, (x, u), (x̃, ũ) ∈ gph DT D⊤ and it holds that

⟨x − x̃, u − ũ⟩ = ⟨D⊤(x − x̃), y − ỹ⟩
(semi. of T at (D⊤ x̃, ỹ)) ≥ qM(D⊤(x − x̃)) + qY (y − ỹ)

≥ qDMD⊤ (x − x̃) + qX⋆ (D(y − ỹ)) = qDMD⊤ (x − x̃) + qX⋆ (u − ũ),

where D⊤X⋆D ⪯ Y was used in the second inequality, showing that DT D⊤ is (DMD⊤, X⋆)-semimonotone at
(x̃,Dỹ).

Hence, if T is (M,Y)-semimonotone at all (D⊤ x̃, ỹ) ∈ gph T , then DT D⊤ is (DMD⊤, X⋆)-semimonotone at
all points in

{
(x̃,Dỹ) | (D⊤ x̃, ỹ) ∈ gph T

}
, which equals gph DT D⊤.

Proof of Proposition 4.8 (sum and parallel sum). Let D = [ In In ]. Then, A + B is equal to DT D⊤, where T B
A×B. By Proposition 4.2(iii), operator T is (M,R) =

(
MA ⊕MB,RA ⊕RB

)
-semimonotone [at ((x̃, x̃), (ỹA, ỹB)) ∈

gph T ]. Consequently, it follows from Corollary 4.6 and Lemma A.3 that DT D⊤ = A+B is (MA+MB,RA□RB)-
semimonotone [at (x̃, ỹA + ỹB)]. Finally, the claim for the parallel sum follows directly from those for the sum
and Proposition 4.2(i), since A □ B B (A−1 + B−1)−1.
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Proof of Lemma 4.9 (sum with (skew-)symmetric matrix). First, consider the assertion where T is semimono-
tone at (x̃, ỹ). Let (x, y) ∈ gph T . Then, (x, y + Dx), (x̃, ỹ + Dx̃) ∈ gph (T + D) and

⟨x − x̃, y − ỹ + D(x − x̃)⟩ ≥ qD⊤MD(x − x̃) + qR+R′ (y − ỹ) + ⟨x − x̃,D(x − x̃)⟩.

By Corollary 4.5(ii) and skew-symmetry of D, it follows that D is (−D⊤MD,ΠR(D) MΠR(D))-semimonotone.
Consequently,

⟨x − x̃, y − ỹ + D(x − x̃)⟩ ≥ qR+R′ (y − ỹ) + qΠR(D) MΠR(D)
(Dx − Dx̃)

= qR′ (y − ỹ + D(x − x̃)) + qR(y − ỹ) + qM(D(x − x̃))
≥ qR′+M□R(y − ỹ + D(x − x̃))

where the fact that R(R′) ⊆ N(D) was used in the equality, and the final inequality follows from Proposi-
tion 4.4. Finally, when T is semimonotone, the claim follows analogously by considering all (x̃, ỹ) ∈ gph T ,
completing the proof.

Proof of Example 5.2 (constrained QP).

♠ 5.2(i): Let M B L⊤MAL = ΠR(L⊤) QΠR(L⊤) and observe that

ΠN(Q) M = ΠN(Q) ΠR(L⊤) QΠR(L⊤) = ΠN(Q)(In − ΠN(L))QΠR(L⊤) = 0, (B.6)

where the final equality holds since ΠR(L⊤) QΠN(L) = 0. Therefore, (4.3) is satisfied for D = Q and Q is
(L⊤MAL,R⋆)-semimonotone owing to Corollary 4.5(ii), where R⋆ is given by (4.5), i.e. R⋆ = Q† − Q†MQ† =
Q† −Q† ΠR(L⊤) QΠR(L⊤) Q†, where we used (B.6) and symmetry of Q. Moreover, since ΠR(L⊤) QΠN(L) = 0, it
holds owing to [7, Fact 6.4.34] that Q† = (ΠR(L⊤) QΠR(L⊤))†+(ΠN(L) QΠN(L))†, so that R⋆ = ΠN(L) Q† ΠN(L) =

R′A. The claimed result for A : x 7→ Qx + q then follows from Proposition 4.2(ii).

♠ 5.2(ii): Owing to Proposition 3.1, it holds that (x⋆, y⋆) ∈ zer TPD if and only if (x⋆,−L⊤y⋆) ∈ gph A and
(Lx⋆, y⋆) ∈ gph B. The claimed result then follows directly from Proposition A.5.

♠ 5.2(iii): By Theorem 5.1, TPD has ((ΠN(L) Q† ΠN(L)) ⊕ (MA □ MB))-oblique weak Minty solutions at S⋆ ={
(x⋆, y⋆)

}
. Therefore, using thatΠN(L) = X′X′⊤, it follows that the parameters βP, βD, β

′
P and β′D given in 5.2(iii)

match those from (5.1). As remarked below Theorem 5.1, Assumption II.a3 holds if these parameters satisfy
II.a3(i) and II.a3(ii), i.e., if [−β′P]+ < γmax =

1
[−βD]+∥L∥2 , completing the proof.

Proof of Corollary 5.5 (convergence of CPA under semimonotonicity). Note that Assumption III implies As-
sumption II.a3 by Corollary 5.4, where βP, β

′
P, βD, β

′
D ∈ � are given by (5.3). Therefore, it only remains to

show that Stepsize rule II is equivalent to Stepsize rule I and that Relaxation parameter rule II is equivalent to
Relaxation parameter rule I.

For technical reasons soon to be clear, we first show that gph(ΠR(L⊤) A−1) and gph(ΠR(L) B) cannot be
singletons. Suppose to the contrary that either gph(ΠR(L⊤) A−1) or gph(ΠR(L) B) is a singleton. Since zer TPD
is assumed to be nonempty, by Proposition 3.1 for all (x⋆, y⋆) ∈ zer TPD it holds that (−L⊤y⋆,ΠR(L⊤) x⋆) ∈
gphΠR(L⊤) A−1 and (Lx⋆,ΠR(L) y⋆) ∈ gphΠR(L) B. Therefore, since either gph(ΠR(L⊤) A−1) or gph(ΠR(L) B) is a
singleton, it follows that (ΠR(L⊤) ⊕ΠR(L)) zer TPD is a singleton, which in turn implies that both gph(ΠR(L⊤) A−1)
and gph(ΠR(L) B) are singletons. Moreover, it holds that

gph(JγA) =
{
(x + γy, x) | (y, x) ∈ gph A−1

}
=

{
(x − γL⊤y⋆, x) | x ∈ A−1(−L⊤y⋆)

}
=

{
(ΠR(L⊤) x⋆ − γL⊤y⋆ + x′,ΠR(L⊤) x⋆ + x′) | x′ ∈ ΠN(L) A−1(−L⊤y⋆)

}
, (B.7)

where we used that dom(A−1) = dom
(
ΠR(L⊤) A−1) = −L⊤y⋆ in the second equality and that R(L⊤) and N(L)

are orthogonal complements in the final equality. Using an analogous argument, it follows that

gph(JτB−1 ) =
{
(ΠR(L) y⋆ + τLx⋆ + y′,ΠR(L) y⋆ + y′) | y′ ∈ ΠN(L⊤) B(Lx⋆)

}
. (B.8)
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Consequently, the resolvents JγA and JτB−1 do not have full domain, contradicting Assumption II.a2.
Having shown that the sets gph(ΠR(L⊤) A−1) and gph(ΠR(L) B) are not singletons, it follows from Lem-

ma A.4 that [µA]+[ρA]+ ≤ 1/4σ2
d and [µB]+[ρB]+ ≤ 1/4σ2

d. Additionally, it holds by Assumption III that (µA, µB) ∈
dom□ and (ρA, ρB) ∈ dom□, so that by definition

βP = ρA □ ρB ≤ ρA and βD = µA □ µB ≤ µB. (B.9)

As a consequence of Lemma A.4 and (B.9), we claim that under Assumption III Stepsize rule I for γ and τ
reduces to γ ∈ (

γmin, γmax
)

and τ ∈ (
τmin(γ), 1

γ∥L∥2
]
.

This claim follows from the following three assertions.

♠ max
{
γmin, [−β′P]+

}
= γmin: If β′P ≥ 0, then this assertion vacuously holds since γmin ≥ 0. Let rank L < n and

β′P = ρA < 0, so that by assumption ρB > 0 and βP < 0. Consider the following two cases.

♢ βD ≤ 0: It holds that δ = 1 and thus

γmin =
−2βP

δ+
√
δ2−4βPβD∥L∥2

=
−2βP

1+
√

1−4βPβD∥L∥2
≥ − βP

(B.9)≥ − ρA = [−β′P]+. (B.10)

♢ βD > 0: By definition µA > 0 and µB > 0. Furthermore,

γmin > [−β′P]+ ⇐⇒ 1
γmin

< 1
[−β′P]+

⇐⇒ δ+
√
δ2−4βPβD∥L∥2
−2βP

< − 1
ρA
⇐⇒ βP

ρA
− 1

2δ >
1
2

√
δ − 4βPβD∥L∥2 (B.11)

(a)
⇐⇒ β2

P
ρ2

A
− βP

ρA
δ + βPβD∥L∥2 > 0

(b)
⇐⇒ µB(1 − µAρA∥L∥2︸          ︷︷          ︸

C ξA

) + µA(1 − µBρBσ
2
d︸        ︷︷        ︸

C ξB

) > 0, (B.12)

where (a) holds since βP
ρA
− 1

2δ > 1 − 1
2
(
1 + βPβD∥L∥2) ≥ 1

2 , and it is obtained by squaring both sides of
the inequality, while in (b) both sides of the inequality were multiplied by − 1

βP
(µA + µB)(ρA + ρB) > 0, and

δ = 1 + βDβP(∥L∥2 − σ2
d), βD = µAµB/(µA+µB) and βP = ρAρB/(ρA+ρB) were used. Since µAρA < 0, it holds that

ξA > 0, while Lemma A.4 guarantees that ξB > 0, completing the proof.

♠ min
{
γmax,

1
[−β′D]+∥L∥2

}
= γmax: Since

γmax <
1

[−β′D]+∥L∥2 ⇐⇒ 1
γmax∥L∥2 > [−β′D]+ ⇐⇒ 2[−βD]+

δ+
√
δ2−4βPβD∥L∥2

> [−β′D]+

it follows that verifying this assertion is analogous to verifying the inequality γmin > [−β′P]+ from (B.12),
swapping the roles of βP, β

′
P with βD, β

′
D.

♠ max
{
τmin(γ), [−β′D]+

}
= τmin(γ) for all γ ∈ (γmin, γmax): If β′D ≥ 0, then this assertion vacuously holds since

τmin(γ) ≥ 0 for all γ > 0. Let rank L < m and β′D = µB < 0. Then, by assumption µA > 0 and βD < 0. We
consider the following two cases.

♢ βP ≤ 0: Owing to (B.10) it holds that γ + βD > 0. Consequently, using that δ = 1 follows that

τmin(γ) = −βD(γ+βP)
γ(δ−βPβD∥L∥2)+βP

=
−βD(γ+βP)

γ(1−βPβD∥L∥2)+βP
≥ − βD

(B.9)≥ − µB = [−β′D]+,

where we used that 1 − βPβD∥L∥2 ∈ (3/4, 1] owing to Assumption III(iv).

♢ βP > 0: By definition γ(δ − βPβD∥L∥2) + βP = γ(1 − βPβDσ
2
d) + βP > 0 and thus it holds that

τmin(γ) > [−β′D]+ ⇐⇒
(
γ(1 − βPβDσ

2
d) + βP

)
µB > βD(γ + βP)

⇐⇒ 0 < γ
(
ρA + ρB(1 − µAρAσ

2
d)
)
+ ρAρB (B.13)

where we multiplied by 1
µ2

B
(µA + µB)(ρA + ρB) > 0 to obtain the final equivalence. Since βP > 0, it follows

that ρA > 0 and ρB > 0 and thus satisfaction of (B.13) is guaranteed through Lemma A.4.
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Having established that the conditions from Stepsize rule I reduce to γ ∈ (
γmin, γmax

)
and τ ∈ (

τmin(γ), 1
γ∥L∥2

]
, it

is straightforward to verify that these intervals match the ones provided in Table 2. Therefore, it only remains
to verify that that Relaxation parameter rule II is equivalent to Relaxation parameter rule I. First, observe that
the definition of η′ from Table 3 is obtained by plugging in β′P and β′D from (5.3) into Table 1. Moreover, as
a consequence of (B.9), it holds that min

{
1 + 1

γ
βP, 1 + 1

τ
βD

}
≤ min

{
1 + 1

γ
ρA, 1 + 1

τ
µB

}
≤ η′ and the following

assertions hold.

(i) If max{βP, βD} ≤ 0, then 1 + 1
γ
βP +

1
τ
βD ≤ η′.

(ii) if βPβD ≥ 0, then 1 + 1
2γβP +

1
2τβD − θγτ(σ) ≤ η′ for any σ ∈ (0, ∥L∥], since

θγτ(σ) =

√(
1

2γβP +
1
2τβD

)2 − 1
γτ
βPβD(1 − γτσ2) ≥

∣∣∣∣ 1
2γβP +

1
2τβD

∣∣∣∣.
The claimed equivalence follows immediately from these two assertions, completing the proof.
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